xref: /kernel/linux/linux-6.6/fs/btrfs/ctree.h (revision 62306a36)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/highmem.h>
12#include <linux/fs.h>
13#include <linux/rwsem.h>
14#include <linux/semaphore.h>
15#include <linux/completion.h>
16#include <linux/backing-dev.h>
17#include <linux/wait.h>
18#include <linux/slab.h>
19#include <trace/events/btrfs.h>
20#include <asm/unaligned.h>
21#include <linux/pagemap.h>
22#include <linux/btrfs.h>
23#include <linux/btrfs_tree.h>
24#include <linux/workqueue.h>
25#include <linux/security.h>
26#include <linux/sizes.h>
27#include <linux/dynamic_debug.h>
28#include <linux/refcount.h>
29#include <linux/crc32c.h>
30#include <linux/iomap.h>
31#include <linux/fscrypt.h>
32#include "extent-io-tree.h"
33#include "extent_io.h"
34#include "extent_map.h"
35#include "async-thread.h"
36#include "block-rsv.h"
37#include "locking.h"
38#include "misc.h"
39#include "fs.h"
40
41struct btrfs_trans_handle;
42struct btrfs_transaction;
43struct btrfs_pending_snapshot;
44struct btrfs_delayed_ref_root;
45struct btrfs_space_info;
46struct btrfs_block_group;
47struct btrfs_ordered_sum;
48struct btrfs_ref;
49struct btrfs_bio;
50struct btrfs_ioctl_encoded_io_args;
51struct btrfs_device;
52struct btrfs_fs_devices;
53struct btrfs_balance_control;
54struct btrfs_delayed_root;
55struct reloc_control;
56
57/* Read ahead values for struct btrfs_path.reada */
58enum {
59	READA_NONE,
60	READA_BACK,
61	READA_FORWARD,
62	/*
63	 * Similar to READA_FORWARD but unlike it:
64	 *
65	 * 1) It will trigger readahead even for leaves that are not close to
66	 *    each other on disk;
67	 * 2) It also triggers readahead for nodes;
68	 * 3) During a search, even when a node or leaf is already in memory, it
69	 *    will still trigger readahead for other nodes and leaves that follow
70	 *    it.
71	 *
72	 * This is meant to be used only when we know we are iterating over the
73	 * entire tree or a very large part of it.
74	 */
75	READA_FORWARD_ALWAYS,
76};
77
78/*
79 * btrfs_paths remember the path taken from the root down to the leaf.
80 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
81 * to any other levels that are present.
82 *
83 * The slots array records the index of the item or block pointer
84 * used while walking the tree.
85 */
86struct btrfs_path {
87	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
88	int slots[BTRFS_MAX_LEVEL];
89	/* if there is real range locking, this locks field will change */
90	u8 locks[BTRFS_MAX_LEVEL];
91	u8 reada;
92	/* keep some upper locks as we walk down */
93	u8 lowest_level;
94
95	/*
96	 * set by btrfs_split_item, tells search_slot to keep all locks
97	 * and to force calls to keep space in the nodes
98	 */
99	unsigned int search_for_split:1;
100	unsigned int keep_locks:1;
101	unsigned int skip_locking:1;
102	unsigned int search_commit_root:1;
103	unsigned int need_commit_sem:1;
104	unsigned int skip_release_on_error:1;
105	/*
106	 * Indicate that new item (btrfs_search_slot) is extending already
107	 * existing item and ins_len contains only the data size and not item
108	 * header (ie. sizeof(struct btrfs_item) is not included).
109	 */
110	unsigned int search_for_extension:1;
111	/* Stop search if any locks need to be taken (for read) */
112	unsigned int nowait:1;
113};
114
115/*
116 * The state of btrfs root
117 */
118enum {
119	/*
120	 * btrfs_record_root_in_trans is a multi-step process, and it can race
121	 * with the balancing code.   But the race is very small, and only the
122	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
123	 * is used to tell us when more checks are required
124	 */
125	BTRFS_ROOT_IN_TRANS_SETUP,
126
127	/*
128	 * Set if tree blocks of this root can be shared by other roots.
129	 * Only subvolume trees and their reloc trees have this bit set.
130	 * Conflicts with TRACK_DIRTY bit.
131	 *
132	 * This affects two things:
133	 *
134	 * - How balance works
135	 *   For shareable roots, we need to use reloc tree and do path
136	 *   replacement for balance, and need various pre/post hooks for
137	 *   snapshot creation to handle them.
138	 *
139	 *   While for non-shareable trees, we just simply do a tree search
140	 *   with COW.
141	 *
142	 * - How dirty roots are tracked
143	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
144	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
145	 *   don't need to set this manually.
146	 */
147	BTRFS_ROOT_SHAREABLE,
148	BTRFS_ROOT_TRACK_DIRTY,
149	BTRFS_ROOT_IN_RADIX,
150	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
151	BTRFS_ROOT_DEFRAG_RUNNING,
152	BTRFS_ROOT_FORCE_COW,
153	BTRFS_ROOT_MULTI_LOG_TASKS,
154	BTRFS_ROOT_DIRTY,
155	BTRFS_ROOT_DELETING,
156
157	/*
158	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
159	 *
160	 * Set for the subvolume tree owning the reloc tree.
161	 */
162	BTRFS_ROOT_DEAD_RELOC_TREE,
163	/* Mark dead root stored on device whose cleanup needs to be resumed */
164	BTRFS_ROOT_DEAD_TREE,
165	/* The root has a log tree. Used for subvolume roots and the tree root. */
166	BTRFS_ROOT_HAS_LOG_TREE,
167	/* Qgroup flushing is in progress */
168	BTRFS_ROOT_QGROUP_FLUSHING,
169	/* We started the orphan cleanup for this root. */
170	BTRFS_ROOT_ORPHAN_CLEANUP,
171	/* This root has a drop operation that was started previously. */
172	BTRFS_ROOT_UNFINISHED_DROP,
173	/* This reloc root needs to have its buffers lockdep class reset. */
174	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
175};
176
177/*
178 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
179 * code. For detail check comment in fs/btrfs/qgroup.c.
180 */
181struct btrfs_qgroup_swapped_blocks {
182	spinlock_t lock;
183	/* RM_EMPTY_ROOT() of above blocks[] */
184	bool swapped;
185	struct rb_root blocks[BTRFS_MAX_LEVEL];
186};
187
188/*
189 * in ram representation of the tree.  extent_root is used for all allocations
190 * and for the extent tree extent_root root.
191 */
192struct btrfs_root {
193	struct rb_node rb_node;
194
195	struct extent_buffer *node;
196
197	struct extent_buffer *commit_root;
198	struct btrfs_root *log_root;
199	struct btrfs_root *reloc_root;
200
201	unsigned long state;
202	struct btrfs_root_item root_item;
203	struct btrfs_key root_key;
204	struct btrfs_fs_info *fs_info;
205	struct extent_io_tree dirty_log_pages;
206
207	struct mutex objectid_mutex;
208
209	spinlock_t accounting_lock;
210	struct btrfs_block_rsv *block_rsv;
211
212	struct mutex log_mutex;
213	wait_queue_head_t log_writer_wait;
214	wait_queue_head_t log_commit_wait[2];
215	struct list_head log_ctxs[2];
216	/* Used only for log trees of subvolumes, not for the log root tree */
217	atomic_t log_writers;
218	atomic_t log_commit[2];
219	/* Used only for log trees of subvolumes, not for the log root tree */
220	atomic_t log_batch;
221	int log_transid;
222	/* No matter the commit succeeds or not*/
223	int log_transid_committed;
224	/* Just be updated when the commit succeeds. */
225	int last_log_commit;
226	pid_t log_start_pid;
227
228	u64 last_trans;
229
230	u32 type;
231
232	u64 free_objectid;
233
234	struct btrfs_key defrag_progress;
235	struct btrfs_key defrag_max;
236
237	/* The dirty list is only used by non-shareable roots */
238	struct list_head dirty_list;
239
240	struct list_head root_list;
241
242	spinlock_t log_extents_lock[2];
243	struct list_head logged_list[2];
244
245	spinlock_t inode_lock;
246	/* red-black tree that keeps track of in-memory inodes */
247	struct rb_root inode_tree;
248
249	/*
250	 * radix tree that keeps track of delayed nodes of every inode,
251	 * protected by inode_lock
252	 */
253	struct radix_tree_root delayed_nodes_tree;
254	/*
255	 * right now this just gets used so that a root has its own devid
256	 * for stat.  It may be used for more later
257	 */
258	dev_t anon_dev;
259
260	spinlock_t root_item_lock;
261	refcount_t refs;
262
263	struct mutex delalloc_mutex;
264	spinlock_t delalloc_lock;
265	/*
266	 * all of the inodes that have delalloc bytes.  It is possible for
267	 * this list to be empty even when there is still dirty data=ordered
268	 * extents waiting to finish IO.
269	 */
270	struct list_head delalloc_inodes;
271	struct list_head delalloc_root;
272	u64 nr_delalloc_inodes;
273
274	struct mutex ordered_extent_mutex;
275	/*
276	 * this is used by the balancing code to wait for all the pending
277	 * ordered extents
278	 */
279	spinlock_t ordered_extent_lock;
280
281	/*
282	 * all of the data=ordered extents pending writeback
283	 * these can span multiple transactions and basically include
284	 * every dirty data page that isn't from nodatacow
285	 */
286	struct list_head ordered_extents;
287	struct list_head ordered_root;
288	u64 nr_ordered_extents;
289
290	/*
291	 * Not empty if this subvolume root has gone through tree block swap
292	 * (relocation)
293	 *
294	 * Will be used by reloc_control::dirty_subvol_roots.
295	 */
296	struct list_head reloc_dirty_list;
297
298	/*
299	 * Number of currently running SEND ioctls to prevent
300	 * manipulation with the read-only status via SUBVOL_SETFLAGS
301	 */
302	int send_in_progress;
303	/*
304	 * Number of currently running deduplication operations that have a
305	 * destination inode belonging to this root. Protected by the lock
306	 * root_item_lock.
307	 */
308	int dedupe_in_progress;
309	/* For exclusion of snapshot creation and nocow writes */
310	struct btrfs_drew_lock snapshot_lock;
311
312	atomic_t snapshot_force_cow;
313
314	/* For qgroup metadata reserved space */
315	spinlock_t qgroup_meta_rsv_lock;
316	u64 qgroup_meta_rsv_pertrans;
317	u64 qgroup_meta_rsv_prealloc;
318	wait_queue_head_t qgroup_flush_wait;
319
320	/* Number of active swapfiles */
321	atomic_t nr_swapfiles;
322
323	/* Record pairs of swapped blocks for qgroup */
324	struct btrfs_qgroup_swapped_blocks swapped_blocks;
325
326	/* Used only by log trees, when logging csum items */
327	struct extent_io_tree log_csum_range;
328
329#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
330	u64 alloc_bytenr;
331#endif
332
333#ifdef CONFIG_BTRFS_DEBUG
334	struct list_head leak_list;
335#endif
336};
337
338static inline bool btrfs_root_readonly(const struct btrfs_root *root)
339{
340	/* Byte-swap the constant at compile time, root_item::flags is LE */
341	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
342}
343
344static inline bool btrfs_root_dead(const struct btrfs_root *root)
345{
346	/* Byte-swap the constant at compile time, root_item::flags is LE */
347	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
348}
349
350static inline u64 btrfs_root_id(const struct btrfs_root *root)
351{
352	return root->root_key.objectid;
353}
354
355/*
356 * Structure that conveys information about an extent that is going to replace
357 * all the extents in a file range.
358 */
359struct btrfs_replace_extent_info {
360	u64 disk_offset;
361	u64 disk_len;
362	u64 data_offset;
363	u64 data_len;
364	u64 file_offset;
365	/* Pointer to a file extent item of type regular or prealloc. */
366	char *extent_buf;
367	/*
368	 * Set to true when attempting to replace a file range with a new extent
369	 * described by this structure, set to false when attempting to clone an
370	 * existing extent into a file range.
371	 */
372	bool is_new_extent;
373	/* Indicate if we should update the inode's mtime and ctime. */
374	bool update_times;
375	/* Meaningful only if is_new_extent is true. */
376	int qgroup_reserved;
377	/*
378	 * Meaningful only if is_new_extent is true.
379	 * Used to track how many extent items we have already inserted in a
380	 * subvolume tree that refer to the extent described by this structure,
381	 * so that we know when to create a new delayed ref or update an existing
382	 * one.
383	 */
384	int insertions;
385};
386
387/* Arguments for btrfs_drop_extents() */
388struct btrfs_drop_extents_args {
389	/* Input parameters */
390
391	/*
392	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
393	 * If 'replace_extent' is true, this must not be NULL. Also the path
394	 * is always released except if 'replace_extent' is true and
395	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
396	 * the path is kept locked.
397	 */
398	struct btrfs_path *path;
399	/* Start offset of the range to drop extents from */
400	u64 start;
401	/* End (exclusive, last byte + 1) of the range to drop extents from */
402	u64 end;
403	/* If true drop all the extent maps in the range */
404	bool drop_cache;
405	/*
406	 * If true it means we want to insert a new extent after dropping all
407	 * the extents in the range. If this is true, the 'extent_item_size'
408	 * parameter must be set as well and the 'extent_inserted' field will
409	 * be set to true by btrfs_drop_extents() if it could insert the new
410	 * extent.
411	 * Note: when this is set to true the path must not be NULL.
412	 */
413	bool replace_extent;
414	/*
415	 * Used if 'replace_extent' is true. Size of the file extent item to
416	 * insert after dropping all existing extents in the range
417	 */
418	u32 extent_item_size;
419
420	/* Output parameters */
421
422	/*
423	 * Set to the minimum between the input parameter 'end' and the end
424	 * (exclusive, last byte + 1) of the last dropped extent. This is always
425	 * set even if btrfs_drop_extents() returns an error.
426	 */
427	u64 drop_end;
428	/*
429	 * The number of allocated bytes found in the range. This can be smaller
430	 * than the range's length when there are holes in the range.
431	 */
432	u64 bytes_found;
433	/*
434	 * Only set if 'replace_extent' is true. Set to true if we were able
435	 * to insert a replacement extent after dropping all extents in the
436	 * range, otherwise set to false by btrfs_drop_extents().
437	 * Also, if btrfs_drop_extents() has set this to true it means it
438	 * returned with the path locked, otherwise if it has set this to
439	 * false it has returned with the path released.
440	 */
441	bool extent_inserted;
442};
443
444struct btrfs_file_private {
445	void *filldir_buf;
446	u64 last_index;
447	struct extent_state *llseek_cached_state;
448};
449
450static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
451{
452	return info->nodesize - sizeof(struct btrfs_header);
453}
454
455static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
456{
457	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
458}
459
460static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
461{
462	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
463}
464
465static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
466{
467	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
468}
469
470#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
471				((bytes) >> (fs_info)->sectorsize_bits)
472
473static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
474{
475	return crc32c(crc, address, length);
476}
477
478static inline void btrfs_crc32c_final(u32 crc, u8 *result)
479{
480	put_unaligned_le32(~crc, result);
481}
482
483static inline u64 btrfs_name_hash(const char *name, int len)
484{
485       return crc32c((u32)~1, name, len);
486}
487
488/*
489 * Figure the key offset of an extended inode ref
490 */
491static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
492                                   int len)
493{
494       return (u64) crc32c(parent_objectid, name, len);
495}
496
497static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
498{
499	return mapping_gfp_constraint(mapping, ~__GFP_FS);
500}
501
502int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
503				   u64 start, u64 end);
504int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
505			 u64 num_bytes, u64 *actual_bytes);
506int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
507
508/* ctree.c */
509int __init btrfs_ctree_init(void);
510void __cold btrfs_ctree_exit(void);
511
512int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
513		     const struct btrfs_key *key, int *slot);
514
515int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
516int btrfs_previous_item(struct btrfs_root *root,
517			struct btrfs_path *path, u64 min_objectid,
518			int type);
519int btrfs_previous_extent_item(struct btrfs_root *root,
520			struct btrfs_path *path, u64 min_objectid);
521void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
522			     struct btrfs_path *path,
523			     const struct btrfs_key *new_key);
524struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
525int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
526			struct btrfs_key *key, int lowest_level,
527			u64 min_trans);
528int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
529			 struct btrfs_path *path,
530			 u64 min_trans);
531struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
532					   int slot);
533
534int btrfs_cow_block(struct btrfs_trans_handle *trans,
535		    struct btrfs_root *root, struct extent_buffer *buf,
536		    struct extent_buffer *parent, int parent_slot,
537		    struct extent_buffer **cow_ret,
538		    enum btrfs_lock_nesting nest);
539int btrfs_copy_root(struct btrfs_trans_handle *trans,
540		      struct btrfs_root *root,
541		      struct extent_buffer *buf,
542		      struct extent_buffer **cow_ret, u64 new_root_objectid);
543int btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
544			      struct btrfs_root *root,
545			      struct extent_buffer *buf);
546int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
547		  struct btrfs_path *path, int level, int slot);
548void btrfs_extend_item(struct btrfs_trans_handle *trans,
549		       struct btrfs_path *path, u32 data_size);
550void btrfs_truncate_item(struct btrfs_trans_handle *trans,
551			 struct btrfs_path *path, u32 new_size, int from_end);
552int btrfs_split_item(struct btrfs_trans_handle *trans,
553		     struct btrfs_root *root,
554		     struct btrfs_path *path,
555		     const struct btrfs_key *new_key,
556		     unsigned long split_offset);
557int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
558			 struct btrfs_root *root,
559			 struct btrfs_path *path,
560			 const struct btrfs_key *new_key);
561int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
562		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
563int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
564		      const struct btrfs_key *key, struct btrfs_path *p,
565		      int ins_len, int cow);
566int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
567			  struct btrfs_path *p, u64 time_seq);
568int btrfs_search_slot_for_read(struct btrfs_root *root,
569			       const struct btrfs_key *key,
570			       struct btrfs_path *p, int find_higher,
571			       int return_any);
572int btrfs_realloc_node(struct btrfs_trans_handle *trans,
573		       struct btrfs_root *root, struct extent_buffer *parent,
574		       int start_slot, u64 *last_ret,
575		       struct btrfs_key *progress);
576void btrfs_release_path(struct btrfs_path *p);
577struct btrfs_path *btrfs_alloc_path(void);
578void btrfs_free_path(struct btrfs_path *p);
579
580int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
581		   struct btrfs_path *path, int slot, int nr);
582static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
583				 struct btrfs_root *root,
584				 struct btrfs_path *path)
585{
586	return btrfs_del_items(trans, root, path, path->slots[0], 1);
587}
588
589/*
590 * Describes a batch of items to insert in a btree. This is used by
591 * btrfs_insert_empty_items().
592 */
593struct btrfs_item_batch {
594	/*
595	 * Pointer to an array containing the keys of the items to insert (in
596	 * sorted order).
597	 */
598	const struct btrfs_key *keys;
599	/* Pointer to an array containing the data size for each item to insert. */
600	const u32 *data_sizes;
601	/*
602	 * The sum of data sizes for all items. The caller can compute this while
603	 * setting up the data_sizes array, so it ends up being more efficient
604	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
605	 * doing it, as it would avoid an extra loop over a potentially large
606	 * array, and in the case of setup_item_for_insert(), we would be doing
607	 * it while holding a write lock on a leaf and often on upper level nodes
608	 * too, unnecessarily increasing the size of a critical section.
609	 */
610	u32 total_data_size;
611	/* Size of the keys and data_sizes arrays (number of items in the batch). */
612	int nr;
613};
614
615void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
616				 struct btrfs_root *root,
617				 struct btrfs_path *path,
618				 const struct btrfs_key *key,
619				 u32 data_size);
620int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
621		      const struct btrfs_key *key, void *data, u32 data_size);
622int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
623			     struct btrfs_root *root,
624			     struct btrfs_path *path,
625			     const struct btrfs_item_batch *batch);
626
627static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
628					  struct btrfs_root *root,
629					  struct btrfs_path *path,
630					  const struct btrfs_key *key,
631					  u32 data_size)
632{
633	struct btrfs_item_batch batch;
634
635	batch.keys = key;
636	batch.data_sizes = &data_size;
637	batch.total_data_size = data_size;
638	batch.nr = 1;
639
640	return btrfs_insert_empty_items(trans, root, path, &batch);
641}
642
643int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
644			u64 time_seq);
645
646int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
647			   struct btrfs_path *path);
648
649int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
650			      struct btrfs_path *path);
651
652/*
653 * Search in @root for a given @key, and store the slot found in @found_key.
654 *
655 * @root:	The root node of the tree.
656 * @key:	The key we are looking for.
657 * @found_key:	Will hold the found item.
658 * @path:	Holds the current slot/leaf.
659 * @iter_ret:	Contains the value returned from btrfs_search_slot or
660 * 		btrfs_get_next_valid_item, whichever was executed last.
661 *
662 * The @iter_ret is an output variable that will contain the return value of
663 * btrfs_search_slot, if it encountered an error, or the value returned from
664 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
665 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
666 *
667 * It's recommended to use a separate variable for iter_ret and then use it to
668 * set the function return value so there's no confusion of the 0/1/errno
669 * values stemming from btrfs_search_slot.
670 */
671#define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
672	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
673		(iter_ret) >= 0 &&						\
674		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
675		(path)->slots[0]++						\
676	)
677
678int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
679
680/*
681 * Search the tree again to find a leaf with greater keys.
682 *
683 * Returns 0 if it found something or 1 if there are no greater leaves.
684 * Returns < 0 on error.
685 */
686static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
687{
688	return btrfs_next_old_leaf(root, path, 0);
689}
690
691static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
692{
693	return btrfs_next_old_item(root, p, 0);
694}
695int btrfs_leaf_free_space(const struct extent_buffer *leaf);
696
697static inline int is_fstree(u64 rootid)
698{
699	if (rootid == BTRFS_FS_TREE_OBJECTID ||
700	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
701	      !btrfs_qgroup_level(rootid)))
702		return 1;
703	return 0;
704}
705
706static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
707{
708	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
709}
710
711u16 btrfs_csum_type_size(u16 type);
712int btrfs_super_csum_size(const struct btrfs_super_block *s);
713const char *btrfs_super_csum_name(u16 csum_type);
714const char *btrfs_super_csum_driver(u16 csum_type);
715size_t __attribute_const__ btrfs_get_num_csums(void);
716
717/*
718 * We use page status Private2 to indicate there is an ordered extent with
719 * unfinished IO.
720 *
721 * Rename the Private2 accessors to Ordered, to improve readability.
722 */
723#define PageOrdered(page)		PagePrivate2(page)
724#define SetPageOrdered(page)		SetPagePrivate2(page)
725#define ClearPageOrdered(page)		ClearPagePrivate2(page)
726#define folio_test_ordered(folio)	folio_test_private_2(folio)
727#define folio_set_ordered(folio)	folio_set_private_2(folio)
728#define folio_clear_ordered(folio)	folio_clear_private_2(folio)
729
730#endif
731