xref: /kernel/linux/linux-6.6/fs/btrfs/block-rsv.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "block-rsv.h"
6#include "space-info.h"
7#include "transaction.h"
8#include "block-group.h"
9#include "disk-io.h"
10#include "fs.h"
11#include "accessors.h"
12
13/*
14 * HOW DO BLOCK RESERVES WORK
15 *
16 *   Think of block_rsv's as buckets for logically grouped metadata
17 *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
18 *   how large we want our block rsv to be, ->reserved is how much space is
19 *   currently reserved for this block reserve.
20 *
21 *   ->failfast exists for the truncate case, and is described below.
22 *
23 * NORMAL OPERATION
24 *
25 *   -> Reserve
26 *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
27 *
28 *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
29 *     accounted for in space_info->bytes_may_use, and then add the bytes to
30 *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
31 *
32 *     ->size is an over-estimation of how much we may use for a particular
33 *     operation.
34 *
35 *   -> Use
36 *     Entrance: btrfs_use_block_rsv
37 *
38 *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
39 *     to determine the appropriate block_rsv to use, and then verify that
40 *     ->reserved has enough space for our tree block allocation.  Once
41 *     successful we subtract fs_info->nodesize from ->reserved.
42 *
43 *   -> Finish
44 *     Entrance: btrfs_block_rsv_release
45 *
46 *     We are finished with our operation, subtract our individual reservation
47 *     from ->size, and then subtract ->size from ->reserved and free up the
48 *     excess if there is any.
49 *
50 *     There is some logic here to refill the delayed refs rsv or the global rsv
51 *     as needed, otherwise the excess is subtracted from
52 *     space_info->bytes_may_use.
53 *
54 * TYPES OF BLOCK RESERVES
55 *
56 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
57 *   These behave normally, as described above, just within the confines of the
58 *   lifetime of their particular operation (transaction for the whole trans
59 *   handle lifetime, for example).
60 *
61 * BLOCK_RSV_GLOBAL
62 *   It is impossible to properly account for all the space that may be required
63 *   to make our extent tree updates.  This block reserve acts as an overflow
64 *   buffer in case our delayed refs reserve does not reserve enough space to
65 *   update the extent tree.
66 *
67 *   We can steal from this in some cases as well, notably on evict() or
68 *   truncate() in order to help users recover from ENOSPC conditions.
69 *
70 * BLOCK_RSV_DELALLOC
71 *   The individual item sizes are determined by the per-inode size
72 *   calculations, which are described with the delalloc code.  This is pretty
73 *   straightforward, it's just the calculation of ->size encodes a lot of
74 *   different items, and thus it gets used when updating inodes, inserting file
75 *   extents, and inserting checksums.
76 *
77 * BLOCK_RSV_DELREFS
78 *   We keep a running tally of how many delayed refs we have on the system.
79 *   We assume each one of these delayed refs are going to use a full
80 *   reservation.  We use the transaction items and pre-reserve space for every
81 *   operation, and use this reservation to refill any gap between ->size and
82 *   ->reserved that may exist.
83 *
84 *   From there it's straightforward, removing a delayed ref means we remove its
85 *   count from ->size and free up reservations as necessary.  Since this is
86 *   the most dynamic block reserve in the system, we will try to refill this
87 *   block reserve first with any excess returned by any other block reserve.
88 *
89 * BLOCK_RSV_EMPTY
90 *   This is the fallback block reserve to make us try to reserve space if we
91 *   don't have a specific bucket for this allocation.  It is mostly used for
92 *   updating the device tree and such, since that is a separate pool we're
93 *   content to just reserve space from the space_info on demand.
94 *
95 * BLOCK_RSV_TEMP
96 *   This is used by things like truncate and iput.  We will temporarily
97 *   allocate a block reserve, set it to some size, and then truncate bytes
98 *   until we have no space left.  With ->failfast set we'll simply return
99 *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
100 *   to make a new reservation.  This is because these operations are
101 *   unbounded, so we want to do as much work as we can, and then back off and
102 *   re-reserve.
103 */
104
105static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
106				    struct btrfs_block_rsv *block_rsv,
107				    struct btrfs_block_rsv *dest, u64 num_bytes,
108				    u64 *qgroup_to_release_ret)
109{
110	struct btrfs_space_info *space_info = block_rsv->space_info;
111	u64 qgroup_to_release = 0;
112	u64 ret;
113
114	spin_lock(&block_rsv->lock);
115	if (num_bytes == (u64)-1) {
116		num_bytes = block_rsv->size;
117		qgroup_to_release = block_rsv->qgroup_rsv_size;
118	}
119	block_rsv->size -= num_bytes;
120	if (block_rsv->reserved >= block_rsv->size) {
121		num_bytes = block_rsv->reserved - block_rsv->size;
122		block_rsv->reserved = block_rsv->size;
123		block_rsv->full = true;
124	} else {
125		num_bytes = 0;
126	}
127	if (qgroup_to_release_ret &&
128	    block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
129		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
130				    block_rsv->qgroup_rsv_size;
131		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
132	} else {
133		qgroup_to_release = 0;
134	}
135	spin_unlock(&block_rsv->lock);
136
137	ret = num_bytes;
138	if (num_bytes > 0) {
139		if (dest) {
140			spin_lock(&dest->lock);
141			if (!dest->full) {
142				u64 bytes_to_add;
143
144				bytes_to_add = dest->size - dest->reserved;
145				bytes_to_add = min(num_bytes, bytes_to_add);
146				dest->reserved += bytes_to_add;
147				if (dest->reserved >= dest->size)
148					dest->full = true;
149				num_bytes -= bytes_to_add;
150			}
151			spin_unlock(&dest->lock);
152		}
153		if (num_bytes)
154			btrfs_space_info_free_bytes_may_use(fs_info,
155							    space_info,
156							    num_bytes);
157	}
158	if (qgroup_to_release_ret)
159		*qgroup_to_release_ret = qgroup_to_release;
160	return ret;
161}
162
163int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
164			    struct btrfs_block_rsv *dst, u64 num_bytes,
165			    bool update_size)
166{
167	int ret;
168
169	ret = btrfs_block_rsv_use_bytes(src, num_bytes);
170	if (ret)
171		return ret;
172
173	btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
174	return 0;
175}
176
177void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
178{
179	memset(rsv, 0, sizeof(*rsv));
180	spin_lock_init(&rsv->lock);
181	rsv->type = type;
182}
183
184void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
185				   struct btrfs_block_rsv *rsv,
186				   enum btrfs_rsv_type type)
187{
188	btrfs_init_block_rsv(rsv, type);
189	rsv->space_info = btrfs_find_space_info(fs_info,
190					    BTRFS_BLOCK_GROUP_METADATA);
191}
192
193struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
194					      enum btrfs_rsv_type type)
195{
196	struct btrfs_block_rsv *block_rsv;
197
198	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
199	if (!block_rsv)
200		return NULL;
201
202	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
203	return block_rsv;
204}
205
206void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
207			  struct btrfs_block_rsv *rsv)
208{
209	if (!rsv)
210		return;
211	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
212	kfree(rsv);
213}
214
215int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
216			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
217			enum btrfs_reserve_flush_enum flush)
218{
219	int ret;
220
221	if (num_bytes == 0)
222		return 0;
223
224	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
225	if (!ret)
226		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
227
228	return ret;
229}
230
231int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent)
232{
233	u64 num_bytes = 0;
234	int ret = -ENOSPC;
235
236	spin_lock(&block_rsv->lock);
237	num_bytes = mult_perc(block_rsv->size, min_percent);
238	if (block_rsv->reserved >= num_bytes)
239		ret = 0;
240	spin_unlock(&block_rsv->lock);
241
242	return ret;
243}
244
245int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
246			   struct btrfs_block_rsv *block_rsv, u64 num_bytes,
247			   enum btrfs_reserve_flush_enum flush)
248{
249	int ret = -ENOSPC;
250
251	if (!block_rsv)
252		return 0;
253
254	spin_lock(&block_rsv->lock);
255	if (block_rsv->reserved >= num_bytes)
256		ret = 0;
257	else
258		num_bytes -= block_rsv->reserved;
259	spin_unlock(&block_rsv->lock);
260
261	if (!ret)
262		return 0;
263
264	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
265	if (!ret) {
266		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
267		return 0;
268	}
269
270	return ret;
271}
272
273u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
274			    struct btrfs_block_rsv *block_rsv, u64 num_bytes,
275			    u64 *qgroup_to_release)
276{
277	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
278	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
279	struct btrfs_block_rsv *target = NULL;
280
281	/*
282	 * If we are the delayed_rsv then push to the global rsv, otherwise dump
283	 * into the delayed rsv if it is not full.
284	 */
285	if (block_rsv == delayed_rsv)
286		target = global_rsv;
287	else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
288		target = delayed_rsv;
289
290	if (target && block_rsv->space_info != target->space_info)
291		target = NULL;
292
293	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
294				       qgroup_to_release);
295}
296
297int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
298{
299	int ret = -ENOSPC;
300
301	spin_lock(&block_rsv->lock);
302	if (block_rsv->reserved >= num_bytes) {
303		block_rsv->reserved -= num_bytes;
304		if (block_rsv->reserved < block_rsv->size)
305			block_rsv->full = false;
306		ret = 0;
307	}
308	spin_unlock(&block_rsv->lock);
309	return ret;
310}
311
312void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
313			       u64 num_bytes, bool update_size)
314{
315	spin_lock(&block_rsv->lock);
316	block_rsv->reserved += num_bytes;
317	if (update_size)
318		block_rsv->size += num_bytes;
319	else if (block_rsv->reserved >= block_rsv->size)
320		block_rsv->full = true;
321	spin_unlock(&block_rsv->lock);
322}
323
324void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
325{
326	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
327	struct btrfs_space_info *sinfo = block_rsv->space_info;
328	struct btrfs_root *root, *tmp;
329	u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
330	unsigned int min_items = 1;
331
332	/*
333	 * The global block rsv is based on the size of the extent tree, the
334	 * checksum tree and the root tree.  If the fs is empty we want to set
335	 * it to a minimal amount for safety.
336	 *
337	 * We also are going to need to modify the minimum of the tree root and
338	 * any global roots we could touch.
339	 */
340	read_lock(&fs_info->global_root_lock);
341	rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
342					     rb_node) {
343		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID ||
344		    root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
345		    root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
346			num_bytes += btrfs_root_used(&root->root_item);
347			min_items++;
348		}
349	}
350	read_unlock(&fs_info->global_root_lock);
351
352	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
353		num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item);
354		min_items++;
355	}
356
357	/*
358	 * But we also want to reserve enough space so we can do the fallback
359	 * global reserve for an unlink, which is an additional
360	 * BTRFS_UNLINK_METADATA_UNITS items.
361	 *
362	 * But we also need space for the delayed ref updates from the unlink,
363	 * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for
364	 * each unlink metadata item.
365	 */
366	min_items += BTRFS_UNLINK_METADATA_UNITS;
367
368	num_bytes = max_t(u64, num_bytes,
369			  btrfs_calc_insert_metadata_size(fs_info, min_items) +
370			  btrfs_calc_delayed_ref_bytes(fs_info,
371					       BTRFS_UNLINK_METADATA_UNITS));
372
373	spin_lock(&sinfo->lock);
374	spin_lock(&block_rsv->lock);
375
376	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
377
378	if (block_rsv->reserved < block_rsv->size) {
379		num_bytes = block_rsv->size - block_rsv->reserved;
380		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
381						      num_bytes);
382		block_rsv->reserved = block_rsv->size;
383	} else if (block_rsv->reserved > block_rsv->size) {
384		num_bytes = block_rsv->reserved - block_rsv->size;
385		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
386						      -num_bytes);
387		block_rsv->reserved = block_rsv->size;
388		btrfs_try_granting_tickets(fs_info, sinfo);
389	}
390
391	block_rsv->full = (block_rsv->reserved == block_rsv->size);
392
393	if (block_rsv->size >= sinfo->total_bytes)
394		sinfo->force_alloc = CHUNK_ALLOC_FORCE;
395	spin_unlock(&block_rsv->lock);
396	spin_unlock(&sinfo->lock);
397}
398
399void btrfs_init_root_block_rsv(struct btrfs_root *root)
400{
401	struct btrfs_fs_info *fs_info = root->fs_info;
402
403	switch (root->root_key.objectid) {
404	case BTRFS_CSUM_TREE_OBJECTID:
405	case BTRFS_EXTENT_TREE_OBJECTID:
406	case BTRFS_FREE_SPACE_TREE_OBJECTID:
407	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
408		root->block_rsv = &fs_info->delayed_refs_rsv;
409		break;
410	case BTRFS_ROOT_TREE_OBJECTID:
411	case BTRFS_DEV_TREE_OBJECTID:
412	case BTRFS_QUOTA_TREE_OBJECTID:
413		root->block_rsv = &fs_info->global_block_rsv;
414		break;
415	case BTRFS_CHUNK_TREE_OBJECTID:
416		root->block_rsv = &fs_info->chunk_block_rsv;
417		break;
418	default:
419		root->block_rsv = NULL;
420		break;
421	}
422}
423
424void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
425{
426	struct btrfs_space_info *space_info;
427
428	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
429	fs_info->chunk_block_rsv.space_info = space_info;
430
431	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
432	fs_info->global_block_rsv.space_info = space_info;
433	fs_info->trans_block_rsv.space_info = space_info;
434	fs_info->empty_block_rsv.space_info = space_info;
435	fs_info->delayed_block_rsv.space_info = space_info;
436	fs_info->delayed_refs_rsv.space_info = space_info;
437
438	btrfs_update_global_block_rsv(fs_info);
439}
440
441void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
442{
443	btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
444				NULL);
445	WARN_ON(fs_info->trans_block_rsv.size > 0);
446	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
447	WARN_ON(fs_info->chunk_block_rsv.size > 0);
448	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
449	WARN_ON(fs_info->delayed_block_rsv.size > 0);
450	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
451	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
452	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
453}
454
455static struct btrfs_block_rsv *get_block_rsv(
456					const struct btrfs_trans_handle *trans,
457					const struct btrfs_root *root)
458{
459	struct btrfs_fs_info *fs_info = root->fs_info;
460	struct btrfs_block_rsv *block_rsv = NULL;
461
462	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
463	    (root == fs_info->uuid_root) ||
464	    (trans->adding_csums &&
465	     root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID))
466		block_rsv = trans->block_rsv;
467
468	if (!block_rsv)
469		block_rsv = root->block_rsv;
470
471	if (!block_rsv)
472		block_rsv = &fs_info->empty_block_rsv;
473
474	return block_rsv;
475}
476
477struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
478					    struct btrfs_root *root,
479					    u32 blocksize)
480{
481	struct btrfs_fs_info *fs_info = root->fs_info;
482	struct btrfs_block_rsv *block_rsv;
483	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
484	int ret;
485	bool global_updated = false;
486
487	block_rsv = get_block_rsv(trans, root);
488
489	if (unlikely(btrfs_block_rsv_size(block_rsv) == 0))
490		goto try_reserve;
491again:
492	ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
493	if (!ret)
494		return block_rsv;
495
496	if (block_rsv->failfast)
497		return ERR_PTR(ret);
498
499	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
500		global_updated = true;
501		btrfs_update_global_block_rsv(fs_info);
502		goto again;
503	}
504
505	/*
506	 * The global reserve still exists to save us from ourselves, so don't
507	 * warn_on if we are short on our delayed refs reserve.
508	 */
509	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
510	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
511		static DEFINE_RATELIMIT_STATE(_rs,
512				DEFAULT_RATELIMIT_INTERVAL * 10,
513				/*DEFAULT_RATELIMIT_BURST*/ 1);
514		if (__ratelimit(&_rs))
515			WARN(1, KERN_DEBUG
516				"BTRFS: block rsv %d returned %d\n",
517				block_rsv->type, ret);
518	}
519try_reserve:
520	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
521					   BTRFS_RESERVE_NO_FLUSH);
522	if (!ret)
523		return block_rsv;
524	/*
525	 * If we couldn't reserve metadata bytes try and use some from
526	 * the global reserve if its space type is the same as the global
527	 * reservation.
528	 */
529	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
530	    block_rsv->space_info == global_rsv->space_info) {
531		ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
532		if (!ret)
533			return global_rsv;
534	}
535
536	/*
537	 * All hope is lost, but of course our reservations are overly
538	 * pessimistic, so instead of possibly having an ENOSPC abort here, try
539	 * one last time to force a reservation if there's enough actual space
540	 * on disk to make the reservation.
541	 */
542	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
543					   BTRFS_RESERVE_FLUSH_EMERGENCY);
544	if (!ret)
545		return block_rsv;
546
547	return ERR_PTR(ret);
548}
549
550int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
551				       struct btrfs_block_rsv *rsv)
552{
553	u64 needed_bytes;
554	int ret;
555
556	/* 1 for slack space, 1 for updating the inode */
557	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
558		btrfs_calc_metadata_size(fs_info, 1);
559
560	spin_lock(&rsv->lock);
561	if (rsv->reserved < needed_bytes)
562		ret = -ENOSPC;
563	else
564		ret = 0;
565	spin_unlock(&rsv->lock);
566	return ret;
567}
568