xref: /kernel/linux/linux-6.6/fs/btrfs/ctree.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/rbtree.h>
9#include <linux/mm.h>
10#include <linux/error-injection.h>
11#include "messages.h"
12#include "ctree.h"
13#include "disk-io.h"
14#include "transaction.h"
15#include "print-tree.h"
16#include "locking.h"
17#include "volumes.h"
18#include "qgroup.h"
19#include "tree-mod-log.h"
20#include "tree-checker.h"
21#include "fs.h"
22#include "accessors.h"
23#include "extent-tree.h"
24#include "relocation.h"
25#include "file-item.h"
26
27static struct kmem_cache *btrfs_path_cachep;
28
29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30		      *root, struct btrfs_path *path, int level);
31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33		      int data_size, int extend);
34static int push_node_left(struct btrfs_trans_handle *trans,
35			  struct extent_buffer *dst,
36			  struct extent_buffer *src, int empty);
37static int balance_node_right(struct btrfs_trans_handle *trans,
38			      struct extent_buffer *dst_buf,
39			      struct extent_buffer *src_buf);
40
41static const struct btrfs_csums {
42	u16		size;
43	const char	name[10];
44	const char	driver[12];
45} btrfs_csums[] = {
46	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50				     .driver = "blake2b-256" },
51};
52
53/*
54 * The leaf data grows from end-to-front in the node.  this returns the address
55 * of the start of the last item, which is the stop of the leaf data stack.
56 */
57static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58{
59	u32 nr = btrfs_header_nritems(leaf);
60
61	if (nr == 0)
62		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63	return btrfs_item_offset(leaf, nr - 1);
64}
65
66/*
67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
68 *
69 * @leaf:	leaf that we're doing a memmove on
70 * @dst_offset:	item data offset we're moving to
71 * @src_offset:	item data offset were' moving from
72 * @len:	length of the data we're moving
73 *
74 * Wrapper around memmove_extent_buffer() that takes into account the header on
75 * the leaf.  The btrfs_item offset's start directly after the header, so we
76 * have to adjust any offsets to account for the header in the leaf.  This
77 * handles that math to simplify the callers.
78 */
79static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80				     unsigned long dst_offset,
81				     unsigned long src_offset,
82				     unsigned long len)
83{
84	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86}
87
88/*
89 * Copy item data from @src into @dst at the given @offset.
90 *
91 * @dst:	destination leaf that we're copying into
92 * @src:	source leaf that we're copying from
93 * @dst_offset:	item data offset we're copying to
94 * @src_offset:	item data offset were' copying from
95 * @len:	length of the data we're copying
96 *
97 * Wrapper around copy_extent_buffer() that takes into account the header on
98 * the leaf.  The btrfs_item offset's start directly after the header, so we
99 * have to adjust any offsets to account for the header in the leaf.  This
100 * handles that math to simplify the callers.
101 */
102static inline void copy_leaf_data(const struct extent_buffer *dst,
103				  const struct extent_buffer *src,
104				  unsigned long dst_offset,
105				  unsigned long src_offset, unsigned long len)
106{
107	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108			   btrfs_item_nr_offset(src, 0) + src_offset, len);
109}
110
111/*
112 * Move items in a @leaf (using memmove).
113 *
114 * @dst:	destination leaf for the items
115 * @dst_item:	the item nr we're copying into
116 * @src_item:	the item nr we're copying from
117 * @nr_items:	the number of items to copy
118 *
119 * Wrapper around memmove_extent_buffer() that does the math to get the
120 * appropriate offsets into the leaf from the item numbers.
121 */
122static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123				      int dst_item, int src_item, int nr_items)
124{
125	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126			      btrfs_item_nr_offset(leaf, src_item),
127			      nr_items * sizeof(struct btrfs_item));
128}
129
130/*
131 * Copy items from @src into @dst at the given @offset.
132 *
133 * @dst:	destination leaf for the items
134 * @src:	source leaf for the items
135 * @dst_item:	the item nr we're copying into
136 * @src_item:	the item nr we're copying from
137 * @nr_items:	the number of items to copy
138 *
139 * Wrapper around copy_extent_buffer() that does the math to get the
140 * appropriate offsets into the leaf from the item numbers.
141 */
142static inline void copy_leaf_items(const struct extent_buffer *dst,
143				   const struct extent_buffer *src,
144				   int dst_item, int src_item, int nr_items)
145{
146	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147			      btrfs_item_nr_offset(src, src_item),
148			      nr_items * sizeof(struct btrfs_item));
149}
150
151/* This exists for btrfs-progs usages. */
152u16 btrfs_csum_type_size(u16 type)
153{
154	return btrfs_csums[type].size;
155}
156
157int btrfs_super_csum_size(const struct btrfs_super_block *s)
158{
159	u16 t = btrfs_super_csum_type(s);
160	/*
161	 * csum type is validated at mount time
162	 */
163	return btrfs_csum_type_size(t);
164}
165
166const char *btrfs_super_csum_name(u16 csum_type)
167{
168	/* csum type is validated at mount time */
169	return btrfs_csums[csum_type].name;
170}
171
172/*
173 * Return driver name if defined, otherwise the name that's also a valid driver
174 * name
175 */
176const char *btrfs_super_csum_driver(u16 csum_type)
177{
178	/* csum type is validated at mount time */
179	return btrfs_csums[csum_type].driver[0] ?
180		btrfs_csums[csum_type].driver :
181		btrfs_csums[csum_type].name;
182}
183
184size_t __attribute_const__ btrfs_get_num_csums(void)
185{
186	return ARRAY_SIZE(btrfs_csums);
187}
188
189struct btrfs_path *btrfs_alloc_path(void)
190{
191	might_sleep();
192
193	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194}
195
196/* this also releases the path */
197void btrfs_free_path(struct btrfs_path *p)
198{
199	if (!p)
200		return;
201	btrfs_release_path(p);
202	kmem_cache_free(btrfs_path_cachep, p);
203}
204
205/*
206 * path release drops references on the extent buffers in the path
207 * and it drops any locks held by this path
208 *
209 * It is safe to call this on paths that no locks or extent buffers held.
210 */
211noinline void btrfs_release_path(struct btrfs_path *p)
212{
213	int i;
214
215	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216		p->slots[i] = 0;
217		if (!p->nodes[i])
218			continue;
219		if (p->locks[i]) {
220			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221			p->locks[i] = 0;
222		}
223		free_extent_buffer(p->nodes[i]);
224		p->nodes[i] = NULL;
225	}
226}
227
228/*
229 * We want the transaction abort to print stack trace only for errors where the
230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231 * caused by external factors.
232 */
233bool __cold abort_should_print_stack(int errno)
234{
235	switch (errno) {
236	case -EIO:
237	case -EROFS:
238	case -ENOMEM:
239		return false;
240	}
241	return true;
242}
243
244/*
245 * safely gets a reference on the root node of a tree.  A lock
246 * is not taken, so a concurrent writer may put a different node
247 * at the root of the tree.  See btrfs_lock_root_node for the
248 * looping required.
249 *
250 * The extent buffer returned by this has a reference taken, so
251 * it won't disappear.  It may stop being the root of the tree
252 * at any time because there are no locks held.
253 */
254struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255{
256	struct extent_buffer *eb;
257
258	while (1) {
259		rcu_read_lock();
260		eb = rcu_dereference(root->node);
261
262		/*
263		 * RCU really hurts here, we could free up the root node because
264		 * it was COWed but we may not get the new root node yet so do
265		 * the inc_not_zero dance and if it doesn't work then
266		 * synchronize_rcu and try again.
267		 */
268		if (atomic_inc_not_zero(&eb->refs)) {
269			rcu_read_unlock();
270			break;
271		}
272		rcu_read_unlock();
273		synchronize_rcu();
274	}
275	return eb;
276}
277
278/*
279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280 * just get put onto a simple dirty list.  Transaction walks this list to make
281 * sure they get properly updated on disk.
282 */
283static void add_root_to_dirty_list(struct btrfs_root *root)
284{
285	struct btrfs_fs_info *fs_info = root->fs_info;
286
287	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289		return;
290
291	spin_lock(&fs_info->trans_lock);
292	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293		/* Want the extent tree to be the last on the list */
294		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
295			list_move_tail(&root->dirty_list,
296				       &fs_info->dirty_cowonly_roots);
297		else
298			list_move(&root->dirty_list,
299				  &fs_info->dirty_cowonly_roots);
300	}
301	spin_unlock(&fs_info->trans_lock);
302}
303
304/*
305 * used by snapshot creation to make a copy of a root for a tree with
306 * a given objectid.  The buffer with the new root node is returned in
307 * cow_ret, and this func returns zero on success or a negative error code.
308 */
309int btrfs_copy_root(struct btrfs_trans_handle *trans,
310		      struct btrfs_root *root,
311		      struct extent_buffer *buf,
312		      struct extent_buffer **cow_ret, u64 new_root_objectid)
313{
314	struct btrfs_fs_info *fs_info = root->fs_info;
315	struct extent_buffer *cow;
316	int ret = 0;
317	int level;
318	struct btrfs_disk_key disk_key;
319
320	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
321		trans->transid != fs_info->running_transaction->transid);
322	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
323		trans->transid != root->last_trans);
324
325	level = btrfs_header_level(buf);
326	if (level == 0)
327		btrfs_item_key(buf, &disk_key, 0);
328	else
329		btrfs_node_key(buf, &disk_key, 0);
330
331	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
332				     &disk_key, level, buf->start, 0,
333				     BTRFS_NESTING_NEW_ROOT);
334	if (IS_ERR(cow))
335		return PTR_ERR(cow);
336
337	copy_extent_buffer_full(cow, buf);
338	btrfs_set_header_bytenr(cow, cow->start);
339	btrfs_set_header_generation(cow, trans->transid);
340	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
341	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
342				     BTRFS_HEADER_FLAG_RELOC);
343	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
344		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
345	else
346		btrfs_set_header_owner(cow, new_root_objectid);
347
348	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
349
350	WARN_ON(btrfs_header_generation(buf) > trans->transid);
351	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
352		ret = btrfs_inc_ref(trans, root, cow, 1);
353	else
354		ret = btrfs_inc_ref(trans, root, cow, 0);
355	if (ret) {
356		btrfs_tree_unlock(cow);
357		free_extent_buffer(cow);
358		btrfs_abort_transaction(trans, ret);
359		return ret;
360	}
361
362	btrfs_mark_buffer_dirty(trans, cow);
363	*cow_ret = cow;
364	return 0;
365}
366
367/*
368 * check if the tree block can be shared by multiple trees
369 */
370int btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
371			      struct btrfs_root *root,
372			      struct extent_buffer *buf)
373{
374	/*
375	 * Tree blocks not in shareable trees and tree roots are never shared.
376	 * If a block was allocated after the last snapshot and the block was
377	 * not allocated by tree relocation, we know the block is not shared.
378	 */
379	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
380	    buf != root->node &&
381	    (btrfs_header_generation(buf) <=
382	     btrfs_root_last_snapshot(&root->root_item) ||
383	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) {
384		if (buf != root->commit_root)
385			return 1;
386		/*
387		 * An extent buffer that used to be the commit root may still be
388		 * shared because the tree height may have increased and it
389		 * became a child of a higher level root. This can happen when
390		 * snapshotting a subvolume created in the current transaction.
391		 */
392		if (btrfs_header_generation(buf) == trans->transid)
393			return 1;
394	}
395
396	return 0;
397}
398
399static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
400				       struct btrfs_root *root,
401				       struct extent_buffer *buf,
402				       struct extent_buffer *cow,
403				       int *last_ref)
404{
405	struct btrfs_fs_info *fs_info = root->fs_info;
406	u64 refs;
407	u64 owner;
408	u64 flags;
409	u64 new_flags = 0;
410	int ret;
411
412	/*
413	 * Backrefs update rules:
414	 *
415	 * Always use full backrefs for extent pointers in tree block
416	 * allocated by tree relocation.
417	 *
418	 * If a shared tree block is no longer referenced by its owner
419	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
420	 * use full backrefs for extent pointers in tree block.
421	 *
422	 * If a tree block is been relocating
423	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
424	 * use full backrefs for extent pointers in tree block.
425	 * The reason for this is some operations (such as drop tree)
426	 * are only allowed for blocks use full backrefs.
427	 */
428
429	if (btrfs_block_can_be_shared(trans, root, buf)) {
430		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
431					       btrfs_header_level(buf), 1,
432					       &refs, &flags);
433		if (ret)
434			return ret;
435		if (unlikely(refs == 0)) {
436			btrfs_crit(fs_info,
437		"found 0 references for tree block at bytenr %llu level %d root %llu",
438				   buf->start, btrfs_header_level(buf),
439				   btrfs_root_id(root));
440			ret = -EUCLEAN;
441			btrfs_abort_transaction(trans, ret);
442			return ret;
443		}
444	} else {
445		refs = 1;
446		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
447		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
448			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
449		else
450			flags = 0;
451	}
452
453	owner = btrfs_header_owner(buf);
454	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
455	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
456
457	if (refs > 1) {
458		if ((owner == root->root_key.objectid ||
459		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
460		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
461			ret = btrfs_inc_ref(trans, root, buf, 1);
462			if (ret)
463				return ret;
464
465			if (root->root_key.objectid ==
466			    BTRFS_TREE_RELOC_OBJECTID) {
467				ret = btrfs_dec_ref(trans, root, buf, 0);
468				if (ret)
469					return ret;
470				ret = btrfs_inc_ref(trans, root, cow, 1);
471				if (ret)
472					return ret;
473			}
474			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
475		} else {
476
477			if (root->root_key.objectid ==
478			    BTRFS_TREE_RELOC_OBJECTID)
479				ret = btrfs_inc_ref(trans, root, cow, 1);
480			else
481				ret = btrfs_inc_ref(trans, root, cow, 0);
482			if (ret)
483				return ret;
484		}
485		if (new_flags != 0) {
486			ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
487			if (ret)
488				return ret;
489		}
490	} else {
491		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
492			if (root->root_key.objectid ==
493			    BTRFS_TREE_RELOC_OBJECTID)
494				ret = btrfs_inc_ref(trans, root, cow, 1);
495			else
496				ret = btrfs_inc_ref(trans, root, cow, 0);
497			if (ret)
498				return ret;
499			ret = btrfs_dec_ref(trans, root, buf, 1);
500			if (ret)
501				return ret;
502		}
503		btrfs_clear_buffer_dirty(trans, buf);
504		*last_ref = 1;
505	}
506	return 0;
507}
508
509/*
510 * does the dirty work in cow of a single block.  The parent block (if
511 * supplied) is updated to point to the new cow copy.  The new buffer is marked
512 * dirty and returned locked.  If you modify the block it needs to be marked
513 * dirty again.
514 *
515 * search_start -- an allocation hint for the new block
516 *
517 * empty_size -- a hint that you plan on doing more cow.  This is the size in
518 * bytes the allocator should try to find free next to the block it returns.
519 * This is just a hint and may be ignored by the allocator.
520 */
521static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
522			     struct btrfs_root *root,
523			     struct extent_buffer *buf,
524			     struct extent_buffer *parent, int parent_slot,
525			     struct extent_buffer **cow_ret,
526			     u64 search_start, u64 empty_size,
527			     enum btrfs_lock_nesting nest)
528{
529	struct btrfs_fs_info *fs_info = root->fs_info;
530	struct btrfs_disk_key disk_key;
531	struct extent_buffer *cow;
532	int level, ret;
533	int last_ref = 0;
534	int unlock_orig = 0;
535	u64 parent_start = 0;
536
537	if (*cow_ret == buf)
538		unlock_orig = 1;
539
540	btrfs_assert_tree_write_locked(buf);
541
542	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
543		trans->transid != fs_info->running_transaction->transid);
544	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
545		trans->transid != root->last_trans);
546
547	level = btrfs_header_level(buf);
548
549	if (level == 0)
550		btrfs_item_key(buf, &disk_key, 0);
551	else
552		btrfs_node_key(buf, &disk_key, 0);
553
554	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
555		parent_start = parent->start;
556
557	cow = btrfs_alloc_tree_block(trans, root, parent_start,
558				     root->root_key.objectid, &disk_key, level,
559				     search_start, empty_size, nest);
560	if (IS_ERR(cow))
561		return PTR_ERR(cow);
562
563	/* cow is set to blocking by btrfs_init_new_buffer */
564
565	copy_extent_buffer_full(cow, buf);
566	btrfs_set_header_bytenr(cow, cow->start);
567	btrfs_set_header_generation(cow, trans->transid);
568	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
569	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
570				     BTRFS_HEADER_FLAG_RELOC);
571	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
572		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
573	else
574		btrfs_set_header_owner(cow, root->root_key.objectid);
575
576	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
577
578	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
579	if (ret) {
580		btrfs_tree_unlock(cow);
581		free_extent_buffer(cow);
582		btrfs_abort_transaction(trans, ret);
583		return ret;
584	}
585
586	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
587		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
588		if (ret) {
589			btrfs_tree_unlock(cow);
590			free_extent_buffer(cow);
591			btrfs_abort_transaction(trans, ret);
592			return ret;
593		}
594	}
595
596	if (buf == root->node) {
597		WARN_ON(parent && parent != buf);
598		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
599		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
600			parent_start = buf->start;
601
602		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
603		if (ret < 0) {
604			btrfs_tree_unlock(cow);
605			free_extent_buffer(cow);
606			btrfs_abort_transaction(trans, ret);
607			return ret;
608		}
609		atomic_inc(&cow->refs);
610		rcu_assign_pointer(root->node, cow);
611
612		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
613				      parent_start, last_ref);
614		free_extent_buffer(buf);
615		add_root_to_dirty_list(root);
616	} else {
617		WARN_ON(trans->transid != btrfs_header_generation(parent));
618		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
619						    BTRFS_MOD_LOG_KEY_REPLACE);
620		if (ret) {
621			btrfs_tree_unlock(cow);
622			free_extent_buffer(cow);
623			btrfs_abort_transaction(trans, ret);
624			return ret;
625		}
626		btrfs_set_node_blockptr(parent, parent_slot,
627					cow->start);
628		btrfs_set_node_ptr_generation(parent, parent_slot,
629					      trans->transid);
630		btrfs_mark_buffer_dirty(trans, parent);
631		if (last_ref) {
632			ret = btrfs_tree_mod_log_free_eb(buf);
633			if (ret) {
634				btrfs_tree_unlock(cow);
635				free_extent_buffer(cow);
636				btrfs_abort_transaction(trans, ret);
637				return ret;
638			}
639		}
640		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
641				      parent_start, last_ref);
642	}
643	if (unlock_orig)
644		btrfs_tree_unlock(buf);
645	free_extent_buffer_stale(buf);
646	btrfs_mark_buffer_dirty(trans, cow);
647	*cow_ret = cow;
648	return 0;
649}
650
651static inline int should_cow_block(struct btrfs_trans_handle *trans,
652				   struct btrfs_root *root,
653				   struct extent_buffer *buf)
654{
655	if (btrfs_is_testing(root->fs_info))
656		return 0;
657
658	/* Ensure we can see the FORCE_COW bit */
659	smp_mb__before_atomic();
660
661	/*
662	 * We do not need to cow a block if
663	 * 1) this block is not created or changed in this transaction;
664	 * 2) this block does not belong to TREE_RELOC tree;
665	 * 3) the root is not forced COW.
666	 *
667	 * What is forced COW:
668	 *    when we create snapshot during committing the transaction,
669	 *    after we've finished copying src root, we must COW the shared
670	 *    block to ensure the metadata consistency.
671	 */
672	if (btrfs_header_generation(buf) == trans->transid &&
673	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
674	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
675	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
676	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
677		return 0;
678	return 1;
679}
680
681/*
682 * cows a single block, see __btrfs_cow_block for the real work.
683 * This version of it has extra checks so that a block isn't COWed more than
684 * once per transaction, as long as it hasn't been written yet
685 */
686noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
687		    struct btrfs_root *root, struct extent_buffer *buf,
688		    struct extent_buffer *parent, int parent_slot,
689		    struct extent_buffer **cow_ret,
690		    enum btrfs_lock_nesting nest)
691{
692	struct btrfs_fs_info *fs_info = root->fs_info;
693	u64 search_start;
694	int ret;
695
696	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
697		btrfs_abort_transaction(trans, -EUCLEAN);
698		btrfs_crit(fs_info,
699		   "attempt to COW block %llu on root %llu that is being deleted",
700			   buf->start, btrfs_root_id(root));
701		return -EUCLEAN;
702	}
703
704	/*
705	 * COWing must happen through a running transaction, which always
706	 * matches the current fs generation (it's a transaction with a state
707	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
708	 * into error state to prevent the commit of any transaction.
709	 */
710	if (unlikely(trans->transaction != fs_info->running_transaction ||
711		     trans->transid != fs_info->generation)) {
712		btrfs_abort_transaction(trans, -EUCLEAN);
713		btrfs_crit(fs_info,
714"unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
715			   buf->start, btrfs_root_id(root), trans->transid,
716			   fs_info->running_transaction->transid,
717			   fs_info->generation);
718		return -EUCLEAN;
719	}
720
721	if (!should_cow_block(trans, root, buf)) {
722		*cow_ret = buf;
723		return 0;
724	}
725
726	search_start = buf->start & ~((u64)SZ_1G - 1);
727
728	/*
729	 * Before CoWing this block for later modification, check if it's
730	 * the subtree root and do the delayed subtree trace if needed.
731	 *
732	 * Also We don't care about the error, as it's handled internally.
733	 */
734	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
735	ret = __btrfs_cow_block(trans, root, buf, parent,
736				 parent_slot, cow_ret, search_start, 0, nest);
737
738	trace_btrfs_cow_block(root, buf, *cow_ret);
739
740	return ret;
741}
742ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
743
744/*
745 * helper function for defrag to decide if two blocks pointed to by a
746 * node are actually close by
747 */
748static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
749{
750	if (blocknr < other && other - (blocknr + blocksize) < 32768)
751		return 1;
752	if (blocknr > other && blocknr - (other + blocksize) < 32768)
753		return 1;
754	return 0;
755}
756
757#ifdef __LITTLE_ENDIAN
758
759/*
760 * Compare two keys, on little-endian the disk order is same as CPU order and
761 * we can avoid the conversion.
762 */
763static int comp_keys(const struct btrfs_disk_key *disk_key,
764		     const struct btrfs_key *k2)
765{
766	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
767
768	return btrfs_comp_cpu_keys(k1, k2);
769}
770
771#else
772
773/*
774 * compare two keys in a memcmp fashion
775 */
776static int comp_keys(const struct btrfs_disk_key *disk,
777		     const struct btrfs_key *k2)
778{
779	struct btrfs_key k1;
780
781	btrfs_disk_key_to_cpu(&k1, disk);
782
783	return btrfs_comp_cpu_keys(&k1, k2);
784}
785#endif
786
787/*
788 * same as comp_keys only with two btrfs_key's
789 */
790int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
791{
792	if (k1->objectid > k2->objectid)
793		return 1;
794	if (k1->objectid < k2->objectid)
795		return -1;
796	if (k1->type > k2->type)
797		return 1;
798	if (k1->type < k2->type)
799		return -1;
800	if (k1->offset > k2->offset)
801		return 1;
802	if (k1->offset < k2->offset)
803		return -1;
804	return 0;
805}
806
807/*
808 * this is used by the defrag code to go through all the
809 * leaves pointed to by a node and reallocate them so that
810 * disk order is close to key order
811 */
812int btrfs_realloc_node(struct btrfs_trans_handle *trans,
813		       struct btrfs_root *root, struct extent_buffer *parent,
814		       int start_slot, u64 *last_ret,
815		       struct btrfs_key *progress)
816{
817	struct btrfs_fs_info *fs_info = root->fs_info;
818	struct extent_buffer *cur;
819	u64 blocknr;
820	u64 search_start = *last_ret;
821	u64 last_block = 0;
822	u64 other;
823	u32 parent_nritems;
824	int end_slot;
825	int i;
826	int err = 0;
827	u32 blocksize;
828	int progress_passed = 0;
829	struct btrfs_disk_key disk_key;
830
831	/*
832	 * COWing must happen through a running transaction, which always
833	 * matches the current fs generation (it's a transaction with a state
834	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
835	 * into error state to prevent the commit of any transaction.
836	 */
837	if (unlikely(trans->transaction != fs_info->running_transaction ||
838		     trans->transid != fs_info->generation)) {
839		btrfs_abort_transaction(trans, -EUCLEAN);
840		btrfs_crit(fs_info,
841"unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
842			   parent->start, btrfs_root_id(root), trans->transid,
843			   fs_info->running_transaction->transid,
844			   fs_info->generation);
845		return -EUCLEAN;
846	}
847
848	parent_nritems = btrfs_header_nritems(parent);
849	blocksize = fs_info->nodesize;
850	end_slot = parent_nritems - 1;
851
852	if (parent_nritems <= 1)
853		return 0;
854
855	for (i = start_slot; i <= end_slot; i++) {
856		int close = 1;
857
858		btrfs_node_key(parent, &disk_key, i);
859		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
860			continue;
861
862		progress_passed = 1;
863		blocknr = btrfs_node_blockptr(parent, i);
864		if (last_block == 0)
865			last_block = blocknr;
866
867		if (i > 0) {
868			other = btrfs_node_blockptr(parent, i - 1);
869			close = close_blocks(blocknr, other, blocksize);
870		}
871		if (!close && i < end_slot) {
872			other = btrfs_node_blockptr(parent, i + 1);
873			close = close_blocks(blocknr, other, blocksize);
874		}
875		if (close) {
876			last_block = blocknr;
877			continue;
878		}
879
880		cur = btrfs_read_node_slot(parent, i);
881		if (IS_ERR(cur))
882			return PTR_ERR(cur);
883		if (search_start == 0)
884			search_start = last_block;
885
886		btrfs_tree_lock(cur);
887		err = __btrfs_cow_block(trans, root, cur, parent, i,
888					&cur, search_start,
889					min(16 * blocksize,
890					    (end_slot - i) * blocksize),
891					BTRFS_NESTING_COW);
892		if (err) {
893			btrfs_tree_unlock(cur);
894			free_extent_buffer(cur);
895			break;
896		}
897		search_start = cur->start;
898		last_block = cur->start;
899		*last_ret = search_start;
900		btrfs_tree_unlock(cur);
901		free_extent_buffer(cur);
902	}
903	return err;
904}
905
906/*
907 * Search for a key in the given extent_buffer.
908 *
909 * The lower boundary for the search is specified by the slot number @first_slot.
910 * Use a value of 0 to search over the whole extent buffer. Works for both
911 * leaves and nodes.
912 *
913 * The slot in the extent buffer is returned via @slot. If the key exists in the
914 * extent buffer, then @slot will point to the slot where the key is, otherwise
915 * it points to the slot where you would insert the key.
916 *
917 * Slot may point to the total number of items (i.e. one position beyond the last
918 * key) if the key is bigger than the last key in the extent buffer.
919 */
920int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
921		     const struct btrfs_key *key, int *slot)
922{
923	unsigned long p;
924	int item_size;
925	/*
926	 * Use unsigned types for the low and high slots, so that we get a more
927	 * efficient division in the search loop below.
928	 */
929	u32 low = first_slot;
930	u32 high = btrfs_header_nritems(eb);
931	int ret;
932	const int key_size = sizeof(struct btrfs_disk_key);
933
934	if (unlikely(low > high)) {
935		btrfs_err(eb->fs_info,
936		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
937			  __func__, low, high, eb->start,
938			  btrfs_header_owner(eb), btrfs_header_level(eb));
939		return -EINVAL;
940	}
941
942	if (btrfs_header_level(eb) == 0) {
943		p = offsetof(struct btrfs_leaf, items);
944		item_size = sizeof(struct btrfs_item);
945	} else {
946		p = offsetof(struct btrfs_node, ptrs);
947		item_size = sizeof(struct btrfs_key_ptr);
948	}
949
950	while (low < high) {
951		unsigned long oip;
952		unsigned long offset;
953		struct btrfs_disk_key *tmp;
954		struct btrfs_disk_key unaligned;
955		int mid;
956
957		mid = (low + high) / 2;
958		offset = p + mid * item_size;
959		oip = offset_in_page(offset);
960
961		if (oip + key_size <= PAGE_SIZE) {
962			const unsigned long idx = get_eb_page_index(offset);
963			char *kaddr = page_address(eb->pages[idx]);
964
965			oip = get_eb_offset_in_page(eb, offset);
966			tmp = (struct btrfs_disk_key *)(kaddr + oip);
967		} else {
968			read_extent_buffer(eb, &unaligned, offset, key_size);
969			tmp = &unaligned;
970		}
971
972		ret = comp_keys(tmp, key);
973
974		if (ret < 0)
975			low = mid + 1;
976		else if (ret > 0)
977			high = mid;
978		else {
979			*slot = mid;
980			return 0;
981		}
982	}
983	*slot = low;
984	return 1;
985}
986
987static void root_add_used(struct btrfs_root *root, u32 size)
988{
989	spin_lock(&root->accounting_lock);
990	btrfs_set_root_used(&root->root_item,
991			    btrfs_root_used(&root->root_item) + size);
992	spin_unlock(&root->accounting_lock);
993}
994
995static void root_sub_used(struct btrfs_root *root, u32 size)
996{
997	spin_lock(&root->accounting_lock);
998	btrfs_set_root_used(&root->root_item,
999			    btrfs_root_used(&root->root_item) - size);
1000	spin_unlock(&root->accounting_lock);
1001}
1002
1003/* given a node and slot number, this reads the blocks it points to.  The
1004 * extent buffer is returned with a reference taken (but unlocked).
1005 */
1006struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1007					   int slot)
1008{
1009	int level = btrfs_header_level(parent);
1010	struct btrfs_tree_parent_check check = { 0 };
1011	struct extent_buffer *eb;
1012
1013	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1014		return ERR_PTR(-ENOENT);
1015
1016	ASSERT(level);
1017
1018	check.level = level - 1;
1019	check.transid = btrfs_node_ptr_generation(parent, slot);
1020	check.owner_root = btrfs_header_owner(parent);
1021	check.has_first_key = true;
1022	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
1023
1024	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1025			     &check);
1026	if (IS_ERR(eb))
1027		return eb;
1028	if (!extent_buffer_uptodate(eb)) {
1029		free_extent_buffer(eb);
1030		return ERR_PTR(-EIO);
1031	}
1032
1033	return eb;
1034}
1035
1036/*
1037 * node level balancing, used to make sure nodes are in proper order for
1038 * item deletion.  We balance from the top down, so we have to make sure
1039 * that a deletion won't leave an node completely empty later on.
1040 */
1041static noinline int balance_level(struct btrfs_trans_handle *trans,
1042			 struct btrfs_root *root,
1043			 struct btrfs_path *path, int level)
1044{
1045	struct btrfs_fs_info *fs_info = root->fs_info;
1046	struct extent_buffer *right = NULL;
1047	struct extent_buffer *mid;
1048	struct extent_buffer *left = NULL;
1049	struct extent_buffer *parent = NULL;
1050	int ret = 0;
1051	int wret;
1052	int pslot;
1053	int orig_slot = path->slots[level];
1054	u64 orig_ptr;
1055
1056	ASSERT(level > 0);
1057
1058	mid = path->nodes[level];
1059
1060	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1061	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1062
1063	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1064
1065	if (level < BTRFS_MAX_LEVEL - 1) {
1066		parent = path->nodes[level + 1];
1067		pslot = path->slots[level + 1];
1068	}
1069
1070	/*
1071	 * deal with the case where there is only one pointer in the root
1072	 * by promoting the node below to a root
1073	 */
1074	if (!parent) {
1075		struct extent_buffer *child;
1076
1077		if (btrfs_header_nritems(mid) != 1)
1078			return 0;
1079
1080		/* promote the child to a root */
1081		child = btrfs_read_node_slot(mid, 0);
1082		if (IS_ERR(child)) {
1083			ret = PTR_ERR(child);
1084			goto out;
1085		}
1086
1087		btrfs_tree_lock(child);
1088		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1089				      BTRFS_NESTING_COW);
1090		if (ret) {
1091			btrfs_tree_unlock(child);
1092			free_extent_buffer(child);
1093			goto out;
1094		}
1095
1096		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1097		if (ret < 0) {
1098			btrfs_tree_unlock(child);
1099			free_extent_buffer(child);
1100			btrfs_abort_transaction(trans, ret);
1101			goto out;
1102		}
1103		rcu_assign_pointer(root->node, child);
1104
1105		add_root_to_dirty_list(root);
1106		btrfs_tree_unlock(child);
1107
1108		path->locks[level] = 0;
1109		path->nodes[level] = NULL;
1110		btrfs_clear_buffer_dirty(trans, mid);
1111		btrfs_tree_unlock(mid);
1112		/* once for the path */
1113		free_extent_buffer(mid);
1114
1115		root_sub_used(root, mid->len);
1116		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1117		/* once for the root ptr */
1118		free_extent_buffer_stale(mid);
1119		return 0;
1120	}
1121	if (btrfs_header_nritems(mid) >
1122	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1123		return 0;
1124
1125	if (pslot) {
1126		left = btrfs_read_node_slot(parent, pslot - 1);
1127		if (IS_ERR(left)) {
1128			ret = PTR_ERR(left);
1129			left = NULL;
1130			goto out;
1131		}
1132
1133		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1134		wret = btrfs_cow_block(trans, root, left,
1135				       parent, pslot - 1, &left,
1136				       BTRFS_NESTING_LEFT_COW);
1137		if (wret) {
1138			ret = wret;
1139			goto out;
1140		}
1141	}
1142
1143	if (pslot + 1 < btrfs_header_nritems(parent)) {
1144		right = btrfs_read_node_slot(parent, pslot + 1);
1145		if (IS_ERR(right)) {
1146			ret = PTR_ERR(right);
1147			right = NULL;
1148			goto out;
1149		}
1150
1151		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1152		wret = btrfs_cow_block(trans, root, right,
1153				       parent, pslot + 1, &right,
1154				       BTRFS_NESTING_RIGHT_COW);
1155		if (wret) {
1156			ret = wret;
1157			goto out;
1158		}
1159	}
1160
1161	/* first, try to make some room in the middle buffer */
1162	if (left) {
1163		orig_slot += btrfs_header_nritems(left);
1164		wret = push_node_left(trans, left, mid, 1);
1165		if (wret < 0)
1166			ret = wret;
1167	}
1168
1169	/*
1170	 * then try to empty the right most buffer into the middle
1171	 */
1172	if (right) {
1173		wret = push_node_left(trans, mid, right, 1);
1174		if (wret < 0 && wret != -ENOSPC)
1175			ret = wret;
1176		if (btrfs_header_nritems(right) == 0) {
1177			btrfs_clear_buffer_dirty(trans, right);
1178			btrfs_tree_unlock(right);
1179			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1180			if (ret < 0) {
1181				free_extent_buffer_stale(right);
1182				right = NULL;
1183				goto out;
1184			}
1185			root_sub_used(root, right->len);
1186			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1187					      0, 1);
1188			free_extent_buffer_stale(right);
1189			right = NULL;
1190		} else {
1191			struct btrfs_disk_key right_key;
1192			btrfs_node_key(right, &right_key, 0);
1193			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1194					BTRFS_MOD_LOG_KEY_REPLACE);
1195			if (ret < 0) {
1196				btrfs_abort_transaction(trans, ret);
1197				goto out;
1198			}
1199			btrfs_set_node_key(parent, &right_key, pslot + 1);
1200			btrfs_mark_buffer_dirty(trans, parent);
1201		}
1202	}
1203	if (btrfs_header_nritems(mid) == 1) {
1204		/*
1205		 * we're not allowed to leave a node with one item in the
1206		 * tree during a delete.  A deletion from lower in the tree
1207		 * could try to delete the only pointer in this node.
1208		 * So, pull some keys from the left.
1209		 * There has to be a left pointer at this point because
1210		 * otherwise we would have pulled some pointers from the
1211		 * right
1212		 */
1213		if (unlikely(!left)) {
1214			btrfs_crit(fs_info,
1215"missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1216				   parent->start, btrfs_header_level(parent),
1217				   mid->start, btrfs_root_id(root));
1218			ret = -EUCLEAN;
1219			btrfs_abort_transaction(trans, ret);
1220			goto out;
1221		}
1222		wret = balance_node_right(trans, mid, left);
1223		if (wret < 0) {
1224			ret = wret;
1225			goto out;
1226		}
1227		if (wret == 1) {
1228			wret = push_node_left(trans, left, mid, 1);
1229			if (wret < 0)
1230				ret = wret;
1231		}
1232		BUG_ON(wret == 1);
1233	}
1234	if (btrfs_header_nritems(mid) == 0) {
1235		btrfs_clear_buffer_dirty(trans, mid);
1236		btrfs_tree_unlock(mid);
1237		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1238		if (ret < 0) {
1239			free_extent_buffer_stale(mid);
1240			mid = NULL;
1241			goto out;
1242		}
1243		root_sub_used(root, mid->len);
1244		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1245		free_extent_buffer_stale(mid);
1246		mid = NULL;
1247	} else {
1248		/* update the parent key to reflect our changes */
1249		struct btrfs_disk_key mid_key;
1250		btrfs_node_key(mid, &mid_key, 0);
1251		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1252						    BTRFS_MOD_LOG_KEY_REPLACE);
1253		if (ret < 0) {
1254			btrfs_abort_transaction(trans, ret);
1255			goto out;
1256		}
1257		btrfs_set_node_key(parent, &mid_key, pslot);
1258		btrfs_mark_buffer_dirty(trans, parent);
1259	}
1260
1261	/* update the path */
1262	if (left) {
1263		if (btrfs_header_nritems(left) > orig_slot) {
1264			atomic_inc(&left->refs);
1265			/* left was locked after cow */
1266			path->nodes[level] = left;
1267			path->slots[level + 1] -= 1;
1268			path->slots[level] = orig_slot;
1269			if (mid) {
1270				btrfs_tree_unlock(mid);
1271				free_extent_buffer(mid);
1272			}
1273		} else {
1274			orig_slot -= btrfs_header_nritems(left);
1275			path->slots[level] = orig_slot;
1276		}
1277	}
1278	/* double check we haven't messed things up */
1279	if (orig_ptr !=
1280	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1281		BUG();
1282out:
1283	if (right) {
1284		btrfs_tree_unlock(right);
1285		free_extent_buffer(right);
1286	}
1287	if (left) {
1288		if (path->nodes[level] != left)
1289			btrfs_tree_unlock(left);
1290		free_extent_buffer(left);
1291	}
1292	return ret;
1293}
1294
1295/* Node balancing for insertion.  Here we only split or push nodes around
1296 * when they are completely full.  This is also done top down, so we
1297 * have to be pessimistic.
1298 */
1299static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1300					  struct btrfs_root *root,
1301					  struct btrfs_path *path, int level)
1302{
1303	struct btrfs_fs_info *fs_info = root->fs_info;
1304	struct extent_buffer *right = NULL;
1305	struct extent_buffer *mid;
1306	struct extent_buffer *left = NULL;
1307	struct extent_buffer *parent = NULL;
1308	int ret = 0;
1309	int wret;
1310	int pslot;
1311	int orig_slot = path->slots[level];
1312
1313	if (level == 0)
1314		return 1;
1315
1316	mid = path->nodes[level];
1317	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1318
1319	if (level < BTRFS_MAX_LEVEL - 1) {
1320		parent = path->nodes[level + 1];
1321		pslot = path->slots[level + 1];
1322	}
1323
1324	if (!parent)
1325		return 1;
1326
1327	/* first, try to make some room in the middle buffer */
1328	if (pslot) {
1329		u32 left_nr;
1330
1331		left = btrfs_read_node_slot(parent, pslot - 1);
1332		if (IS_ERR(left))
1333			return PTR_ERR(left);
1334
1335		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1336
1337		left_nr = btrfs_header_nritems(left);
1338		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1339			wret = 1;
1340		} else {
1341			ret = btrfs_cow_block(trans, root, left, parent,
1342					      pslot - 1, &left,
1343					      BTRFS_NESTING_LEFT_COW);
1344			if (ret)
1345				wret = 1;
1346			else {
1347				wret = push_node_left(trans, left, mid, 0);
1348			}
1349		}
1350		if (wret < 0)
1351			ret = wret;
1352		if (wret == 0) {
1353			struct btrfs_disk_key disk_key;
1354			orig_slot += left_nr;
1355			btrfs_node_key(mid, &disk_key, 0);
1356			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1357					BTRFS_MOD_LOG_KEY_REPLACE);
1358			if (ret < 0) {
1359				btrfs_tree_unlock(left);
1360				free_extent_buffer(left);
1361				btrfs_abort_transaction(trans, ret);
1362				return ret;
1363			}
1364			btrfs_set_node_key(parent, &disk_key, pslot);
1365			btrfs_mark_buffer_dirty(trans, parent);
1366			if (btrfs_header_nritems(left) > orig_slot) {
1367				path->nodes[level] = left;
1368				path->slots[level + 1] -= 1;
1369				path->slots[level] = orig_slot;
1370				btrfs_tree_unlock(mid);
1371				free_extent_buffer(mid);
1372			} else {
1373				orig_slot -=
1374					btrfs_header_nritems(left);
1375				path->slots[level] = orig_slot;
1376				btrfs_tree_unlock(left);
1377				free_extent_buffer(left);
1378			}
1379			return 0;
1380		}
1381		btrfs_tree_unlock(left);
1382		free_extent_buffer(left);
1383	}
1384
1385	/*
1386	 * then try to empty the right most buffer into the middle
1387	 */
1388	if (pslot + 1 < btrfs_header_nritems(parent)) {
1389		u32 right_nr;
1390
1391		right = btrfs_read_node_slot(parent, pslot + 1);
1392		if (IS_ERR(right))
1393			return PTR_ERR(right);
1394
1395		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1396
1397		right_nr = btrfs_header_nritems(right);
1398		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1399			wret = 1;
1400		} else {
1401			ret = btrfs_cow_block(trans, root, right,
1402					      parent, pslot + 1,
1403					      &right, BTRFS_NESTING_RIGHT_COW);
1404			if (ret)
1405				wret = 1;
1406			else {
1407				wret = balance_node_right(trans, right, mid);
1408			}
1409		}
1410		if (wret < 0)
1411			ret = wret;
1412		if (wret == 0) {
1413			struct btrfs_disk_key disk_key;
1414
1415			btrfs_node_key(right, &disk_key, 0);
1416			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1417					BTRFS_MOD_LOG_KEY_REPLACE);
1418			if (ret < 0) {
1419				btrfs_tree_unlock(right);
1420				free_extent_buffer(right);
1421				btrfs_abort_transaction(trans, ret);
1422				return ret;
1423			}
1424			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1425			btrfs_mark_buffer_dirty(trans, parent);
1426
1427			if (btrfs_header_nritems(mid) <= orig_slot) {
1428				path->nodes[level] = right;
1429				path->slots[level + 1] += 1;
1430				path->slots[level] = orig_slot -
1431					btrfs_header_nritems(mid);
1432				btrfs_tree_unlock(mid);
1433				free_extent_buffer(mid);
1434			} else {
1435				btrfs_tree_unlock(right);
1436				free_extent_buffer(right);
1437			}
1438			return 0;
1439		}
1440		btrfs_tree_unlock(right);
1441		free_extent_buffer(right);
1442	}
1443	return 1;
1444}
1445
1446/*
1447 * readahead one full node of leaves, finding things that are close
1448 * to the block in 'slot', and triggering ra on them.
1449 */
1450static void reada_for_search(struct btrfs_fs_info *fs_info,
1451			     struct btrfs_path *path,
1452			     int level, int slot, u64 objectid)
1453{
1454	struct extent_buffer *node;
1455	struct btrfs_disk_key disk_key;
1456	u32 nritems;
1457	u64 search;
1458	u64 target;
1459	u64 nread = 0;
1460	u64 nread_max;
1461	u32 nr;
1462	u32 blocksize;
1463	u32 nscan = 0;
1464
1465	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1466		return;
1467
1468	if (!path->nodes[level])
1469		return;
1470
1471	node = path->nodes[level];
1472
1473	/*
1474	 * Since the time between visiting leaves is much shorter than the time
1475	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1476	 * much IO at once (possibly random).
1477	 */
1478	if (path->reada == READA_FORWARD_ALWAYS) {
1479		if (level > 1)
1480			nread_max = node->fs_info->nodesize;
1481		else
1482			nread_max = SZ_128K;
1483	} else {
1484		nread_max = SZ_64K;
1485	}
1486
1487	search = btrfs_node_blockptr(node, slot);
1488	blocksize = fs_info->nodesize;
1489	if (path->reada != READA_FORWARD_ALWAYS) {
1490		struct extent_buffer *eb;
1491
1492		eb = find_extent_buffer(fs_info, search);
1493		if (eb) {
1494			free_extent_buffer(eb);
1495			return;
1496		}
1497	}
1498
1499	target = search;
1500
1501	nritems = btrfs_header_nritems(node);
1502	nr = slot;
1503
1504	while (1) {
1505		if (path->reada == READA_BACK) {
1506			if (nr == 0)
1507				break;
1508			nr--;
1509		} else if (path->reada == READA_FORWARD ||
1510			   path->reada == READA_FORWARD_ALWAYS) {
1511			nr++;
1512			if (nr >= nritems)
1513				break;
1514		}
1515		if (path->reada == READA_BACK && objectid) {
1516			btrfs_node_key(node, &disk_key, nr);
1517			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1518				break;
1519		}
1520		search = btrfs_node_blockptr(node, nr);
1521		if (path->reada == READA_FORWARD_ALWAYS ||
1522		    (search <= target && target - search <= 65536) ||
1523		    (search > target && search - target <= 65536)) {
1524			btrfs_readahead_node_child(node, nr);
1525			nread += blocksize;
1526		}
1527		nscan++;
1528		if (nread > nread_max || nscan > 32)
1529			break;
1530	}
1531}
1532
1533static noinline void reada_for_balance(struct btrfs_path *path, int level)
1534{
1535	struct extent_buffer *parent;
1536	int slot;
1537	int nritems;
1538
1539	parent = path->nodes[level + 1];
1540	if (!parent)
1541		return;
1542
1543	nritems = btrfs_header_nritems(parent);
1544	slot = path->slots[level + 1];
1545
1546	if (slot > 0)
1547		btrfs_readahead_node_child(parent, slot - 1);
1548	if (slot + 1 < nritems)
1549		btrfs_readahead_node_child(parent, slot + 1);
1550}
1551
1552
1553/*
1554 * when we walk down the tree, it is usually safe to unlock the higher layers
1555 * in the tree.  The exceptions are when our path goes through slot 0, because
1556 * operations on the tree might require changing key pointers higher up in the
1557 * tree.
1558 *
1559 * callers might also have set path->keep_locks, which tells this code to keep
1560 * the lock if the path points to the last slot in the block.  This is part of
1561 * walking through the tree, and selecting the next slot in the higher block.
1562 *
1563 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1564 * if lowest_unlock is 1, level 0 won't be unlocked
1565 */
1566static noinline void unlock_up(struct btrfs_path *path, int level,
1567			       int lowest_unlock, int min_write_lock_level,
1568			       int *write_lock_level)
1569{
1570	int i;
1571	int skip_level = level;
1572	bool check_skip = true;
1573
1574	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1575		if (!path->nodes[i])
1576			break;
1577		if (!path->locks[i])
1578			break;
1579
1580		if (check_skip) {
1581			if (path->slots[i] == 0) {
1582				skip_level = i + 1;
1583				continue;
1584			}
1585
1586			if (path->keep_locks) {
1587				u32 nritems;
1588
1589				nritems = btrfs_header_nritems(path->nodes[i]);
1590				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1591					skip_level = i + 1;
1592					continue;
1593				}
1594			}
1595		}
1596
1597		if (i >= lowest_unlock && i > skip_level) {
1598			check_skip = false;
1599			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1600			path->locks[i] = 0;
1601			if (write_lock_level &&
1602			    i > min_write_lock_level &&
1603			    i <= *write_lock_level) {
1604				*write_lock_level = i - 1;
1605			}
1606		}
1607	}
1608}
1609
1610/*
1611 * Helper function for btrfs_search_slot() and other functions that do a search
1612 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1613 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1614 * its pages from disk.
1615 *
1616 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1617 * whole btree search, starting again from the current root node.
1618 */
1619static int
1620read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1621		      struct extent_buffer **eb_ret, int level, int slot,
1622		      const struct btrfs_key *key)
1623{
1624	struct btrfs_fs_info *fs_info = root->fs_info;
1625	struct btrfs_tree_parent_check check = { 0 };
1626	u64 blocknr;
1627	u64 gen;
1628	struct extent_buffer *tmp;
1629	int ret;
1630	int parent_level;
1631	bool unlock_up;
1632
1633	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1634	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1635	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1636	parent_level = btrfs_header_level(*eb_ret);
1637	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1638	check.has_first_key = true;
1639	check.level = parent_level - 1;
1640	check.transid = gen;
1641	check.owner_root = root->root_key.objectid;
1642
1643	/*
1644	 * If we need to read an extent buffer from disk and we are holding locks
1645	 * on upper level nodes, we unlock all the upper nodes before reading the
1646	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1647	 * restart the search. We don't release the lock on the current level
1648	 * because we need to walk this node to figure out which blocks to read.
1649	 */
1650	tmp = find_extent_buffer(fs_info, blocknr);
1651	if (tmp) {
1652		if (p->reada == READA_FORWARD_ALWAYS)
1653			reada_for_search(fs_info, p, level, slot, key->objectid);
1654
1655		/* first we do an atomic uptodate check */
1656		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1657			/*
1658			 * Do extra check for first_key, eb can be stale due to
1659			 * being cached, read from scrub, or have multiple
1660			 * parents (shared tree blocks).
1661			 */
1662			if (btrfs_verify_level_key(tmp,
1663					parent_level - 1, &check.first_key, gen)) {
1664				free_extent_buffer(tmp);
1665				return -EUCLEAN;
1666			}
1667			*eb_ret = tmp;
1668			return 0;
1669		}
1670
1671		if (p->nowait) {
1672			free_extent_buffer(tmp);
1673			return -EAGAIN;
1674		}
1675
1676		if (unlock_up)
1677			btrfs_unlock_up_safe(p, level + 1);
1678
1679		/* now we're allowed to do a blocking uptodate check */
1680		ret = btrfs_read_extent_buffer(tmp, &check);
1681		if (ret) {
1682			free_extent_buffer(tmp);
1683			btrfs_release_path(p);
1684			return -EIO;
1685		}
1686		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1687			free_extent_buffer(tmp);
1688			btrfs_release_path(p);
1689			return -EUCLEAN;
1690		}
1691
1692		if (unlock_up)
1693			ret = -EAGAIN;
1694
1695		goto out;
1696	} else if (p->nowait) {
1697		return -EAGAIN;
1698	}
1699
1700	if (unlock_up) {
1701		btrfs_unlock_up_safe(p, level + 1);
1702		ret = -EAGAIN;
1703	} else {
1704		ret = 0;
1705	}
1706
1707	if (p->reada != READA_NONE)
1708		reada_for_search(fs_info, p, level, slot, key->objectid);
1709
1710	tmp = read_tree_block(fs_info, blocknr, &check);
1711	if (IS_ERR(tmp)) {
1712		btrfs_release_path(p);
1713		return PTR_ERR(tmp);
1714	}
1715	/*
1716	 * If the read above didn't mark this buffer up to date,
1717	 * it will never end up being up to date.  Set ret to EIO now
1718	 * and give up so that our caller doesn't loop forever
1719	 * on our EAGAINs.
1720	 */
1721	if (!extent_buffer_uptodate(tmp))
1722		ret = -EIO;
1723
1724out:
1725	if (ret == 0) {
1726		*eb_ret = tmp;
1727	} else {
1728		free_extent_buffer(tmp);
1729		btrfs_release_path(p);
1730	}
1731
1732	return ret;
1733}
1734
1735/*
1736 * helper function for btrfs_search_slot.  This does all of the checks
1737 * for node-level blocks and does any balancing required based on
1738 * the ins_len.
1739 *
1740 * If no extra work was required, zero is returned.  If we had to
1741 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1742 * start over
1743 */
1744static int
1745setup_nodes_for_search(struct btrfs_trans_handle *trans,
1746		       struct btrfs_root *root, struct btrfs_path *p,
1747		       struct extent_buffer *b, int level, int ins_len,
1748		       int *write_lock_level)
1749{
1750	struct btrfs_fs_info *fs_info = root->fs_info;
1751	int ret = 0;
1752
1753	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1754	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1755
1756		if (*write_lock_level < level + 1) {
1757			*write_lock_level = level + 1;
1758			btrfs_release_path(p);
1759			return -EAGAIN;
1760		}
1761
1762		reada_for_balance(p, level);
1763		ret = split_node(trans, root, p, level);
1764
1765		b = p->nodes[level];
1766	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1767		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1768
1769		if (*write_lock_level < level + 1) {
1770			*write_lock_level = level + 1;
1771			btrfs_release_path(p);
1772			return -EAGAIN;
1773		}
1774
1775		reada_for_balance(p, level);
1776		ret = balance_level(trans, root, p, level);
1777		if (ret)
1778			return ret;
1779
1780		b = p->nodes[level];
1781		if (!b) {
1782			btrfs_release_path(p);
1783			return -EAGAIN;
1784		}
1785		BUG_ON(btrfs_header_nritems(b) == 1);
1786	}
1787	return ret;
1788}
1789
1790int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1791		u64 iobjectid, u64 ioff, u8 key_type,
1792		struct btrfs_key *found_key)
1793{
1794	int ret;
1795	struct btrfs_key key;
1796	struct extent_buffer *eb;
1797
1798	ASSERT(path);
1799	ASSERT(found_key);
1800
1801	key.type = key_type;
1802	key.objectid = iobjectid;
1803	key.offset = ioff;
1804
1805	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1806	if (ret < 0)
1807		return ret;
1808
1809	eb = path->nodes[0];
1810	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1811		ret = btrfs_next_leaf(fs_root, path);
1812		if (ret)
1813			return ret;
1814		eb = path->nodes[0];
1815	}
1816
1817	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1818	if (found_key->type != key.type ||
1819			found_key->objectid != key.objectid)
1820		return 1;
1821
1822	return 0;
1823}
1824
1825static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1826							struct btrfs_path *p,
1827							int write_lock_level)
1828{
1829	struct extent_buffer *b;
1830	int root_lock = 0;
1831	int level = 0;
1832
1833	if (p->search_commit_root) {
1834		b = root->commit_root;
1835		atomic_inc(&b->refs);
1836		level = btrfs_header_level(b);
1837		/*
1838		 * Ensure that all callers have set skip_locking when
1839		 * p->search_commit_root = 1.
1840		 */
1841		ASSERT(p->skip_locking == 1);
1842
1843		goto out;
1844	}
1845
1846	if (p->skip_locking) {
1847		b = btrfs_root_node(root);
1848		level = btrfs_header_level(b);
1849		goto out;
1850	}
1851
1852	/* We try very hard to do read locks on the root */
1853	root_lock = BTRFS_READ_LOCK;
1854
1855	/*
1856	 * If the level is set to maximum, we can skip trying to get the read
1857	 * lock.
1858	 */
1859	if (write_lock_level < BTRFS_MAX_LEVEL) {
1860		/*
1861		 * We don't know the level of the root node until we actually
1862		 * have it read locked
1863		 */
1864		if (p->nowait) {
1865			b = btrfs_try_read_lock_root_node(root);
1866			if (IS_ERR(b))
1867				return b;
1868		} else {
1869			b = btrfs_read_lock_root_node(root);
1870		}
1871		level = btrfs_header_level(b);
1872		if (level > write_lock_level)
1873			goto out;
1874
1875		/* Whoops, must trade for write lock */
1876		btrfs_tree_read_unlock(b);
1877		free_extent_buffer(b);
1878	}
1879
1880	b = btrfs_lock_root_node(root);
1881	root_lock = BTRFS_WRITE_LOCK;
1882
1883	/* The level might have changed, check again */
1884	level = btrfs_header_level(b);
1885
1886out:
1887	/*
1888	 * The root may have failed to write out at some point, and thus is no
1889	 * longer valid, return an error in this case.
1890	 */
1891	if (!extent_buffer_uptodate(b)) {
1892		if (root_lock)
1893			btrfs_tree_unlock_rw(b, root_lock);
1894		free_extent_buffer(b);
1895		return ERR_PTR(-EIO);
1896	}
1897
1898	p->nodes[level] = b;
1899	if (!p->skip_locking)
1900		p->locks[level] = root_lock;
1901	/*
1902	 * Callers are responsible for dropping b's references.
1903	 */
1904	return b;
1905}
1906
1907/*
1908 * Replace the extent buffer at the lowest level of the path with a cloned
1909 * version. The purpose is to be able to use it safely, after releasing the
1910 * commit root semaphore, even if relocation is happening in parallel, the
1911 * transaction used for relocation is committed and the extent buffer is
1912 * reallocated in the next transaction.
1913 *
1914 * This is used in a context where the caller does not prevent transaction
1915 * commits from happening, either by holding a transaction handle or holding
1916 * some lock, while it's doing searches through a commit root.
1917 * At the moment it's only used for send operations.
1918 */
1919static int finish_need_commit_sem_search(struct btrfs_path *path)
1920{
1921	const int i = path->lowest_level;
1922	const int slot = path->slots[i];
1923	struct extent_buffer *lowest = path->nodes[i];
1924	struct extent_buffer *clone;
1925
1926	ASSERT(path->need_commit_sem);
1927
1928	if (!lowest)
1929		return 0;
1930
1931	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1932
1933	clone = btrfs_clone_extent_buffer(lowest);
1934	if (!clone)
1935		return -ENOMEM;
1936
1937	btrfs_release_path(path);
1938	path->nodes[i] = clone;
1939	path->slots[i] = slot;
1940
1941	return 0;
1942}
1943
1944static inline int search_for_key_slot(struct extent_buffer *eb,
1945				      int search_low_slot,
1946				      const struct btrfs_key *key,
1947				      int prev_cmp,
1948				      int *slot)
1949{
1950	/*
1951	 * If a previous call to btrfs_bin_search() on a parent node returned an
1952	 * exact match (prev_cmp == 0), we can safely assume the target key will
1953	 * always be at slot 0 on lower levels, since each key pointer
1954	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1955	 * subtree it points to. Thus we can skip searching lower levels.
1956	 */
1957	if (prev_cmp == 0) {
1958		*slot = 0;
1959		return 0;
1960	}
1961
1962	return btrfs_bin_search(eb, search_low_slot, key, slot);
1963}
1964
1965static int search_leaf(struct btrfs_trans_handle *trans,
1966		       struct btrfs_root *root,
1967		       const struct btrfs_key *key,
1968		       struct btrfs_path *path,
1969		       int ins_len,
1970		       int prev_cmp)
1971{
1972	struct extent_buffer *leaf = path->nodes[0];
1973	int leaf_free_space = -1;
1974	int search_low_slot = 0;
1975	int ret;
1976	bool do_bin_search = true;
1977
1978	/*
1979	 * If we are doing an insertion, the leaf has enough free space and the
1980	 * destination slot for the key is not slot 0, then we can unlock our
1981	 * write lock on the parent, and any other upper nodes, before doing the
1982	 * binary search on the leaf (with search_for_key_slot()), allowing other
1983	 * tasks to lock the parent and any other upper nodes.
1984	 */
1985	if (ins_len > 0) {
1986		/*
1987		 * Cache the leaf free space, since we will need it later and it
1988		 * will not change until then.
1989		 */
1990		leaf_free_space = btrfs_leaf_free_space(leaf);
1991
1992		/*
1993		 * !path->locks[1] means we have a single node tree, the leaf is
1994		 * the root of the tree.
1995		 */
1996		if (path->locks[1] && leaf_free_space >= ins_len) {
1997			struct btrfs_disk_key first_key;
1998
1999			ASSERT(btrfs_header_nritems(leaf) > 0);
2000			btrfs_item_key(leaf, &first_key, 0);
2001
2002			/*
2003			 * Doing the extra comparison with the first key is cheap,
2004			 * taking into account that the first key is very likely
2005			 * already in a cache line because it immediately follows
2006			 * the extent buffer's header and we have recently accessed
2007			 * the header's level field.
2008			 */
2009			ret = comp_keys(&first_key, key);
2010			if (ret < 0) {
2011				/*
2012				 * The first key is smaller than the key we want
2013				 * to insert, so we are safe to unlock all upper
2014				 * nodes and we have to do the binary search.
2015				 *
2016				 * We do use btrfs_unlock_up_safe() and not
2017				 * unlock_up() because the later does not unlock
2018				 * nodes with a slot of 0 - we can safely unlock
2019				 * any node even if its slot is 0 since in this
2020				 * case the key does not end up at slot 0 of the
2021				 * leaf and there's no need to split the leaf.
2022				 */
2023				btrfs_unlock_up_safe(path, 1);
2024				search_low_slot = 1;
2025			} else {
2026				/*
2027				 * The first key is >= then the key we want to
2028				 * insert, so we can skip the binary search as
2029				 * the target key will be at slot 0.
2030				 *
2031				 * We can not unlock upper nodes when the key is
2032				 * less than the first key, because we will need
2033				 * to update the key at slot 0 of the parent node
2034				 * and possibly of other upper nodes too.
2035				 * If the key matches the first key, then we can
2036				 * unlock all the upper nodes, using
2037				 * btrfs_unlock_up_safe() instead of unlock_up()
2038				 * as stated above.
2039				 */
2040				if (ret == 0)
2041					btrfs_unlock_up_safe(path, 1);
2042				/*
2043				 * ret is already 0 or 1, matching the result of
2044				 * a btrfs_bin_search() call, so there is no need
2045				 * to adjust it.
2046				 */
2047				do_bin_search = false;
2048				path->slots[0] = 0;
2049			}
2050		}
2051	}
2052
2053	if (do_bin_search) {
2054		ret = search_for_key_slot(leaf, search_low_slot, key,
2055					  prev_cmp, &path->slots[0]);
2056		if (ret < 0)
2057			return ret;
2058	}
2059
2060	if (ins_len > 0) {
2061		/*
2062		 * Item key already exists. In this case, if we are allowed to
2063		 * insert the item (for example, in dir_item case, item key
2064		 * collision is allowed), it will be merged with the original
2065		 * item. Only the item size grows, no new btrfs item will be
2066		 * added. If search_for_extension is not set, ins_len already
2067		 * accounts the size btrfs_item, deduct it here so leaf space
2068		 * check will be correct.
2069		 */
2070		if (ret == 0 && !path->search_for_extension) {
2071			ASSERT(ins_len >= sizeof(struct btrfs_item));
2072			ins_len -= sizeof(struct btrfs_item);
2073		}
2074
2075		ASSERT(leaf_free_space >= 0);
2076
2077		if (leaf_free_space < ins_len) {
2078			int err;
2079
2080			err = split_leaf(trans, root, key, path, ins_len,
2081					 (ret == 0));
2082			ASSERT(err <= 0);
2083			if (WARN_ON(err > 0))
2084				err = -EUCLEAN;
2085			if (err)
2086				ret = err;
2087		}
2088	}
2089
2090	return ret;
2091}
2092
2093/*
2094 * btrfs_search_slot - look for a key in a tree and perform necessary
2095 * modifications to preserve tree invariants.
2096 *
2097 * @trans:	Handle of transaction, used when modifying the tree
2098 * @p:		Holds all btree nodes along the search path
2099 * @root:	The root node of the tree
2100 * @key:	The key we are looking for
2101 * @ins_len:	Indicates purpose of search:
2102 *              >0  for inserts it's size of item inserted (*)
2103 *              <0  for deletions
2104 *               0  for plain searches, not modifying the tree
2105 *
2106 *              (*) If size of item inserted doesn't include
2107 *              sizeof(struct btrfs_item), then p->search_for_extension must
2108 *              be set.
2109 * @cow:	boolean should CoW operations be performed. Must always be 1
2110 *		when modifying the tree.
2111 *
2112 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2113 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2114 *
2115 * If @key is found, 0 is returned and you can find the item in the leaf level
2116 * of the path (level 0)
2117 *
2118 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2119 * points to the slot where it should be inserted
2120 *
2121 * If an error is encountered while searching the tree a negative error number
2122 * is returned
2123 */
2124int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2125		      const struct btrfs_key *key, struct btrfs_path *p,
2126		      int ins_len, int cow)
2127{
2128	struct btrfs_fs_info *fs_info = root->fs_info;
2129	struct extent_buffer *b;
2130	int slot;
2131	int ret;
2132	int err;
2133	int level;
2134	int lowest_unlock = 1;
2135	/* everything at write_lock_level or lower must be write locked */
2136	int write_lock_level = 0;
2137	u8 lowest_level = 0;
2138	int min_write_lock_level;
2139	int prev_cmp;
2140
2141	might_sleep();
2142
2143	lowest_level = p->lowest_level;
2144	WARN_ON(lowest_level && ins_len > 0);
2145	WARN_ON(p->nodes[0] != NULL);
2146	BUG_ON(!cow && ins_len);
2147
2148	/*
2149	 * For now only allow nowait for read only operations.  There's no
2150	 * strict reason why we can't, we just only need it for reads so it's
2151	 * only implemented for reads.
2152	 */
2153	ASSERT(!p->nowait || !cow);
2154
2155	if (ins_len < 0) {
2156		lowest_unlock = 2;
2157
2158		/* when we are removing items, we might have to go up to level
2159		 * two as we update tree pointers  Make sure we keep write
2160		 * for those levels as well
2161		 */
2162		write_lock_level = 2;
2163	} else if (ins_len > 0) {
2164		/*
2165		 * for inserting items, make sure we have a write lock on
2166		 * level 1 so we can update keys
2167		 */
2168		write_lock_level = 1;
2169	}
2170
2171	if (!cow)
2172		write_lock_level = -1;
2173
2174	if (cow && (p->keep_locks || p->lowest_level))
2175		write_lock_level = BTRFS_MAX_LEVEL;
2176
2177	min_write_lock_level = write_lock_level;
2178
2179	if (p->need_commit_sem) {
2180		ASSERT(p->search_commit_root);
2181		if (p->nowait) {
2182			if (!down_read_trylock(&fs_info->commit_root_sem))
2183				return -EAGAIN;
2184		} else {
2185			down_read(&fs_info->commit_root_sem);
2186		}
2187	}
2188
2189again:
2190	prev_cmp = -1;
2191	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2192	if (IS_ERR(b)) {
2193		ret = PTR_ERR(b);
2194		goto done;
2195	}
2196
2197	while (b) {
2198		int dec = 0;
2199
2200		level = btrfs_header_level(b);
2201
2202		if (cow) {
2203			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2204
2205			/*
2206			 * if we don't really need to cow this block
2207			 * then we don't want to set the path blocking,
2208			 * so we test it here
2209			 */
2210			if (!should_cow_block(trans, root, b))
2211				goto cow_done;
2212
2213			/*
2214			 * must have write locks on this node and the
2215			 * parent
2216			 */
2217			if (level > write_lock_level ||
2218			    (level + 1 > write_lock_level &&
2219			    level + 1 < BTRFS_MAX_LEVEL &&
2220			    p->nodes[level + 1])) {
2221				write_lock_level = level + 1;
2222				btrfs_release_path(p);
2223				goto again;
2224			}
2225
2226			if (last_level)
2227				err = btrfs_cow_block(trans, root, b, NULL, 0,
2228						      &b,
2229						      BTRFS_NESTING_COW);
2230			else
2231				err = btrfs_cow_block(trans, root, b,
2232						      p->nodes[level + 1],
2233						      p->slots[level + 1], &b,
2234						      BTRFS_NESTING_COW);
2235			if (err) {
2236				ret = err;
2237				goto done;
2238			}
2239		}
2240cow_done:
2241		p->nodes[level] = b;
2242
2243		/*
2244		 * we have a lock on b and as long as we aren't changing
2245		 * the tree, there is no way to for the items in b to change.
2246		 * It is safe to drop the lock on our parent before we
2247		 * go through the expensive btree search on b.
2248		 *
2249		 * If we're inserting or deleting (ins_len != 0), then we might
2250		 * be changing slot zero, which may require changing the parent.
2251		 * So, we can't drop the lock until after we know which slot
2252		 * we're operating on.
2253		 */
2254		if (!ins_len && !p->keep_locks) {
2255			int u = level + 1;
2256
2257			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2258				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2259				p->locks[u] = 0;
2260			}
2261		}
2262
2263		if (level == 0) {
2264			if (ins_len > 0)
2265				ASSERT(write_lock_level >= 1);
2266
2267			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2268			if (!p->search_for_split)
2269				unlock_up(p, level, lowest_unlock,
2270					  min_write_lock_level, NULL);
2271			goto done;
2272		}
2273
2274		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2275		if (ret < 0)
2276			goto done;
2277		prev_cmp = ret;
2278
2279		if (ret && slot > 0) {
2280			dec = 1;
2281			slot--;
2282		}
2283		p->slots[level] = slot;
2284		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2285					     &write_lock_level);
2286		if (err == -EAGAIN)
2287			goto again;
2288		if (err) {
2289			ret = err;
2290			goto done;
2291		}
2292		b = p->nodes[level];
2293		slot = p->slots[level];
2294
2295		/*
2296		 * Slot 0 is special, if we change the key we have to update
2297		 * the parent pointer which means we must have a write lock on
2298		 * the parent
2299		 */
2300		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2301			write_lock_level = level + 1;
2302			btrfs_release_path(p);
2303			goto again;
2304		}
2305
2306		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2307			  &write_lock_level);
2308
2309		if (level == lowest_level) {
2310			if (dec)
2311				p->slots[level]++;
2312			goto done;
2313		}
2314
2315		err = read_block_for_search(root, p, &b, level, slot, key);
2316		if (err == -EAGAIN)
2317			goto again;
2318		if (err) {
2319			ret = err;
2320			goto done;
2321		}
2322
2323		if (!p->skip_locking) {
2324			level = btrfs_header_level(b);
2325
2326			btrfs_maybe_reset_lockdep_class(root, b);
2327
2328			if (level <= write_lock_level) {
2329				btrfs_tree_lock(b);
2330				p->locks[level] = BTRFS_WRITE_LOCK;
2331			} else {
2332				if (p->nowait) {
2333					if (!btrfs_try_tree_read_lock(b)) {
2334						free_extent_buffer(b);
2335						ret = -EAGAIN;
2336						goto done;
2337					}
2338				} else {
2339					btrfs_tree_read_lock(b);
2340				}
2341				p->locks[level] = BTRFS_READ_LOCK;
2342			}
2343			p->nodes[level] = b;
2344		}
2345	}
2346	ret = 1;
2347done:
2348	if (ret < 0 && !p->skip_release_on_error)
2349		btrfs_release_path(p);
2350
2351	if (p->need_commit_sem) {
2352		int ret2;
2353
2354		ret2 = finish_need_commit_sem_search(p);
2355		up_read(&fs_info->commit_root_sem);
2356		if (ret2)
2357			ret = ret2;
2358	}
2359
2360	return ret;
2361}
2362ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2363
2364/*
2365 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2366 * current state of the tree together with the operations recorded in the tree
2367 * modification log to search for the key in a previous version of this tree, as
2368 * denoted by the time_seq parameter.
2369 *
2370 * Naturally, there is no support for insert, delete or cow operations.
2371 *
2372 * The resulting path and return value will be set up as if we called
2373 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2374 */
2375int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2376			  struct btrfs_path *p, u64 time_seq)
2377{
2378	struct btrfs_fs_info *fs_info = root->fs_info;
2379	struct extent_buffer *b;
2380	int slot;
2381	int ret;
2382	int err;
2383	int level;
2384	int lowest_unlock = 1;
2385	u8 lowest_level = 0;
2386
2387	lowest_level = p->lowest_level;
2388	WARN_ON(p->nodes[0] != NULL);
2389	ASSERT(!p->nowait);
2390
2391	if (p->search_commit_root) {
2392		BUG_ON(time_seq);
2393		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2394	}
2395
2396again:
2397	b = btrfs_get_old_root(root, time_seq);
2398	if (!b) {
2399		ret = -EIO;
2400		goto done;
2401	}
2402	level = btrfs_header_level(b);
2403	p->locks[level] = BTRFS_READ_LOCK;
2404
2405	while (b) {
2406		int dec = 0;
2407
2408		level = btrfs_header_level(b);
2409		p->nodes[level] = b;
2410
2411		/*
2412		 * we have a lock on b and as long as we aren't changing
2413		 * the tree, there is no way to for the items in b to change.
2414		 * It is safe to drop the lock on our parent before we
2415		 * go through the expensive btree search on b.
2416		 */
2417		btrfs_unlock_up_safe(p, level + 1);
2418
2419		ret = btrfs_bin_search(b, 0, key, &slot);
2420		if (ret < 0)
2421			goto done;
2422
2423		if (level == 0) {
2424			p->slots[level] = slot;
2425			unlock_up(p, level, lowest_unlock, 0, NULL);
2426			goto done;
2427		}
2428
2429		if (ret && slot > 0) {
2430			dec = 1;
2431			slot--;
2432		}
2433		p->slots[level] = slot;
2434		unlock_up(p, level, lowest_unlock, 0, NULL);
2435
2436		if (level == lowest_level) {
2437			if (dec)
2438				p->slots[level]++;
2439			goto done;
2440		}
2441
2442		err = read_block_for_search(root, p, &b, level, slot, key);
2443		if (err == -EAGAIN)
2444			goto again;
2445		if (err) {
2446			ret = err;
2447			goto done;
2448		}
2449
2450		level = btrfs_header_level(b);
2451		btrfs_tree_read_lock(b);
2452		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2453		if (!b) {
2454			ret = -ENOMEM;
2455			goto done;
2456		}
2457		p->locks[level] = BTRFS_READ_LOCK;
2458		p->nodes[level] = b;
2459	}
2460	ret = 1;
2461done:
2462	if (ret < 0)
2463		btrfs_release_path(p);
2464
2465	return ret;
2466}
2467
2468/*
2469 * Search the tree again to find a leaf with smaller keys.
2470 * Returns 0 if it found something.
2471 * Returns 1 if there are no smaller keys.
2472 * Returns < 0 on error.
2473 *
2474 * This may release the path, and so you may lose any locks held at the
2475 * time you call it.
2476 */
2477static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2478{
2479	struct btrfs_key key;
2480	struct btrfs_key orig_key;
2481	struct btrfs_disk_key found_key;
2482	int ret;
2483
2484	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2485	orig_key = key;
2486
2487	if (key.offset > 0) {
2488		key.offset--;
2489	} else if (key.type > 0) {
2490		key.type--;
2491		key.offset = (u64)-1;
2492	} else if (key.objectid > 0) {
2493		key.objectid--;
2494		key.type = (u8)-1;
2495		key.offset = (u64)-1;
2496	} else {
2497		return 1;
2498	}
2499
2500	btrfs_release_path(path);
2501	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2502	if (ret <= 0)
2503		return ret;
2504
2505	/*
2506	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2507	 * before releasing the path and calling btrfs_search_slot(), we now may
2508	 * be in a slot pointing to the same original key - this can happen if
2509	 * after we released the path, one of more items were moved from a
2510	 * sibling leaf into the front of the leaf we had due to an insertion
2511	 * (see push_leaf_right()).
2512	 * If we hit this case and our slot is > 0 and just decrement the slot
2513	 * so that the caller does not process the same key again, which may or
2514	 * may not break the caller, depending on its logic.
2515	 */
2516	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2517		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2518		ret = comp_keys(&found_key, &orig_key);
2519		if (ret == 0) {
2520			if (path->slots[0] > 0) {
2521				path->slots[0]--;
2522				return 0;
2523			}
2524			/*
2525			 * At slot 0, same key as before, it means orig_key is
2526			 * the lowest, leftmost, key in the tree. We're done.
2527			 */
2528			return 1;
2529		}
2530	}
2531
2532	btrfs_item_key(path->nodes[0], &found_key, 0);
2533	ret = comp_keys(&found_key, &key);
2534	/*
2535	 * We might have had an item with the previous key in the tree right
2536	 * before we released our path. And after we released our path, that
2537	 * item might have been pushed to the first slot (0) of the leaf we
2538	 * were holding due to a tree balance. Alternatively, an item with the
2539	 * previous key can exist as the only element of a leaf (big fat item).
2540	 * Therefore account for these 2 cases, so that our callers (like
2541	 * btrfs_previous_item) don't miss an existing item with a key matching
2542	 * the previous key we computed above.
2543	 */
2544	if (ret <= 0)
2545		return 0;
2546	return 1;
2547}
2548
2549/*
2550 * helper to use instead of search slot if no exact match is needed but
2551 * instead the next or previous item should be returned.
2552 * When find_higher is true, the next higher item is returned, the next lower
2553 * otherwise.
2554 * When return_any and find_higher are both true, and no higher item is found,
2555 * return the next lower instead.
2556 * When return_any is true and find_higher is false, and no lower item is found,
2557 * return the next higher instead.
2558 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2559 * < 0 on error
2560 */
2561int btrfs_search_slot_for_read(struct btrfs_root *root,
2562			       const struct btrfs_key *key,
2563			       struct btrfs_path *p, int find_higher,
2564			       int return_any)
2565{
2566	int ret;
2567	struct extent_buffer *leaf;
2568
2569again:
2570	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2571	if (ret <= 0)
2572		return ret;
2573	/*
2574	 * a return value of 1 means the path is at the position where the
2575	 * item should be inserted. Normally this is the next bigger item,
2576	 * but in case the previous item is the last in a leaf, path points
2577	 * to the first free slot in the previous leaf, i.e. at an invalid
2578	 * item.
2579	 */
2580	leaf = p->nodes[0];
2581
2582	if (find_higher) {
2583		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2584			ret = btrfs_next_leaf(root, p);
2585			if (ret <= 0)
2586				return ret;
2587			if (!return_any)
2588				return 1;
2589			/*
2590			 * no higher item found, return the next
2591			 * lower instead
2592			 */
2593			return_any = 0;
2594			find_higher = 0;
2595			btrfs_release_path(p);
2596			goto again;
2597		}
2598	} else {
2599		if (p->slots[0] == 0) {
2600			ret = btrfs_prev_leaf(root, p);
2601			if (ret < 0)
2602				return ret;
2603			if (!ret) {
2604				leaf = p->nodes[0];
2605				if (p->slots[0] == btrfs_header_nritems(leaf))
2606					p->slots[0]--;
2607				return 0;
2608			}
2609			if (!return_any)
2610				return 1;
2611			/*
2612			 * no lower item found, return the next
2613			 * higher instead
2614			 */
2615			return_any = 0;
2616			find_higher = 1;
2617			btrfs_release_path(p);
2618			goto again;
2619		} else {
2620			--p->slots[0];
2621		}
2622	}
2623	return 0;
2624}
2625
2626/*
2627 * Execute search and call btrfs_previous_item to traverse backwards if the item
2628 * was not found.
2629 *
2630 * Return 0 if found, 1 if not found and < 0 if error.
2631 */
2632int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2633			   struct btrfs_path *path)
2634{
2635	int ret;
2636
2637	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2638	if (ret > 0)
2639		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2640
2641	if (ret == 0)
2642		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2643
2644	return ret;
2645}
2646
2647/*
2648 * Search for a valid slot for the given path.
2649 *
2650 * @root:	The root node of the tree.
2651 * @key:	Will contain a valid item if found.
2652 * @path:	The starting point to validate the slot.
2653 *
2654 * Return: 0  if the item is valid
2655 *         1  if not found
2656 *         <0 if error.
2657 */
2658int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2659			      struct btrfs_path *path)
2660{
2661	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2662		int ret;
2663
2664		ret = btrfs_next_leaf(root, path);
2665		if (ret)
2666			return ret;
2667	}
2668
2669	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2670	return 0;
2671}
2672
2673/*
2674 * adjust the pointers going up the tree, starting at level
2675 * making sure the right key of each node is points to 'key'.
2676 * This is used after shifting pointers to the left, so it stops
2677 * fixing up pointers when a given leaf/node is not in slot 0 of the
2678 * higher levels
2679 *
2680 */
2681static void fixup_low_keys(struct btrfs_trans_handle *trans,
2682			   struct btrfs_path *path,
2683			   struct btrfs_disk_key *key, int level)
2684{
2685	int i;
2686	struct extent_buffer *t;
2687	int ret;
2688
2689	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2690		int tslot = path->slots[i];
2691
2692		if (!path->nodes[i])
2693			break;
2694		t = path->nodes[i];
2695		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2696						    BTRFS_MOD_LOG_KEY_REPLACE);
2697		BUG_ON(ret < 0);
2698		btrfs_set_node_key(t, key, tslot);
2699		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2700		if (tslot != 0)
2701			break;
2702	}
2703}
2704
2705/*
2706 * update item key.
2707 *
2708 * This function isn't completely safe. It's the caller's responsibility
2709 * that the new key won't break the order
2710 */
2711void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2712			     struct btrfs_path *path,
2713			     const struct btrfs_key *new_key)
2714{
2715	struct btrfs_fs_info *fs_info = trans->fs_info;
2716	struct btrfs_disk_key disk_key;
2717	struct extent_buffer *eb;
2718	int slot;
2719
2720	eb = path->nodes[0];
2721	slot = path->slots[0];
2722	if (slot > 0) {
2723		btrfs_item_key(eb, &disk_key, slot - 1);
2724		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2725			btrfs_print_leaf(eb);
2726			btrfs_crit(fs_info,
2727		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2728				   slot, btrfs_disk_key_objectid(&disk_key),
2729				   btrfs_disk_key_type(&disk_key),
2730				   btrfs_disk_key_offset(&disk_key),
2731				   new_key->objectid, new_key->type,
2732				   new_key->offset);
2733			BUG();
2734		}
2735	}
2736	if (slot < btrfs_header_nritems(eb) - 1) {
2737		btrfs_item_key(eb, &disk_key, slot + 1);
2738		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2739			btrfs_print_leaf(eb);
2740			btrfs_crit(fs_info,
2741		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2742				   slot, btrfs_disk_key_objectid(&disk_key),
2743				   btrfs_disk_key_type(&disk_key),
2744				   btrfs_disk_key_offset(&disk_key),
2745				   new_key->objectid, new_key->type,
2746				   new_key->offset);
2747			BUG();
2748		}
2749	}
2750
2751	btrfs_cpu_key_to_disk(&disk_key, new_key);
2752	btrfs_set_item_key(eb, &disk_key, slot);
2753	btrfs_mark_buffer_dirty(trans, eb);
2754	if (slot == 0)
2755		fixup_low_keys(trans, path, &disk_key, 1);
2756}
2757
2758/*
2759 * Check key order of two sibling extent buffers.
2760 *
2761 * Return true if something is wrong.
2762 * Return false if everything is fine.
2763 *
2764 * Tree-checker only works inside one tree block, thus the following
2765 * corruption can not be detected by tree-checker:
2766 *
2767 * Leaf @left			| Leaf @right
2768 * --------------------------------------------------------------
2769 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2770 *
2771 * Key f6 in leaf @left itself is valid, but not valid when the next
2772 * key in leaf @right is 7.
2773 * This can only be checked at tree block merge time.
2774 * And since tree checker has ensured all key order in each tree block
2775 * is correct, we only need to bother the last key of @left and the first
2776 * key of @right.
2777 */
2778static bool check_sibling_keys(struct extent_buffer *left,
2779			       struct extent_buffer *right)
2780{
2781	struct btrfs_key left_last;
2782	struct btrfs_key right_first;
2783	int level = btrfs_header_level(left);
2784	int nr_left = btrfs_header_nritems(left);
2785	int nr_right = btrfs_header_nritems(right);
2786
2787	/* No key to check in one of the tree blocks */
2788	if (!nr_left || !nr_right)
2789		return false;
2790
2791	if (level) {
2792		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2793		btrfs_node_key_to_cpu(right, &right_first, 0);
2794	} else {
2795		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2796		btrfs_item_key_to_cpu(right, &right_first, 0);
2797	}
2798
2799	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2800		btrfs_crit(left->fs_info, "left extent buffer:");
2801		btrfs_print_tree(left, false);
2802		btrfs_crit(left->fs_info, "right extent buffer:");
2803		btrfs_print_tree(right, false);
2804		btrfs_crit(left->fs_info,
2805"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2806			   left_last.objectid, left_last.type,
2807			   left_last.offset, right_first.objectid,
2808			   right_first.type, right_first.offset);
2809		return true;
2810	}
2811	return false;
2812}
2813
2814/*
2815 * try to push data from one node into the next node left in the
2816 * tree.
2817 *
2818 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2819 * error, and > 0 if there was no room in the left hand block.
2820 */
2821static int push_node_left(struct btrfs_trans_handle *trans,
2822			  struct extent_buffer *dst,
2823			  struct extent_buffer *src, int empty)
2824{
2825	struct btrfs_fs_info *fs_info = trans->fs_info;
2826	int push_items = 0;
2827	int src_nritems;
2828	int dst_nritems;
2829	int ret = 0;
2830
2831	src_nritems = btrfs_header_nritems(src);
2832	dst_nritems = btrfs_header_nritems(dst);
2833	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2834	WARN_ON(btrfs_header_generation(src) != trans->transid);
2835	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2836
2837	if (!empty && src_nritems <= 8)
2838		return 1;
2839
2840	if (push_items <= 0)
2841		return 1;
2842
2843	if (empty) {
2844		push_items = min(src_nritems, push_items);
2845		if (push_items < src_nritems) {
2846			/* leave at least 8 pointers in the node if
2847			 * we aren't going to empty it
2848			 */
2849			if (src_nritems - push_items < 8) {
2850				if (push_items <= 8)
2851					return 1;
2852				push_items -= 8;
2853			}
2854		}
2855	} else
2856		push_items = min(src_nritems - 8, push_items);
2857
2858	/* dst is the left eb, src is the middle eb */
2859	if (check_sibling_keys(dst, src)) {
2860		ret = -EUCLEAN;
2861		btrfs_abort_transaction(trans, ret);
2862		return ret;
2863	}
2864	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2865	if (ret) {
2866		btrfs_abort_transaction(trans, ret);
2867		return ret;
2868	}
2869	copy_extent_buffer(dst, src,
2870			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2871			   btrfs_node_key_ptr_offset(src, 0),
2872			   push_items * sizeof(struct btrfs_key_ptr));
2873
2874	if (push_items < src_nritems) {
2875		/*
2876		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2877		 * don't need to do an explicit tree mod log operation for it.
2878		 */
2879		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2880				      btrfs_node_key_ptr_offset(src, push_items),
2881				      (src_nritems - push_items) *
2882				      sizeof(struct btrfs_key_ptr));
2883	}
2884	btrfs_set_header_nritems(src, src_nritems - push_items);
2885	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2886	btrfs_mark_buffer_dirty(trans, src);
2887	btrfs_mark_buffer_dirty(trans, dst);
2888
2889	return ret;
2890}
2891
2892/*
2893 * try to push data from one node into the next node right in the
2894 * tree.
2895 *
2896 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2897 * error, and > 0 if there was no room in the right hand block.
2898 *
2899 * this will  only push up to 1/2 the contents of the left node over
2900 */
2901static int balance_node_right(struct btrfs_trans_handle *trans,
2902			      struct extent_buffer *dst,
2903			      struct extent_buffer *src)
2904{
2905	struct btrfs_fs_info *fs_info = trans->fs_info;
2906	int push_items = 0;
2907	int max_push;
2908	int src_nritems;
2909	int dst_nritems;
2910	int ret = 0;
2911
2912	WARN_ON(btrfs_header_generation(src) != trans->transid);
2913	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2914
2915	src_nritems = btrfs_header_nritems(src);
2916	dst_nritems = btrfs_header_nritems(dst);
2917	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2918	if (push_items <= 0)
2919		return 1;
2920
2921	if (src_nritems < 4)
2922		return 1;
2923
2924	max_push = src_nritems / 2 + 1;
2925	/* don't try to empty the node */
2926	if (max_push >= src_nritems)
2927		return 1;
2928
2929	if (max_push < push_items)
2930		push_items = max_push;
2931
2932	/* dst is the right eb, src is the middle eb */
2933	if (check_sibling_keys(src, dst)) {
2934		ret = -EUCLEAN;
2935		btrfs_abort_transaction(trans, ret);
2936		return ret;
2937	}
2938
2939	/*
2940	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2941	 * need to do an explicit tree mod log operation for it.
2942	 */
2943	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2944				      btrfs_node_key_ptr_offset(dst, 0),
2945				      (dst_nritems) *
2946				      sizeof(struct btrfs_key_ptr));
2947
2948	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2949					 push_items);
2950	if (ret) {
2951		btrfs_abort_transaction(trans, ret);
2952		return ret;
2953	}
2954	copy_extent_buffer(dst, src,
2955			   btrfs_node_key_ptr_offset(dst, 0),
2956			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2957			   push_items * sizeof(struct btrfs_key_ptr));
2958
2959	btrfs_set_header_nritems(src, src_nritems - push_items);
2960	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2961
2962	btrfs_mark_buffer_dirty(trans, src);
2963	btrfs_mark_buffer_dirty(trans, dst);
2964
2965	return ret;
2966}
2967
2968/*
2969 * helper function to insert a new root level in the tree.
2970 * A new node is allocated, and a single item is inserted to
2971 * point to the existing root
2972 *
2973 * returns zero on success or < 0 on failure.
2974 */
2975static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2976			   struct btrfs_root *root,
2977			   struct btrfs_path *path, int level)
2978{
2979	struct btrfs_fs_info *fs_info = root->fs_info;
2980	u64 lower_gen;
2981	struct extent_buffer *lower;
2982	struct extent_buffer *c;
2983	struct extent_buffer *old;
2984	struct btrfs_disk_key lower_key;
2985	int ret;
2986
2987	BUG_ON(path->nodes[level]);
2988	BUG_ON(path->nodes[level-1] != root->node);
2989
2990	lower = path->nodes[level-1];
2991	if (level == 1)
2992		btrfs_item_key(lower, &lower_key, 0);
2993	else
2994		btrfs_node_key(lower, &lower_key, 0);
2995
2996	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2997				   &lower_key, level, root->node->start, 0,
2998				   BTRFS_NESTING_NEW_ROOT);
2999	if (IS_ERR(c))
3000		return PTR_ERR(c);
3001
3002	root_add_used(root, fs_info->nodesize);
3003
3004	btrfs_set_header_nritems(c, 1);
3005	btrfs_set_node_key(c, &lower_key, 0);
3006	btrfs_set_node_blockptr(c, 0, lower->start);
3007	lower_gen = btrfs_header_generation(lower);
3008	WARN_ON(lower_gen != trans->transid);
3009
3010	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3011
3012	btrfs_mark_buffer_dirty(trans, c);
3013
3014	old = root->node;
3015	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
3016	if (ret < 0) {
3017		btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
3018		btrfs_tree_unlock(c);
3019		free_extent_buffer(c);
3020		return ret;
3021	}
3022	rcu_assign_pointer(root->node, c);
3023
3024	/* the super has an extra ref to root->node */
3025	free_extent_buffer(old);
3026
3027	add_root_to_dirty_list(root);
3028	atomic_inc(&c->refs);
3029	path->nodes[level] = c;
3030	path->locks[level] = BTRFS_WRITE_LOCK;
3031	path->slots[level] = 0;
3032	return 0;
3033}
3034
3035/*
3036 * worker function to insert a single pointer in a node.
3037 * the node should have enough room for the pointer already
3038 *
3039 * slot and level indicate where you want the key to go, and
3040 * blocknr is the block the key points to.
3041 */
3042static int insert_ptr(struct btrfs_trans_handle *trans,
3043		      struct btrfs_path *path,
3044		      struct btrfs_disk_key *key, u64 bytenr,
3045		      int slot, int level)
3046{
3047	struct extent_buffer *lower;
3048	int nritems;
3049	int ret;
3050
3051	BUG_ON(!path->nodes[level]);
3052	btrfs_assert_tree_write_locked(path->nodes[level]);
3053	lower = path->nodes[level];
3054	nritems = btrfs_header_nritems(lower);
3055	BUG_ON(slot > nritems);
3056	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3057	if (slot != nritems) {
3058		if (level) {
3059			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
3060					slot, nritems - slot);
3061			if (ret < 0) {
3062				btrfs_abort_transaction(trans, ret);
3063				return ret;
3064			}
3065		}
3066		memmove_extent_buffer(lower,
3067			      btrfs_node_key_ptr_offset(lower, slot + 1),
3068			      btrfs_node_key_ptr_offset(lower, slot),
3069			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3070	}
3071	if (level) {
3072		ret = btrfs_tree_mod_log_insert_key(lower, slot,
3073						    BTRFS_MOD_LOG_KEY_ADD);
3074		if (ret < 0) {
3075			btrfs_abort_transaction(trans, ret);
3076			return ret;
3077		}
3078	}
3079	btrfs_set_node_key(lower, key, slot);
3080	btrfs_set_node_blockptr(lower, slot, bytenr);
3081	WARN_ON(trans->transid == 0);
3082	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3083	btrfs_set_header_nritems(lower, nritems + 1);
3084	btrfs_mark_buffer_dirty(trans, lower);
3085
3086	return 0;
3087}
3088
3089/*
3090 * split the node at the specified level in path in two.
3091 * The path is corrected to point to the appropriate node after the split
3092 *
3093 * Before splitting this tries to make some room in the node by pushing
3094 * left and right, if either one works, it returns right away.
3095 *
3096 * returns 0 on success and < 0 on failure
3097 */
3098static noinline int split_node(struct btrfs_trans_handle *trans,
3099			       struct btrfs_root *root,
3100			       struct btrfs_path *path, int level)
3101{
3102	struct btrfs_fs_info *fs_info = root->fs_info;
3103	struct extent_buffer *c;
3104	struct extent_buffer *split;
3105	struct btrfs_disk_key disk_key;
3106	int mid;
3107	int ret;
3108	u32 c_nritems;
3109
3110	c = path->nodes[level];
3111	WARN_ON(btrfs_header_generation(c) != trans->transid);
3112	if (c == root->node) {
3113		/*
3114		 * trying to split the root, lets make a new one
3115		 *
3116		 * tree mod log: We don't log_removal old root in
3117		 * insert_new_root, because that root buffer will be kept as a
3118		 * normal node. We are going to log removal of half of the
3119		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3120		 * holding a tree lock on the buffer, which is why we cannot
3121		 * race with other tree_mod_log users.
3122		 */
3123		ret = insert_new_root(trans, root, path, level + 1);
3124		if (ret)
3125			return ret;
3126	} else {
3127		ret = push_nodes_for_insert(trans, root, path, level);
3128		c = path->nodes[level];
3129		if (!ret && btrfs_header_nritems(c) <
3130		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3131			return 0;
3132		if (ret < 0)
3133			return ret;
3134	}
3135
3136	c_nritems = btrfs_header_nritems(c);
3137	mid = (c_nritems + 1) / 2;
3138	btrfs_node_key(c, &disk_key, mid);
3139
3140	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3141				       &disk_key, level, c->start, 0,
3142				       BTRFS_NESTING_SPLIT);
3143	if (IS_ERR(split))
3144		return PTR_ERR(split);
3145
3146	root_add_used(root, fs_info->nodesize);
3147	ASSERT(btrfs_header_level(c) == level);
3148
3149	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3150	if (ret) {
3151		btrfs_tree_unlock(split);
3152		free_extent_buffer(split);
3153		btrfs_abort_transaction(trans, ret);
3154		return ret;
3155	}
3156	copy_extent_buffer(split, c,
3157			   btrfs_node_key_ptr_offset(split, 0),
3158			   btrfs_node_key_ptr_offset(c, mid),
3159			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3160	btrfs_set_header_nritems(split, c_nritems - mid);
3161	btrfs_set_header_nritems(c, mid);
3162
3163	btrfs_mark_buffer_dirty(trans, c);
3164	btrfs_mark_buffer_dirty(trans, split);
3165
3166	ret = insert_ptr(trans, path, &disk_key, split->start,
3167			 path->slots[level + 1] + 1, level + 1);
3168	if (ret < 0) {
3169		btrfs_tree_unlock(split);
3170		free_extent_buffer(split);
3171		return ret;
3172	}
3173
3174	if (path->slots[level] >= mid) {
3175		path->slots[level] -= mid;
3176		btrfs_tree_unlock(c);
3177		free_extent_buffer(c);
3178		path->nodes[level] = split;
3179		path->slots[level + 1] += 1;
3180	} else {
3181		btrfs_tree_unlock(split);
3182		free_extent_buffer(split);
3183	}
3184	return 0;
3185}
3186
3187/*
3188 * how many bytes are required to store the items in a leaf.  start
3189 * and nr indicate which items in the leaf to check.  This totals up the
3190 * space used both by the item structs and the item data
3191 */
3192static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3193{
3194	int data_len;
3195	int nritems = btrfs_header_nritems(l);
3196	int end = min(nritems, start + nr) - 1;
3197
3198	if (!nr)
3199		return 0;
3200	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3201	data_len = data_len - btrfs_item_offset(l, end);
3202	data_len += sizeof(struct btrfs_item) * nr;
3203	WARN_ON(data_len < 0);
3204	return data_len;
3205}
3206
3207/*
3208 * The space between the end of the leaf items and
3209 * the start of the leaf data.  IOW, how much room
3210 * the leaf has left for both items and data
3211 */
3212int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3213{
3214	struct btrfs_fs_info *fs_info = leaf->fs_info;
3215	int nritems = btrfs_header_nritems(leaf);
3216	int ret;
3217
3218	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3219	if (ret < 0) {
3220		btrfs_crit(fs_info,
3221			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3222			   ret,
3223			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3224			   leaf_space_used(leaf, 0, nritems), nritems);
3225	}
3226	return ret;
3227}
3228
3229/*
3230 * min slot controls the lowest index we're willing to push to the
3231 * right.  We'll push up to and including min_slot, but no lower
3232 */
3233static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3234				      struct btrfs_path *path,
3235				      int data_size, int empty,
3236				      struct extent_buffer *right,
3237				      int free_space, u32 left_nritems,
3238				      u32 min_slot)
3239{
3240	struct btrfs_fs_info *fs_info = right->fs_info;
3241	struct extent_buffer *left = path->nodes[0];
3242	struct extent_buffer *upper = path->nodes[1];
3243	struct btrfs_map_token token;
3244	struct btrfs_disk_key disk_key;
3245	int slot;
3246	u32 i;
3247	int push_space = 0;
3248	int push_items = 0;
3249	u32 nr;
3250	u32 right_nritems;
3251	u32 data_end;
3252	u32 this_item_size;
3253
3254	if (empty)
3255		nr = 0;
3256	else
3257		nr = max_t(u32, 1, min_slot);
3258
3259	if (path->slots[0] >= left_nritems)
3260		push_space += data_size;
3261
3262	slot = path->slots[1];
3263	i = left_nritems - 1;
3264	while (i >= nr) {
3265		if (!empty && push_items > 0) {
3266			if (path->slots[0] > i)
3267				break;
3268			if (path->slots[0] == i) {
3269				int space = btrfs_leaf_free_space(left);
3270
3271				if (space + push_space * 2 > free_space)
3272					break;
3273			}
3274		}
3275
3276		if (path->slots[0] == i)
3277			push_space += data_size;
3278
3279		this_item_size = btrfs_item_size(left, i);
3280		if (this_item_size + sizeof(struct btrfs_item) +
3281		    push_space > free_space)
3282			break;
3283
3284		push_items++;
3285		push_space += this_item_size + sizeof(struct btrfs_item);
3286		if (i == 0)
3287			break;
3288		i--;
3289	}
3290
3291	if (push_items == 0)
3292		goto out_unlock;
3293
3294	WARN_ON(!empty && push_items == left_nritems);
3295
3296	/* push left to right */
3297	right_nritems = btrfs_header_nritems(right);
3298
3299	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3300	push_space -= leaf_data_end(left);
3301
3302	/* make room in the right data area */
3303	data_end = leaf_data_end(right);
3304	memmove_leaf_data(right, data_end - push_space, data_end,
3305			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3306
3307	/* copy from the left data area */
3308	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3309		       leaf_data_end(left), push_space);
3310
3311	memmove_leaf_items(right, push_items, 0, right_nritems);
3312
3313	/* copy the items from left to right */
3314	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3315
3316	/* update the item pointers */
3317	btrfs_init_map_token(&token, right);
3318	right_nritems += push_items;
3319	btrfs_set_header_nritems(right, right_nritems);
3320	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3321	for (i = 0; i < right_nritems; i++) {
3322		push_space -= btrfs_token_item_size(&token, i);
3323		btrfs_set_token_item_offset(&token, i, push_space);
3324	}
3325
3326	left_nritems -= push_items;
3327	btrfs_set_header_nritems(left, left_nritems);
3328
3329	if (left_nritems)
3330		btrfs_mark_buffer_dirty(trans, left);
3331	else
3332		btrfs_clear_buffer_dirty(trans, left);
3333
3334	btrfs_mark_buffer_dirty(trans, right);
3335
3336	btrfs_item_key(right, &disk_key, 0);
3337	btrfs_set_node_key(upper, &disk_key, slot + 1);
3338	btrfs_mark_buffer_dirty(trans, upper);
3339
3340	/* then fixup the leaf pointer in the path */
3341	if (path->slots[0] >= left_nritems) {
3342		path->slots[0] -= left_nritems;
3343		if (btrfs_header_nritems(path->nodes[0]) == 0)
3344			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3345		btrfs_tree_unlock(path->nodes[0]);
3346		free_extent_buffer(path->nodes[0]);
3347		path->nodes[0] = right;
3348		path->slots[1] += 1;
3349	} else {
3350		btrfs_tree_unlock(right);
3351		free_extent_buffer(right);
3352	}
3353	return 0;
3354
3355out_unlock:
3356	btrfs_tree_unlock(right);
3357	free_extent_buffer(right);
3358	return 1;
3359}
3360
3361/*
3362 * push some data in the path leaf to the right, trying to free up at
3363 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3364 *
3365 * returns 1 if the push failed because the other node didn't have enough
3366 * room, 0 if everything worked out and < 0 if there were major errors.
3367 *
3368 * this will push starting from min_slot to the end of the leaf.  It won't
3369 * push any slot lower than min_slot
3370 */
3371static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3372			   *root, struct btrfs_path *path,
3373			   int min_data_size, int data_size,
3374			   int empty, u32 min_slot)
3375{
3376	struct extent_buffer *left = path->nodes[0];
3377	struct extent_buffer *right;
3378	struct extent_buffer *upper;
3379	int slot;
3380	int free_space;
3381	u32 left_nritems;
3382	int ret;
3383
3384	if (!path->nodes[1])
3385		return 1;
3386
3387	slot = path->slots[1];
3388	upper = path->nodes[1];
3389	if (slot >= btrfs_header_nritems(upper) - 1)
3390		return 1;
3391
3392	btrfs_assert_tree_write_locked(path->nodes[1]);
3393
3394	right = btrfs_read_node_slot(upper, slot + 1);
3395	if (IS_ERR(right))
3396		return PTR_ERR(right);
3397
3398	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3399
3400	free_space = btrfs_leaf_free_space(right);
3401	if (free_space < data_size)
3402		goto out_unlock;
3403
3404	ret = btrfs_cow_block(trans, root, right, upper,
3405			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3406	if (ret)
3407		goto out_unlock;
3408
3409	left_nritems = btrfs_header_nritems(left);
3410	if (left_nritems == 0)
3411		goto out_unlock;
3412
3413	if (check_sibling_keys(left, right)) {
3414		ret = -EUCLEAN;
3415		btrfs_abort_transaction(trans, ret);
3416		btrfs_tree_unlock(right);
3417		free_extent_buffer(right);
3418		return ret;
3419	}
3420	if (path->slots[0] == left_nritems && !empty) {
3421		/* Key greater than all keys in the leaf, right neighbor has
3422		 * enough room for it and we're not emptying our leaf to delete
3423		 * it, therefore use right neighbor to insert the new item and
3424		 * no need to touch/dirty our left leaf. */
3425		btrfs_tree_unlock(left);
3426		free_extent_buffer(left);
3427		path->nodes[0] = right;
3428		path->slots[0] = 0;
3429		path->slots[1]++;
3430		return 0;
3431	}
3432
3433	return __push_leaf_right(trans, path, min_data_size, empty, right,
3434				 free_space, left_nritems, min_slot);
3435out_unlock:
3436	btrfs_tree_unlock(right);
3437	free_extent_buffer(right);
3438	return 1;
3439}
3440
3441/*
3442 * push some data in the path leaf to the left, trying to free up at
3443 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3444 *
3445 * max_slot can put a limit on how far into the leaf we'll push items.  The
3446 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3447 * items
3448 */
3449static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3450				     struct btrfs_path *path, int data_size,
3451				     int empty, struct extent_buffer *left,
3452				     int free_space, u32 right_nritems,
3453				     u32 max_slot)
3454{
3455	struct btrfs_fs_info *fs_info = left->fs_info;
3456	struct btrfs_disk_key disk_key;
3457	struct extent_buffer *right = path->nodes[0];
3458	int i;
3459	int push_space = 0;
3460	int push_items = 0;
3461	u32 old_left_nritems;
3462	u32 nr;
3463	int ret = 0;
3464	u32 this_item_size;
3465	u32 old_left_item_size;
3466	struct btrfs_map_token token;
3467
3468	if (empty)
3469		nr = min(right_nritems, max_slot);
3470	else
3471		nr = min(right_nritems - 1, max_slot);
3472
3473	for (i = 0; i < nr; i++) {
3474		if (!empty && push_items > 0) {
3475			if (path->slots[0] < i)
3476				break;
3477			if (path->slots[0] == i) {
3478				int space = btrfs_leaf_free_space(right);
3479
3480				if (space + push_space * 2 > free_space)
3481					break;
3482			}
3483		}
3484
3485		if (path->slots[0] == i)
3486			push_space += data_size;
3487
3488		this_item_size = btrfs_item_size(right, i);
3489		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3490		    free_space)
3491			break;
3492
3493		push_items++;
3494		push_space += this_item_size + sizeof(struct btrfs_item);
3495	}
3496
3497	if (push_items == 0) {
3498		ret = 1;
3499		goto out;
3500	}
3501	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3502
3503	/* push data from right to left */
3504	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3505
3506	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3507		     btrfs_item_offset(right, push_items - 1);
3508
3509	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3510		       btrfs_item_offset(right, push_items - 1), push_space);
3511	old_left_nritems = btrfs_header_nritems(left);
3512	BUG_ON(old_left_nritems <= 0);
3513
3514	btrfs_init_map_token(&token, left);
3515	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3516	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3517		u32 ioff;
3518
3519		ioff = btrfs_token_item_offset(&token, i);
3520		btrfs_set_token_item_offset(&token, i,
3521		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3522	}
3523	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3524
3525	/* fixup right node */
3526	if (push_items > right_nritems)
3527		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3528		       right_nritems);
3529
3530	if (push_items < right_nritems) {
3531		push_space = btrfs_item_offset(right, push_items - 1) -
3532						  leaf_data_end(right);
3533		memmove_leaf_data(right,
3534				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3535				  leaf_data_end(right), push_space);
3536
3537		memmove_leaf_items(right, 0, push_items,
3538				   btrfs_header_nritems(right) - push_items);
3539	}
3540
3541	btrfs_init_map_token(&token, right);
3542	right_nritems -= push_items;
3543	btrfs_set_header_nritems(right, right_nritems);
3544	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3545	for (i = 0; i < right_nritems; i++) {
3546		push_space = push_space - btrfs_token_item_size(&token, i);
3547		btrfs_set_token_item_offset(&token, i, push_space);
3548	}
3549
3550	btrfs_mark_buffer_dirty(trans, left);
3551	if (right_nritems)
3552		btrfs_mark_buffer_dirty(trans, right);
3553	else
3554		btrfs_clear_buffer_dirty(trans, right);
3555
3556	btrfs_item_key(right, &disk_key, 0);
3557	fixup_low_keys(trans, path, &disk_key, 1);
3558
3559	/* then fixup the leaf pointer in the path */
3560	if (path->slots[0] < push_items) {
3561		path->slots[0] += old_left_nritems;
3562		btrfs_tree_unlock(path->nodes[0]);
3563		free_extent_buffer(path->nodes[0]);
3564		path->nodes[0] = left;
3565		path->slots[1] -= 1;
3566	} else {
3567		btrfs_tree_unlock(left);
3568		free_extent_buffer(left);
3569		path->slots[0] -= push_items;
3570	}
3571	BUG_ON(path->slots[0] < 0);
3572	return ret;
3573out:
3574	btrfs_tree_unlock(left);
3575	free_extent_buffer(left);
3576	return ret;
3577}
3578
3579/*
3580 * push some data in the path leaf to the left, trying to free up at
3581 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3582 *
3583 * max_slot can put a limit on how far into the leaf we'll push items.  The
3584 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3585 * items
3586 */
3587static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3588			  *root, struct btrfs_path *path, int min_data_size,
3589			  int data_size, int empty, u32 max_slot)
3590{
3591	struct extent_buffer *right = path->nodes[0];
3592	struct extent_buffer *left;
3593	int slot;
3594	int free_space;
3595	u32 right_nritems;
3596	int ret = 0;
3597
3598	slot = path->slots[1];
3599	if (slot == 0)
3600		return 1;
3601	if (!path->nodes[1])
3602		return 1;
3603
3604	right_nritems = btrfs_header_nritems(right);
3605	if (right_nritems == 0)
3606		return 1;
3607
3608	btrfs_assert_tree_write_locked(path->nodes[1]);
3609
3610	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3611	if (IS_ERR(left))
3612		return PTR_ERR(left);
3613
3614	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3615
3616	free_space = btrfs_leaf_free_space(left);
3617	if (free_space < data_size) {
3618		ret = 1;
3619		goto out;
3620	}
3621
3622	ret = btrfs_cow_block(trans, root, left,
3623			      path->nodes[1], slot - 1, &left,
3624			      BTRFS_NESTING_LEFT_COW);
3625	if (ret) {
3626		/* we hit -ENOSPC, but it isn't fatal here */
3627		if (ret == -ENOSPC)
3628			ret = 1;
3629		goto out;
3630	}
3631
3632	if (check_sibling_keys(left, right)) {
3633		ret = -EUCLEAN;
3634		btrfs_abort_transaction(trans, ret);
3635		goto out;
3636	}
3637	return __push_leaf_left(trans, path, min_data_size, empty, left,
3638				free_space, right_nritems, max_slot);
3639out:
3640	btrfs_tree_unlock(left);
3641	free_extent_buffer(left);
3642	return ret;
3643}
3644
3645/*
3646 * split the path's leaf in two, making sure there is at least data_size
3647 * available for the resulting leaf level of the path.
3648 */
3649static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3650				   struct btrfs_path *path,
3651				   struct extent_buffer *l,
3652				   struct extent_buffer *right,
3653				   int slot, int mid, int nritems)
3654{
3655	struct btrfs_fs_info *fs_info = trans->fs_info;
3656	int data_copy_size;
3657	int rt_data_off;
3658	int i;
3659	int ret;
3660	struct btrfs_disk_key disk_key;
3661	struct btrfs_map_token token;
3662
3663	nritems = nritems - mid;
3664	btrfs_set_header_nritems(right, nritems);
3665	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3666
3667	copy_leaf_items(right, l, 0, mid, nritems);
3668
3669	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3670		       leaf_data_end(l), data_copy_size);
3671
3672	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3673
3674	btrfs_init_map_token(&token, right);
3675	for (i = 0; i < nritems; i++) {
3676		u32 ioff;
3677
3678		ioff = btrfs_token_item_offset(&token, i);
3679		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3680	}
3681
3682	btrfs_set_header_nritems(l, mid);
3683	btrfs_item_key(right, &disk_key, 0);
3684	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3685	if (ret < 0)
3686		return ret;
3687
3688	btrfs_mark_buffer_dirty(trans, right);
3689	btrfs_mark_buffer_dirty(trans, l);
3690	BUG_ON(path->slots[0] != slot);
3691
3692	if (mid <= slot) {
3693		btrfs_tree_unlock(path->nodes[0]);
3694		free_extent_buffer(path->nodes[0]);
3695		path->nodes[0] = right;
3696		path->slots[0] -= mid;
3697		path->slots[1] += 1;
3698	} else {
3699		btrfs_tree_unlock(right);
3700		free_extent_buffer(right);
3701	}
3702
3703	BUG_ON(path->slots[0] < 0);
3704
3705	return 0;
3706}
3707
3708/*
3709 * double splits happen when we need to insert a big item in the middle
3710 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3711 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3712 *          A                 B                 C
3713 *
3714 * We avoid this by trying to push the items on either side of our target
3715 * into the adjacent leaves.  If all goes well we can avoid the double split
3716 * completely.
3717 */
3718static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3719					  struct btrfs_root *root,
3720					  struct btrfs_path *path,
3721					  int data_size)
3722{
3723	int ret;
3724	int progress = 0;
3725	int slot;
3726	u32 nritems;
3727	int space_needed = data_size;
3728
3729	slot = path->slots[0];
3730	if (slot < btrfs_header_nritems(path->nodes[0]))
3731		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3732
3733	/*
3734	 * try to push all the items after our slot into the
3735	 * right leaf
3736	 */
3737	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3738	if (ret < 0)
3739		return ret;
3740
3741	if (ret == 0)
3742		progress++;
3743
3744	nritems = btrfs_header_nritems(path->nodes[0]);
3745	/*
3746	 * our goal is to get our slot at the start or end of a leaf.  If
3747	 * we've done so we're done
3748	 */
3749	if (path->slots[0] == 0 || path->slots[0] == nritems)
3750		return 0;
3751
3752	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3753		return 0;
3754
3755	/* try to push all the items before our slot into the next leaf */
3756	slot = path->slots[0];
3757	space_needed = data_size;
3758	if (slot > 0)
3759		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3760	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3761	if (ret < 0)
3762		return ret;
3763
3764	if (ret == 0)
3765		progress++;
3766
3767	if (progress)
3768		return 0;
3769	return 1;
3770}
3771
3772/*
3773 * split the path's leaf in two, making sure there is at least data_size
3774 * available for the resulting leaf level of the path.
3775 *
3776 * returns 0 if all went well and < 0 on failure.
3777 */
3778static noinline int split_leaf(struct btrfs_trans_handle *trans,
3779			       struct btrfs_root *root,
3780			       const struct btrfs_key *ins_key,
3781			       struct btrfs_path *path, int data_size,
3782			       int extend)
3783{
3784	struct btrfs_disk_key disk_key;
3785	struct extent_buffer *l;
3786	u32 nritems;
3787	int mid;
3788	int slot;
3789	struct extent_buffer *right;
3790	struct btrfs_fs_info *fs_info = root->fs_info;
3791	int ret = 0;
3792	int wret;
3793	int split;
3794	int num_doubles = 0;
3795	int tried_avoid_double = 0;
3796
3797	l = path->nodes[0];
3798	slot = path->slots[0];
3799	if (extend && data_size + btrfs_item_size(l, slot) +
3800	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3801		return -EOVERFLOW;
3802
3803	/* first try to make some room by pushing left and right */
3804	if (data_size && path->nodes[1]) {
3805		int space_needed = data_size;
3806
3807		if (slot < btrfs_header_nritems(l))
3808			space_needed -= btrfs_leaf_free_space(l);
3809
3810		wret = push_leaf_right(trans, root, path, space_needed,
3811				       space_needed, 0, 0);
3812		if (wret < 0)
3813			return wret;
3814		if (wret) {
3815			space_needed = data_size;
3816			if (slot > 0)
3817				space_needed -= btrfs_leaf_free_space(l);
3818			wret = push_leaf_left(trans, root, path, space_needed,
3819					      space_needed, 0, (u32)-1);
3820			if (wret < 0)
3821				return wret;
3822		}
3823		l = path->nodes[0];
3824
3825		/* did the pushes work? */
3826		if (btrfs_leaf_free_space(l) >= data_size)
3827			return 0;
3828	}
3829
3830	if (!path->nodes[1]) {
3831		ret = insert_new_root(trans, root, path, 1);
3832		if (ret)
3833			return ret;
3834	}
3835again:
3836	split = 1;
3837	l = path->nodes[0];
3838	slot = path->slots[0];
3839	nritems = btrfs_header_nritems(l);
3840	mid = (nritems + 1) / 2;
3841
3842	if (mid <= slot) {
3843		if (nritems == 1 ||
3844		    leaf_space_used(l, mid, nritems - mid) + data_size >
3845			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3846			if (slot >= nritems) {
3847				split = 0;
3848			} else {
3849				mid = slot;
3850				if (mid != nritems &&
3851				    leaf_space_used(l, mid, nritems - mid) +
3852				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3853					if (data_size && !tried_avoid_double)
3854						goto push_for_double;
3855					split = 2;
3856				}
3857			}
3858		}
3859	} else {
3860		if (leaf_space_used(l, 0, mid) + data_size >
3861			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3862			if (!extend && data_size && slot == 0) {
3863				split = 0;
3864			} else if ((extend || !data_size) && slot == 0) {
3865				mid = 1;
3866			} else {
3867				mid = slot;
3868				if (mid != nritems &&
3869				    leaf_space_used(l, mid, nritems - mid) +
3870				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3871					if (data_size && !tried_avoid_double)
3872						goto push_for_double;
3873					split = 2;
3874				}
3875			}
3876		}
3877	}
3878
3879	if (split == 0)
3880		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3881	else
3882		btrfs_item_key(l, &disk_key, mid);
3883
3884	/*
3885	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3886	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3887	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3888	 * out.  In the future we could add a
3889	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3890	 * use BTRFS_NESTING_NEW_ROOT.
3891	 */
3892	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3893				       &disk_key, 0, l->start, 0,
3894				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3895				       BTRFS_NESTING_SPLIT);
3896	if (IS_ERR(right))
3897		return PTR_ERR(right);
3898
3899	root_add_used(root, fs_info->nodesize);
3900
3901	if (split == 0) {
3902		if (mid <= slot) {
3903			btrfs_set_header_nritems(right, 0);
3904			ret = insert_ptr(trans, path, &disk_key,
3905					 right->start, path->slots[1] + 1, 1);
3906			if (ret < 0) {
3907				btrfs_tree_unlock(right);
3908				free_extent_buffer(right);
3909				return ret;
3910			}
3911			btrfs_tree_unlock(path->nodes[0]);
3912			free_extent_buffer(path->nodes[0]);
3913			path->nodes[0] = right;
3914			path->slots[0] = 0;
3915			path->slots[1] += 1;
3916		} else {
3917			btrfs_set_header_nritems(right, 0);
3918			ret = insert_ptr(trans, path, &disk_key,
3919					 right->start, path->slots[1], 1);
3920			if (ret < 0) {
3921				btrfs_tree_unlock(right);
3922				free_extent_buffer(right);
3923				return ret;
3924			}
3925			btrfs_tree_unlock(path->nodes[0]);
3926			free_extent_buffer(path->nodes[0]);
3927			path->nodes[0] = right;
3928			path->slots[0] = 0;
3929			if (path->slots[1] == 0)
3930				fixup_low_keys(trans, path, &disk_key, 1);
3931		}
3932		/*
3933		 * We create a new leaf 'right' for the required ins_len and
3934		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3935		 * the content of ins_len to 'right'.
3936		 */
3937		return ret;
3938	}
3939
3940	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3941	if (ret < 0) {
3942		btrfs_tree_unlock(right);
3943		free_extent_buffer(right);
3944		return ret;
3945	}
3946
3947	if (split == 2) {
3948		BUG_ON(num_doubles != 0);
3949		num_doubles++;
3950		goto again;
3951	}
3952
3953	return 0;
3954
3955push_for_double:
3956	push_for_double_split(trans, root, path, data_size);
3957	tried_avoid_double = 1;
3958	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3959		return 0;
3960	goto again;
3961}
3962
3963static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3964					 struct btrfs_root *root,
3965					 struct btrfs_path *path, int ins_len)
3966{
3967	struct btrfs_key key;
3968	struct extent_buffer *leaf;
3969	struct btrfs_file_extent_item *fi;
3970	u64 extent_len = 0;
3971	u32 item_size;
3972	int ret;
3973
3974	leaf = path->nodes[0];
3975	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3976
3977	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3978	       key.type != BTRFS_EXTENT_CSUM_KEY);
3979
3980	if (btrfs_leaf_free_space(leaf) >= ins_len)
3981		return 0;
3982
3983	item_size = btrfs_item_size(leaf, path->slots[0]);
3984	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3985		fi = btrfs_item_ptr(leaf, path->slots[0],
3986				    struct btrfs_file_extent_item);
3987		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3988	}
3989	btrfs_release_path(path);
3990
3991	path->keep_locks = 1;
3992	path->search_for_split = 1;
3993	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3994	path->search_for_split = 0;
3995	if (ret > 0)
3996		ret = -EAGAIN;
3997	if (ret < 0)
3998		goto err;
3999
4000	ret = -EAGAIN;
4001	leaf = path->nodes[0];
4002	/* if our item isn't there, return now */
4003	if (item_size != btrfs_item_size(leaf, path->slots[0]))
4004		goto err;
4005
4006	/* the leaf has  changed, it now has room.  return now */
4007	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4008		goto err;
4009
4010	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4011		fi = btrfs_item_ptr(leaf, path->slots[0],
4012				    struct btrfs_file_extent_item);
4013		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4014			goto err;
4015	}
4016
4017	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4018	if (ret)
4019		goto err;
4020
4021	path->keep_locks = 0;
4022	btrfs_unlock_up_safe(path, 1);
4023	return 0;
4024err:
4025	path->keep_locks = 0;
4026	return ret;
4027}
4028
4029static noinline int split_item(struct btrfs_trans_handle *trans,
4030			       struct btrfs_path *path,
4031			       const struct btrfs_key *new_key,
4032			       unsigned long split_offset)
4033{
4034	struct extent_buffer *leaf;
4035	int orig_slot, slot;
4036	char *buf;
4037	u32 nritems;
4038	u32 item_size;
4039	u32 orig_offset;
4040	struct btrfs_disk_key disk_key;
4041
4042	leaf = path->nodes[0];
4043	/*
4044	 * Shouldn't happen because the caller must have previously called
4045	 * setup_leaf_for_split() to make room for the new item in the leaf.
4046	 */
4047	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
4048		return -ENOSPC;
4049
4050	orig_slot = path->slots[0];
4051	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
4052	item_size = btrfs_item_size(leaf, path->slots[0]);
4053
4054	buf = kmalloc(item_size, GFP_NOFS);
4055	if (!buf)
4056		return -ENOMEM;
4057
4058	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4059			    path->slots[0]), item_size);
4060
4061	slot = path->slots[0] + 1;
4062	nritems = btrfs_header_nritems(leaf);
4063	if (slot != nritems) {
4064		/* shift the items */
4065		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
4066	}
4067
4068	btrfs_cpu_key_to_disk(&disk_key, new_key);
4069	btrfs_set_item_key(leaf, &disk_key, slot);
4070
4071	btrfs_set_item_offset(leaf, slot, orig_offset);
4072	btrfs_set_item_size(leaf, slot, item_size - split_offset);
4073
4074	btrfs_set_item_offset(leaf, orig_slot,
4075				 orig_offset + item_size - split_offset);
4076	btrfs_set_item_size(leaf, orig_slot, split_offset);
4077
4078	btrfs_set_header_nritems(leaf, nritems + 1);
4079
4080	/* write the data for the start of the original item */
4081	write_extent_buffer(leaf, buf,
4082			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4083			    split_offset);
4084
4085	/* write the data for the new item */
4086	write_extent_buffer(leaf, buf + split_offset,
4087			    btrfs_item_ptr_offset(leaf, slot),
4088			    item_size - split_offset);
4089	btrfs_mark_buffer_dirty(trans, leaf);
4090
4091	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4092	kfree(buf);
4093	return 0;
4094}
4095
4096/*
4097 * This function splits a single item into two items,
4098 * giving 'new_key' to the new item and splitting the
4099 * old one at split_offset (from the start of the item).
4100 *
4101 * The path may be released by this operation.  After
4102 * the split, the path is pointing to the old item.  The
4103 * new item is going to be in the same node as the old one.
4104 *
4105 * Note, the item being split must be smaller enough to live alone on
4106 * a tree block with room for one extra struct btrfs_item
4107 *
4108 * This allows us to split the item in place, keeping a lock on the
4109 * leaf the entire time.
4110 */
4111int btrfs_split_item(struct btrfs_trans_handle *trans,
4112		     struct btrfs_root *root,
4113		     struct btrfs_path *path,
4114		     const struct btrfs_key *new_key,
4115		     unsigned long split_offset)
4116{
4117	int ret;
4118	ret = setup_leaf_for_split(trans, root, path,
4119				   sizeof(struct btrfs_item));
4120	if (ret)
4121		return ret;
4122
4123	ret = split_item(trans, path, new_key, split_offset);
4124	return ret;
4125}
4126
4127/*
4128 * make the item pointed to by the path smaller.  new_size indicates
4129 * how small to make it, and from_end tells us if we just chop bytes
4130 * off the end of the item or if we shift the item to chop bytes off
4131 * the front.
4132 */
4133void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4134			 struct btrfs_path *path, u32 new_size, int from_end)
4135{
4136	int slot;
4137	struct extent_buffer *leaf;
4138	u32 nritems;
4139	unsigned int data_end;
4140	unsigned int old_data_start;
4141	unsigned int old_size;
4142	unsigned int size_diff;
4143	int i;
4144	struct btrfs_map_token token;
4145
4146	leaf = path->nodes[0];
4147	slot = path->slots[0];
4148
4149	old_size = btrfs_item_size(leaf, slot);
4150	if (old_size == new_size)
4151		return;
4152
4153	nritems = btrfs_header_nritems(leaf);
4154	data_end = leaf_data_end(leaf);
4155
4156	old_data_start = btrfs_item_offset(leaf, slot);
4157
4158	size_diff = old_size - new_size;
4159
4160	BUG_ON(slot < 0);
4161	BUG_ON(slot >= nritems);
4162
4163	/*
4164	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4165	 */
4166	/* first correct the data pointers */
4167	btrfs_init_map_token(&token, leaf);
4168	for (i = slot; i < nritems; i++) {
4169		u32 ioff;
4170
4171		ioff = btrfs_token_item_offset(&token, i);
4172		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4173	}
4174
4175	/* shift the data */
4176	if (from_end) {
4177		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4178				  old_data_start + new_size - data_end);
4179	} else {
4180		struct btrfs_disk_key disk_key;
4181		u64 offset;
4182
4183		btrfs_item_key(leaf, &disk_key, slot);
4184
4185		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4186			unsigned long ptr;
4187			struct btrfs_file_extent_item *fi;
4188
4189			fi = btrfs_item_ptr(leaf, slot,
4190					    struct btrfs_file_extent_item);
4191			fi = (struct btrfs_file_extent_item *)(
4192			     (unsigned long)fi - size_diff);
4193
4194			if (btrfs_file_extent_type(leaf, fi) ==
4195			    BTRFS_FILE_EXTENT_INLINE) {
4196				ptr = btrfs_item_ptr_offset(leaf, slot);
4197				memmove_extent_buffer(leaf, ptr,
4198				      (unsigned long)fi,
4199				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4200			}
4201		}
4202
4203		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4204				  old_data_start - data_end);
4205
4206		offset = btrfs_disk_key_offset(&disk_key);
4207		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4208		btrfs_set_item_key(leaf, &disk_key, slot);
4209		if (slot == 0)
4210			fixup_low_keys(trans, path, &disk_key, 1);
4211	}
4212
4213	btrfs_set_item_size(leaf, slot, new_size);
4214	btrfs_mark_buffer_dirty(trans, leaf);
4215
4216	if (btrfs_leaf_free_space(leaf) < 0) {
4217		btrfs_print_leaf(leaf);
4218		BUG();
4219	}
4220}
4221
4222/*
4223 * make the item pointed to by the path bigger, data_size is the added size.
4224 */
4225void btrfs_extend_item(struct btrfs_trans_handle *trans,
4226		       struct btrfs_path *path, u32 data_size)
4227{
4228	int slot;
4229	struct extent_buffer *leaf;
4230	u32 nritems;
4231	unsigned int data_end;
4232	unsigned int old_data;
4233	unsigned int old_size;
4234	int i;
4235	struct btrfs_map_token token;
4236
4237	leaf = path->nodes[0];
4238
4239	nritems = btrfs_header_nritems(leaf);
4240	data_end = leaf_data_end(leaf);
4241
4242	if (btrfs_leaf_free_space(leaf) < data_size) {
4243		btrfs_print_leaf(leaf);
4244		BUG();
4245	}
4246	slot = path->slots[0];
4247	old_data = btrfs_item_data_end(leaf, slot);
4248
4249	BUG_ON(slot < 0);
4250	if (slot >= nritems) {
4251		btrfs_print_leaf(leaf);
4252		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4253			   slot, nritems);
4254		BUG();
4255	}
4256
4257	/*
4258	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4259	 */
4260	/* first correct the data pointers */
4261	btrfs_init_map_token(&token, leaf);
4262	for (i = slot; i < nritems; i++) {
4263		u32 ioff;
4264
4265		ioff = btrfs_token_item_offset(&token, i);
4266		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4267	}
4268
4269	/* shift the data */
4270	memmove_leaf_data(leaf, data_end - data_size, data_end,
4271			  old_data - data_end);
4272
4273	data_end = old_data;
4274	old_size = btrfs_item_size(leaf, slot);
4275	btrfs_set_item_size(leaf, slot, old_size + data_size);
4276	btrfs_mark_buffer_dirty(trans, leaf);
4277
4278	if (btrfs_leaf_free_space(leaf) < 0) {
4279		btrfs_print_leaf(leaf);
4280		BUG();
4281	}
4282}
4283
4284/*
4285 * Make space in the node before inserting one or more items.
4286 *
4287 * @trans:	transaction handle
4288 * @root:	root we are inserting items to
4289 * @path:	points to the leaf/slot where we are going to insert new items
4290 * @batch:      information about the batch of items to insert
4291 *
4292 * Main purpose is to save stack depth by doing the bulk of the work in a
4293 * function that doesn't call btrfs_search_slot
4294 */
4295static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4296				   struct btrfs_root *root, struct btrfs_path *path,
4297				   const struct btrfs_item_batch *batch)
4298{
4299	struct btrfs_fs_info *fs_info = root->fs_info;
4300	int i;
4301	u32 nritems;
4302	unsigned int data_end;
4303	struct btrfs_disk_key disk_key;
4304	struct extent_buffer *leaf;
4305	int slot;
4306	struct btrfs_map_token token;
4307	u32 total_size;
4308
4309	/*
4310	 * Before anything else, update keys in the parent and other ancestors
4311	 * if needed, then release the write locks on them, so that other tasks
4312	 * can use them while we modify the leaf.
4313	 */
4314	if (path->slots[0] == 0) {
4315		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4316		fixup_low_keys(trans, path, &disk_key, 1);
4317	}
4318	btrfs_unlock_up_safe(path, 1);
4319
4320	leaf = path->nodes[0];
4321	slot = path->slots[0];
4322
4323	nritems = btrfs_header_nritems(leaf);
4324	data_end = leaf_data_end(leaf);
4325	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4326
4327	if (btrfs_leaf_free_space(leaf) < total_size) {
4328		btrfs_print_leaf(leaf);
4329		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4330			   total_size, btrfs_leaf_free_space(leaf));
4331		BUG();
4332	}
4333
4334	btrfs_init_map_token(&token, leaf);
4335	if (slot != nritems) {
4336		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4337
4338		if (old_data < data_end) {
4339			btrfs_print_leaf(leaf);
4340			btrfs_crit(fs_info,
4341		"item at slot %d with data offset %u beyond data end of leaf %u",
4342				   slot, old_data, data_end);
4343			BUG();
4344		}
4345		/*
4346		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4347		 */
4348		/* first correct the data pointers */
4349		for (i = slot; i < nritems; i++) {
4350			u32 ioff;
4351
4352			ioff = btrfs_token_item_offset(&token, i);
4353			btrfs_set_token_item_offset(&token, i,
4354						       ioff - batch->total_data_size);
4355		}
4356		/* shift the items */
4357		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4358
4359		/* shift the data */
4360		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4361				  data_end, old_data - data_end);
4362		data_end = old_data;
4363	}
4364
4365	/* setup the item for the new data */
4366	for (i = 0; i < batch->nr; i++) {
4367		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4368		btrfs_set_item_key(leaf, &disk_key, slot + i);
4369		data_end -= batch->data_sizes[i];
4370		btrfs_set_token_item_offset(&token, slot + i, data_end);
4371		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4372	}
4373
4374	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4375	btrfs_mark_buffer_dirty(trans, leaf);
4376
4377	if (btrfs_leaf_free_space(leaf) < 0) {
4378		btrfs_print_leaf(leaf);
4379		BUG();
4380	}
4381}
4382
4383/*
4384 * Insert a new item into a leaf.
4385 *
4386 * @trans:     Transaction handle.
4387 * @root:      The root of the btree.
4388 * @path:      A path pointing to the target leaf and slot.
4389 * @key:       The key of the new item.
4390 * @data_size: The size of the data associated with the new key.
4391 */
4392void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4393				 struct btrfs_root *root,
4394				 struct btrfs_path *path,
4395				 const struct btrfs_key *key,
4396				 u32 data_size)
4397{
4398	struct btrfs_item_batch batch;
4399
4400	batch.keys = key;
4401	batch.data_sizes = &data_size;
4402	batch.total_data_size = data_size;
4403	batch.nr = 1;
4404
4405	setup_items_for_insert(trans, root, path, &batch);
4406}
4407
4408/*
4409 * Given a key and some data, insert items into the tree.
4410 * This does all the path init required, making room in the tree if needed.
4411 */
4412int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4413			    struct btrfs_root *root,
4414			    struct btrfs_path *path,
4415			    const struct btrfs_item_batch *batch)
4416{
4417	int ret = 0;
4418	int slot;
4419	u32 total_size;
4420
4421	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4422	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4423	if (ret == 0)
4424		return -EEXIST;
4425	if (ret < 0)
4426		return ret;
4427
4428	slot = path->slots[0];
4429	BUG_ON(slot < 0);
4430
4431	setup_items_for_insert(trans, root, path, batch);
4432	return 0;
4433}
4434
4435/*
4436 * Given a key and some data, insert an item into the tree.
4437 * This does all the path init required, making room in the tree if needed.
4438 */
4439int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4440		      const struct btrfs_key *cpu_key, void *data,
4441		      u32 data_size)
4442{
4443	int ret = 0;
4444	struct btrfs_path *path;
4445	struct extent_buffer *leaf;
4446	unsigned long ptr;
4447
4448	path = btrfs_alloc_path();
4449	if (!path)
4450		return -ENOMEM;
4451	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4452	if (!ret) {
4453		leaf = path->nodes[0];
4454		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4455		write_extent_buffer(leaf, data, ptr, data_size);
4456		btrfs_mark_buffer_dirty(trans, leaf);
4457	}
4458	btrfs_free_path(path);
4459	return ret;
4460}
4461
4462/*
4463 * This function duplicates an item, giving 'new_key' to the new item.
4464 * It guarantees both items live in the same tree leaf and the new item is
4465 * contiguous with the original item.
4466 *
4467 * This allows us to split a file extent in place, keeping a lock on the leaf
4468 * the entire time.
4469 */
4470int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4471			 struct btrfs_root *root,
4472			 struct btrfs_path *path,
4473			 const struct btrfs_key *new_key)
4474{
4475	struct extent_buffer *leaf;
4476	int ret;
4477	u32 item_size;
4478
4479	leaf = path->nodes[0];
4480	item_size = btrfs_item_size(leaf, path->slots[0]);
4481	ret = setup_leaf_for_split(trans, root, path,
4482				   item_size + sizeof(struct btrfs_item));
4483	if (ret)
4484		return ret;
4485
4486	path->slots[0]++;
4487	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4488	leaf = path->nodes[0];
4489	memcpy_extent_buffer(leaf,
4490			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4491			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4492			     item_size);
4493	return 0;
4494}
4495
4496/*
4497 * delete the pointer from a given node.
4498 *
4499 * the tree should have been previously balanced so the deletion does not
4500 * empty a node.
4501 *
4502 * This is exported for use inside btrfs-progs, don't un-export it.
4503 */
4504int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4505		  struct btrfs_path *path, int level, int slot)
4506{
4507	struct extent_buffer *parent = path->nodes[level];
4508	u32 nritems;
4509	int ret;
4510
4511	nritems = btrfs_header_nritems(parent);
4512	if (slot != nritems - 1) {
4513		if (level) {
4514			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4515					slot + 1, nritems - slot - 1);
4516			if (ret < 0) {
4517				btrfs_abort_transaction(trans, ret);
4518				return ret;
4519			}
4520		}
4521		memmove_extent_buffer(parent,
4522			      btrfs_node_key_ptr_offset(parent, slot),
4523			      btrfs_node_key_ptr_offset(parent, slot + 1),
4524			      sizeof(struct btrfs_key_ptr) *
4525			      (nritems - slot - 1));
4526	} else if (level) {
4527		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4528						    BTRFS_MOD_LOG_KEY_REMOVE);
4529		if (ret < 0) {
4530			btrfs_abort_transaction(trans, ret);
4531			return ret;
4532		}
4533	}
4534
4535	nritems--;
4536	btrfs_set_header_nritems(parent, nritems);
4537	if (nritems == 0 && parent == root->node) {
4538		BUG_ON(btrfs_header_level(root->node) != 1);
4539		/* just turn the root into a leaf and break */
4540		btrfs_set_header_level(root->node, 0);
4541	} else if (slot == 0) {
4542		struct btrfs_disk_key disk_key;
4543
4544		btrfs_node_key(parent, &disk_key, 0);
4545		fixup_low_keys(trans, path, &disk_key, level + 1);
4546	}
4547	btrfs_mark_buffer_dirty(trans, parent);
4548	return 0;
4549}
4550
4551/*
4552 * a helper function to delete the leaf pointed to by path->slots[1] and
4553 * path->nodes[1].
4554 *
4555 * This deletes the pointer in path->nodes[1] and frees the leaf
4556 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4557 *
4558 * The path must have already been setup for deleting the leaf, including
4559 * all the proper balancing.  path->nodes[1] must be locked.
4560 */
4561static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4562				   struct btrfs_root *root,
4563				   struct btrfs_path *path,
4564				   struct extent_buffer *leaf)
4565{
4566	int ret;
4567
4568	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4569	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4570	if (ret < 0)
4571		return ret;
4572
4573	/*
4574	 * btrfs_free_extent is expensive, we want to make sure we
4575	 * aren't holding any locks when we call it
4576	 */
4577	btrfs_unlock_up_safe(path, 0);
4578
4579	root_sub_used(root, leaf->len);
4580
4581	atomic_inc(&leaf->refs);
4582	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4583	free_extent_buffer_stale(leaf);
4584	return 0;
4585}
4586/*
4587 * delete the item at the leaf level in path.  If that empties
4588 * the leaf, remove it from the tree
4589 */
4590int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4591		    struct btrfs_path *path, int slot, int nr)
4592{
4593	struct btrfs_fs_info *fs_info = root->fs_info;
4594	struct extent_buffer *leaf;
4595	int ret = 0;
4596	int wret;
4597	u32 nritems;
4598
4599	leaf = path->nodes[0];
4600	nritems = btrfs_header_nritems(leaf);
4601
4602	if (slot + nr != nritems) {
4603		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4604		const int data_end = leaf_data_end(leaf);
4605		struct btrfs_map_token token;
4606		u32 dsize = 0;
4607		int i;
4608
4609		for (i = 0; i < nr; i++)
4610			dsize += btrfs_item_size(leaf, slot + i);
4611
4612		memmove_leaf_data(leaf, data_end + dsize, data_end,
4613				  last_off - data_end);
4614
4615		btrfs_init_map_token(&token, leaf);
4616		for (i = slot + nr; i < nritems; i++) {
4617			u32 ioff;
4618
4619			ioff = btrfs_token_item_offset(&token, i);
4620			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4621		}
4622
4623		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4624	}
4625	btrfs_set_header_nritems(leaf, nritems - nr);
4626	nritems -= nr;
4627
4628	/* delete the leaf if we've emptied it */
4629	if (nritems == 0) {
4630		if (leaf == root->node) {
4631			btrfs_set_header_level(leaf, 0);
4632		} else {
4633			btrfs_clear_buffer_dirty(trans, leaf);
4634			ret = btrfs_del_leaf(trans, root, path, leaf);
4635			if (ret < 0)
4636				return ret;
4637		}
4638	} else {
4639		int used = leaf_space_used(leaf, 0, nritems);
4640		if (slot == 0) {
4641			struct btrfs_disk_key disk_key;
4642
4643			btrfs_item_key(leaf, &disk_key, 0);
4644			fixup_low_keys(trans, path, &disk_key, 1);
4645		}
4646
4647		/*
4648		 * Try to delete the leaf if it is mostly empty. We do this by
4649		 * trying to move all its items into its left and right neighbours.
4650		 * If we can't move all the items, then we don't delete it - it's
4651		 * not ideal, but future insertions might fill the leaf with more
4652		 * items, or items from other leaves might be moved later into our
4653		 * leaf due to deletions on those leaves.
4654		 */
4655		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4656			u32 min_push_space;
4657
4658			/* push_leaf_left fixes the path.
4659			 * make sure the path still points to our leaf
4660			 * for possible call to btrfs_del_ptr below
4661			 */
4662			slot = path->slots[1];
4663			atomic_inc(&leaf->refs);
4664			/*
4665			 * We want to be able to at least push one item to the
4666			 * left neighbour leaf, and that's the first item.
4667			 */
4668			min_push_space = sizeof(struct btrfs_item) +
4669				btrfs_item_size(leaf, 0);
4670			wret = push_leaf_left(trans, root, path, 0,
4671					      min_push_space, 1, (u32)-1);
4672			if (wret < 0 && wret != -ENOSPC)
4673				ret = wret;
4674
4675			if (path->nodes[0] == leaf &&
4676			    btrfs_header_nritems(leaf)) {
4677				/*
4678				 * If we were not able to push all items from our
4679				 * leaf to its left neighbour, then attempt to
4680				 * either push all the remaining items to the
4681				 * right neighbour or none. There's no advantage
4682				 * in pushing only some items, instead of all, as
4683				 * it's pointless to end up with a leaf having
4684				 * too few items while the neighbours can be full
4685				 * or nearly full.
4686				 */
4687				nritems = btrfs_header_nritems(leaf);
4688				min_push_space = leaf_space_used(leaf, 0, nritems);
4689				wret = push_leaf_right(trans, root, path, 0,
4690						       min_push_space, 1, 0);
4691				if (wret < 0 && wret != -ENOSPC)
4692					ret = wret;
4693			}
4694
4695			if (btrfs_header_nritems(leaf) == 0) {
4696				path->slots[1] = slot;
4697				ret = btrfs_del_leaf(trans, root, path, leaf);
4698				if (ret < 0)
4699					return ret;
4700				free_extent_buffer(leaf);
4701				ret = 0;
4702			} else {
4703				/* if we're still in the path, make sure
4704				 * we're dirty.  Otherwise, one of the
4705				 * push_leaf functions must have already
4706				 * dirtied this buffer
4707				 */
4708				if (path->nodes[0] == leaf)
4709					btrfs_mark_buffer_dirty(trans, leaf);
4710				free_extent_buffer(leaf);
4711			}
4712		} else {
4713			btrfs_mark_buffer_dirty(trans, leaf);
4714		}
4715	}
4716	return ret;
4717}
4718
4719/*
4720 * A helper function to walk down the tree starting at min_key, and looking
4721 * for nodes or leaves that are have a minimum transaction id.
4722 * This is used by the btree defrag code, and tree logging
4723 *
4724 * This does not cow, but it does stuff the starting key it finds back
4725 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4726 * key and get a writable path.
4727 *
4728 * This honors path->lowest_level to prevent descent past a given level
4729 * of the tree.
4730 *
4731 * min_trans indicates the oldest transaction that you are interested
4732 * in walking through.  Any nodes or leaves older than min_trans are
4733 * skipped over (without reading them).
4734 *
4735 * returns zero if something useful was found, < 0 on error and 1 if there
4736 * was nothing in the tree that matched the search criteria.
4737 */
4738int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4739			 struct btrfs_path *path,
4740			 u64 min_trans)
4741{
4742	struct extent_buffer *cur;
4743	struct btrfs_key found_key;
4744	int slot;
4745	int sret;
4746	u32 nritems;
4747	int level;
4748	int ret = 1;
4749	int keep_locks = path->keep_locks;
4750
4751	ASSERT(!path->nowait);
4752	path->keep_locks = 1;
4753again:
4754	cur = btrfs_read_lock_root_node(root);
4755	level = btrfs_header_level(cur);
4756	WARN_ON(path->nodes[level]);
4757	path->nodes[level] = cur;
4758	path->locks[level] = BTRFS_READ_LOCK;
4759
4760	if (btrfs_header_generation(cur) < min_trans) {
4761		ret = 1;
4762		goto out;
4763	}
4764	while (1) {
4765		nritems = btrfs_header_nritems(cur);
4766		level = btrfs_header_level(cur);
4767		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4768		if (sret < 0) {
4769			ret = sret;
4770			goto out;
4771		}
4772
4773		/* at the lowest level, we're done, setup the path and exit */
4774		if (level == path->lowest_level) {
4775			if (slot >= nritems)
4776				goto find_next_key;
4777			ret = 0;
4778			path->slots[level] = slot;
4779			btrfs_item_key_to_cpu(cur, &found_key, slot);
4780			goto out;
4781		}
4782		if (sret && slot > 0)
4783			slot--;
4784		/*
4785		 * check this node pointer against the min_trans parameters.
4786		 * If it is too old, skip to the next one.
4787		 */
4788		while (slot < nritems) {
4789			u64 gen;
4790
4791			gen = btrfs_node_ptr_generation(cur, slot);
4792			if (gen < min_trans) {
4793				slot++;
4794				continue;
4795			}
4796			break;
4797		}
4798find_next_key:
4799		/*
4800		 * we didn't find a candidate key in this node, walk forward
4801		 * and find another one
4802		 */
4803		if (slot >= nritems) {
4804			path->slots[level] = slot;
4805			sret = btrfs_find_next_key(root, path, min_key, level,
4806						  min_trans);
4807			if (sret == 0) {
4808				btrfs_release_path(path);
4809				goto again;
4810			} else {
4811				goto out;
4812			}
4813		}
4814		/* save our key for returning back */
4815		btrfs_node_key_to_cpu(cur, &found_key, slot);
4816		path->slots[level] = slot;
4817		if (level == path->lowest_level) {
4818			ret = 0;
4819			goto out;
4820		}
4821		cur = btrfs_read_node_slot(cur, slot);
4822		if (IS_ERR(cur)) {
4823			ret = PTR_ERR(cur);
4824			goto out;
4825		}
4826
4827		btrfs_tree_read_lock(cur);
4828
4829		path->locks[level - 1] = BTRFS_READ_LOCK;
4830		path->nodes[level - 1] = cur;
4831		unlock_up(path, level, 1, 0, NULL);
4832	}
4833out:
4834	path->keep_locks = keep_locks;
4835	if (ret == 0) {
4836		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4837		memcpy(min_key, &found_key, sizeof(found_key));
4838	}
4839	return ret;
4840}
4841
4842/*
4843 * this is similar to btrfs_next_leaf, but does not try to preserve
4844 * and fixup the path.  It looks for and returns the next key in the
4845 * tree based on the current path and the min_trans parameters.
4846 *
4847 * 0 is returned if another key is found, < 0 if there are any errors
4848 * and 1 is returned if there are no higher keys in the tree
4849 *
4850 * path->keep_locks should be set to 1 on the search made before
4851 * calling this function.
4852 */
4853int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4854			struct btrfs_key *key, int level, u64 min_trans)
4855{
4856	int slot;
4857	struct extent_buffer *c;
4858
4859	WARN_ON(!path->keep_locks && !path->skip_locking);
4860	while (level < BTRFS_MAX_LEVEL) {
4861		if (!path->nodes[level])
4862			return 1;
4863
4864		slot = path->slots[level] + 1;
4865		c = path->nodes[level];
4866next:
4867		if (slot >= btrfs_header_nritems(c)) {
4868			int ret;
4869			int orig_lowest;
4870			struct btrfs_key cur_key;
4871			if (level + 1 >= BTRFS_MAX_LEVEL ||
4872			    !path->nodes[level + 1])
4873				return 1;
4874
4875			if (path->locks[level + 1] || path->skip_locking) {
4876				level++;
4877				continue;
4878			}
4879
4880			slot = btrfs_header_nritems(c) - 1;
4881			if (level == 0)
4882				btrfs_item_key_to_cpu(c, &cur_key, slot);
4883			else
4884				btrfs_node_key_to_cpu(c, &cur_key, slot);
4885
4886			orig_lowest = path->lowest_level;
4887			btrfs_release_path(path);
4888			path->lowest_level = level;
4889			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4890						0, 0);
4891			path->lowest_level = orig_lowest;
4892			if (ret < 0)
4893				return ret;
4894
4895			c = path->nodes[level];
4896			slot = path->slots[level];
4897			if (ret == 0)
4898				slot++;
4899			goto next;
4900		}
4901
4902		if (level == 0)
4903			btrfs_item_key_to_cpu(c, key, slot);
4904		else {
4905			u64 gen = btrfs_node_ptr_generation(c, slot);
4906
4907			if (gen < min_trans) {
4908				slot++;
4909				goto next;
4910			}
4911			btrfs_node_key_to_cpu(c, key, slot);
4912		}
4913		return 0;
4914	}
4915	return 1;
4916}
4917
4918int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4919			u64 time_seq)
4920{
4921	int slot;
4922	int level;
4923	struct extent_buffer *c;
4924	struct extent_buffer *next;
4925	struct btrfs_fs_info *fs_info = root->fs_info;
4926	struct btrfs_key key;
4927	bool need_commit_sem = false;
4928	u32 nritems;
4929	int ret;
4930	int i;
4931
4932	/*
4933	 * The nowait semantics are used only for write paths, where we don't
4934	 * use the tree mod log and sequence numbers.
4935	 */
4936	if (time_seq)
4937		ASSERT(!path->nowait);
4938
4939	nritems = btrfs_header_nritems(path->nodes[0]);
4940	if (nritems == 0)
4941		return 1;
4942
4943	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4944again:
4945	level = 1;
4946	next = NULL;
4947	btrfs_release_path(path);
4948
4949	path->keep_locks = 1;
4950
4951	if (time_seq) {
4952		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4953	} else {
4954		if (path->need_commit_sem) {
4955			path->need_commit_sem = 0;
4956			need_commit_sem = true;
4957			if (path->nowait) {
4958				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4959					ret = -EAGAIN;
4960					goto done;
4961				}
4962			} else {
4963				down_read(&fs_info->commit_root_sem);
4964			}
4965		}
4966		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4967	}
4968	path->keep_locks = 0;
4969
4970	if (ret < 0)
4971		goto done;
4972
4973	nritems = btrfs_header_nritems(path->nodes[0]);
4974	/*
4975	 * by releasing the path above we dropped all our locks.  A balance
4976	 * could have added more items next to the key that used to be
4977	 * at the very end of the block.  So, check again here and
4978	 * advance the path if there are now more items available.
4979	 */
4980	if (nritems > 0 && path->slots[0] < nritems - 1) {
4981		if (ret == 0)
4982			path->slots[0]++;
4983		ret = 0;
4984		goto done;
4985	}
4986	/*
4987	 * So the above check misses one case:
4988	 * - after releasing the path above, someone has removed the item that
4989	 *   used to be at the very end of the block, and balance between leafs
4990	 *   gets another one with bigger key.offset to replace it.
4991	 *
4992	 * This one should be returned as well, or we can get leaf corruption
4993	 * later(esp. in __btrfs_drop_extents()).
4994	 *
4995	 * And a bit more explanation about this check,
4996	 * with ret > 0, the key isn't found, the path points to the slot
4997	 * where it should be inserted, so the path->slots[0] item must be the
4998	 * bigger one.
4999	 */
5000	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5001		ret = 0;
5002		goto done;
5003	}
5004
5005	while (level < BTRFS_MAX_LEVEL) {
5006		if (!path->nodes[level]) {
5007			ret = 1;
5008			goto done;
5009		}
5010
5011		slot = path->slots[level] + 1;
5012		c = path->nodes[level];
5013		if (slot >= btrfs_header_nritems(c)) {
5014			level++;
5015			if (level == BTRFS_MAX_LEVEL) {
5016				ret = 1;
5017				goto done;
5018			}
5019			continue;
5020		}
5021
5022
5023		/*
5024		 * Our current level is where we're going to start from, and to
5025		 * make sure lockdep doesn't complain we need to drop our locks
5026		 * and nodes from 0 to our current level.
5027		 */
5028		for (i = 0; i < level; i++) {
5029			if (path->locks[level]) {
5030				btrfs_tree_read_unlock(path->nodes[i]);
5031				path->locks[i] = 0;
5032			}
5033			free_extent_buffer(path->nodes[i]);
5034			path->nodes[i] = NULL;
5035		}
5036
5037		next = c;
5038		ret = read_block_for_search(root, path, &next, level,
5039					    slot, &key);
5040		if (ret == -EAGAIN && !path->nowait)
5041			goto again;
5042
5043		if (ret < 0) {
5044			btrfs_release_path(path);
5045			goto done;
5046		}
5047
5048		if (!path->skip_locking) {
5049			ret = btrfs_try_tree_read_lock(next);
5050			if (!ret && path->nowait) {
5051				ret = -EAGAIN;
5052				goto done;
5053			}
5054			if (!ret && time_seq) {
5055				/*
5056				 * If we don't get the lock, we may be racing
5057				 * with push_leaf_left, holding that lock while
5058				 * itself waiting for the leaf we've currently
5059				 * locked. To solve this situation, we give up
5060				 * on our lock and cycle.
5061				 */
5062				free_extent_buffer(next);
5063				btrfs_release_path(path);
5064				cond_resched();
5065				goto again;
5066			}
5067			if (!ret)
5068				btrfs_tree_read_lock(next);
5069		}
5070		break;
5071	}
5072	path->slots[level] = slot;
5073	while (1) {
5074		level--;
5075		path->nodes[level] = next;
5076		path->slots[level] = 0;
5077		if (!path->skip_locking)
5078			path->locks[level] = BTRFS_READ_LOCK;
5079		if (!level)
5080			break;
5081
5082		ret = read_block_for_search(root, path, &next, level,
5083					    0, &key);
5084		if (ret == -EAGAIN && !path->nowait)
5085			goto again;
5086
5087		if (ret < 0) {
5088			btrfs_release_path(path);
5089			goto done;
5090		}
5091
5092		if (!path->skip_locking) {
5093			if (path->nowait) {
5094				if (!btrfs_try_tree_read_lock(next)) {
5095					ret = -EAGAIN;
5096					goto done;
5097				}
5098			} else {
5099				btrfs_tree_read_lock(next);
5100			}
5101		}
5102	}
5103	ret = 0;
5104done:
5105	unlock_up(path, 0, 1, 0, NULL);
5106	if (need_commit_sem) {
5107		int ret2;
5108
5109		path->need_commit_sem = 1;
5110		ret2 = finish_need_commit_sem_search(path);
5111		up_read(&fs_info->commit_root_sem);
5112		if (ret2)
5113			ret = ret2;
5114	}
5115
5116	return ret;
5117}
5118
5119int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5120{
5121	path->slots[0]++;
5122	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5123		return btrfs_next_old_leaf(root, path, time_seq);
5124	return 0;
5125}
5126
5127/*
5128 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5129 * searching until it gets past min_objectid or finds an item of 'type'
5130 *
5131 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5132 */
5133int btrfs_previous_item(struct btrfs_root *root,
5134			struct btrfs_path *path, u64 min_objectid,
5135			int type)
5136{
5137	struct btrfs_key found_key;
5138	struct extent_buffer *leaf;
5139	u32 nritems;
5140	int ret;
5141
5142	while (1) {
5143		if (path->slots[0] == 0) {
5144			ret = btrfs_prev_leaf(root, path);
5145			if (ret != 0)
5146				return ret;
5147		} else {
5148			path->slots[0]--;
5149		}
5150		leaf = path->nodes[0];
5151		nritems = btrfs_header_nritems(leaf);
5152		if (nritems == 0)
5153			return 1;
5154		if (path->slots[0] == nritems)
5155			path->slots[0]--;
5156
5157		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5158		if (found_key.objectid < min_objectid)
5159			break;
5160		if (found_key.type == type)
5161			return 0;
5162		if (found_key.objectid == min_objectid &&
5163		    found_key.type < type)
5164			break;
5165	}
5166	return 1;
5167}
5168
5169/*
5170 * search in extent tree to find a previous Metadata/Data extent item with
5171 * min objecitd.
5172 *
5173 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5174 */
5175int btrfs_previous_extent_item(struct btrfs_root *root,
5176			struct btrfs_path *path, u64 min_objectid)
5177{
5178	struct btrfs_key found_key;
5179	struct extent_buffer *leaf;
5180	u32 nritems;
5181	int ret;
5182
5183	while (1) {
5184		if (path->slots[0] == 0) {
5185			ret = btrfs_prev_leaf(root, path);
5186			if (ret != 0)
5187				return ret;
5188		} else {
5189			path->slots[0]--;
5190		}
5191		leaf = path->nodes[0];
5192		nritems = btrfs_header_nritems(leaf);
5193		if (nritems == 0)
5194			return 1;
5195		if (path->slots[0] == nritems)
5196			path->slots[0]--;
5197
5198		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5199		if (found_key.objectid < min_objectid)
5200			break;
5201		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5202		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5203			return 0;
5204		if (found_key.objectid == min_objectid &&
5205		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5206			break;
5207	}
5208	return 1;
5209}
5210
5211int __init btrfs_ctree_init(void)
5212{
5213	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5214			sizeof(struct btrfs_path), 0,
5215			SLAB_MEM_SPREAD, NULL);
5216	if (!btrfs_path_cachep)
5217		return -ENOMEM;
5218	return 0;
5219}
5220
5221void __cold btrfs_ctree_exit(void)
5222{
5223	kmem_cache_destroy(btrfs_path_cachep);
5224}
5225