xref: /kernel/linux/linux-6.6/fs/btrfs/block-group.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/sizes.h>
4#include <linux/list_sort.h>
5#include "misc.h"
6#include "ctree.h"
7#include "block-group.h"
8#include "space-info.h"
9#include "disk-io.h"
10#include "free-space-cache.h"
11#include "free-space-tree.h"
12#include "volumes.h"
13#include "transaction.h"
14#include "ref-verify.h"
15#include "sysfs.h"
16#include "tree-log.h"
17#include "delalloc-space.h"
18#include "discard.h"
19#include "raid56.h"
20#include "zoned.h"
21#include "fs.h"
22#include "accessors.h"
23#include "extent-tree.h"
24
25#ifdef CONFIG_BTRFS_DEBUG
26int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27{
28	struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
34}
35#endif
36
37/*
38 * Return target flags in extended format or 0 if restripe for this chunk_type
39 * is not in progress
40 *
41 * Should be called with balance_lock held
42 */
43static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44{
45	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46	u64 target = 0;
47
48	if (!bctl)
49		return 0;
50
51	if (flags & BTRFS_BLOCK_GROUP_DATA &&
52	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60	}
61
62	return target;
63}
64
65/*
66 * @flags: available profiles in extended format (see ctree.h)
67 *
68 * Return reduced profile in chunk format.  If profile changing is in progress
69 * (either running or paused) picks the target profile (if it's already
70 * available), otherwise falls back to plain reducing.
71 */
72static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73{
74	u64 num_devices = fs_info->fs_devices->rw_devices;
75	u64 target;
76	u64 raid_type;
77	u64 allowed = 0;
78
79	/*
80	 * See if restripe for this chunk_type is in progress, if so try to
81	 * reduce to the target profile
82	 */
83	spin_lock(&fs_info->balance_lock);
84	target = get_restripe_target(fs_info, flags);
85	if (target) {
86		spin_unlock(&fs_info->balance_lock);
87		return extended_to_chunk(target);
88	}
89	spin_unlock(&fs_info->balance_lock);
90
91	/* First, mask out the RAID levels which aren't possible */
92	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94			allowed |= btrfs_raid_array[raid_type].bg_flag;
95	}
96	allowed &= flags;
97
98	/* Select the highest-redundancy RAID level. */
99	if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100		allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101	else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102		allowed = BTRFS_BLOCK_GROUP_RAID6;
103	else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104		allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106		allowed = BTRFS_BLOCK_GROUP_RAID5;
107	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108		allowed = BTRFS_BLOCK_GROUP_RAID10;
109	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110		allowed = BTRFS_BLOCK_GROUP_RAID1;
111	else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112		allowed = BTRFS_BLOCK_GROUP_DUP;
113	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114		allowed = BTRFS_BLOCK_GROUP_RAID0;
115
116	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117
118	return extended_to_chunk(flags | allowed);
119}
120
121u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122{
123	unsigned seq;
124	u64 flags;
125
126	do {
127		flags = orig_flags;
128		seq = read_seqbegin(&fs_info->profiles_lock);
129
130		if (flags & BTRFS_BLOCK_GROUP_DATA)
131			flags |= fs_info->avail_data_alloc_bits;
132		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133			flags |= fs_info->avail_system_alloc_bits;
134		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135			flags |= fs_info->avail_metadata_alloc_bits;
136	} while (read_seqretry(&fs_info->profiles_lock, seq));
137
138	return btrfs_reduce_alloc_profile(fs_info, flags);
139}
140
141void btrfs_get_block_group(struct btrfs_block_group *cache)
142{
143	refcount_inc(&cache->refs);
144}
145
146void btrfs_put_block_group(struct btrfs_block_group *cache)
147{
148	if (refcount_dec_and_test(&cache->refs)) {
149		WARN_ON(cache->pinned > 0);
150		/*
151		 * If there was a failure to cleanup a log tree, very likely due
152		 * to an IO failure on a writeback attempt of one or more of its
153		 * extent buffers, we could not do proper (and cheap) unaccounting
154		 * of their reserved space, so don't warn on reserved > 0 in that
155		 * case.
156		 */
157		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159			WARN_ON(cache->reserved > 0);
160
161		/*
162		 * A block_group shouldn't be on the discard_list anymore.
163		 * Remove the block_group from the discard_list to prevent us
164		 * from causing a panic due to NULL pointer dereference.
165		 */
166		if (WARN_ON(!list_empty(&cache->discard_list)))
167			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168						  cache);
169
170		kfree(cache->free_space_ctl);
171		kfree(cache->physical_map);
172		kfree(cache);
173	}
174}
175
176/*
177 * This adds the block group to the fs_info rb tree for the block group cache
178 */
179static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180				       struct btrfs_block_group *block_group)
181{
182	struct rb_node **p;
183	struct rb_node *parent = NULL;
184	struct btrfs_block_group *cache;
185	bool leftmost = true;
186
187	ASSERT(block_group->length != 0);
188
189	write_lock(&info->block_group_cache_lock);
190	p = &info->block_group_cache_tree.rb_root.rb_node;
191
192	while (*p) {
193		parent = *p;
194		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195		if (block_group->start < cache->start) {
196			p = &(*p)->rb_left;
197		} else if (block_group->start > cache->start) {
198			p = &(*p)->rb_right;
199			leftmost = false;
200		} else {
201			write_unlock(&info->block_group_cache_lock);
202			return -EEXIST;
203		}
204	}
205
206	rb_link_node(&block_group->cache_node, parent, p);
207	rb_insert_color_cached(&block_group->cache_node,
208			       &info->block_group_cache_tree, leftmost);
209
210	write_unlock(&info->block_group_cache_lock);
211
212	return 0;
213}
214
215/*
216 * This will return the block group at or after bytenr if contains is 0, else
217 * it will return the block group that contains the bytenr
218 */
219static struct btrfs_block_group *block_group_cache_tree_search(
220		struct btrfs_fs_info *info, u64 bytenr, int contains)
221{
222	struct btrfs_block_group *cache, *ret = NULL;
223	struct rb_node *n;
224	u64 end, start;
225
226	read_lock(&info->block_group_cache_lock);
227	n = info->block_group_cache_tree.rb_root.rb_node;
228
229	while (n) {
230		cache = rb_entry(n, struct btrfs_block_group, cache_node);
231		end = cache->start + cache->length - 1;
232		start = cache->start;
233
234		if (bytenr < start) {
235			if (!contains && (!ret || start < ret->start))
236				ret = cache;
237			n = n->rb_left;
238		} else if (bytenr > start) {
239			if (contains && bytenr <= end) {
240				ret = cache;
241				break;
242			}
243			n = n->rb_right;
244		} else {
245			ret = cache;
246			break;
247		}
248	}
249	if (ret)
250		btrfs_get_block_group(ret);
251	read_unlock(&info->block_group_cache_lock);
252
253	return ret;
254}
255
256/*
257 * Return the block group that starts at or after bytenr
258 */
259struct btrfs_block_group *btrfs_lookup_first_block_group(
260		struct btrfs_fs_info *info, u64 bytenr)
261{
262	return block_group_cache_tree_search(info, bytenr, 0);
263}
264
265/*
266 * Return the block group that contains the given bytenr
267 */
268struct btrfs_block_group *btrfs_lookup_block_group(
269		struct btrfs_fs_info *info, u64 bytenr)
270{
271	return block_group_cache_tree_search(info, bytenr, 1);
272}
273
274struct btrfs_block_group *btrfs_next_block_group(
275		struct btrfs_block_group *cache)
276{
277	struct btrfs_fs_info *fs_info = cache->fs_info;
278	struct rb_node *node;
279
280	read_lock(&fs_info->block_group_cache_lock);
281
282	/* If our block group was removed, we need a full search. */
283	if (RB_EMPTY_NODE(&cache->cache_node)) {
284		const u64 next_bytenr = cache->start + cache->length;
285
286		read_unlock(&fs_info->block_group_cache_lock);
287		btrfs_put_block_group(cache);
288		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289	}
290	node = rb_next(&cache->cache_node);
291	btrfs_put_block_group(cache);
292	if (node) {
293		cache = rb_entry(node, struct btrfs_block_group, cache_node);
294		btrfs_get_block_group(cache);
295	} else
296		cache = NULL;
297	read_unlock(&fs_info->block_group_cache_lock);
298	return cache;
299}
300
301/*
302 * Check if we can do a NOCOW write for a given extent.
303 *
304 * @fs_info:       The filesystem information object.
305 * @bytenr:        Logical start address of the extent.
306 *
307 * Check if we can do a NOCOW write for the given extent, and increments the
308 * number of NOCOW writers in the block group that contains the extent, as long
309 * as the block group exists and it's currently not in read-only mode.
310 *
311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312 *          is responsible for calling btrfs_dec_nocow_writers() later.
313 *
314 *          Or NULL if we can not do a NOCOW write
315 */
316struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317						  u64 bytenr)
318{
319	struct btrfs_block_group *bg;
320	bool can_nocow = true;
321
322	bg = btrfs_lookup_block_group(fs_info, bytenr);
323	if (!bg)
324		return NULL;
325
326	spin_lock(&bg->lock);
327	if (bg->ro)
328		can_nocow = false;
329	else
330		atomic_inc(&bg->nocow_writers);
331	spin_unlock(&bg->lock);
332
333	if (!can_nocow) {
334		btrfs_put_block_group(bg);
335		return NULL;
336	}
337
338	/* No put on block group, done by btrfs_dec_nocow_writers(). */
339	return bg;
340}
341
342/*
343 * Decrement the number of NOCOW writers in a block group.
344 *
345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346 * and on the block group returned by that call. Typically this is called after
347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348 * relocation.
349 *
350 * After this call, the caller should not use the block group anymore. It it wants
351 * to use it, then it should get a reference on it before calling this function.
352 */
353void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354{
355	if (atomic_dec_and_test(&bg->nocow_writers))
356		wake_up_var(&bg->nocow_writers);
357
358	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359	btrfs_put_block_group(bg);
360}
361
362void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363{
364	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365}
366
367void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368					const u64 start)
369{
370	struct btrfs_block_group *bg;
371
372	bg = btrfs_lookup_block_group(fs_info, start);
373	ASSERT(bg);
374	if (atomic_dec_and_test(&bg->reservations))
375		wake_up_var(&bg->reservations);
376	btrfs_put_block_group(bg);
377}
378
379void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380{
381	struct btrfs_space_info *space_info = bg->space_info;
382
383	ASSERT(bg->ro);
384
385	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386		return;
387
388	/*
389	 * Our block group is read only but before we set it to read only,
390	 * some task might have had allocated an extent from it already, but it
391	 * has not yet created a respective ordered extent (and added it to a
392	 * root's list of ordered extents).
393	 * Therefore wait for any task currently allocating extents, since the
394	 * block group's reservations counter is incremented while a read lock
395	 * on the groups' semaphore is held and decremented after releasing
396	 * the read access on that semaphore and creating the ordered extent.
397	 */
398	down_write(&space_info->groups_sem);
399	up_write(&space_info->groups_sem);
400
401	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402}
403
404struct btrfs_caching_control *btrfs_get_caching_control(
405		struct btrfs_block_group *cache)
406{
407	struct btrfs_caching_control *ctl;
408
409	spin_lock(&cache->lock);
410	if (!cache->caching_ctl) {
411		spin_unlock(&cache->lock);
412		return NULL;
413	}
414
415	ctl = cache->caching_ctl;
416	refcount_inc(&ctl->count);
417	spin_unlock(&cache->lock);
418	return ctl;
419}
420
421void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422{
423	if (refcount_dec_and_test(&ctl->count))
424		kfree(ctl);
425}
426
427/*
428 * When we wait for progress in the block group caching, its because our
429 * allocation attempt failed at least once.  So, we must sleep and let some
430 * progress happen before we try again.
431 *
432 * This function will sleep at least once waiting for new free space to show
433 * up, and then it will check the block group free space numbers for our min
434 * num_bytes.  Another option is to have it go ahead and look in the rbtree for
435 * a free extent of a given size, but this is a good start.
436 *
437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438 * any of the information in this block group.
439 */
440void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441					   u64 num_bytes)
442{
443	struct btrfs_caching_control *caching_ctl;
444	int progress;
445
446	caching_ctl = btrfs_get_caching_control(cache);
447	if (!caching_ctl)
448		return;
449
450	/*
451	 * We've already failed to allocate from this block group, so even if
452	 * there's enough space in the block group it isn't contiguous enough to
453	 * allow for an allocation, so wait for at least the next wakeup tick,
454	 * or for the thing to be done.
455	 */
456	progress = atomic_read(&caching_ctl->progress);
457
458	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
459		   (progress != atomic_read(&caching_ctl->progress) &&
460		    (cache->free_space_ctl->free_space >= num_bytes)));
461
462	btrfs_put_caching_control(caching_ctl);
463}
464
465static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
466				       struct btrfs_caching_control *caching_ctl)
467{
468	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
469	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
470}
471
472static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
473{
474	struct btrfs_caching_control *caching_ctl;
475	int ret;
476
477	caching_ctl = btrfs_get_caching_control(cache);
478	if (!caching_ctl)
479		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
480	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
481	btrfs_put_caching_control(caching_ctl);
482	return ret;
483}
484
485#ifdef CONFIG_BTRFS_DEBUG
486static void fragment_free_space(struct btrfs_block_group *block_group)
487{
488	struct btrfs_fs_info *fs_info = block_group->fs_info;
489	u64 start = block_group->start;
490	u64 len = block_group->length;
491	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
492		fs_info->nodesize : fs_info->sectorsize;
493	u64 step = chunk << 1;
494
495	while (len > chunk) {
496		btrfs_remove_free_space(block_group, start, chunk);
497		start += step;
498		if (len < step)
499			len = 0;
500		else
501			len -= step;
502	}
503}
504#endif
505
506/*
507 * Add a free space range to the in memory free space cache of a block group.
508 * This checks if the range contains super block locations and any such
509 * locations are not added to the free space cache.
510 *
511 * @block_group:      The target block group.
512 * @start:            Start offset of the range.
513 * @end:              End offset of the range (exclusive).
514 * @total_added_ret:  Optional pointer to return the total amount of space
515 *                    added to the block group's free space cache.
516 *
517 * Returns 0 on success or < 0 on error.
518 */
519int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
520			     u64 end, u64 *total_added_ret)
521{
522	struct btrfs_fs_info *info = block_group->fs_info;
523	u64 extent_start, extent_end, size;
524	int ret;
525
526	if (total_added_ret)
527		*total_added_ret = 0;
528
529	while (start < end) {
530		if (!find_first_extent_bit(&info->excluded_extents, start,
531					   &extent_start, &extent_end,
532					   EXTENT_DIRTY | EXTENT_UPTODATE,
533					   NULL))
534			break;
535
536		if (extent_start <= start) {
537			start = extent_end + 1;
538		} else if (extent_start > start && extent_start < end) {
539			size = extent_start - start;
540			ret = btrfs_add_free_space_async_trimmed(block_group,
541								 start, size);
542			if (ret)
543				return ret;
544			if (total_added_ret)
545				*total_added_ret += size;
546			start = extent_end + 1;
547		} else {
548			break;
549		}
550	}
551
552	if (start < end) {
553		size = end - start;
554		ret = btrfs_add_free_space_async_trimmed(block_group, start,
555							 size);
556		if (ret)
557			return ret;
558		if (total_added_ret)
559			*total_added_ret += size;
560	}
561
562	return 0;
563}
564
565/*
566 * Get an arbitrary extent item index / max_index through the block group
567 *
568 * @block_group   the block group to sample from
569 * @index:        the integral step through the block group to grab from
570 * @max_index:    the granularity of the sampling
571 * @key:          return value parameter for the item we find
572 *
573 * Pre-conditions on indices:
574 * 0 <= index <= max_index
575 * 0 < max_index
576 *
577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
578 * error code on error.
579 */
580static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
581					  struct btrfs_block_group *block_group,
582					  int index, int max_index,
583					  struct btrfs_key *found_key)
584{
585	struct btrfs_fs_info *fs_info = block_group->fs_info;
586	struct btrfs_root *extent_root;
587	u64 search_offset;
588	u64 search_end = block_group->start + block_group->length;
589	struct btrfs_path *path;
590	struct btrfs_key search_key;
591	int ret = 0;
592
593	ASSERT(index >= 0);
594	ASSERT(index <= max_index);
595	ASSERT(max_index > 0);
596	lockdep_assert_held(&caching_ctl->mutex);
597	lockdep_assert_held_read(&fs_info->commit_root_sem);
598
599	path = btrfs_alloc_path();
600	if (!path)
601		return -ENOMEM;
602
603	extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
604						       BTRFS_SUPER_INFO_OFFSET));
605
606	path->skip_locking = 1;
607	path->search_commit_root = 1;
608	path->reada = READA_FORWARD;
609
610	search_offset = index * div_u64(block_group->length, max_index);
611	search_key.objectid = block_group->start + search_offset;
612	search_key.type = BTRFS_EXTENT_ITEM_KEY;
613	search_key.offset = 0;
614
615	btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
616		/* Success; sampled an extent item in the block group */
617		if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
618		    found_key->objectid >= block_group->start &&
619		    found_key->objectid + found_key->offset <= search_end)
620			break;
621
622		/* We can't possibly find a valid extent item anymore */
623		if (found_key->objectid >= search_end) {
624			ret = 1;
625			break;
626		}
627	}
628
629	lockdep_assert_held(&caching_ctl->mutex);
630	lockdep_assert_held_read(&fs_info->commit_root_sem);
631	btrfs_free_path(path);
632	return ret;
633}
634
635/*
636 * Best effort attempt to compute a block group's size class while caching it.
637 *
638 * @block_group: the block group we are caching
639 *
640 * We cannot infer the size class while adding free space extents, because that
641 * logic doesn't care about contiguous file extents (it doesn't differentiate
642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
643 * file extent items. Reading all of them is quite wasteful, because usually
644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
645 * them at even steps through the block group and pick the smallest size class
646 * we see. Since size class is best effort, and not guaranteed in general,
647 * inaccuracy is acceptable.
648 *
649 * To be more explicit about why this algorithm makes sense:
650 *
651 * If we are caching in a block group from disk, then there are three major cases
652 * to consider:
653 * 1. the block group is well behaved and all extents in it are the same size
654 *    class.
655 * 2. the block group is mostly one size class with rare exceptions for last
656 *    ditch allocations
657 * 3. the block group was populated before size classes and can have a totally
658 *    arbitrary mix of size classes.
659 *
660 * In case 1, looking at any extent in the block group will yield the correct
661 * result. For the mixed cases, taking the minimum size class seems like a good
662 * approximation, since gaps from frees will be usable to the size class. For
663 * 2., a small handful of file extents is likely to yield the right answer. For
664 * 3, we can either read every file extent, or admit that this is best effort
665 * anyway and try to stay fast.
666 *
667 * Returns: 0 on success, negative error code on error.
668 */
669static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
670				       struct btrfs_block_group *block_group)
671{
672	struct btrfs_fs_info *fs_info = block_group->fs_info;
673	struct btrfs_key key;
674	int i;
675	u64 min_size = block_group->length;
676	enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
677	int ret;
678
679	if (!btrfs_block_group_should_use_size_class(block_group))
680		return 0;
681
682	lockdep_assert_held(&caching_ctl->mutex);
683	lockdep_assert_held_read(&fs_info->commit_root_sem);
684	for (i = 0; i < 5; ++i) {
685		ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
686		if (ret < 0)
687			goto out;
688		if (ret > 0)
689			continue;
690		min_size = min_t(u64, min_size, key.offset);
691		size_class = btrfs_calc_block_group_size_class(min_size);
692	}
693	if (size_class != BTRFS_BG_SZ_NONE) {
694		spin_lock(&block_group->lock);
695		block_group->size_class = size_class;
696		spin_unlock(&block_group->lock);
697	}
698out:
699	return ret;
700}
701
702static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
703{
704	struct btrfs_block_group *block_group = caching_ctl->block_group;
705	struct btrfs_fs_info *fs_info = block_group->fs_info;
706	struct btrfs_root *extent_root;
707	struct btrfs_path *path;
708	struct extent_buffer *leaf;
709	struct btrfs_key key;
710	u64 total_found = 0;
711	u64 last = 0;
712	u32 nritems;
713	int ret;
714	bool wakeup = true;
715
716	path = btrfs_alloc_path();
717	if (!path)
718		return -ENOMEM;
719
720	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
721	extent_root = btrfs_extent_root(fs_info, last);
722
723#ifdef CONFIG_BTRFS_DEBUG
724	/*
725	 * If we're fragmenting we don't want to make anybody think we can
726	 * allocate from this block group until we've had a chance to fragment
727	 * the free space.
728	 */
729	if (btrfs_should_fragment_free_space(block_group))
730		wakeup = false;
731#endif
732	/*
733	 * We don't want to deadlock with somebody trying to allocate a new
734	 * extent for the extent root while also trying to search the extent
735	 * root to add free space.  So we skip locking and search the commit
736	 * root, since its read-only
737	 */
738	path->skip_locking = 1;
739	path->search_commit_root = 1;
740	path->reada = READA_FORWARD;
741
742	key.objectid = last;
743	key.offset = 0;
744	key.type = BTRFS_EXTENT_ITEM_KEY;
745
746next:
747	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
748	if (ret < 0)
749		goto out;
750
751	leaf = path->nodes[0];
752	nritems = btrfs_header_nritems(leaf);
753
754	while (1) {
755		if (btrfs_fs_closing(fs_info) > 1) {
756			last = (u64)-1;
757			break;
758		}
759
760		if (path->slots[0] < nritems) {
761			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762		} else {
763			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
764			if (ret)
765				break;
766
767			if (need_resched() ||
768			    rwsem_is_contended(&fs_info->commit_root_sem)) {
769				btrfs_release_path(path);
770				up_read(&fs_info->commit_root_sem);
771				mutex_unlock(&caching_ctl->mutex);
772				cond_resched();
773				mutex_lock(&caching_ctl->mutex);
774				down_read(&fs_info->commit_root_sem);
775				goto next;
776			}
777
778			ret = btrfs_next_leaf(extent_root, path);
779			if (ret < 0)
780				goto out;
781			if (ret)
782				break;
783			leaf = path->nodes[0];
784			nritems = btrfs_header_nritems(leaf);
785			continue;
786		}
787
788		if (key.objectid < last) {
789			key.objectid = last;
790			key.offset = 0;
791			key.type = BTRFS_EXTENT_ITEM_KEY;
792			btrfs_release_path(path);
793			goto next;
794		}
795
796		if (key.objectid < block_group->start) {
797			path->slots[0]++;
798			continue;
799		}
800
801		if (key.objectid >= block_group->start + block_group->length)
802			break;
803
804		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
805		    key.type == BTRFS_METADATA_ITEM_KEY) {
806			u64 space_added;
807
808			ret = btrfs_add_new_free_space(block_group, last,
809						       key.objectid, &space_added);
810			if (ret)
811				goto out;
812			total_found += space_added;
813			if (key.type == BTRFS_METADATA_ITEM_KEY)
814				last = key.objectid +
815					fs_info->nodesize;
816			else
817				last = key.objectid + key.offset;
818
819			if (total_found > CACHING_CTL_WAKE_UP) {
820				total_found = 0;
821				if (wakeup) {
822					atomic_inc(&caching_ctl->progress);
823					wake_up(&caching_ctl->wait);
824				}
825			}
826		}
827		path->slots[0]++;
828	}
829
830	ret = btrfs_add_new_free_space(block_group, last,
831				       block_group->start + block_group->length,
832				       NULL);
833out:
834	btrfs_free_path(path);
835	return ret;
836}
837
838static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
839{
840	clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
841			  bg->start + bg->length - 1, EXTENT_UPTODATE);
842}
843
844static noinline void caching_thread(struct btrfs_work *work)
845{
846	struct btrfs_block_group *block_group;
847	struct btrfs_fs_info *fs_info;
848	struct btrfs_caching_control *caching_ctl;
849	int ret;
850
851	caching_ctl = container_of(work, struct btrfs_caching_control, work);
852	block_group = caching_ctl->block_group;
853	fs_info = block_group->fs_info;
854
855	mutex_lock(&caching_ctl->mutex);
856	down_read(&fs_info->commit_root_sem);
857
858	load_block_group_size_class(caching_ctl, block_group);
859	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
860		ret = load_free_space_cache(block_group);
861		if (ret == 1) {
862			ret = 0;
863			goto done;
864		}
865
866		/*
867		 * We failed to load the space cache, set ourselves to
868		 * CACHE_STARTED and carry on.
869		 */
870		spin_lock(&block_group->lock);
871		block_group->cached = BTRFS_CACHE_STARTED;
872		spin_unlock(&block_group->lock);
873		wake_up(&caching_ctl->wait);
874	}
875
876	/*
877	 * If we are in the transaction that populated the free space tree we
878	 * can't actually cache from the free space tree as our commit root and
879	 * real root are the same, so we could change the contents of the blocks
880	 * while caching.  Instead do the slow caching in this case, and after
881	 * the transaction has committed we will be safe.
882	 */
883	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
884	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
885		ret = load_free_space_tree(caching_ctl);
886	else
887		ret = load_extent_tree_free(caching_ctl);
888done:
889	spin_lock(&block_group->lock);
890	block_group->caching_ctl = NULL;
891	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
892	spin_unlock(&block_group->lock);
893
894#ifdef CONFIG_BTRFS_DEBUG
895	if (btrfs_should_fragment_free_space(block_group)) {
896		u64 bytes_used;
897
898		spin_lock(&block_group->space_info->lock);
899		spin_lock(&block_group->lock);
900		bytes_used = block_group->length - block_group->used;
901		block_group->space_info->bytes_used += bytes_used >> 1;
902		spin_unlock(&block_group->lock);
903		spin_unlock(&block_group->space_info->lock);
904		fragment_free_space(block_group);
905	}
906#endif
907
908	up_read(&fs_info->commit_root_sem);
909	btrfs_free_excluded_extents(block_group);
910	mutex_unlock(&caching_ctl->mutex);
911
912	wake_up(&caching_ctl->wait);
913
914	btrfs_put_caching_control(caching_ctl);
915	btrfs_put_block_group(block_group);
916}
917
918int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
919{
920	struct btrfs_fs_info *fs_info = cache->fs_info;
921	struct btrfs_caching_control *caching_ctl = NULL;
922	int ret = 0;
923
924	/* Allocator for zoned filesystems does not use the cache at all */
925	if (btrfs_is_zoned(fs_info))
926		return 0;
927
928	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
929	if (!caching_ctl)
930		return -ENOMEM;
931
932	INIT_LIST_HEAD(&caching_ctl->list);
933	mutex_init(&caching_ctl->mutex);
934	init_waitqueue_head(&caching_ctl->wait);
935	caching_ctl->block_group = cache;
936	refcount_set(&caching_ctl->count, 2);
937	atomic_set(&caching_ctl->progress, 0);
938	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
939
940	spin_lock(&cache->lock);
941	if (cache->cached != BTRFS_CACHE_NO) {
942		kfree(caching_ctl);
943
944		caching_ctl = cache->caching_ctl;
945		if (caching_ctl)
946			refcount_inc(&caching_ctl->count);
947		spin_unlock(&cache->lock);
948		goto out;
949	}
950	WARN_ON(cache->caching_ctl);
951	cache->caching_ctl = caching_ctl;
952	cache->cached = BTRFS_CACHE_STARTED;
953	spin_unlock(&cache->lock);
954
955	write_lock(&fs_info->block_group_cache_lock);
956	refcount_inc(&caching_ctl->count);
957	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
958	write_unlock(&fs_info->block_group_cache_lock);
959
960	btrfs_get_block_group(cache);
961
962	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
963out:
964	if (wait && caching_ctl)
965		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
966	if (caching_ctl)
967		btrfs_put_caching_control(caching_ctl);
968
969	return ret;
970}
971
972static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
973{
974	u64 extra_flags = chunk_to_extended(flags) &
975				BTRFS_EXTENDED_PROFILE_MASK;
976
977	write_seqlock(&fs_info->profiles_lock);
978	if (flags & BTRFS_BLOCK_GROUP_DATA)
979		fs_info->avail_data_alloc_bits &= ~extra_flags;
980	if (flags & BTRFS_BLOCK_GROUP_METADATA)
981		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
982	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
983		fs_info->avail_system_alloc_bits &= ~extra_flags;
984	write_sequnlock(&fs_info->profiles_lock);
985}
986
987/*
988 * Clear incompat bits for the following feature(s):
989 *
990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
991 *            in the whole filesystem
992 *
993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
994 */
995static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
996{
997	bool found_raid56 = false;
998	bool found_raid1c34 = false;
999
1000	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1001	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1002	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1003		struct list_head *head = &fs_info->space_info;
1004		struct btrfs_space_info *sinfo;
1005
1006		list_for_each_entry_rcu(sinfo, head, list) {
1007			down_read(&sinfo->groups_sem);
1008			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1009				found_raid56 = true;
1010			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1011				found_raid56 = true;
1012			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1013				found_raid1c34 = true;
1014			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1015				found_raid1c34 = true;
1016			up_read(&sinfo->groups_sem);
1017		}
1018		if (!found_raid56)
1019			btrfs_clear_fs_incompat(fs_info, RAID56);
1020		if (!found_raid1c34)
1021			btrfs_clear_fs_incompat(fs_info, RAID1C34);
1022	}
1023}
1024
1025static int remove_block_group_item(struct btrfs_trans_handle *trans,
1026				   struct btrfs_path *path,
1027				   struct btrfs_block_group *block_group)
1028{
1029	struct btrfs_fs_info *fs_info = trans->fs_info;
1030	struct btrfs_root *root;
1031	struct btrfs_key key;
1032	int ret;
1033
1034	root = btrfs_block_group_root(fs_info);
1035	key.objectid = block_group->start;
1036	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1037	key.offset = block_group->length;
1038
1039	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1040	if (ret > 0)
1041		ret = -ENOENT;
1042	if (ret < 0)
1043		return ret;
1044
1045	ret = btrfs_del_item(trans, root, path);
1046	return ret;
1047}
1048
1049int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1050			     u64 group_start, struct extent_map *em)
1051{
1052	struct btrfs_fs_info *fs_info = trans->fs_info;
1053	struct btrfs_path *path;
1054	struct btrfs_block_group *block_group;
1055	struct btrfs_free_cluster *cluster;
1056	struct inode *inode;
1057	struct kobject *kobj = NULL;
1058	int ret;
1059	int index;
1060	int factor;
1061	struct btrfs_caching_control *caching_ctl = NULL;
1062	bool remove_em;
1063	bool remove_rsv = false;
1064
1065	block_group = btrfs_lookup_block_group(fs_info, group_start);
1066	BUG_ON(!block_group);
1067	BUG_ON(!block_group->ro);
1068
1069	trace_btrfs_remove_block_group(block_group);
1070	/*
1071	 * Free the reserved super bytes from this block group before
1072	 * remove it.
1073	 */
1074	btrfs_free_excluded_extents(block_group);
1075	btrfs_free_ref_tree_range(fs_info, block_group->start,
1076				  block_group->length);
1077
1078	index = btrfs_bg_flags_to_raid_index(block_group->flags);
1079	factor = btrfs_bg_type_to_factor(block_group->flags);
1080
1081	/* make sure this block group isn't part of an allocation cluster */
1082	cluster = &fs_info->data_alloc_cluster;
1083	spin_lock(&cluster->refill_lock);
1084	btrfs_return_cluster_to_free_space(block_group, cluster);
1085	spin_unlock(&cluster->refill_lock);
1086
1087	/*
1088	 * make sure this block group isn't part of a metadata
1089	 * allocation cluster
1090	 */
1091	cluster = &fs_info->meta_alloc_cluster;
1092	spin_lock(&cluster->refill_lock);
1093	btrfs_return_cluster_to_free_space(block_group, cluster);
1094	spin_unlock(&cluster->refill_lock);
1095
1096	btrfs_clear_treelog_bg(block_group);
1097	btrfs_clear_data_reloc_bg(block_group);
1098
1099	path = btrfs_alloc_path();
1100	if (!path) {
1101		ret = -ENOMEM;
1102		goto out;
1103	}
1104
1105	/*
1106	 * get the inode first so any iput calls done for the io_list
1107	 * aren't the final iput (no unlinks allowed now)
1108	 */
1109	inode = lookup_free_space_inode(block_group, path);
1110
1111	mutex_lock(&trans->transaction->cache_write_mutex);
1112	/*
1113	 * Make sure our free space cache IO is done before removing the
1114	 * free space inode
1115	 */
1116	spin_lock(&trans->transaction->dirty_bgs_lock);
1117	if (!list_empty(&block_group->io_list)) {
1118		list_del_init(&block_group->io_list);
1119
1120		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1121
1122		spin_unlock(&trans->transaction->dirty_bgs_lock);
1123		btrfs_wait_cache_io(trans, block_group, path);
1124		btrfs_put_block_group(block_group);
1125		spin_lock(&trans->transaction->dirty_bgs_lock);
1126	}
1127
1128	if (!list_empty(&block_group->dirty_list)) {
1129		list_del_init(&block_group->dirty_list);
1130		remove_rsv = true;
1131		btrfs_put_block_group(block_group);
1132	}
1133	spin_unlock(&trans->transaction->dirty_bgs_lock);
1134	mutex_unlock(&trans->transaction->cache_write_mutex);
1135
1136	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1137	if (ret)
1138		goto out;
1139
1140	write_lock(&fs_info->block_group_cache_lock);
1141	rb_erase_cached(&block_group->cache_node,
1142			&fs_info->block_group_cache_tree);
1143	RB_CLEAR_NODE(&block_group->cache_node);
1144
1145	/* Once for the block groups rbtree */
1146	btrfs_put_block_group(block_group);
1147
1148	write_unlock(&fs_info->block_group_cache_lock);
1149
1150	down_write(&block_group->space_info->groups_sem);
1151	/*
1152	 * we must use list_del_init so people can check to see if they
1153	 * are still on the list after taking the semaphore
1154	 */
1155	list_del_init(&block_group->list);
1156	if (list_empty(&block_group->space_info->block_groups[index])) {
1157		kobj = block_group->space_info->block_group_kobjs[index];
1158		block_group->space_info->block_group_kobjs[index] = NULL;
1159		clear_avail_alloc_bits(fs_info, block_group->flags);
1160	}
1161	up_write(&block_group->space_info->groups_sem);
1162	clear_incompat_bg_bits(fs_info, block_group->flags);
1163	if (kobj) {
1164		kobject_del(kobj);
1165		kobject_put(kobj);
1166	}
1167
1168	if (block_group->cached == BTRFS_CACHE_STARTED)
1169		btrfs_wait_block_group_cache_done(block_group);
1170
1171	write_lock(&fs_info->block_group_cache_lock);
1172	caching_ctl = btrfs_get_caching_control(block_group);
1173	if (!caching_ctl) {
1174		struct btrfs_caching_control *ctl;
1175
1176		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1177			if (ctl->block_group == block_group) {
1178				caching_ctl = ctl;
1179				refcount_inc(&caching_ctl->count);
1180				break;
1181			}
1182		}
1183	}
1184	if (caching_ctl)
1185		list_del_init(&caching_ctl->list);
1186	write_unlock(&fs_info->block_group_cache_lock);
1187
1188	if (caching_ctl) {
1189		/* Once for the caching bgs list and once for us. */
1190		btrfs_put_caching_control(caching_ctl);
1191		btrfs_put_caching_control(caching_ctl);
1192	}
1193
1194	spin_lock(&trans->transaction->dirty_bgs_lock);
1195	WARN_ON(!list_empty(&block_group->dirty_list));
1196	WARN_ON(!list_empty(&block_group->io_list));
1197	spin_unlock(&trans->transaction->dirty_bgs_lock);
1198
1199	btrfs_remove_free_space_cache(block_group);
1200
1201	spin_lock(&block_group->space_info->lock);
1202	list_del_init(&block_group->ro_list);
1203
1204	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1205		WARN_ON(block_group->space_info->total_bytes
1206			< block_group->length);
1207		WARN_ON(block_group->space_info->bytes_readonly
1208			< block_group->length - block_group->zone_unusable);
1209		WARN_ON(block_group->space_info->bytes_zone_unusable
1210			< block_group->zone_unusable);
1211		WARN_ON(block_group->space_info->disk_total
1212			< block_group->length * factor);
1213	}
1214	block_group->space_info->total_bytes -= block_group->length;
1215	block_group->space_info->bytes_readonly -=
1216		(block_group->length - block_group->zone_unusable);
1217	block_group->space_info->bytes_zone_unusable -=
1218		block_group->zone_unusable;
1219	block_group->space_info->disk_total -= block_group->length * factor;
1220
1221	spin_unlock(&block_group->space_info->lock);
1222
1223	/*
1224	 * Remove the free space for the block group from the free space tree
1225	 * and the block group's item from the extent tree before marking the
1226	 * block group as removed. This is to prevent races with tasks that
1227	 * freeze and unfreeze a block group, this task and another task
1228	 * allocating a new block group - the unfreeze task ends up removing
1229	 * the block group's extent map before the task calling this function
1230	 * deletes the block group item from the extent tree, allowing for
1231	 * another task to attempt to create another block group with the same
1232	 * item key (and failing with -EEXIST and a transaction abort).
1233	 */
1234	ret = remove_block_group_free_space(trans, block_group);
1235	if (ret)
1236		goto out;
1237
1238	ret = remove_block_group_item(trans, path, block_group);
1239	if (ret < 0)
1240		goto out;
1241
1242	spin_lock(&block_group->lock);
1243	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1244
1245	/*
1246	 * At this point trimming or scrub can't start on this block group,
1247	 * because we removed the block group from the rbtree
1248	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1249	 * even if someone already got this block group before we removed it
1250	 * from the rbtree, they have already incremented block_group->frozen -
1251	 * if they didn't, for the trimming case they won't find any free space
1252	 * entries because we already removed them all when we called
1253	 * btrfs_remove_free_space_cache().
1254	 *
1255	 * And we must not remove the extent map from the fs_info->mapping_tree
1256	 * to prevent the same logical address range and physical device space
1257	 * ranges from being reused for a new block group. This is needed to
1258	 * avoid races with trimming and scrub.
1259	 *
1260	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1261	 * completely transactionless, so while it is trimming a range the
1262	 * currently running transaction might finish and a new one start,
1263	 * allowing for new block groups to be created that can reuse the same
1264	 * physical device locations unless we take this special care.
1265	 *
1266	 * There may also be an implicit trim operation if the file system
1267	 * is mounted with -odiscard. The same protections must remain
1268	 * in place until the extents have been discarded completely when
1269	 * the transaction commit has completed.
1270	 */
1271	remove_em = (atomic_read(&block_group->frozen) == 0);
1272	spin_unlock(&block_group->lock);
1273
1274	if (remove_em) {
1275		struct extent_map_tree *em_tree;
1276
1277		em_tree = &fs_info->mapping_tree;
1278		write_lock(&em_tree->lock);
1279		remove_extent_mapping(em_tree, em);
1280		write_unlock(&em_tree->lock);
1281		/* once for the tree */
1282		free_extent_map(em);
1283	}
1284
1285out:
1286	/* Once for the lookup reference */
1287	btrfs_put_block_group(block_group);
1288	if (remove_rsv)
1289		btrfs_delayed_refs_rsv_release(fs_info, 1);
1290	btrfs_free_path(path);
1291	return ret;
1292}
1293
1294struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1295		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1296{
1297	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1298	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1299	struct extent_map *em;
1300	struct map_lookup *map;
1301	unsigned int num_items;
1302
1303	read_lock(&em_tree->lock);
1304	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1305	read_unlock(&em_tree->lock);
1306	ASSERT(em && em->start == chunk_offset);
1307
1308	/*
1309	 * We need to reserve 3 + N units from the metadata space info in order
1310	 * to remove a block group (done at btrfs_remove_chunk() and at
1311	 * btrfs_remove_block_group()), which are used for:
1312	 *
1313	 * 1 unit for adding the free space inode's orphan (located in the tree
1314	 * of tree roots).
1315	 * 1 unit for deleting the block group item (located in the extent
1316	 * tree).
1317	 * 1 unit for deleting the free space item (located in tree of tree
1318	 * roots).
1319	 * N units for deleting N device extent items corresponding to each
1320	 * stripe (located in the device tree).
1321	 *
1322	 * In order to remove a block group we also need to reserve units in the
1323	 * system space info in order to update the chunk tree (update one or
1324	 * more device items and remove one chunk item), but this is done at
1325	 * btrfs_remove_chunk() through a call to check_system_chunk().
1326	 */
1327	map = em->map_lookup;
1328	num_items = 3 + map->num_stripes;
1329	free_extent_map(em);
1330
1331	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1332}
1333
1334/*
1335 * Mark block group @cache read-only, so later write won't happen to block
1336 * group @cache.
1337 *
1338 * If @force is not set, this function will only mark the block group readonly
1339 * if we have enough free space (1M) in other metadata/system block groups.
1340 * If @force is not set, this function will mark the block group readonly
1341 * without checking free space.
1342 *
1343 * NOTE: This function doesn't care if other block groups can contain all the
1344 * data in this block group. That check should be done by relocation routine,
1345 * not this function.
1346 */
1347static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1348{
1349	struct btrfs_space_info *sinfo = cache->space_info;
1350	u64 num_bytes;
1351	int ret = -ENOSPC;
1352
1353	spin_lock(&sinfo->lock);
1354	spin_lock(&cache->lock);
1355
1356	if (cache->swap_extents) {
1357		ret = -ETXTBSY;
1358		goto out;
1359	}
1360
1361	if (cache->ro) {
1362		cache->ro++;
1363		ret = 0;
1364		goto out;
1365	}
1366
1367	num_bytes = cache->length - cache->reserved - cache->pinned -
1368		    cache->bytes_super - cache->zone_unusable - cache->used;
1369
1370	/*
1371	 * Data never overcommits, even in mixed mode, so do just the straight
1372	 * check of left over space in how much we have allocated.
1373	 */
1374	if (force) {
1375		ret = 0;
1376	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1377		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1378
1379		/*
1380		 * Here we make sure if we mark this bg RO, we still have enough
1381		 * free space as buffer.
1382		 */
1383		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1384			ret = 0;
1385	} else {
1386		/*
1387		 * We overcommit metadata, so we need to do the
1388		 * btrfs_can_overcommit check here, and we need to pass in
1389		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1390		 * leeway to allow us to mark this block group as read only.
1391		 */
1392		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1393					 BTRFS_RESERVE_NO_FLUSH))
1394			ret = 0;
1395	}
1396
1397	if (!ret) {
1398		sinfo->bytes_readonly += num_bytes;
1399		if (btrfs_is_zoned(cache->fs_info)) {
1400			/* Migrate zone_unusable bytes to readonly */
1401			sinfo->bytes_readonly += cache->zone_unusable;
1402			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1403			cache->zone_unusable = 0;
1404		}
1405		cache->ro++;
1406		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1407	}
1408out:
1409	spin_unlock(&cache->lock);
1410	spin_unlock(&sinfo->lock);
1411	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1412		btrfs_info(cache->fs_info,
1413			"unable to make block group %llu ro", cache->start);
1414		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1415	}
1416	return ret;
1417}
1418
1419static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1420				 struct btrfs_block_group *bg)
1421{
1422	struct btrfs_fs_info *fs_info = bg->fs_info;
1423	struct btrfs_transaction *prev_trans = NULL;
1424	const u64 start = bg->start;
1425	const u64 end = start + bg->length - 1;
1426	int ret;
1427
1428	spin_lock(&fs_info->trans_lock);
1429	if (trans->transaction->list.prev != &fs_info->trans_list) {
1430		prev_trans = list_last_entry(&trans->transaction->list,
1431					     struct btrfs_transaction, list);
1432		refcount_inc(&prev_trans->use_count);
1433	}
1434	spin_unlock(&fs_info->trans_lock);
1435
1436	/*
1437	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1438	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1439	 * task might be running finish_extent_commit() for the previous
1440	 * transaction N - 1, and have seen a range belonging to the block
1441	 * group in pinned_extents before we were able to clear the whole block
1442	 * group range from pinned_extents. This means that task can lookup for
1443	 * the block group after we unpinned it from pinned_extents and removed
1444	 * it, leading to a BUG_ON() at unpin_extent_range().
1445	 */
1446	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1447	if (prev_trans) {
1448		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1449					EXTENT_DIRTY);
1450		if (ret)
1451			goto out;
1452	}
1453
1454	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1455				EXTENT_DIRTY);
1456out:
1457	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1458	if (prev_trans)
1459		btrfs_put_transaction(prev_trans);
1460
1461	return ret == 0;
1462}
1463
1464/*
1465 * Process the unused_bgs list and remove any that don't have any allocated
1466 * space inside of them.
1467 */
1468void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1469{
1470	LIST_HEAD(retry_list);
1471	struct btrfs_block_group *block_group;
1472	struct btrfs_space_info *space_info;
1473	struct btrfs_trans_handle *trans;
1474	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1475	int ret = 0;
1476
1477	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1478		return;
1479
1480	if (btrfs_fs_closing(fs_info))
1481		return;
1482
1483	/*
1484	 * Long running balances can keep us blocked here for eternity, so
1485	 * simply skip deletion if we're unable to get the mutex.
1486	 */
1487	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1488		return;
1489
1490	spin_lock(&fs_info->unused_bgs_lock);
1491	while (!list_empty(&fs_info->unused_bgs)) {
1492		u64 used;
1493		int trimming;
1494
1495		block_group = list_first_entry(&fs_info->unused_bgs,
1496					       struct btrfs_block_group,
1497					       bg_list);
1498		list_del_init(&block_group->bg_list);
1499
1500		space_info = block_group->space_info;
1501
1502		if (ret || btrfs_mixed_space_info(space_info)) {
1503			btrfs_put_block_group(block_group);
1504			continue;
1505		}
1506		spin_unlock(&fs_info->unused_bgs_lock);
1507
1508		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1509
1510		/* Don't want to race with allocators so take the groups_sem */
1511		down_write(&space_info->groups_sem);
1512
1513		/*
1514		 * Async discard moves the final block group discard to be prior
1515		 * to the unused_bgs code path.  Therefore, if it's not fully
1516		 * trimmed, punt it back to the async discard lists.
1517		 */
1518		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1519		    !btrfs_is_free_space_trimmed(block_group)) {
1520			trace_btrfs_skip_unused_block_group(block_group);
1521			up_write(&space_info->groups_sem);
1522			/* Requeue if we failed because of async discard */
1523			btrfs_discard_queue_work(&fs_info->discard_ctl,
1524						 block_group);
1525			goto next;
1526		}
1527
1528		spin_lock(&space_info->lock);
1529		spin_lock(&block_group->lock);
1530		if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1531		    list_is_singular(&block_group->list)) {
1532			/*
1533			 * We want to bail if we made new allocations or have
1534			 * outstanding allocations in this block group.  We do
1535			 * the ro check in case balance is currently acting on
1536			 * this block group.
1537			 */
1538			trace_btrfs_skip_unused_block_group(block_group);
1539			spin_unlock(&block_group->lock);
1540			spin_unlock(&space_info->lock);
1541			up_write(&space_info->groups_sem);
1542			goto next;
1543		}
1544
1545		/*
1546		 * The block group may be unused but there may be space reserved
1547		 * accounting with the existence of that block group, that is,
1548		 * space_info->bytes_may_use was incremented by a task but no
1549		 * space was yet allocated from the block group by the task.
1550		 * That space may or may not be allocated, as we are generally
1551		 * pessimistic about space reservation for metadata as well as
1552		 * for data when using compression (as we reserve space based on
1553		 * the worst case, when data can't be compressed, and before
1554		 * actually attempting compression, before starting writeback).
1555		 *
1556		 * So check if the total space of the space_info minus the size
1557		 * of this block group is less than the used space of the
1558		 * space_info - if that's the case, then it means we have tasks
1559		 * that might be relying on the block group in order to allocate
1560		 * extents, and add back the block group to the unused list when
1561		 * we finish, so that we retry later in case no tasks ended up
1562		 * needing to allocate extents from the block group.
1563		 */
1564		used = btrfs_space_info_used(space_info, true);
1565		if (space_info->total_bytes - block_group->length < used) {
1566			/*
1567			 * Add a reference for the list, compensate for the ref
1568			 * drop under the "next" label for the
1569			 * fs_info->unused_bgs list.
1570			 */
1571			btrfs_get_block_group(block_group);
1572			list_add_tail(&block_group->bg_list, &retry_list);
1573
1574			trace_btrfs_skip_unused_block_group(block_group);
1575			spin_unlock(&block_group->lock);
1576			spin_unlock(&space_info->lock);
1577			up_write(&space_info->groups_sem);
1578			goto next;
1579		}
1580
1581		spin_unlock(&block_group->lock);
1582		spin_unlock(&space_info->lock);
1583
1584		/* We don't want to force the issue, only flip if it's ok. */
1585		ret = inc_block_group_ro(block_group, 0);
1586		up_write(&space_info->groups_sem);
1587		if (ret < 0) {
1588			ret = 0;
1589			goto next;
1590		}
1591
1592		ret = btrfs_zone_finish(block_group);
1593		if (ret < 0) {
1594			btrfs_dec_block_group_ro(block_group);
1595			if (ret == -EAGAIN)
1596				ret = 0;
1597			goto next;
1598		}
1599
1600		/*
1601		 * Want to do this before we do anything else so we can recover
1602		 * properly if we fail to join the transaction.
1603		 */
1604		trans = btrfs_start_trans_remove_block_group(fs_info,
1605						     block_group->start);
1606		if (IS_ERR(trans)) {
1607			btrfs_dec_block_group_ro(block_group);
1608			ret = PTR_ERR(trans);
1609			goto next;
1610		}
1611
1612		/*
1613		 * We could have pending pinned extents for this block group,
1614		 * just delete them, we don't care about them anymore.
1615		 */
1616		if (!clean_pinned_extents(trans, block_group)) {
1617			btrfs_dec_block_group_ro(block_group);
1618			goto end_trans;
1619		}
1620
1621		/*
1622		 * At this point, the block_group is read only and should fail
1623		 * new allocations.  However, btrfs_finish_extent_commit() can
1624		 * cause this block_group to be placed back on the discard
1625		 * lists because now the block_group isn't fully discarded.
1626		 * Bail here and try again later after discarding everything.
1627		 */
1628		spin_lock(&fs_info->discard_ctl.lock);
1629		if (!list_empty(&block_group->discard_list)) {
1630			spin_unlock(&fs_info->discard_ctl.lock);
1631			btrfs_dec_block_group_ro(block_group);
1632			btrfs_discard_queue_work(&fs_info->discard_ctl,
1633						 block_group);
1634			goto end_trans;
1635		}
1636		spin_unlock(&fs_info->discard_ctl.lock);
1637
1638		/* Reset pinned so btrfs_put_block_group doesn't complain */
1639		spin_lock(&space_info->lock);
1640		spin_lock(&block_group->lock);
1641
1642		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1643						     -block_group->pinned);
1644		space_info->bytes_readonly += block_group->pinned;
1645		block_group->pinned = 0;
1646
1647		spin_unlock(&block_group->lock);
1648		spin_unlock(&space_info->lock);
1649
1650		/*
1651		 * The normal path here is an unused block group is passed here,
1652		 * then trimming is handled in the transaction commit path.
1653		 * Async discard interposes before this to do the trimming
1654		 * before coming down the unused block group path as trimming
1655		 * will no longer be done later in the transaction commit path.
1656		 */
1657		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1658			goto flip_async;
1659
1660		/*
1661		 * DISCARD can flip during remount. On zoned filesystems, we
1662		 * need to reset sequential-required zones.
1663		 */
1664		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1665				btrfs_is_zoned(fs_info);
1666
1667		/* Implicit trim during transaction commit. */
1668		if (trimming)
1669			btrfs_freeze_block_group(block_group);
1670
1671		/*
1672		 * Btrfs_remove_chunk will abort the transaction if things go
1673		 * horribly wrong.
1674		 */
1675		ret = btrfs_remove_chunk(trans, block_group->start);
1676
1677		if (ret) {
1678			if (trimming)
1679				btrfs_unfreeze_block_group(block_group);
1680			goto end_trans;
1681		}
1682
1683		/*
1684		 * If we're not mounted with -odiscard, we can just forget
1685		 * about this block group. Otherwise we'll need to wait
1686		 * until transaction commit to do the actual discard.
1687		 */
1688		if (trimming) {
1689			spin_lock(&fs_info->unused_bgs_lock);
1690			/*
1691			 * A concurrent scrub might have added us to the list
1692			 * fs_info->unused_bgs, so use a list_move operation
1693			 * to add the block group to the deleted_bgs list.
1694			 */
1695			list_move(&block_group->bg_list,
1696				  &trans->transaction->deleted_bgs);
1697			spin_unlock(&fs_info->unused_bgs_lock);
1698			btrfs_get_block_group(block_group);
1699		}
1700end_trans:
1701		btrfs_end_transaction(trans);
1702next:
1703		btrfs_put_block_group(block_group);
1704		spin_lock(&fs_info->unused_bgs_lock);
1705	}
1706	list_splice_tail(&retry_list, &fs_info->unused_bgs);
1707	spin_unlock(&fs_info->unused_bgs_lock);
1708	mutex_unlock(&fs_info->reclaim_bgs_lock);
1709	return;
1710
1711flip_async:
1712	btrfs_end_transaction(trans);
1713	spin_lock(&fs_info->unused_bgs_lock);
1714	list_splice_tail(&retry_list, &fs_info->unused_bgs);
1715	spin_unlock(&fs_info->unused_bgs_lock);
1716	mutex_unlock(&fs_info->reclaim_bgs_lock);
1717	btrfs_put_block_group(block_group);
1718	btrfs_discard_punt_unused_bgs_list(fs_info);
1719}
1720
1721void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1722{
1723	struct btrfs_fs_info *fs_info = bg->fs_info;
1724
1725	spin_lock(&fs_info->unused_bgs_lock);
1726	if (list_empty(&bg->bg_list)) {
1727		btrfs_get_block_group(bg);
1728		trace_btrfs_add_unused_block_group(bg);
1729		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1730	} else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1731		/* Pull out the block group from the reclaim_bgs list. */
1732		trace_btrfs_add_unused_block_group(bg);
1733		list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1734	}
1735	spin_unlock(&fs_info->unused_bgs_lock);
1736}
1737
1738/*
1739 * We want block groups with a low number of used bytes to be in the beginning
1740 * of the list, so they will get reclaimed first.
1741 */
1742static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1743			   const struct list_head *b)
1744{
1745	const struct btrfs_block_group *bg1, *bg2;
1746
1747	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1748	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1749
1750	return bg1->used > bg2->used;
1751}
1752
1753static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1754{
1755	if (btrfs_is_zoned(fs_info))
1756		return btrfs_zoned_should_reclaim(fs_info);
1757	return true;
1758}
1759
1760static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1761{
1762	const struct btrfs_space_info *space_info = bg->space_info;
1763	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1764	const u64 new_val = bg->used;
1765	const u64 old_val = new_val + bytes_freed;
1766	u64 thresh;
1767
1768	if (reclaim_thresh == 0)
1769		return false;
1770
1771	thresh = mult_perc(bg->length, reclaim_thresh);
1772
1773	/*
1774	 * If we were below the threshold before don't reclaim, we are likely a
1775	 * brand new block group and we don't want to relocate new block groups.
1776	 */
1777	if (old_val < thresh)
1778		return false;
1779	if (new_val >= thresh)
1780		return false;
1781	return true;
1782}
1783
1784void btrfs_reclaim_bgs_work(struct work_struct *work)
1785{
1786	struct btrfs_fs_info *fs_info =
1787		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1788	struct btrfs_block_group *bg;
1789	struct btrfs_space_info *space_info;
1790
1791	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1792		return;
1793
1794	if (btrfs_fs_closing(fs_info))
1795		return;
1796
1797	if (!btrfs_should_reclaim(fs_info))
1798		return;
1799
1800	sb_start_write(fs_info->sb);
1801
1802	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1803		sb_end_write(fs_info->sb);
1804		return;
1805	}
1806
1807	/*
1808	 * Long running balances can keep us blocked here for eternity, so
1809	 * simply skip reclaim if we're unable to get the mutex.
1810	 */
1811	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1812		btrfs_exclop_finish(fs_info);
1813		sb_end_write(fs_info->sb);
1814		return;
1815	}
1816
1817	spin_lock(&fs_info->unused_bgs_lock);
1818	/*
1819	 * Sort happens under lock because we can't simply splice it and sort.
1820	 * The block groups might still be in use and reachable via bg_list,
1821	 * and their presence in the reclaim_bgs list must be preserved.
1822	 */
1823	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1824	while (!list_empty(&fs_info->reclaim_bgs)) {
1825		u64 zone_unusable;
1826		int ret = 0;
1827
1828		bg = list_first_entry(&fs_info->reclaim_bgs,
1829				      struct btrfs_block_group,
1830				      bg_list);
1831		list_del_init(&bg->bg_list);
1832
1833		space_info = bg->space_info;
1834		spin_unlock(&fs_info->unused_bgs_lock);
1835
1836		/* Don't race with allocators so take the groups_sem */
1837		down_write(&space_info->groups_sem);
1838
1839		spin_lock(&bg->lock);
1840		if (bg->reserved || bg->pinned || bg->ro) {
1841			/*
1842			 * We want to bail if we made new allocations or have
1843			 * outstanding allocations in this block group.  We do
1844			 * the ro check in case balance is currently acting on
1845			 * this block group.
1846			 */
1847			spin_unlock(&bg->lock);
1848			up_write(&space_info->groups_sem);
1849			goto next;
1850		}
1851		if (bg->used == 0) {
1852			/*
1853			 * It is possible that we trigger relocation on a block
1854			 * group as its extents are deleted and it first goes
1855			 * below the threshold, then shortly after goes empty.
1856			 *
1857			 * In this case, relocating it does delete it, but has
1858			 * some overhead in relocation specific metadata, looking
1859			 * for the non-existent extents and running some extra
1860			 * transactions, which we can avoid by using one of the
1861			 * other mechanisms for dealing with empty block groups.
1862			 */
1863			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1864				btrfs_mark_bg_unused(bg);
1865			spin_unlock(&bg->lock);
1866			up_write(&space_info->groups_sem);
1867			goto next;
1868
1869		}
1870		/*
1871		 * The block group might no longer meet the reclaim condition by
1872		 * the time we get around to reclaiming it, so to avoid
1873		 * reclaiming overly full block_groups, skip reclaiming them.
1874		 *
1875		 * Since the decision making process also depends on the amount
1876		 * being freed, pass in a fake giant value to skip that extra
1877		 * check, which is more meaningful when adding to the list in
1878		 * the first place.
1879		 */
1880		if (!should_reclaim_block_group(bg, bg->length)) {
1881			spin_unlock(&bg->lock);
1882			up_write(&space_info->groups_sem);
1883			goto next;
1884		}
1885		spin_unlock(&bg->lock);
1886
1887		/*
1888		 * Get out fast, in case we're read-only or unmounting the
1889		 * filesystem. It is OK to drop block groups from the list even
1890		 * for the read-only case. As we did sb_start_write(),
1891		 * "mount -o remount,ro" won't happen and read-only filesystem
1892		 * means it is forced read-only due to a fatal error. So, it
1893		 * never gets back to read-write to let us reclaim again.
1894		 */
1895		if (btrfs_need_cleaner_sleep(fs_info)) {
1896			up_write(&space_info->groups_sem);
1897			goto next;
1898		}
1899
1900		/*
1901		 * Cache the zone_unusable value before turning the block group
1902		 * to read only. As soon as the blog group is read only it's
1903		 * zone_unusable value gets moved to the block group's read-only
1904		 * bytes and isn't available for calculations anymore.
1905		 */
1906		zone_unusable = bg->zone_unusable;
1907		ret = inc_block_group_ro(bg, 0);
1908		up_write(&space_info->groups_sem);
1909		if (ret < 0)
1910			goto next;
1911
1912		btrfs_info(fs_info,
1913			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1914				bg->start,
1915				div64_u64(bg->used * 100, bg->length),
1916				div64_u64(zone_unusable * 100, bg->length));
1917		trace_btrfs_reclaim_block_group(bg);
1918		ret = btrfs_relocate_chunk(fs_info, bg->start);
1919		if (ret) {
1920			btrfs_dec_block_group_ro(bg);
1921			btrfs_err(fs_info, "error relocating chunk %llu",
1922				  bg->start);
1923		}
1924
1925next:
1926		if (ret)
1927			btrfs_mark_bg_to_reclaim(bg);
1928		btrfs_put_block_group(bg);
1929
1930		mutex_unlock(&fs_info->reclaim_bgs_lock);
1931		/*
1932		 * Reclaiming all the block groups in the list can take really
1933		 * long.  Prioritize cleaning up unused block groups.
1934		 */
1935		btrfs_delete_unused_bgs(fs_info);
1936		/*
1937		 * If we are interrupted by a balance, we can just bail out. The
1938		 * cleaner thread restart again if necessary.
1939		 */
1940		if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1941			goto end;
1942		spin_lock(&fs_info->unused_bgs_lock);
1943	}
1944	spin_unlock(&fs_info->unused_bgs_lock);
1945	mutex_unlock(&fs_info->reclaim_bgs_lock);
1946end:
1947	btrfs_exclop_finish(fs_info);
1948	sb_end_write(fs_info->sb);
1949}
1950
1951void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1952{
1953	spin_lock(&fs_info->unused_bgs_lock);
1954	if (!list_empty(&fs_info->reclaim_bgs))
1955		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1956	spin_unlock(&fs_info->unused_bgs_lock);
1957}
1958
1959void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1960{
1961	struct btrfs_fs_info *fs_info = bg->fs_info;
1962
1963	spin_lock(&fs_info->unused_bgs_lock);
1964	if (list_empty(&bg->bg_list)) {
1965		btrfs_get_block_group(bg);
1966		trace_btrfs_add_reclaim_block_group(bg);
1967		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1968	}
1969	spin_unlock(&fs_info->unused_bgs_lock);
1970}
1971
1972static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1973			   struct btrfs_path *path)
1974{
1975	struct extent_map_tree *em_tree;
1976	struct extent_map *em;
1977	struct btrfs_block_group_item bg;
1978	struct extent_buffer *leaf;
1979	int slot;
1980	u64 flags;
1981	int ret = 0;
1982
1983	slot = path->slots[0];
1984	leaf = path->nodes[0];
1985
1986	em_tree = &fs_info->mapping_tree;
1987	read_lock(&em_tree->lock);
1988	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1989	read_unlock(&em_tree->lock);
1990	if (!em) {
1991		btrfs_err(fs_info,
1992			  "logical %llu len %llu found bg but no related chunk",
1993			  key->objectid, key->offset);
1994		return -ENOENT;
1995	}
1996
1997	if (em->start != key->objectid || em->len != key->offset) {
1998		btrfs_err(fs_info,
1999			"block group %llu len %llu mismatch with chunk %llu len %llu",
2000			key->objectid, key->offset, em->start, em->len);
2001		ret = -EUCLEAN;
2002		goto out_free_em;
2003	}
2004
2005	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2006			   sizeof(bg));
2007	flags = btrfs_stack_block_group_flags(&bg) &
2008		BTRFS_BLOCK_GROUP_TYPE_MASK;
2009
2010	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2011		btrfs_err(fs_info,
2012"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2013			  key->objectid, key->offset, flags,
2014			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
2015		ret = -EUCLEAN;
2016	}
2017
2018out_free_em:
2019	free_extent_map(em);
2020	return ret;
2021}
2022
2023static int find_first_block_group(struct btrfs_fs_info *fs_info,
2024				  struct btrfs_path *path,
2025				  struct btrfs_key *key)
2026{
2027	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2028	int ret;
2029	struct btrfs_key found_key;
2030
2031	btrfs_for_each_slot(root, key, &found_key, path, ret) {
2032		if (found_key.objectid >= key->objectid &&
2033		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2034			return read_bg_from_eb(fs_info, &found_key, path);
2035		}
2036	}
2037	return ret;
2038}
2039
2040static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2041{
2042	u64 extra_flags = chunk_to_extended(flags) &
2043				BTRFS_EXTENDED_PROFILE_MASK;
2044
2045	write_seqlock(&fs_info->profiles_lock);
2046	if (flags & BTRFS_BLOCK_GROUP_DATA)
2047		fs_info->avail_data_alloc_bits |= extra_flags;
2048	if (flags & BTRFS_BLOCK_GROUP_METADATA)
2049		fs_info->avail_metadata_alloc_bits |= extra_flags;
2050	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2051		fs_info->avail_system_alloc_bits |= extra_flags;
2052	write_sequnlock(&fs_info->profiles_lock);
2053}
2054
2055/*
2056 * Map a physical disk address to a list of logical addresses.
2057 *
2058 * @fs_info:       the filesystem
2059 * @chunk_start:   logical address of block group
2060 * @physical:	   physical address to map to logical addresses
2061 * @logical:	   return array of logical addresses which map to @physical
2062 * @naddrs:	   length of @logical
2063 * @stripe_len:    size of IO stripe for the given block group
2064 *
2065 * Maps a particular @physical disk address to a list of @logical addresses.
2066 * Used primarily to exclude those portions of a block group that contain super
2067 * block copies.
2068 */
2069int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2070		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2071{
2072	struct extent_map *em;
2073	struct map_lookup *map;
2074	u64 *buf;
2075	u64 bytenr;
2076	u64 data_stripe_length;
2077	u64 io_stripe_size;
2078	int i, nr = 0;
2079	int ret = 0;
2080
2081	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2082	if (IS_ERR(em))
2083		return -EIO;
2084
2085	map = em->map_lookup;
2086	data_stripe_length = em->orig_block_len;
2087	io_stripe_size = BTRFS_STRIPE_LEN;
2088	chunk_start = em->start;
2089
2090	/* For RAID5/6 adjust to a full IO stripe length */
2091	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2092		io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2093
2094	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2095	if (!buf) {
2096		ret = -ENOMEM;
2097		goto out;
2098	}
2099
2100	for (i = 0; i < map->num_stripes; i++) {
2101		bool already_inserted = false;
2102		u32 stripe_nr;
2103		u32 offset;
2104		int j;
2105
2106		if (!in_range(physical, map->stripes[i].physical,
2107			      data_stripe_length))
2108			continue;
2109
2110		stripe_nr = (physical - map->stripes[i].physical) >>
2111			    BTRFS_STRIPE_LEN_SHIFT;
2112		offset = (physical - map->stripes[i].physical) &
2113			 BTRFS_STRIPE_LEN_MASK;
2114
2115		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2116				 BTRFS_BLOCK_GROUP_RAID10))
2117			stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2118					    map->sub_stripes);
2119		/*
2120		 * The remaining case would be for RAID56, multiply by
2121		 * nr_data_stripes().  Alternatively, just use rmap_len below
2122		 * instead of map->stripe_len
2123		 */
2124		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2125
2126		/* Ensure we don't add duplicate addresses */
2127		for (j = 0; j < nr; j++) {
2128			if (buf[j] == bytenr) {
2129				already_inserted = true;
2130				break;
2131			}
2132		}
2133
2134		if (!already_inserted)
2135			buf[nr++] = bytenr;
2136	}
2137
2138	*logical = buf;
2139	*naddrs = nr;
2140	*stripe_len = io_stripe_size;
2141out:
2142	free_extent_map(em);
2143	return ret;
2144}
2145
2146static int exclude_super_stripes(struct btrfs_block_group *cache)
2147{
2148	struct btrfs_fs_info *fs_info = cache->fs_info;
2149	const bool zoned = btrfs_is_zoned(fs_info);
2150	u64 bytenr;
2151	u64 *logical;
2152	int stripe_len;
2153	int i, nr, ret;
2154
2155	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2156		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2157		cache->bytes_super += stripe_len;
2158		ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2159				     cache->start + stripe_len - 1,
2160				     EXTENT_UPTODATE, NULL);
2161		if (ret)
2162			return ret;
2163	}
2164
2165	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2166		bytenr = btrfs_sb_offset(i);
2167		ret = btrfs_rmap_block(fs_info, cache->start,
2168				       bytenr, &logical, &nr, &stripe_len);
2169		if (ret)
2170			return ret;
2171
2172		/* Shouldn't have super stripes in sequential zones */
2173		if (zoned && nr) {
2174			kfree(logical);
2175			btrfs_err(fs_info,
2176			"zoned: block group %llu must not contain super block",
2177				  cache->start);
2178			return -EUCLEAN;
2179		}
2180
2181		while (nr--) {
2182			u64 len = min_t(u64, stripe_len,
2183				cache->start + cache->length - logical[nr]);
2184
2185			cache->bytes_super += len;
2186			ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2187					     logical[nr] + len - 1,
2188					     EXTENT_UPTODATE, NULL);
2189			if (ret) {
2190				kfree(logical);
2191				return ret;
2192			}
2193		}
2194
2195		kfree(logical);
2196	}
2197	return 0;
2198}
2199
2200static struct btrfs_block_group *btrfs_create_block_group_cache(
2201		struct btrfs_fs_info *fs_info, u64 start)
2202{
2203	struct btrfs_block_group *cache;
2204
2205	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2206	if (!cache)
2207		return NULL;
2208
2209	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2210					GFP_NOFS);
2211	if (!cache->free_space_ctl) {
2212		kfree(cache);
2213		return NULL;
2214	}
2215
2216	cache->start = start;
2217
2218	cache->fs_info = fs_info;
2219	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2220
2221	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2222
2223	refcount_set(&cache->refs, 1);
2224	spin_lock_init(&cache->lock);
2225	init_rwsem(&cache->data_rwsem);
2226	INIT_LIST_HEAD(&cache->list);
2227	INIT_LIST_HEAD(&cache->cluster_list);
2228	INIT_LIST_HEAD(&cache->bg_list);
2229	INIT_LIST_HEAD(&cache->ro_list);
2230	INIT_LIST_HEAD(&cache->discard_list);
2231	INIT_LIST_HEAD(&cache->dirty_list);
2232	INIT_LIST_HEAD(&cache->io_list);
2233	INIT_LIST_HEAD(&cache->active_bg_list);
2234	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2235	atomic_set(&cache->frozen, 0);
2236	mutex_init(&cache->free_space_lock);
2237
2238	return cache;
2239}
2240
2241/*
2242 * Iterate all chunks and verify that each of them has the corresponding block
2243 * group
2244 */
2245static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2246{
2247	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2248	struct extent_map *em;
2249	struct btrfs_block_group *bg;
2250	u64 start = 0;
2251	int ret = 0;
2252
2253	while (1) {
2254		read_lock(&map_tree->lock);
2255		/*
2256		 * lookup_extent_mapping will return the first extent map
2257		 * intersecting the range, so setting @len to 1 is enough to
2258		 * get the first chunk.
2259		 */
2260		em = lookup_extent_mapping(map_tree, start, 1);
2261		read_unlock(&map_tree->lock);
2262		if (!em)
2263			break;
2264
2265		bg = btrfs_lookup_block_group(fs_info, em->start);
2266		if (!bg) {
2267			btrfs_err(fs_info,
2268	"chunk start=%llu len=%llu doesn't have corresponding block group",
2269				     em->start, em->len);
2270			ret = -EUCLEAN;
2271			free_extent_map(em);
2272			break;
2273		}
2274		if (bg->start != em->start || bg->length != em->len ||
2275		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2276		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2277			btrfs_err(fs_info,
2278"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2279				em->start, em->len,
2280				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2281				bg->start, bg->length,
2282				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2283			ret = -EUCLEAN;
2284			free_extent_map(em);
2285			btrfs_put_block_group(bg);
2286			break;
2287		}
2288		start = em->start + em->len;
2289		free_extent_map(em);
2290		btrfs_put_block_group(bg);
2291	}
2292	return ret;
2293}
2294
2295static int read_one_block_group(struct btrfs_fs_info *info,
2296				struct btrfs_block_group_item *bgi,
2297				const struct btrfs_key *key,
2298				int need_clear)
2299{
2300	struct btrfs_block_group *cache;
2301	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2302	int ret;
2303
2304	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2305
2306	cache = btrfs_create_block_group_cache(info, key->objectid);
2307	if (!cache)
2308		return -ENOMEM;
2309
2310	cache->length = key->offset;
2311	cache->used = btrfs_stack_block_group_used(bgi);
2312	cache->commit_used = cache->used;
2313	cache->flags = btrfs_stack_block_group_flags(bgi);
2314	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2315
2316	set_free_space_tree_thresholds(cache);
2317
2318	if (need_clear) {
2319		/*
2320		 * When we mount with old space cache, we need to
2321		 * set BTRFS_DC_CLEAR and set dirty flag.
2322		 *
2323		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2324		 *    truncate the old free space cache inode and
2325		 *    setup a new one.
2326		 * b) Setting 'dirty flag' makes sure that we flush
2327		 *    the new space cache info onto disk.
2328		 */
2329		if (btrfs_test_opt(info, SPACE_CACHE))
2330			cache->disk_cache_state = BTRFS_DC_CLEAR;
2331	}
2332	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2333	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2334			btrfs_err(info,
2335"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2336				  cache->start);
2337			ret = -EINVAL;
2338			goto error;
2339	}
2340
2341	ret = btrfs_load_block_group_zone_info(cache, false);
2342	if (ret) {
2343		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2344			  cache->start);
2345		goto error;
2346	}
2347
2348	/*
2349	 * We need to exclude the super stripes now so that the space info has
2350	 * super bytes accounted for, otherwise we'll think we have more space
2351	 * than we actually do.
2352	 */
2353	ret = exclude_super_stripes(cache);
2354	if (ret) {
2355		/* We may have excluded something, so call this just in case. */
2356		btrfs_free_excluded_extents(cache);
2357		goto error;
2358	}
2359
2360	/*
2361	 * For zoned filesystem, space after the allocation offset is the only
2362	 * free space for a block group. So, we don't need any caching work.
2363	 * btrfs_calc_zone_unusable() will set the amount of free space and
2364	 * zone_unusable space.
2365	 *
2366	 * For regular filesystem, check for two cases, either we are full, and
2367	 * therefore don't need to bother with the caching work since we won't
2368	 * find any space, or we are empty, and we can just add all the space
2369	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2370	 * in the full case.
2371	 */
2372	if (btrfs_is_zoned(info)) {
2373		btrfs_calc_zone_unusable(cache);
2374		/* Should not have any excluded extents. Just in case, though. */
2375		btrfs_free_excluded_extents(cache);
2376	} else if (cache->length == cache->used) {
2377		cache->cached = BTRFS_CACHE_FINISHED;
2378		btrfs_free_excluded_extents(cache);
2379	} else if (cache->used == 0) {
2380		cache->cached = BTRFS_CACHE_FINISHED;
2381		ret = btrfs_add_new_free_space(cache, cache->start,
2382					       cache->start + cache->length, NULL);
2383		btrfs_free_excluded_extents(cache);
2384		if (ret)
2385			goto error;
2386	}
2387
2388	ret = btrfs_add_block_group_cache(info, cache);
2389	if (ret) {
2390		btrfs_remove_free_space_cache(cache);
2391		goto error;
2392	}
2393	trace_btrfs_add_block_group(info, cache, 0);
2394	btrfs_add_bg_to_space_info(info, cache);
2395
2396	set_avail_alloc_bits(info, cache->flags);
2397	if (btrfs_chunk_writeable(info, cache->start)) {
2398		if (cache->used == 0) {
2399			ASSERT(list_empty(&cache->bg_list));
2400			if (btrfs_test_opt(info, DISCARD_ASYNC))
2401				btrfs_discard_queue_work(&info->discard_ctl, cache);
2402			else
2403				btrfs_mark_bg_unused(cache);
2404		}
2405	} else {
2406		inc_block_group_ro(cache, 1);
2407	}
2408
2409	return 0;
2410error:
2411	btrfs_put_block_group(cache);
2412	return ret;
2413}
2414
2415static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2416{
2417	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2418	struct rb_node *node;
2419	int ret = 0;
2420
2421	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2422		struct extent_map *em;
2423		struct map_lookup *map;
2424		struct btrfs_block_group *bg;
2425
2426		em = rb_entry(node, struct extent_map, rb_node);
2427		map = em->map_lookup;
2428		bg = btrfs_create_block_group_cache(fs_info, em->start);
2429		if (!bg) {
2430			ret = -ENOMEM;
2431			break;
2432		}
2433
2434		/* Fill dummy cache as FULL */
2435		bg->length = em->len;
2436		bg->flags = map->type;
2437		bg->cached = BTRFS_CACHE_FINISHED;
2438		bg->used = em->len;
2439		bg->flags = map->type;
2440		ret = btrfs_add_block_group_cache(fs_info, bg);
2441		/*
2442		 * We may have some valid block group cache added already, in
2443		 * that case we skip to the next one.
2444		 */
2445		if (ret == -EEXIST) {
2446			ret = 0;
2447			btrfs_put_block_group(bg);
2448			continue;
2449		}
2450
2451		if (ret) {
2452			btrfs_remove_free_space_cache(bg);
2453			btrfs_put_block_group(bg);
2454			break;
2455		}
2456
2457		btrfs_add_bg_to_space_info(fs_info, bg);
2458
2459		set_avail_alloc_bits(fs_info, bg->flags);
2460	}
2461	if (!ret)
2462		btrfs_init_global_block_rsv(fs_info);
2463	return ret;
2464}
2465
2466int btrfs_read_block_groups(struct btrfs_fs_info *info)
2467{
2468	struct btrfs_root *root = btrfs_block_group_root(info);
2469	struct btrfs_path *path;
2470	int ret;
2471	struct btrfs_block_group *cache;
2472	struct btrfs_space_info *space_info;
2473	struct btrfs_key key;
2474	int need_clear = 0;
2475	u64 cache_gen;
2476
2477	/*
2478	 * Either no extent root (with ibadroots rescue option) or we have
2479	 * unsupported RO options. The fs can never be mounted read-write, so no
2480	 * need to waste time searching block group items.
2481	 *
2482	 * This also allows new extent tree related changes to be RO compat,
2483	 * no need for a full incompat flag.
2484	 */
2485	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2486		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2487		return fill_dummy_bgs(info);
2488
2489	key.objectid = 0;
2490	key.offset = 0;
2491	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2492	path = btrfs_alloc_path();
2493	if (!path)
2494		return -ENOMEM;
2495
2496	cache_gen = btrfs_super_cache_generation(info->super_copy);
2497	if (btrfs_test_opt(info, SPACE_CACHE) &&
2498	    btrfs_super_generation(info->super_copy) != cache_gen)
2499		need_clear = 1;
2500	if (btrfs_test_opt(info, CLEAR_CACHE))
2501		need_clear = 1;
2502
2503	while (1) {
2504		struct btrfs_block_group_item bgi;
2505		struct extent_buffer *leaf;
2506		int slot;
2507
2508		ret = find_first_block_group(info, path, &key);
2509		if (ret > 0)
2510			break;
2511		if (ret != 0)
2512			goto error;
2513
2514		leaf = path->nodes[0];
2515		slot = path->slots[0];
2516
2517		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2518				   sizeof(bgi));
2519
2520		btrfs_item_key_to_cpu(leaf, &key, slot);
2521		btrfs_release_path(path);
2522		ret = read_one_block_group(info, &bgi, &key, need_clear);
2523		if (ret < 0)
2524			goto error;
2525		key.objectid += key.offset;
2526		key.offset = 0;
2527	}
2528	btrfs_release_path(path);
2529
2530	list_for_each_entry(space_info, &info->space_info, list) {
2531		int i;
2532
2533		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2534			if (list_empty(&space_info->block_groups[i]))
2535				continue;
2536			cache = list_first_entry(&space_info->block_groups[i],
2537						 struct btrfs_block_group,
2538						 list);
2539			btrfs_sysfs_add_block_group_type(cache);
2540		}
2541
2542		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2543		      (BTRFS_BLOCK_GROUP_RAID10 |
2544		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2545		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2546		       BTRFS_BLOCK_GROUP_DUP)))
2547			continue;
2548		/*
2549		 * Avoid allocating from un-mirrored block group if there are
2550		 * mirrored block groups.
2551		 */
2552		list_for_each_entry(cache,
2553				&space_info->block_groups[BTRFS_RAID_RAID0],
2554				list)
2555			inc_block_group_ro(cache, 1);
2556		list_for_each_entry(cache,
2557				&space_info->block_groups[BTRFS_RAID_SINGLE],
2558				list)
2559			inc_block_group_ro(cache, 1);
2560	}
2561
2562	btrfs_init_global_block_rsv(info);
2563	ret = check_chunk_block_group_mappings(info);
2564error:
2565	btrfs_free_path(path);
2566	/*
2567	 * We've hit some error while reading the extent tree, and have
2568	 * rescue=ibadroots mount option.
2569	 * Try to fill the tree using dummy block groups so that the user can
2570	 * continue to mount and grab their data.
2571	 */
2572	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2573		ret = fill_dummy_bgs(info);
2574	return ret;
2575}
2576
2577/*
2578 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2579 * allocation.
2580 *
2581 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2582 * phases.
2583 */
2584static int insert_block_group_item(struct btrfs_trans_handle *trans,
2585				   struct btrfs_block_group *block_group)
2586{
2587	struct btrfs_fs_info *fs_info = trans->fs_info;
2588	struct btrfs_block_group_item bgi;
2589	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2590	struct btrfs_key key;
2591	u64 old_commit_used;
2592	int ret;
2593
2594	spin_lock(&block_group->lock);
2595	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2596	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2597						   block_group->global_root_id);
2598	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2599	old_commit_used = block_group->commit_used;
2600	block_group->commit_used = block_group->used;
2601	key.objectid = block_group->start;
2602	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2603	key.offset = block_group->length;
2604	spin_unlock(&block_group->lock);
2605
2606	ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2607	if (ret < 0) {
2608		spin_lock(&block_group->lock);
2609		block_group->commit_used = old_commit_used;
2610		spin_unlock(&block_group->lock);
2611	}
2612
2613	return ret;
2614}
2615
2616static int insert_dev_extent(struct btrfs_trans_handle *trans,
2617			    struct btrfs_device *device, u64 chunk_offset,
2618			    u64 start, u64 num_bytes)
2619{
2620	struct btrfs_fs_info *fs_info = device->fs_info;
2621	struct btrfs_root *root = fs_info->dev_root;
2622	struct btrfs_path *path;
2623	struct btrfs_dev_extent *extent;
2624	struct extent_buffer *leaf;
2625	struct btrfs_key key;
2626	int ret;
2627
2628	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2629	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2630	path = btrfs_alloc_path();
2631	if (!path)
2632		return -ENOMEM;
2633
2634	key.objectid = device->devid;
2635	key.type = BTRFS_DEV_EXTENT_KEY;
2636	key.offset = start;
2637	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2638	if (ret)
2639		goto out;
2640
2641	leaf = path->nodes[0];
2642	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2643	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2644	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2645					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2646	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2647
2648	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2649	btrfs_mark_buffer_dirty(trans, leaf);
2650out:
2651	btrfs_free_path(path);
2652	return ret;
2653}
2654
2655/*
2656 * This function belongs to phase 2.
2657 *
2658 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2659 * phases.
2660 */
2661static int insert_dev_extents(struct btrfs_trans_handle *trans,
2662				   u64 chunk_offset, u64 chunk_size)
2663{
2664	struct btrfs_fs_info *fs_info = trans->fs_info;
2665	struct btrfs_device *device;
2666	struct extent_map *em;
2667	struct map_lookup *map;
2668	u64 dev_offset;
2669	u64 stripe_size;
2670	int i;
2671	int ret = 0;
2672
2673	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2674	if (IS_ERR(em))
2675		return PTR_ERR(em);
2676
2677	map = em->map_lookup;
2678	stripe_size = em->orig_block_len;
2679
2680	/*
2681	 * Take the device list mutex to prevent races with the final phase of
2682	 * a device replace operation that replaces the device object associated
2683	 * with the map's stripes, because the device object's id can change
2684	 * at any time during that final phase of the device replace operation
2685	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2686	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2687	 * resulting in persisting a device extent item with such ID.
2688	 */
2689	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2690	for (i = 0; i < map->num_stripes; i++) {
2691		device = map->stripes[i].dev;
2692		dev_offset = map->stripes[i].physical;
2693
2694		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2695				       stripe_size);
2696		if (ret)
2697			break;
2698	}
2699	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2700
2701	free_extent_map(em);
2702	return ret;
2703}
2704
2705/*
2706 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2707 * chunk allocation.
2708 *
2709 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2710 * phases.
2711 */
2712void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2713{
2714	struct btrfs_fs_info *fs_info = trans->fs_info;
2715	struct btrfs_block_group *block_group;
2716	int ret = 0;
2717
2718	while (!list_empty(&trans->new_bgs)) {
2719		int index;
2720
2721		block_group = list_first_entry(&trans->new_bgs,
2722					       struct btrfs_block_group,
2723					       bg_list);
2724		if (ret)
2725			goto next;
2726
2727		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2728
2729		ret = insert_block_group_item(trans, block_group);
2730		if (ret)
2731			btrfs_abort_transaction(trans, ret);
2732		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2733			      &block_group->runtime_flags)) {
2734			mutex_lock(&fs_info->chunk_mutex);
2735			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2736			mutex_unlock(&fs_info->chunk_mutex);
2737			if (ret)
2738				btrfs_abort_transaction(trans, ret);
2739		}
2740		ret = insert_dev_extents(trans, block_group->start,
2741					 block_group->length);
2742		if (ret)
2743			btrfs_abort_transaction(trans, ret);
2744		add_block_group_free_space(trans, block_group);
2745
2746		/*
2747		 * If we restriped during balance, we may have added a new raid
2748		 * type, so now add the sysfs entries when it is safe to do so.
2749		 * We don't have to worry about locking here as it's handled in
2750		 * btrfs_sysfs_add_block_group_type.
2751		 */
2752		if (block_group->space_info->block_group_kobjs[index] == NULL)
2753			btrfs_sysfs_add_block_group_type(block_group);
2754
2755		/* Already aborted the transaction if it failed. */
2756next:
2757		btrfs_delayed_refs_rsv_release(fs_info, 1);
2758		list_del_init(&block_group->bg_list);
2759		clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2760	}
2761	btrfs_trans_release_chunk_metadata(trans);
2762}
2763
2764/*
2765 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2766 * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2767 */
2768static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2769{
2770	u64 div = SZ_1G;
2771	u64 index;
2772
2773	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2774		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2775
2776	/* If we have a smaller fs index based on 128MiB. */
2777	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2778		div = SZ_128M;
2779
2780	offset = div64_u64(offset, div);
2781	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2782	return index;
2783}
2784
2785struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2786						 u64 type,
2787						 u64 chunk_offset, u64 size)
2788{
2789	struct btrfs_fs_info *fs_info = trans->fs_info;
2790	struct btrfs_block_group *cache;
2791	int ret;
2792
2793	btrfs_set_log_full_commit(trans);
2794
2795	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2796	if (!cache)
2797		return ERR_PTR(-ENOMEM);
2798
2799	/*
2800	 * Mark it as new before adding it to the rbtree of block groups or any
2801	 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2802	 * before the new flag is set.
2803	 */
2804	set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2805
2806	cache->length = size;
2807	set_free_space_tree_thresholds(cache);
2808	cache->flags = type;
2809	cache->cached = BTRFS_CACHE_FINISHED;
2810	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2811
2812	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2813		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2814
2815	ret = btrfs_load_block_group_zone_info(cache, true);
2816	if (ret) {
2817		btrfs_put_block_group(cache);
2818		return ERR_PTR(ret);
2819	}
2820
2821	ret = exclude_super_stripes(cache);
2822	if (ret) {
2823		/* We may have excluded something, so call this just in case */
2824		btrfs_free_excluded_extents(cache);
2825		btrfs_put_block_group(cache);
2826		return ERR_PTR(ret);
2827	}
2828
2829	ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2830	btrfs_free_excluded_extents(cache);
2831	if (ret) {
2832		btrfs_put_block_group(cache);
2833		return ERR_PTR(ret);
2834	}
2835
2836	/*
2837	 * Ensure the corresponding space_info object is created and
2838	 * assigned to our block group. We want our bg to be added to the rbtree
2839	 * with its ->space_info set.
2840	 */
2841	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2842	ASSERT(cache->space_info);
2843
2844	ret = btrfs_add_block_group_cache(fs_info, cache);
2845	if (ret) {
2846		btrfs_remove_free_space_cache(cache);
2847		btrfs_put_block_group(cache);
2848		return ERR_PTR(ret);
2849	}
2850
2851	/*
2852	 * Now that our block group has its ->space_info set and is inserted in
2853	 * the rbtree, update the space info's counters.
2854	 */
2855	trace_btrfs_add_block_group(fs_info, cache, 1);
2856	btrfs_add_bg_to_space_info(fs_info, cache);
2857	btrfs_update_global_block_rsv(fs_info);
2858
2859#ifdef CONFIG_BTRFS_DEBUG
2860	if (btrfs_should_fragment_free_space(cache)) {
2861		cache->space_info->bytes_used += size >> 1;
2862		fragment_free_space(cache);
2863	}
2864#endif
2865
2866	list_add_tail(&cache->bg_list, &trans->new_bgs);
2867	trans->delayed_ref_updates++;
2868	btrfs_update_delayed_refs_rsv(trans);
2869
2870	set_avail_alloc_bits(fs_info, type);
2871	return cache;
2872}
2873
2874/*
2875 * Mark one block group RO, can be called several times for the same block
2876 * group.
2877 *
2878 * @cache:		the destination block group
2879 * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2880 * 			ensure we still have some free space after marking this
2881 * 			block group RO.
2882 */
2883int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2884			     bool do_chunk_alloc)
2885{
2886	struct btrfs_fs_info *fs_info = cache->fs_info;
2887	struct btrfs_trans_handle *trans;
2888	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2889	u64 alloc_flags;
2890	int ret;
2891	bool dirty_bg_running;
2892
2893	/*
2894	 * This can only happen when we are doing read-only scrub on read-only
2895	 * mount.
2896	 * In that case we should not start a new transaction on read-only fs.
2897	 * Thus here we skip all chunk allocations.
2898	 */
2899	if (sb_rdonly(fs_info->sb)) {
2900		mutex_lock(&fs_info->ro_block_group_mutex);
2901		ret = inc_block_group_ro(cache, 0);
2902		mutex_unlock(&fs_info->ro_block_group_mutex);
2903		return ret;
2904	}
2905
2906	do {
2907		trans = btrfs_join_transaction(root);
2908		if (IS_ERR(trans))
2909			return PTR_ERR(trans);
2910
2911		dirty_bg_running = false;
2912
2913		/*
2914		 * We're not allowed to set block groups readonly after the dirty
2915		 * block group cache has started writing.  If it already started,
2916		 * back off and let this transaction commit.
2917		 */
2918		mutex_lock(&fs_info->ro_block_group_mutex);
2919		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2920			u64 transid = trans->transid;
2921
2922			mutex_unlock(&fs_info->ro_block_group_mutex);
2923			btrfs_end_transaction(trans);
2924
2925			ret = btrfs_wait_for_commit(fs_info, transid);
2926			if (ret)
2927				return ret;
2928			dirty_bg_running = true;
2929		}
2930	} while (dirty_bg_running);
2931
2932	if (do_chunk_alloc) {
2933		/*
2934		 * If we are changing raid levels, try to allocate a
2935		 * corresponding block group with the new raid level.
2936		 */
2937		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2938		if (alloc_flags != cache->flags) {
2939			ret = btrfs_chunk_alloc(trans, alloc_flags,
2940						CHUNK_ALLOC_FORCE);
2941			/*
2942			 * ENOSPC is allowed here, we may have enough space
2943			 * already allocated at the new raid level to carry on
2944			 */
2945			if (ret == -ENOSPC)
2946				ret = 0;
2947			if (ret < 0)
2948				goto out;
2949		}
2950	}
2951
2952	ret = inc_block_group_ro(cache, 0);
2953	if (!ret)
2954		goto out;
2955	if (ret == -ETXTBSY)
2956		goto unlock_out;
2957
2958	/*
2959	 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2960	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
2961	 * we still want to try our best to mark the block group read-only.
2962	 */
2963	if (!do_chunk_alloc && ret == -ENOSPC &&
2964	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2965		goto unlock_out;
2966
2967	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2968	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2969	if (ret < 0)
2970		goto out;
2971	/*
2972	 * We have allocated a new chunk. We also need to activate that chunk to
2973	 * grant metadata tickets for zoned filesystem.
2974	 */
2975	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2976	if (ret < 0)
2977		goto out;
2978
2979	ret = inc_block_group_ro(cache, 0);
2980	if (ret == -ETXTBSY)
2981		goto unlock_out;
2982out:
2983	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2984		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2985		mutex_lock(&fs_info->chunk_mutex);
2986		check_system_chunk(trans, alloc_flags);
2987		mutex_unlock(&fs_info->chunk_mutex);
2988	}
2989unlock_out:
2990	mutex_unlock(&fs_info->ro_block_group_mutex);
2991
2992	btrfs_end_transaction(trans);
2993	return ret;
2994}
2995
2996void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2997{
2998	struct btrfs_space_info *sinfo = cache->space_info;
2999	u64 num_bytes;
3000
3001	BUG_ON(!cache->ro);
3002
3003	spin_lock(&sinfo->lock);
3004	spin_lock(&cache->lock);
3005	if (!--cache->ro) {
3006		if (btrfs_is_zoned(cache->fs_info)) {
3007			/* Migrate zone_unusable bytes back */
3008			cache->zone_unusable =
3009				(cache->alloc_offset - cache->used) +
3010				(cache->length - cache->zone_capacity);
3011			sinfo->bytes_zone_unusable += cache->zone_unusable;
3012			sinfo->bytes_readonly -= cache->zone_unusable;
3013		}
3014		num_bytes = cache->length - cache->reserved -
3015			    cache->pinned - cache->bytes_super -
3016			    cache->zone_unusable - cache->used;
3017		sinfo->bytes_readonly -= num_bytes;
3018		list_del_init(&cache->ro_list);
3019	}
3020	spin_unlock(&cache->lock);
3021	spin_unlock(&sinfo->lock);
3022}
3023
3024static int update_block_group_item(struct btrfs_trans_handle *trans,
3025				   struct btrfs_path *path,
3026				   struct btrfs_block_group *cache)
3027{
3028	struct btrfs_fs_info *fs_info = trans->fs_info;
3029	int ret;
3030	struct btrfs_root *root = btrfs_block_group_root(fs_info);
3031	unsigned long bi;
3032	struct extent_buffer *leaf;
3033	struct btrfs_block_group_item bgi;
3034	struct btrfs_key key;
3035	u64 old_commit_used;
3036	u64 used;
3037
3038	/*
3039	 * Block group items update can be triggered out of commit transaction
3040	 * critical section, thus we need a consistent view of used bytes.
3041	 * We cannot use cache->used directly outside of the spin lock, as it
3042	 * may be changed.
3043	 */
3044	spin_lock(&cache->lock);
3045	old_commit_used = cache->commit_used;
3046	used = cache->used;
3047	/* No change in used bytes, can safely skip it. */
3048	if (cache->commit_used == used) {
3049		spin_unlock(&cache->lock);
3050		return 0;
3051	}
3052	cache->commit_used = used;
3053	spin_unlock(&cache->lock);
3054
3055	key.objectid = cache->start;
3056	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3057	key.offset = cache->length;
3058
3059	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3060	if (ret) {
3061		if (ret > 0)
3062			ret = -ENOENT;
3063		goto fail;
3064	}
3065
3066	leaf = path->nodes[0];
3067	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3068	btrfs_set_stack_block_group_used(&bgi, used);
3069	btrfs_set_stack_block_group_chunk_objectid(&bgi,
3070						   cache->global_root_id);
3071	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3072	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3073	btrfs_mark_buffer_dirty(trans, leaf);
3074fail:
3075	btrfs_release_path(path);
3076	/*
3077	 * We didn't update the block group item, need to revert commit_used
3078	 * unless the block group item didn't exist yet - this is to prevent a
3079	 * race with a concurrent insertion of the block group item, with
3080	 * insert_block_group_item(), that happened just after we attempted to
3081	 * update. In that case we would reset commit_used to 0 just after the
3082	 * insertion set it to a value greater than 0 - if the block group later
3083	 * becomes with 0 used bytes, we would incorrectly skip its update.
3084	 */
3085	if (ret < 0 && ret != -ENOENT) {
3086		spin_lock(&cache->lock);
3087		cache->commit_used = old_commit_used;
3088		spin_unlock(&cache->lock);
3089	}
3090	return ret;
3091
3092}
3093
3094static int cache_save_setup(struct btrfs_block_group *block_group,
3095			    struct btrfs_trans_handle *trans,
3096			    struct btrfs_path *path)
3097{
3098	struct btrfs_fs_info *fs_info = block_group->fs_info;
3099	struct btrfs_root *root = fs_info->tree_root;
3100	struct inode *inode = NULL;
3101	struct extent_changeset *data_reserved = NULL;
3102	u64 alloc_hint = 0;
3103	int dcs = BTRFS_DC_ERROR;
3104	u64 cache_size = 0;
3105	int retries = 0;
3106	int ret = 0;
3107
3108	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3109		return 0;
3110
3111	/*
3112	 * If this block group is smaller than 100 megs don't bother caching the
3113	 * block group.
3114	 */
3115	if (block_group->length < (100 * SZ_1M)) {
3116		spin_lock(&block_group->lock);
3117		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3118		spin_unlock(&block_group->lock);
3119		return 0;
3120	}
3121
3122	if (TRANS_ABORTED(trans))
3123		return 0;
3124again:
3125	inode = lookup_free_space_inode(block_group, path);
3126	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3127		ret = PTR_ERR(inode);
3128		btrfs_release_path(path);
3129		goto out;
3130	}
3131
3132	if (IS_ERR(inode)) {
3133		BUG_ON(retries);
3134		retries++;
3135
3136		if (block_group->ro)
3137			goto out_free;
3138
3139		ret = create_free_space_inode(trans, block_group, path);
3140		if (ret)
3141			goto out_free;
3142		goto again;
3143	}
3144
3145	/*
3146	 * We want to set the generation to 0, that way if anything goes wrong
3147	 * from here on out we know not to trust this cache when we load up next
3148	 * time.
3149	 */
3150	BTRFS_I(inode)->generation = 0;
3151	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3152	if (ret) {
3153		/*
3154		 * So theoretically we could recover from this, simply set the
3155		 * super cache generation to 0 so we know to invalidate the
3156		 * cache, but then we'd have to keep track of the block groups
3157		 * that fail this way so we know we _have_ to reset this cache
3158		 * before the next commit or risk reading stale cache.  So to
3159		 * limit our exposure to horrible edge cases lets just abort the
3160		 * transaction, this only happens in really bad situations
3161		 * anyway.
3162		 */
3163		btrfs_abort_transaction(trans, ret);
3164		goto out_put;
3165	}
3166	WARN_ON(ret);
3167
3168	/* We've already setup this transaction, go ahead and exit */
3169	if (block_group->cache_generation == trans->transid &&
3170	    i_size_read(inode)) {
3171		dcs = BTRFS_DC_SETUP;
3172		goto out_put;
3173	}
3174
3175	if (i_size_read(inode) > 0) {
3176		ret = btrfs_check_trunc_cache_free_space(fs_info,
3177					&fs_info->global_block_rsv);
3178		if (ret)
3179			goto out_put;
3180
3181		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3182		if (ret)
3183			goto out_put;
3184	}
3185
3186	spin_lock(&block_group->lock);
3187	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3188	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3189		/*
3190		 * don't bother trying to write stuff out _if_
3191		 * a) we're not cached,
3192		 * b) we're with nospace_cache mount option,
3193		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3194		 */
3195		dcs = BTRFS_DC_WRITTEN;
3196		spin_unlock(&block_group->lock);
3197		goto out_put;
3198	}
3199	spin_unlock(&block_group->lock);
3200
3201	/*
3202	 * We hit an ENOSPC when setting up the cache in this transaction, just
3203	 * skip doing the setup, we've already cleared the cache so we're safe.
3204	 */
3205	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3206		ret = -ENOSPC;
3207		goto out_put;
3208	}
3209
3210	/*
3211	 * Try to preallocate enough space based on how big the block group is.
3212	 * Keep in mind this has to include any pinned space which could end up
3213	 * taking up quite a bit since it's not folded into the other space
3214	 * cache.
3215	 */
3216	cache_size = div_u64(block_group->length, SZ_256M);
3217	if (!cache_size)
3218		cache_size = 1;
3219
3220	cache_size *= 16;
3221	cache_size *= fs_info->sectorsize;
3222
3223	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3224					  cache_size, false);
3225	if (ret)
3226		goto out_put;
3227
3228	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3229					      cache_size, cache_size,
3230					      &alloc_hint);
3231	/*
3232	 * Our cache requires contiguous chunks so that we don't modify a bunch
3233	 * of metadata or split extents when writing the cache out, which means
3234	 * we can enospc if we are heavily fragmented in addition to just normal
3235	 * out of space conditions.  So if we hit this just skip setting up any
3236	 * other block groups for this transaction, maybe we'll unpin enough
3237	 * space the next time around.
3238	 */
3239	if (!ret)
3240		dcs = BTRFS_DC_SETUP;
3241	else if (ret == -ENOSPC)
3242		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3243
3244out_put:
3245	iput(inode);
3246out_free:
3247	btrfs_release_path(path);
3248out:
3249	spin_lock(&block_group->lock);
3250	if (!ret && dcs == BTRFS_DC_SETUP)
3251		block_group->cache_generation = trans->transid;
3252	block_group->disk_cache_state = dcs;
3253	spin_unlock(&block_group->lock);
3254
3255	extent_changeset_free(data_reserved);
3256	return ret;
3257}
3258
3259int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3260{
3261	struct btrfs_fs_info *fs_info = trans->fs_info;
3262	struct btrfs_block_group *cache, *tmp;
3263	struct btrfs_transaction *cur_trans = trans->transaction;
3264	struct btrfs_path *path;
3265
3266	if (list_empty(&cur_trans->dirty_bgs) ||
3267	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3268		return 0;
3269
3270	path = btrfs_alloc_path();
3271	if (!path)
3272		return -ENOMEM;
3273
3274	/* Could add new block groups, use _safe just in case */
3275	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3276				 dirty_list) {
3277		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3278			cache_save_setup(cache, trans, path);
3279	}
3280
3281	btrfs_free_path(path);
3282	return 0;
3283}
3284
3285/*
3286 * Transaction commit does final block group cache writeback during a critical
3287 * section where nothing is allowed to change the FS.  This is required in
3288 * order for the cache to actually match the block group, but can introduce a
3289 * lot of latency into the commit.
3290 *
3291 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3292 * There's a chance we'll have to redo some of it if the block group changes
3293 * again during the commit, but it greatly reduces the commit latency by
3294 * getting rid of the easy block groups while we're still allowing others to
3295 * join the commit.
3296 */
3297int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3298{
3299	struct btrfs_fs_info *fs_info = trans->fs_info;
3300	struct btrfs_block_group *cache;
3301	struct btrfs_transaction *cur_trans = trans->transaction;
3302	int ret = 0;
3303	int should_put;
3304	struct btrfs_path *path = NULL;
3305	LIST_HEAD(dirty);
3306	struct list_head *io = &cur_trans->io_bgs;
3307	int loops = 0;
3308
3309	spin_lock(&cur_trans->dirty_bgs_lock);
3310	if (list_empty(&cur_trans->dirty_bgs)) {
3311		spin_unlock(&cur_trans->dirty_bgs_lock);
3312		return 0;
3313	}
3314	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3315	spin_unlock(&cur_trans->dirty_bgs_lock);
3316
3317again:
3318	/* Make sure all the block groups on our dirty list actually exist */
3319	btrfs_create_pending_block_groups(trans);
3320
3321	if (!path) {
3322		path = btrfs_alloc_path();
3323		if (!path) {
3324			ret = -ENOMEM;
3325			goto out;
3326		}
3327	}
3328
3329	/*
3330	 * cache_write_mutex is here only to save us from balance or automatic
3331	 * removal of empty block groups deleting this block group while we are
3332	 * writing out the cache
3333	 */
3334	mutex_lock(&trans->transaction->cache_write_mutex);
3335	while (!list_empty(&dirty)) {
3336		bool drop_reserve = true;
3337
3338		cache = list_first_entry(&dirty, struct btrfs_block_group,
3339					 dirty_list);
3340		/*
3341		 * This can happen if something re-dirties a block group that
3342		 * is already under IO.  Just wait for it to finish and then do
3343		 * it all again
3344		 */
3345		if (!list_empty(&cache->io_list)) {
3346			list_del_init(&cache->io_list);
3347			btrfs_wait_cache_io(trans, cache, path);
3348			btrfs_put_block_group(cache);
3349		}
3350
3351
3352		/*
3353		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3354		 * it should update the cache_state.  Don't delete until after
3355		 * we wait.
3356		 *
3357		 * Since we're not running in the commit critical section
3358		 * we need the dirty_bgs_lock to protect from update_block_group
3359		 */
3360		spin_lock(&cur_trans->dirty_bgs_lock);
3361		list_del_init(&cache->dirty_list);
3362		spin_unlock(&cur_trans->dirty_bgs_lock);
3363
3364		should_put = 1;
3365
3366		cache_save_setup(cache, trans, path);
3367
3368		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3369			cache->io_ctl.inode = NULL;
3370			ret = btrfs_write_out_cache(trans, cache, path);
3371			if (ret == 0 && cache->io_ctl.inode) {
3372				should_put = 0;
3373
3374				/*
3375				 * The cache_write_mutex is protecting the
3376				 * io_list, also refer to the definition of
3377				 * btrfs_transaction::io_bgs for more details
3378				 */
3379				list_add_tail(&cache->io_list, io);
3380			} else {
3381				/*
3382				 * If we failed to write the cache, the
3383				 * generation will be bad and life goes on
3384				 */
3385				ret = 0;
3386			}
3387		}
3388		if (!ret) {
3389			ret = update_block_group_item(trans, path, cache);
3390			/*
3391			 * Our block group might still be attached to the list
3392			 * of new block groups in the transaction handle of some
3393			 * other task (struct btrfs_trans_handle->new_bgs). This
3394			 * means its block group item isn't yet in the extent
3395			 * tree. If this happens ignore the error, as we will
3396			 * try again later in the critical section of the
3397			 * transaction commit.
3398			 */
3399			if (ret == -ENOENT) {
3400				ret = 0;
3401				spin_lock(&cur_trans->dirty_bgs_lock);
3402				if (list_empty(&cache->dirty_list)) {
3403					list_add_tail(&cache->dirty_list,
3404						      &cur_trans->dirty_bgs);
3405					btrfs_get_block_group(cache);
3406					drop_reserve = false;
3407				}
3408				spin_unlock(&cur_trans->dirty_bgs_lock);
3409			} else if (ret) {
3410				btrfs_abort_transaction(trans, ret);
3411			}
3412		}
3413
3414		/* If it's not on the io list, we need to put the block group */
3415		if (should_put)
3416			btrfs_put_block_group(cache);
3417		if (drop_reserve)
3418			btrfs_delayed_refs_rsv_release(fs_info, 1);
3419		/*
3420		 * Avoid blocking other tasks for too long. It might even save
3421		 * us from writing caches for block groups that are going to be
3422		 * removed.
3423		 */
3424		mutex_unlock(&trans->transaction->cache_write_mutex);
3425		if (ret)
3426			goto out;
3427		mutex_lock(&trans->transaction->cache_write_mutex);
3428	}
3429	mutex_unlock(&trans->transaction->cache_write_mutex);
3430
3431	/*
3432	 * Go through delayed refs for all the stuff we've just kicked off
3433	 * and then loop back (just once)
3434	 */
3435	if (!ret)
3436		ret = btrfs_run_delayed_refs(trans, 0);
3437	if (!ret && loops == 0) {
3438		loops++;
3439		spin_lock(&cur_trans->dirty_bgs_lock);
3440		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3441		/*
3442		 * dirty_bgs_lock protects us from concurrent block group
3443		 * deletes too (not just cache_write_mutex).
3444		 */
3445		if (!list_empty(&dirty)) {
3446			spin_unlock(&cur_trans->dirty_bgs_lock);
3447			goto again;
3448		}
3449		spin_unlock(&cur_trans->dirty_bgs_lock);
3450	}
3451out:
3452	if (ret < 0) {
3453		spin_lock(&cur_trans->dirty_bgs_lock);
3454		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3455		spin_unlock(&cur_trans->dirty_bgs_lock);
3456		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3457	}
3458
3459	btrfs_free_path(path);
3460	return ret;
3461}
3462
3463int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3464{
3465	struct btrfs_fs_info *fs_info = trans->fs_info;
3466	struct btrfs_block_group *cache;
3467	struct btrfs_transaction *cur_trans = trans->transaction;
3468	int ret = 0;
3469	int should_put;
3470	struct btrfs_path *path;
3471	struct list_head *io = &cur_trans->io_bgs;
3472
3473	path = btrfs_alloc_path();
3474	if (!path)
3475		return -ENOMEM;
3476
3477	/*
3478	 * Even though we are in the critical section of the transaction commit,
3479	 * we can still have concurrent tasks adding elements to this
3480	 * transaction's list of dirty block groups. These tasks correspond to
3481	 * endio free space workers started when writeback finishes for a
3482	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3483	 * allocate new block groups as a result of COWing nodes of the root
3484	 * tree when updating the free space inode. The writeback for the space
3485	 * caches is triggered by an earlier call to
3486	 * btrfs_start_dirty_block_groups() and iterations of the following
3487	 * loop.
3488	 * Also we want to do the cache_save_setup first and then run the
3489	 * delayed refs to make sure we have the best chance at doing this all
3490	 * in one shot.
3491	 */
3492	spin_lock(&cur_trans->dirty_bgs_lock);
3493	while (!list_empty(&cur_trans->dirty_bgs)) {
3494		cache = list_first_entry(&cur_trans->dirty_bgs,
3495					 struct btrfs_block_group,
3496					 dirty_list);
3497
3498		/*
3499		 * This can happen if cache_save_setup re-dirties a block group
3500		 * that is already under IO.  Just wait for it to finish and
3501		 * then do it all again
3502		 */
3503		if (!list_empty(&cache->io_list)) {
3504			spin_unlock(&cur_trans->dirty_bgs_lock);
3505			list_del_init(&cache->io_list);
3506			btrfs_wait_cache_io(trans, cache, path);
3507			btrfs_put_block_group(cache);
3508			spin_lock(&cur_trans->dirty_bgs_lock);
3509		}
3510
3511		/*
3512		 * Don't remove from the dirty list until after we've waited on
3513		 * any pending IO
3514		 */
3515		list_del_init(&cache->dirty_list);
3516		spin_unlock(&cur_trans->dirty_bgs_lock);
3517		should_put = 1;
3518
3519		cache_save_setup(cache, trans, path);
3520
3521		if (!ret)
3522			ret = btrfs_run_delayed_refs(trans,
3523						     (unsigned long) -1);
3524
3525		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3526			cache->io_ctl.inode = NULL;
3527			ret = btrfs_write_out_cache(trans, cache, path);
3528			if (ret == 0 && cache->io_ctl.inode) {
3529				should_put = 0;
3530				list_add_tail(&cache->io_list, io);
3531			} else {
3532				/*
3533				 * If we failed to write the cache, the
3534				 * generation will be bad and life goes on
3535				 */
3536				ret = 0;
3537			}
3538		}
3539		if (!ret) {
3540			ret = update_block_group_item(trans, path, cache);
3541			/*
3542			 * One of the free space endio workers might have
3543			 * created a new block group while updating a free space
3544			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3545			 * and hasn't released its transaction handle yet, in
3546			 * which case the new block group is still attached to
3547			 * its transaction handle and its creation has not
3548			 * finished yet (no block group item in the extent tree
3549			 * yet, etc). If this is the case, wait for all free
3550			 * space endio workers to finish and retry. This is a
3551			 * very rare case so no need for a more efficient and
3552			 * complex approach.
3553			 */
3554			if (ret == -ENOENT) {
3555				wait_event(cur_trans->writer_wait,
3556				   atomic_read(&cur_trans->num_writers) == 1);
3557				ret = update_block_group_item(trans, path, cache);
3558			}
3559			if (ret)
3560				btrfs_abort_transaction(trans, ret);
3561		}
3562
3563		/* If its not on the io list, we need to put the block group */
3564		if (should_put)
3565			btrfs_put_block_group(cache);
3566		btrfs_delayed_refs_rsv_release(fs_info, 1);
3567		spin_lock(&cur_trans->dirty_bgs_lock);
3568	}
3569	spin_unlock(&cur_trans->dirty_bgs_lock);
3570
3571	/*
3572	 * Refer to the definition of io_bgs member for details why it's safe
3573	 * to use it without any locking
3574	 */
3575	while (!list_empty(io)) {
3576		cache = list_first_entry(io, struct btrfs_block_group,
3577					 io_list);
3578		list_del_init(&cache->io_list);
3579		btrfs_wait_cache_io(trans, cache, path);
3580		btrfs_put_block_group(cache);
3581	}
3582
3583	btrfs_free_path(path);
3584	return ret;
3585}
3586
3587int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3588			     u64 bytenr, u64 num_bytes, bool alloc)
3589{
3590	struct btrfs_fs_info *info = trans->fs_info;
3591	struct btrfs_block_group *cache = NULL;
3592	u64 total = num_bytes;
3593	u64 old_val;
3594	u64 byte_in_group;
3595	int factor;
3596	int ret = 0;
3597
3598	/* Block accounting for super block */
3599	spin_lock(&info->delalloc_root_lock);
3600	old_val = btrfs_super_bytes_used(info->super_copy);
3601	if (alloc)
3602		old_val += num_bytes;
3603	else
3604		old_val -= num_bytes;
3605	btrfs_set_super_bytes_used(info->super_copy, old_val);
3606	spin_unlock(&info->delalloc_root_lock);
3607
3608	while (total) {
3609		struct btrfs_space_info *space_info;
3610		bool reclaim = false;
3611
3612		cache = btrfs_lookup_block_group(info, bytenr);
3613		if (!cache) {
3614			ret = -ENOENT;
3615			break;
3616		}
3617		space_info = cache->space_info;
3618		factor = btrfs_bg_type_to_factor(cache->flags);
3619
3620		/*
3621		 * If this block group has free space cache written out, we
3622		 * need to make sure to load it if we are removing space.  This
3623		 * is because we need the unpinning stage to actually add the
3624		 * space back to the block group, otherwise we will leak space.
3625		 */
3626		if (!alloc && !btrfs_block_group_done(cache))
3627			btrfs_cache_block_group(cache, true);
3628
3629		byte_in_group = bytenr - cache->start;
3630		WARN_ON(byte_in_group > cache->length);
3631
3632		spin_lock(&space_info->lock);
3633		spin_lock(&cache->lock);
3634
3635		if (btrfs_test_opt(info, SPACE_CACHE) &&
3636		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3637			cache->disk_cache_state = BTRFS_DC_CLEAR;
3638
3639		old_val = cache->used;
3640		num_bytes = min(total, cache->length - byte_in_group);
3641		if (alloc) {
3642			old_val += num_bytes;
3643			cache->used = old_val;
3644			cache->reserved -= num_bytes;
3645			space_info->bytes_reserved -= num_bytes;
3646			space_info->bytes_used += num_bytes;
3647			space_info->disk_used += num_bytes * factor;
3648			spin_unlock(&cache->lock);
3649			spin_unlock(&space_info->lock);
3650		} else {
3651			old_val -= num_bytes;
3652			cache->used = old_val;
3653			cache->pinned += num_bytes;
3654			btrfs_space_info_update_bytes_pinned(info, space_info,
3655							     num_bytes);
3656			space_info->bytes_used -= num_bytes;
3657			space_info->disk_used -= num_bytes * factor;
3658
3659			reclaim = should_reclaim_block_group(cache, num_bytes);
3660
3661			spin_unlock(&cache->lock);
3662			spin_unlock(&space_info->lock);
3663
3664			set_extent_bit(&trans->transaction->pinned_extents,
3665				       bytenr, bytenr + num_bytes - 1,
3666				       EXTENT_DIRTY, NULL);
3667		}
3668
3669		spin_lock(&trans->transaction->dirty_bgs_lock);
3670		if (list_empty(&cache->dirty_list)) {
3671			list_add_tail(&cache->dirty_list,
3672				      &trans->transaction->dirty_bgs);
3673			trans->delayed_ref_updates++;
3674			btrfs_get_block_group(cache);
3675		}
3676		spin_unlock(&trans->transaction->dirty_bgs_lock);
3677
3678		/*
3679		 * No longer have used bytes in this block group, queue it for
3680		 * deletion. We do this after adding the block group to the
3681		 * dirty list to avoid races between cleaner kthread and space
3682		 * cache writeout.
3683		 */
3684		if (!alloc && old_val == 0) {
3685			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3686				btrfs_mark_bg_unused(cache);
3687		} else if (!alloc && reclaim) {
3688			btrfs_mark_bg_to_reclaim(cache);
3689		}
3690
3691		btrfs_put_block_group(cache);
3692		total -= num_bytes;
3693		bytenr += num_bytes;
3694	}
3695
3696	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3697	btrfs_update_delayed_refs_rsv(trans);
3698	return ret;
3699}
3700
3701/*
3702 * Update the block_group and space info counters.
3703 *
3704 * @cache:	The cache we are manipulating
3705 * @ram_bytes:  The number of bytes of file content, and will be same to
3706 *              @num_bytes except for the compress path.
3707 * @num_bytes:	The number of bytes in question
3708 * @delalloc:   The blocks are allocated for the delalloc write
3709 *
3710 * This is called by the allocator when it reserves space. If this is a
3711 * reservation and the block group has become read only we cannot make the
3712 * reservation and return -EAGAIN, otherwise this function always succeeds.
3713 */
3714int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3715			     u64 ram_bytes, u64 num_bytes, int delalloc,
3716			     bool force_wrong_size_class)
3717{
3718	struct btrfs_space_info *space_info = cache->space_info;
3719	enum btrfs_block_group_size_class size_class;
3720	int ret = 0;
3721
3722	spin_lock(&space_info->lock);
3723	spin_lock(&cache->lock);
3724	if (cache->ro) {
3725		ret = -EAGAIN;
3726		goto out;
3727	}
3728
3729	if (btrfs_block_group_should_use_size_class(cache)) {
3730		size_class = btrfs_calc_block_group_size_class(num_bytes);
3731		ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3732		if (ret)
3733			goto out;
3734	}
3735	cache->reserved += num_bytes;
3736	space_info->bytes_reserved += num_bytes;
3737	trace_btrfs_space_reservation(cache->fs_info, "space_info",
3738				      space_info->flags, num_bytes, 1);
3739	btrfs_space_info_update_bytes_may_use(cache->fs_info,
3740					      space_info, -ram_bytes);
3741	if (delalloc)
3742		cache->delalloc_bytes += num_bytes;
3743
3744	/*
3745	 * Compression can use less space than we reserved, so wake tickets if
3746	 * that happens.
3747	 */
3748	if (num_bytes < ram_bytes)
3749		btrfs_try_granting_tickets(cache->fs_info, space_info);
3750out:
3751	spin_unlock(&cache->lock);
3752	spin_unlock(&space_info->lock);
3753	return ret;
3754}
3755
3756/*
3757 * Update the block_group and space info counters.
3758 *
3759 * @cache:      The cache we are manipulating
3760 * @num_bytes:  The number of bytes in question
3761 * @delalloc:   The blocks are allocated for the delalloc write
3762 *
3763 * This is called by somebody who is freeing space that was never actually used
3764 * on disk.  For example if you reserve some space for a new leaf in transaction
3765 * A and before transaction A commits you free that leaf, you call this with
3766 * reserve set to 0 in order to clear the reservation.
3767 */
3768void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3769			       u64 num_bytes, int delalloc)
3770{
3771	struct btrfs_space_info *space_info = cache->space_info;
3772
3773	spin_lock(&space_info->lock);
3774	spin_lock(&cache->lock);
3775	if (cache->ro)
3776		space_info->bytes_readonly += num_bytes;
3777	cache->reserved -= num_bytes;
3778	space_info->bytes_reserved -= num_bytes;
3779	space_info->max_extent_size = 0;
3780
3781	if (delalloc)
3782		cache->delalloc_bytes -= num_bytes;
3783	spin_unlock(&cache->lock);
3784
3785	btrfs_try_granting_tickets(cache->fs_info, space_info);
3786	spin_unlock(&space_info->lock);
3787}
3788
3789static void force_metadata_allocation(struct btrfs_fs_info *info)
3790{
3791	struct list_head *head = &info->space_info;
3792	struct btrfs_space_info *found;
3793
3794	list_for_each_entry(found, head, list) {
3795		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3796			found->force_alloc = CHUNK_ALLOC_FORCE;
3797	}
3798}
3799
3800static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3801			      struct btrfs_space_info *sinfo, int force)
3802{
3803	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3804	u64 thresh;
3805
3806	if (force == CHUNK_ALLOC_FORCE)
3807		return 1;
3808
3809	/*
3810	 * in limited mode, we want to have some free space up to
3811	 * about 1% of the FS size.
3812	 */
3813	if (force == CHUNK_ALLOC_LIMITED) {
3814		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3815		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3816
3817		if (sinfo->total_bytes - bytes_used < thresh)
3818			return 1;
3819	}
3820
3821	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3822		return 0;
3823	return 1;
3824}
3825
3826int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3827{
3828	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3829
3830	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3831}
3832
3833static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3834{
3835	struct btrfs_block_group *bg;
3836	int ret;
3837
3838	/*
3839	 * Check if we have enough space in the system space info because we
3840	 * will need to update device items in the chunk btree and insert a new
3841	 * chunk item in the chunk btree as well. This will allocate a new
3842	 * system block group if needed.
3843	 */
3844	check_system_chunk(trans, flags);
3845
3846	bg = btrfs_create_chunk(trans, flags);
3847	if (IS_ERR(bg)) {
3848		ret = PTR_ERR(bg);
3849		goto out;
3850	}
3851
3852	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3853	/*
3854	 * Normally we are not expected to fail with -ENOSPC here, since we have
3855	 * previously reserved space in the system space_info and allocated one
3856	 * new system chunk if necessary. However there are three exceptions:
3857	 *
3858	 * 1) We may have enough free space in the system space_info but all the
3859	 *    existing system block groups have a profile which can not be used
3860	 *    for extent allocation.
3861	 *
3862	 *    This happens when mounting in degraded mode. For example we have a
3863	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3864	 *    using the other device in degraded mode. If we then allocate a chunk,
3865	 *    we may have enough free space in the existing system space_info, but
3866	 *    none of the block groups can be used for extent allocation since they
3867	 *    have a RAID1 profile, and because we are in degraded mode with a
3868	 *    single device, we are forced to allocate a new system chunk with a
3869	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3870	 *    block groups and check if they have a usable profile and enough space
3871	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3872	 *    try again after forcing allocation of a new system chunk. Like this
3873	 *    we avoid paying the cost of that search in normal circumstances, when
3874	 *    we were not mounted in degraded mode;
3875	 *
3876	 * 2) We had enough free space info the system space_info, and one suitable
3877	 *    block group to allocate from when we called check_system_chunk()
3878	 *    above. However right after we called it, the only system block group
3879	 *    with enough free space got turned into RO mode by a running scrub,
3880	 *    and in this case we have to allocate a new one and retry. We only
3881	 *    need do this allocate and retry once, since we have a transaction
3882	 *    handle and scrub uses the commit root to search for block groups;
3883	 *
3884	 * 3) We had one system block group with enough free space when we called
3885	 *    check_system_chunk(), but after that, right before we tried to
3886	 *    allocate the last extent buffer we needed, a discard operation came
3887	 *    in and it temporarily removed the last free space entry from the
3888	 *    block group (discard removes a free space entry, discards it, and
3889	 *    then adds back the entry to the block group cache).
3890	 */
3891	if (ret == -ENOSPC) {
3892		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3893		struct btrfs_block_group *sys_bg;
3894
3895		sys_bg = btrfs_create_chunk(trans, sys_flags);
3896		if (IS_ERR(sys_bg)) {
3897			ret = PTR_ERR(sys_bg);
3898			btrfs_abort_transaction(trans, ret);
3899			goto out;
3900		}
3901
3902		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3903		if (ret) {
3904			btrfs_abort_transaction(trans, ret);
3905			goto out;
3906		}
3907
3908		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3909		if (ret) {
3910			btrfs_abort_transaction(trans, ret);
3911			goto out;
3912		}
3913	} else if (ret) {
3914		btrfs_abort_transaction(trans, ret);
3915		goto out;
3916	}
3917out:
3918	btrfs_trans_release_chunk_metadata(trans);
3919
3920	if (ret)
3921		return ERR_PTR(ret);
3922
3923	btrfs_get_block_group(bg);
3924	return bg;
3925}
3926
3927/*
3928 * Chunk allocation is done in 2 phases:
3929 *
3930 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3931 *    the chunk, the chunk mapping, create its block group and add the items
3932 *    that belong in the chunk btree to it - more specifically, we need to
3933 *    update device items in the chunk btree and add a new chunk item to it.
3934 *
3935 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3936 *    group item to the extent btree and the device extent items to the devices
3937 *    btree.
3938 *
3939 * This is done to prevent deadlocks. For example when COWing a node from the
3940 * extent btree we are holding a write lock on the node's parent and if we
3941 * trigger chunk allocation and attempted to insert the new block group item
3942 * in the extent btree right way, we could deadlock because the path for the
3943 * insertion can include that parent node. At first glance it seems impossible
3944 * to trigger chunk allocation after starting a transaction since tasks should
3945 * reserve enough transaction units (metadata space), however while that is true
3946 * most of the time, chunk allocation may still be triggered for several reasons:
3947 *
3948 * 1) When reserving metadata, we check if there is enough free space in the
3949 *    metadata space_info and therefore don't trigger allocation of a new chunk.
3950 *    However later when the task actually tries to COW an extent buffer from
3951 *    the extent btree or from the device btree for example, it is forced to
3952 *    allocate a new block group (chunk) because the only one that had enough
3953 *    free space was just turned to RO mode by a running scrub for example (or
3954 *    device replace, block group reclaim thread, etc), so we can not use it
3955 *    for allocating an extent and end up being forced to allocate a new one;
3956 *
3957 * 2) Because we only check that the metadata space_info has enough free bytes,
3958 *    we end up not allocating a new metadata chunk in that case. However if
3959 *    the filesystem was mounted in degraded mode, none of the existing block
3960 *    groups might be suitable for extent allocation due to their incompatible
3961 *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3962 *    use a RAID1 profile, in degraded mode using a single device). In this case
3963 *    when the task attempts to COW some extent buffer of the extent btree for
3964 *    example, it will trigger allocation of a new metadata block group with a
3965 *    suitable profile (SINGLE profile in the example of the degraded mount of
3966 *    the RAID1 filesystem);
3967 *
3968 * 3) The task has reserved enough transaction units / metadata space, but when
3969 *    it attempts to COW an extent buffer from the extent or device btree for
3970 *    example, it does not find any free extent in any metadata block group,
3971 *    therefore forced to try to allocate a new metadata block group.
3972 *    This is because some other task allocated all available extents in the
3973 *    meanwhile - this typically happens with tasks that don't reserve space
3974 *    properly, either intentionally or as a bug. One example where this is
3975 *    done intentionally is fsync, as it does not reserve any transaction units
3976 *    and ends up allocating a variable number of metadata extents for log
3977 *    tree extent buffers;
3978 *
3979 * 4) The task has reserved enough transaction units / metadata space, but right
3980 *    before it tries to allocate the last extent buffer it needs, a discard
3981 *    operation comes in and, temporarily, removes the last free space entry from
3982 *    the only metadata block group that had free space (discard starts by
3983 *    removing a free space entry from a block group, then does the discard
3984 *    operation and, once it's done, it adds back the free space entry to the
3985 *    block group).
3986 *
3987 * We also need this 2 phases setup when adding a device to a filesystem with
3988 * a seed device - we must create new metadata and system chunks without adding
3989 * any of the block group items to the chunk, extent and device btrees. If we
3990 * did not do it this way, we would get ENOSPC when attempting to update those
3991 * btrees, since all the chunks from the seed device are read-only.
3992 *
3993 * Phase 1 does the updates and insertions to the chunk btree because if we had
3994 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3995 * parallel, we risk having too many system chunks allocated by many tasks if
3996 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3997 * extreme case this leads to exhaustion of the system chunk array in the
3998 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3999 * and with RAID filesystems (so we have more device items in the chunk btree).
4000 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4001 * the system chunk array due to concurrent allocations") provides more details.
4002 *
4003 * Allocation of system chunks does not happen through this function. A task that
4004 * needs to update the chunk btree (the only btree that uses system chunks), must
4005 * preallocate chunk space by calling either check_system_chunk() or
4006 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4007 * metadata chunk or when removing a chunk, while the later is used before doing
4008 * a modification to the chunk btree - use cases for the later are adding,
4009 * removing and resizing a device as well as relocation of a system chunk.
4010 * See the comment below for more details.
4011 *
4012 * The reservation of system space, done through check_system_chunk(), as well
4013 * as all the updates and insertions into the chunk btree must be done while
4014 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4015 * an extent buffer from the chunks btree we never trigger allocation of a new
4016 * system chunk, which would result in a deadlock (trying to lock twice an
4017 * extent buffer of the chunk btree, first time before triggering the chunk
4018 * allocation and the second time during chunk allocation while attempting to
4019 * update the chunks btree). The system chunk array is also updated while holding
4020 * that mutex. The same logic applies to removing chunks - we must reserve system
4021 * space, update the chunk btree and the system chunk array in the superblock
4022 * while holding fs_info->chunk_mutex.
4023 *
4024 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4025 *
4026 * If @force is CHUNK_ALLOC_FORCE:
4027 *    - return 1 if it successfully allocates a chunk,
4028 *    - return errors including -ENOSPC otherwise.
4029 * If @force is NOT CHUNK_ALLOC_FORCE:
4030 *    - return 0 if it doesn't need to allocate a new chunk,
4031 *    - return 1 if it successfully allocates a chunk,
4032 *    - return errors including -ENOSPC otherwise.
4033 */
4034int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4035		      enum btrfs_chunk_alloc_enum force)
4036{
4037	struct btrfs_fs_info *fs_info = trans->fs_info;
4038	struct btrfs_space_info *space_info;
4039	struct btrfs_block_group *ret_bg;
4040	bool wait_for_alloc = false;
4041	bool should_alloc = false;
4042	bool from_extent_allocation = false;
4043	int ret = 0;
4044
4045	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4046		from_extent_allocation = true;
4047		force = CHUNK_ALLOC_FORCE;
4048	}
4049
4050	/* Don't re-enter if we're already allocating a chunk */
4051	if (trans->allocating_chunk)
4052		return -ENOSPC;
4053	/*
4054	 * Allocation of system chunks can not happen through this path, as we
4055	 * could end up in a deadlock if we are allocating a data or metadata
4056	 * chunk and there is another task modifying the chunk btree.
4057	 *
4058	 * This is because while we are holding the chunk mutex, we will attempt
4059	 * to add the new chunk item to the chunk btree or update an existing
4060	 * device item in the chunk btree, while the other task that is modifying
4061	 * the chunk btree is attempting to COW an extent buffer while holding a
4062	 * lock on it and on its parent - if the COW operation triggers a system
4063	 * chunk allocation, then we can deadlock because we are holding the
4064	 * chunk mutex and we may need to access that extent buffer or its parent
4065	 * in order to add the chunk item or update a device item.
4066	 *
4067	 * Tasks that want to modify the chunk tree should reserve system space
4068	 * before updating the chunk btree, by calling either
4069	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4070	 * It's possible that after a task reserves the space, it still ends up
4071	 * here - this happens in the cases described above at do_chunk_alloc().
4072	 * The task will have to either retry or fail.
4073	 */
4074	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4075		return -ENOSPC;
4076
4077	space_info = btrfs_find_space_info(fs_info, flags);
4078	ASSERT(space_info);
4079
4080	do {
4081		spin_lock(&space_info->lock);
4082		if (force < space_info->force_alloc)
4083			force = space_info->force_alloc;
4084		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4085		if (space_info->full) {
4086			/* No more free physical space */
4087			if (should_alloc)
4088				ret = -ENOSPC;
4089			else
4090				ret = 0;
4091			spin_unlock(&space_info->lock);
4092			return ret;
4093		} else if (!should_alloc) {
4094			spin_unlock(&space_info->lock);
4095			return 0;
4096		} else if (space_info->chunk_alloc) {
4097			/*
4098			 * Someone is already allocating, so we need to block
4099			 * until this someone is finished and then loop to
4100			 * recheck if we should continue with our allocation
4101			 * attempt.
4102			 */
4103			wait_for_alloc = true;
4104			force = CHUNK_ALLOC_NO_FORCE;
4105			spin_unlock(&space_info->lock);
4106			mutex_lock(&fs_info->chunk_mutex);
4107			mutex_unlock(&fs_info->chunk_mutex);
4108		} else {
4109			/* Proceed with allocation */
4110			space_info->chunk_alloc = 1;
4111			wait_for_alloc = false;
4112			spin_unlock(&space_info->lock);
4113		}
4114
4115		cond_resched();
4116	} while (wait_for_alloc);
4117
4118	mutex_lock(&fs_info->chunk_mutex);
4119	trans->allocating_chunk = true;
4120
4121	/*
4122	 * If we have mixed data/metadata chunks we want to make sure we keep
4123	 * allocating mixed chunks instead of individual chunks.
4124	 */
4125	if (btrfs_mixed_space_info(space_info))
4126		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4127
4128	/*
4129	 * if we're doing a data chunk, go ahead and make sure that
4130	 * we keep a reasonable number of metadata chunks allocated in the
4131	 * FS as well.
4132	 */
4133	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4134		fs_info->data_chunk_allocations++;
4135		if (!(fs_info->data_chunk_allocations %
4136		      fs_info->metadata_ratio))
4137			force_metadata_allocation(fs_info);
4138	}
4139
4140	ret_bg = do_chunk_alloc(trans, flags);
4141	trans->allocating_chunk = false;
4142
4143	if (IS_ERR(ret_bg)) {
4144		ret = PTR_ERR(ret_bg);
4145	} else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4146		/*
4147		 * New block group is likely to be used soon. Try to activate
4148		 * it now. Failure is OK for now.
4149		 */
4150		btrfs_zone_activate(ret_bg);
4151	}
4152
4153	if (!ret)
4154		btrfs_put_block_group(ret_bg);
4155
4156	spin_lock(&space_info->lock);
4157	if (ret < 0) {
4158		if (ret == -ENOSPC)
4159			space_info->full = 1;
4160		else
4161			goto out;
4162	} else {
4163		ret = 1;
4164		space_info->max_extent_size = 0;
4165	}
4166
4167	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4168out:
4169	space_info->chunk_alloc = 0;
4170	spin_unlock(&space_info->lock);
4171	mutex_unlock(&fs_info->chunk_mutex);
4172
4173	return ret;
4174}
4175
4176static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4177{
4178	u64 num_dev;
4179
4180	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4181	if (!num_dev)
4182		num_dev = fs_info->fs_devices->rw_devices;
4183
4184	return num_dev;
4185}
4186
4187static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4188				u64 bytes,
4189				u64 type)
4190{
4191	struct btrfs_fs_info *fs_info = trans->fs_info;
4192	struct btrfs_space_info *info;
4193	u64 left;
4194	int ret = 0;
4195
4196	/*
4197	 * Needed because we can end up allocating a system chunk and for an
4198	 * atomic and race free space reservation in the chunk block reserve.
4199	 */
4200	lockdep_assert_held(&fs_info->chunk_mutex);
4201
4202	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4203	spin_lock(&info->lock);
4204	left = info->total_bytes - btrfs_space_info_used(info, true);
4205	spin_unlock(&info->lock);
4206
4207	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4208		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4209			   left, bytes, type);
4210		btrfs_dump_space_info(fs_info, info, 0, 0);
4211	}
4212
4213	if (left < bytes) {
4214		u64 flags = btrfs_system_alloc_profile(fs_info);
4215		struct btrfs_block_group *bg;
4216
4217		/*
4218		 * Ignore failure to create system chunk. We might end up not
4219		 * needing it, as we might not need to COW all nodes/leafs from
4220		 * the paths we visit in the chunk tree (they were already COWed
4221		 * or created in the current transaction for example).
4222		 */
4223		bg = btrfs_create_chunk(trans, flags);
4224		if (IS_ERR(bg)) {
4225			ret = PTR_ERR(bg);
4226		} else {
4227			/*
4228			 * We have a new chunk. We also need to activate it for
4229			 * zoned filesystem.
4230			 */
4231			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4232			if (ret < 0)
4233				return;
4234
4235			/*
4236			 * If we fail to add the chunk item here, we end up
4237			 * trying again at phase 2 of chunk allocation, at
4238			 * btrfs_create_pending_block_groups(). So ignore
4239			 * any error here. An ENOSPC here could happen, due to
4240			 * the cases described at do_chunk_alloc() - the system
4241			 * block group we just created was just turned into RO
4242			 * mode by a scrub for example, or a running discard
4243			 * temporarily removed its free space entries, etc.
4244			 */
4245			btrfs_chunk_alloc_add_chunk_item(trans, bg);
4246		}
4247	}
4248
4249	if (!ret) {
4250		ret = btrfs_block_rsv_add(fs_info,
4251					  &fs_info->chunk_block_rsv,
4252					  bytes, BTRFS_RESERVE_NO_FLUSH);
4253		if (!ret)
4254			trans->chunk_bytes_reserved += bytes;
4255	}
4256}
4257
4258/*
4259 * Reserve space in the system space for allocating or removing a chunk.
4260 * The caller must be holding fs_info->chunk_mutex.
4261 */
4262void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4263{
4264	struct btrfs_fs_info *fs_info = trans->fs_info;
4265	const u64 num_devs = get_profile_num_devs(fs_info, type);
4266	u64 bytes;
4267
4268	/* num_devs device items to update and 1 chunk item to add or remove. */
4269	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4270		btrfs_calc_insert_metadata_size(fs_info, 1);
4271
4272	reserve_chunk_space(trans, bytes, type);
4273}
4274
4275/*
4276 * Reserve space in the system space, if needed, for doing a modification to the
4277 * chunk btree.
4278 *
4279 * @trans:		A transaction handle.
4280 * @is_item_insertion:	Indicate if the modification is for inserting a new item
4281 *			in the chunk btree or if it's for the deletion or update
4282 *			of an existing item.
4283 *
4284 * This is used in a context where we need to update the chunk btree outside
4285 * block group allocation and removal, to avoid a deadlock with a concurrent
4286 * task that is allocating a metadata or data block group and therefore needs to
4287 * update the chunk btree while holding the chunk mutex. After the update to the
4288 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4289 *
4290 */
4291void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4292				  bool is_item_insertion)
4293{
4294	struct btrfs_fs_info *fs_info = trans->fs_info;
4295	u64 bytes;
4296
4297	if (is_item_insertion)
4298		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4299	else
4300		bytes = btrfs_calc_metadata_size(fs_info, 1);
4301
4302	mutex_lock(&fs_info->chunk_mutex);
4303	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4304	mutex_unlock(&fs_info->chunk_mutex);
4305}
4306
4307void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4308{
4309	struct btrfs_block_group *block_group;
4310
4311	block_group = btrfs_lookup_first_block_group(info, 0);
4312	while (block_group) {
4313		btrfs_wait_block_group_cache_done(block_group);
4314		spin_lock(&block_group->lock);
4315		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4316				       &block_group->runtime_flags)) {
4317			struct inode *inode = block_group->inode;
4318
4319			block_group->inode = NULL;
4320			spin_unlock(&block_group->lock);
4321
4322			ASSERT(block_group->io_ctl.inode == NULL);
4323			iput(inode);
4324		} else {
4325			spin_unlock(&block_group->lock);
4326		}
4327		block_group = btrfs_next_block_group(block_group);
4328	}
4329}
4330
4331/*
4332 * Must be called only after stopping all workers, since we could have block
4333 * group caching kthreads running, and therefore they could race with us if we
4334 * freed the block groups before stopping them.
4335 */
4336int btrfs_free_block_groups(struct btrfs_fs_info *info)
4337{
4338	struct btrfs_block_group *block_group;
4339	struct btrfs_space_info *space_info;
4340	struct btrfs_caching_control *caching_ctl;
4341	struct rb_node *n;
4342
4343	if (btrfs_is_zoned(info)) {
4344		if (info->active_meta_bg) {
4345			btrfs_put_block_group(info->active_meta_bg);
4346			info->active_meta_bg = NULL;
4347		}
4348		if (info->active_system_bg) {
4349			btrfs_put_block_group(info->active_system_bg);
4350			info->active_system_bg = NULL;
4351		}
4352	}
4353
4354	write_lock(&info->block_group_cache_lock);
4355	while (!list_empty(&info->caching_block_groups)) {
4356		caching_ctl = list_entry(info->caching_block_groups.next,
4357					 struct btrfs_caching_control, list);
4358		list_del(&caching_ctl->list);
4359		btrfs_put_caching_control(caching_ctl);
4360	}
4361	write_unlock(&info->block_group_cache_lock);
4362
4363	spin_lock(&info->unused_bgs_lock);
4364	while (!list_empty(&info->unused_bgs)) {
4365		block_group = list_first_entry(&info->unused_bgs,
4366					       struct btrfs_block_group,
4367					       bg_list);
4368		list_del_init(&block_group->bg_list);
4369		btrfs_put_block_group(block_group);
4370	}
4371
4372	while (!list_empty(&info->reclaim_bgs)) {
4373		block_group = list_first_entry(&info->reclaim_bgs,
4374					       struct btrfs_block_group,
4375					       bg_list);
4376		list_del_init(&block_group->bg_list);
4377		btrfs_put_block_group(block_group);
4378	}
4379	spin_unlock(&info->unused_bgs_lock);
4380
4381	spin_lock(&info->zone_active_bgs_lock);
4382	while (!list_empty(&info->zone_active_bgs)) {
4383		block_group = list_first_entry(&info->zone_active_bgs,
4384					       struct btrfs_block_group,
4385					       active_bg_list);
4386		list_del_init(&block_group->active_bg_list);
4387		btrfs_put_block_group(block_group);
4388	}
4389	spin_unlock(&info->zone_active_bgs_lock);
4390
4391	write_lock(&info->block_group_cache_lock);
4392	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4393		block_group = rb_entry(n, struct btrfs_block_group,
4394				       cache_node);
4395		rb_erase_cached(&block_group->cache_node,
4396				&info->block_group_cache_tree);
4397		RB_CLEAR_NODE(&block_group->cache_node);
4398		write_unlock(&info->block_group_cache_lock);
4399
4400		down_write(&block_group->space_info->groups_sem);
4401		list_del(&block_group->list);
4402		up_write(&block_group->space_info->groups_sem);
4403
4404		/*
4405		 * We haven't cached this block group, which means we could
4406		 * possibly have excluded extents on this block group.
4407		 */
4408		if (block_group->cached == BTRFS_CACHE_NO ||
4409		    block_group->cached == BTRFS_CACHE_ERROR)
4410			btrfs_free_excluded_extents(block_group);
4411
4412		btrfs_remove_free_space_cache(block_group);
4413		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4414		ASSERT(list_empty(&block_group->dirty_list));
4415		ASSERT(list_empty(&block_group->io_list));
4416		ASSERT(list_empty(&block_group->bg_list));
4417		ASSERT(refcount_read(&block_group->refs) == 1);
4418		ASSERT(block_group->swap_extents == 0);
4419		btrfs_put_block_group(block_group);
4420
4421		write_lock(&info->block_group_cache_lock);
4422	}
4423	write_unlock(&info->block_group_cache_lock);
4424
4425	btrfs_release_global_block_rsv(info);
4426
4427	while (!list_empty(&info->space_info)) {
4428		space_info = list_entry(info->space_info.next,
4429					struct btrfs_space_info,
4430					list);
4431
4432		/*
4433		 * Do not hide this behind enospc_debug, this is actually
4434		 * important and indicates a real bug if this happens.
4435		 */
4436		if (WARN_ON(space_info->bytes_pinned > 0 ||
4437			    space_info->bytes_may_use > 0))
4438			btrfs_dump_space_info(info, space_info, 0, 0);
4439
4440		/*
4441		 * If there was a failure to cleanup a log tree, very likely due
4442		 * to an IO failure on a writeback attempt of one or more of its
4443		 * extent buffers, we could not do proper (and cheap) unaccounting
4444		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4445		 * that case.
4446		 */
4447		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4448		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4449			if (WARN_ON(space_info->bytes_reserved > 0))
4450				btrfs_dump_space_info(info, space_info, 0, 0);
4451		}
4452
4453		WARN_ON(space_info->reclaim_size > 0);
4454		list_del(&space_info->list);
4455		btrfs_sysfs_remove_space_info(space_info);
4456	}
4457	return 0;
4458}
4459
4460void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4461{
4462	atomic_inc(&cache->frozen);
4463}
4464
4465void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4466{
4467	struct btrfs_fs_info *fs_info = block_group->fs_info;
4468	struct extent_map_tree *em_tree;
4469	struct extent_map *em;
4470	bool cleanup;
4471
4472	spin_lock(&block_group->lock);
4473	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4474		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4475	spin_unlock(&block_group->lock);
4476
4477	if (cleanup) {
4478		em_tree = &fs_info->mapping_tree;
4479		write_lock(&em_tree->lock);
4480		em = lookup_extent_mapping(em_tree, block_group->start,
4481					   1);
4482		BUG_ON(!em); /* logic error, can't happen */
4483		remove_extent_mapping(em_tree, em);
4484		write_unlock(&em_tree->lock);
4485
4486		/* once for us and once for the tree */
4487		free_extent_map(em);
4488		free_extent_map(em);
4489
4490		/*
4491		 * We may have left one free space entry and other possible
4492		 * tasks trimming this block group have left 1 entry each one.
4493		 * Free them if any.
4494		 */
4495		btrfs_remove_free_space_cache(block_group);
4496	}
4497}
4498
4499bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4500{
4501	bool ret = true;
4502
4503	spin_lock(&bg->lock);
4504	if (bg->ro)
4505		ret = false;
4506	else
4507		bg->swap_extents++;
4508	spin_unlock(&bg->lock);
4509
4510	return ret;
4511}
4512
4513void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4514{
4515	spin_lock(&bg->lock);
4516	ASSERT(!bg->ro);
4517	ASSERT(bg->swap_extents >= amount);
4518	bg->swap_extents -= amount;
4519	spin_unlock(&bg->lock);
4520}
4521
4522enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4523{
4524	if (size <= SZ_128K)
4525		return BTRFS_BG_SZ_SMALL;
4526	if (size <= SZ_8M)
4527		return BTRFS_BG_SZ_MEDIUM;
4528	return BTRFS_BG_SZ_LARGE;
4529}
4530
4531/*
4532 * Handle a block group allocating an extent in a size class
4533 *
4534 * @bg:				The block group we allocated in.
4535 * @size_class:			The size class of the allocation.
4536 * @force_wrong_size_class:	Whether we are desperate enough to allow
4537 *				mismatched size classes.
4538 *
4539 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4540 * case of a race that leads to the wrong size class without
4541 * force_wrong_size_class set.
4542 *
4543 * find_free_extent will skip block groups with a mismatched size class until
4544 * it really needs to avoid ENOSPC. In that case it will set
4545 * force_wrong_size_class. However, if a block group is newly allocated and
4546 * doesn't yet have a size class, then it is possible for two allocations of
4547 * different sizes to race and both try to use it. The loser is caught here and
4548 * has to retry.
4549 */
4550int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4551				     enum btrfs_block_group_size_class size_class,
4552				     bool force_wrong_size_class)
4553{
4554	ASSERT(size_class != BTRFS_BG_SZ_NONE);
4555
4556	/* The new allocation is in the right size class, do nothing */
4557	if (bg->size_class == size_class)
4558		return 0;
4559	/*
4560	 * The new allocation is in a mismatched size class.
4561	 * This means one of two things:
4562	 *
4563	 * 1. Two tasks in find_free_extent for different size_classes raced
4564	 *    and hit the same empty block_group. Make the loser try again.
4565	 * 2. A call to find_free_extent got desperate enough to set
4566	 *    'force_wrong_slab'. Don't change the size_class, but allow the
4567	 *    allocation.
4568	 */
4569	if (bg->size_class != BTRFS_BG_SZ_NONE) {
4570		if (force_wrong_size_class)
4571			return 0;
4572		return -EAGAIN;
4573	}
4574	/*
4575	 * The happy new block group case: the new allocation is the first
4576	 * one in the block_group so we set size_class.
4577	 */
4578	bg->size_class = size_class;
4579
4580	return 0;
4581}
4582
4583bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4584{
4585	if (btrfs_is_zoned(bg->fs_info))
4586		return false;
4587	if (!btrfs_is_block_group_data_only(bg))
4588		return false;
4589	return true;
4590}
4591