xref: /kernel/linux/linux-6.6/fs/btrfs/block-group.h (revision 62306a36)
1/* SPDX-License-Identifier: GPL-2.0 */
2
3#ifndef BTRFS_BLOCK_GROUP_H
4#define BTRFS_BLOCK_GROUP_H
5
6#include "free-space-cache.h"
7
8enum btrfs_disk_cache_state {
9	BTRFS_DC_WRITTEN,
10	BTRFS_DC_ERROR,
11	BTRFS_DC_CLEAR,
12	BTRFS_DC_SETUP,
13};
14
15enum btrfs_block_group_size_class {
16	/* Unset */
17	BTRFS_BG_SZ_NONE,
18	/* 0 < size <= 128K */
19	BTRFS_BG_SZ_SMALL,
20	/* 128K < size <= 8M */
21	BTRFS_BG_SZ_MEDIUM,
22	/* 8M < size < BG_LENGTH */
23	BTRFS_BG_SZ_LARGE,
24};
25
26/*
27 * This describes the state of the block_group for async discard.  This is due
28 * to the two pass nature of it where extent discarding is prioritized over
29 * bitmap discarding.  BTRFS_DISCARD_RESET_CURSOR is set when we are resetting
30 * between lists to prevent contention for discard state variables
31 * (eg. discard_cursor).
32 */
33enum btrfs_discard_state {
34	BTRFS_DISCARD_EXTENTS,
35	BTRFS_DISCARD_BITMAPS,
36	BTRFS_DISCARD_RESET_CURSOR,
37};
38
39/*
40 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to
41 * only allocate a chunk if we really need one.
42 *
43 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few
44 * chunks already allocated.  This is used as part of the clustering code to
45 * help make sure we have a good pool of storage to cluster in, without filling
46 * the FS with empty chunks
47 *
48 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 *
50 * CHUNK_ALLOC_FORCE_FOR_EXTENT like CHUNK_ALLOC_FORCE but called from
51 * find_free_extent() that also activaes the zone
52 */
53enum btrfs_chunk_alloc_enum {
54	CHUNK_ALLOC_NO_FORCE,
55	CHUNK_ALLOC_LIMITED,
56	CHUNK_ALLOC_FORCE,
57	CHUNK_ALLOC_FORCE_FOR_EXTENT,
58};
59
60/* Block group flags set at runtime */
61enum btrfs_block_group_flags {
62	BLOCK_GROUP_FLAG_IREF,
63	BLOCK_GROUP_FLAG_REMOVED,
64	BLOCK_GROUP_FLAG_TO_COPY,
65	BLOCK_GROUP_FLAG_RELOCATING_REPAIR,
66	BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
67	BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
68	BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
69	/* Does the block group need to be added to the free space tree? */
70	BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE,
71	/* Indicate that the block group is placed on a sequential zone */
72	BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE,
73	/*
74	 * Indicate that block group is in the list of new block groups of a
75	 * transaction.
76	 */
77	BLOCK_GROUP_FLAG_NEW,
78};
79
80enum btrfs_caching_type {
81	BTRFS_CACHE_NO,
82	BTRFS_CACHE_STARTED,
83	BTRFS_CACHE_FINISHED,
84	BTRFS_CACHE_ERROR,
85};
86
87struct btrfs_caching_control {
88	struct list_head list;
89	struct mutex mutex;
90	wait_queue_head_t wait;
91	struct btrfs_work work;
92	struct btrfs_block_group *block_group;
93	/* Track progress of caching during allocation. */
94	atomic_t progress;
95	refcount_t count;
96};
97
98/* Once caching_thread() finds this much free space, it will wake up waiters. */
99#define CACHING_CTL_WAKE_UP SZ_2M
100
101struct btrfs_block_group {
102	struct btrfs_fs_info *fs_info;
103	struct inode *inode;
104	spinlock_t lock;
105	u64 start;
106	u64 length;
107	u64 pinned;
108	u64 reserved;
109	u64 used;
110	u64 delalloc_bytes;
111	u64 bytes_super;
112	u64 flags;
113	u64 cache_generation;
114	u64 global_root_id;
115
116	/*
117	 * The last committed used bytes of this block group, if the above @used
118	 * is still the same as @commit_used, we don't need to update block
119	 * group item of this block group.
120	 */
121	u64 commit_used;
122	/*
123	 * If the free space extent count exceeds this number, convert the block
124	 * group to bitmaps.
125	 */
126	u32 bitmap_high_thresh;
127
128	/*
129	 * If the free space extent count drops below this number, convert the
130	 * block group back to extents.
131	 */
132	u32 bitmap_low_thresh;
133
134	/*
135	 * It is just used for the delayed data space allocation because
136	 * only the data space allocation and the relative metadata update
137	 * can be done cross the transaction.
138	 */
139	struct rw_semaphore data_rwsem;
140
141	/* For raid56, this is a full stripe, without parity */
142	unsigned long full_stripe_len;
143	unsigned long runtime_flags;
144
145	unsigned int ro;
146
147	int disk_cache_state;
148
149	/* Cache tracking stuff */
150	int cached;
151	struct btrfs_caching_control *caching_ctl;
152
153	struct btrfs_space_info *space_info;
154
155	/* Free space cache stuff */
156	struct btrfs_free_space_ctl *free_space_ctl;
157
158	/* Block group cache stuff */
159	struct rb_node cache_node;
160
161	/* For block groups in the same raid type */
162	struct list_head list;
163
164	refcount_t refs;
165
166	/*
167	 * List of struct btrfs_free_clusters for this block group.
168	 * Today it will only have one thing on it, but that may change
169	 */
170	struct list_head cluster_list;
171
172	/*
173	 * Used for several lists:
174	 *
175	 * 1) struct btrfs_fs_info::unused_bgs
176	 * 2) struct btrfs_fs_info::reclaim_bgs
177	 * 3) struct btrfs_transaction::deleted_bgs
178	 * 4) struct btrfs_trans_handle::new_bgs
179	 */
180	struct list_head bg_list;
181
182	/* For read-only block groups */
183	struct list_head ro_list;
184
185	/*
186	 * When non-zero it means the block group's logical address and its
187	 * device extents can not be reused for future block group allocations
188	 * until the counter goes down to 0. This is to prevent them from being
189	 * reused while some task is still using the block group after it was
190	 * deleted - we want to make sure they can only be reused for new block
191	 * groups after that task is done with the deleted block group.
192	 */
193	atomic_t frozen;
194
195	/* For discard operations */
196	struct list_head discard_list;
197	int discard_index;
198	u64 discard_eligible_time;
199	u64 discard_cursor;
200	enum btrfs_discard_state discard_state;
201
202	/* For dirty block groups */
203	struct list_head dirty_list;
204	struct list_head io_list;
205
206	struct btrfs_io_ctl io_ctl;
207
208	/*
209	 * Incremented when doing extent allocations and holding a read lock
210	 * on the space_info's groups_sem semaphore.
211	 * Decremented when an ordered extent that represents an IO against this
212	 * block group's range is created (after it's added to its inode's
213	 * root's list of ordered extents) or immediately after the allocation
214	 * if it's a metadata extent or fallocate extent (for these cases we
215	 * don't create ordered extents).
216	 */
217	atomic_t reservations;
218
219	/*
220	 * Incremented while holding the spinlock *lock* by a task checking if
221	 * it can perform a nocow write (incremented if the value for the *ro*
222	 * field is 0). Decremented by such tasks once they create an ordered
223	 * extent or before that if some error happens before reaching that step.
224	 * This is to prevent races between block group relocation and nocow
225	 * writes through direct IO.
226	 */
227	atomic_t nocow_writers;
228
229	/* Lock for free space tree operations. */
230	struct mutex free_space_lock;
231
232	/*
233	 * Number of extents in this block group used for swap files.
234	 * All accesses protected by the spinlock 'lock'.
235	 */
236	int swap_extents;
237
238	/*
239	 * Allocation offset for the block group to implement sequential
240	 * allocation. This is used only on a zoned filesystem.
241	 */
242	u64 alloc_offset;
243	u64 zone_unusable;
244	u64 zone_capacity;
245	u64 meta_write_pointer;
246	struct map_lookup *physical_map;
247	struct list_head active_bg_list;
248	struct work_struct zone_finish_work;
249	struct extent_buffer *last_eb;
250	enum btrfs_block_group_size_class size_class;
251};
252
253static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group)
254{
255	return (block_group->start + block_group->length);
256}
257
258static inline bool btrfs_is_block_group_used(const struct btrfs_block_group *bg)
259{
260	lockdep_assert_held(&bg->lock);
261
262	return (bg->used > 0 || bg->reserved > 0 || bg->pinned > 0);
263}
264
265static inline bool btrfs_is_block_group_data_only(
266					struct btrfs_block_group *block_group)
267{
268	/*
269	 * In mixed mode the fragmentation is expected to be high, lowering the
270	 * efficiency, so only proper data block groups are considered.
271	 */
272	return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
273	       !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA);
274}
275
276#ifdef CONFIG_BTRFS_DEBUG
277int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group);
278#endif
279
280struct btrfs_block_group *btrfs_lookup_first_block_group(
281		struct btrfs_fs_info *info, u64 bytenr);
282struct btrfs_block_group *btrfs_lookup_block_group(
283		struct btrfs_fs_info *info, u64 bytenr);
284struct btrfs_block_group *btrfs_next_block_group(
285		struct btrfs_block_group *cache);
286void btrfs_get_block_group(struct btrfs_block_group *cache);
287void btrfs_put_block_group(struct btrfs_block_group *cache);
288void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
289					const u64 start);
290void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg);
291struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
292						  u64 bytenr);
293void btrfs_dec_nocow_writers(struct btrfs_block_group *bg);
294void btrfs_wait_nocow_writers(struct btrfs_block_group *bg);
295void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
296				           u64 num_bytes);
297int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait);
298void btrfs_put_caching_control(struct btrfs_caching_control *ctl);
299struct btrfs_caching_control *btrfs_get_caching_control(
300		struct btrfs_block_group *cache);
301int btrfs_add_new_free_space(struct btrfs_block_group *block_group,
302			     u64 start, u64 end, u64 *total_added_ret);
303struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
304				struct btrfs_fs_info *fs_info,
305				const u64 chunk_offset);
306int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
307			     u64 group_start, struct extent_map *em);
308void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
309void btrfs_mark_bg_unused(struct btrfs_block_group *bg);
310void btrfs_reclaim_bgs_work(struct work_struct *work);
311void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info);
312void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg);
313int btrfs_read_block_groups(struct btrfs_fs_info *info);
314struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
315						 u64 type,
316						 u64 chunk_offset, u64 size);
317void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
318int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
319			     bool do_chunk_alloc);
320void btrfs_dec_block_group_ro(struct btrfs_block_group *cache);
321int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
322int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans);
323int btrfs_setup_space_cache(struct btrfs_trans_handle *trans);
324int btrfs_update_block_group(struct btrfs_trans_handle *trans,
325			     u64 bytenr, u64 num_bytes, bool alloc);
326int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
327			     u64 ram_bytes, u64 num_bytes, int delalloc,
328			     bool force_wrong_size_class);
329void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
330			       u64 num_bytes, int delalloc);
331int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
332		      enum btrfs_chunk_alloc_enum force);
333int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type);
334void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type);
335void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
336				  bool is_item_insertion);
337u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags);
338void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
339int btrfs_free_block_groups(struct btrfs_fs_info *info);
340int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
341		     u64 physical, u64 **logical, int *naddrs, int *stripe_len);
342
343static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
344{
345	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
346}
347
348static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
349{
350	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
351}
352
353static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
354{
355	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
356}
357
358static inline int btrfs_block_group_done(struct btrfs_block_group *cache)
359{
360	smp_mb();
361	return cache->cached == BTRFS_CACHE_FINISHED ||
362		cache->cached == BTRFS_CACHE_ERROR;
363}
364
365void btrfs_freeze_block_group(struct btrfs_block_group *cache);
366void btrfs_unfreeze_block_group(struct btrfs_block_group *cache);
367
368bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg);
369void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount);
370
371enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size);
372int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
373				     enum btrfs_block_group_size_class size_class,
374				     bool force_wrong_size_class);
375bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg);
376
377#endif /* BTRFS_BLOCK_GROUP_H */
378