xref: /kernel/linux/linux-6.6/fs/btrfs/bio.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 * Copyright (C) 2022 Christoph Hellwig.
5 */
6
7#include <linux/bio.h>
8#include "bio.h"
9#include "ctree.h"
10#include "volumes.h"
11#include "raid56.h"
12#include "async-thread.h"
13#include "check-integrity.h"
14#include "dev-replace.h"
15#include "rcu-string.h"
16#include "zoned.h"
17#include "file-item.h"
18
19static struct bio_set btrfs_bioset;
20static struct bio_set btrfs_clone_bioset;
21static struct bio_set btrfs_repair_bioset;
22static mempool_t btrfs_failed_bio_pool;
23
24struct btrfs_failed_bio {
25	struct btrfs_bio *bbio;
26	int num_copies;
27	atomic_t repair_count;
28};
29
30/* Is this a data path I/O that needs storage layer checksum and repair? */
31static inline bool is_data_bbio(struct btrfs_bio *bbio)
32{
33	return bbio->inode && is_data_inode(&bbio->inode->vfs_inode);
34}
35
36static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
37{
38	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
39}
40
41/*
42 * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
43 * is already initialized by the block layer.
44 */
45void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
46		    btrfs_bio_end_io_t end_io, void *private)
47{
48	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
49	bbio->fs_info = fs_info;
50	bbio->end_io = end_io;
51	bbio->private = private;
52	atomic_set(&bbio->pending_ios, 1);
53}
54
55/*
56 * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
57 * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
58 *
59 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60 * a mempool.
61 */
62struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63				  struct btrfs_fs_info *fs_info,
64				  btrfs_bio_end_io_t end_io, void *private)
65{
66	struct btrfs_bio *bbio;
67	struct bio *bio;
68
69	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70	bbio = btrfs_bio(bio);
71	btrfs_bio_init(bbio, fs_info, end_io, private);
72	return bbio;
73}
74
75static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76					 struct btrfs_bio *orig_bbio,
77					 u64 map_length, bool use_append)
78{
79	struct btrfs_bio *bbio;
80	struct bio *bio;
81
82	if (use_append) {
83		unsigned int nr_segs;
84
85		bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
86				   &btrfs_clone_bioset, map_length);
87	} else {
88		bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
89				GFP_NOFS, &btrfs_clone_bioset);
90	}
91	bbio = btrfs_bio(bio);
92	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
93	bbio->inode = orig_bbio->inode;
94	bbio->file_offset = orig_bbio->file_offset;
95	orig_bbio->file_offset += map_length;
96	if (bbio_has_ordered_extent(bbio)) {
97		refcount_inc(&orig_bbio->ordered->refs);
98		bbio->ordered = orig_bbio->ordered;
99	}
100	atomic_inc(&orig_bbio->pending_ios);
101	return bbio;
102}
103
104/* Free a bio that was never submitted to the underlying device. */
105static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
106{
107	if (bbio_has_ordered_extent(bbio))
108		btrfs_put_ordered_extent(bbio->ordered);
109	bio_put(&bbio->bio);
110}
111
112static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
113{
114	if (bbio_has_ordered_extent(bbio)) {
115		struct btrfs_ordered_extent *ordered = bbio->ordered;
116
117		bbio->end_io(bbio);
118		btrfs_put_ordered_extent(ordered);
119	} else {
120		bbio->end_io(bbio);
121	}
122}
123
124void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
125{
126	bbio->bio.bi_status = status;
127	__btrfs_bio_end_io(bbio);
128}
129
130static void btrfs_orig_write_end_io(struct bio *bio);
131
132static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
133				       struct btrfs_bio *orig_bbio)
134{
135	/*
136	 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
137	 * just blindly propagate a write failure here.  Instead increment the
138	 * error count in the original I/O context so that it is guaranteed to
139	 * be larger than the error tolerance.
140	 */
141	if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
142		struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
143		struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
144
145		atomic_add(orig_bioc->max_errors, &orig_bioc->error);
146	} else {
147		orig_bbio->bio.bi_status = bbio->bio.bi_status;
148	}
149}
150
151static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
152{
153	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
154		struct btrfs_bio *orig_bbio = bbio->private;
155
156		if (bbio->bio.bi_status)
157			btrfs_bbio_propagate_error(bbio, orig_bbio);
158		btrfs_cleanup_bio(bbio);
159		bbio = orig_bbio;
160	}
161
162	if (atomic_dec_and_test(&bbio->pending_ios))
163		__btrfs_bio_end_io(bbio);
164}
165
166static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
167{
168	if (cur_mirror == fbio->num_copies)
169		return cur_mirror + 1 - fbio->num_copies;
170	return cur_mirror + 1;
171}
172
173static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
174{
175	if (cur_mirror == 1)
176		return fbio->num_copies;
177	return cur_mirror - 1;
178}
179
180static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
181{
182	if (atomic_dec_and_test(&fbio->repair_count)) {
183		btrfs_orig_bbio_end_io(fbio->bbio);
184		mempool_free(fbio, &btrfs_failed_bio_pool);
185	}
186}
187
188static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
189				 struct btrfs_device *dev)
190{
191	struct btrfs_failed_bio *fbio = repair_bbio->private;
192	struct btrfs_inode *inode = repair_bbio->inode;
193	struct btrfs_fs_info *fs_info = inode->root->fs_info;
194	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
195	int mirror = repair_bbio->mirror_num;
196
197	if (repair_bbio->bio.bi_status ||
198	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
199		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
200		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
201
202		mirror = next_repair_mirror(fbio, mirror);
203		if (mirror == fbio->bbio->mirror_num) {
204			btrfs_debug(fs_info, "no mirror left");
205			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
206			goto done;
207		}
208
209		btrfs_submit_bio(repair_bbio, mirror);
210		return;
211	}
212
213	do {
214		mirror = prev_repair_mirror(fbio, mirror);
215		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
216				  repair_bbio->file_offset, fs_info->sectorsize,
217				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
218				  bv->bv_page, bv->bv_offset, mirror);
219	} while (mirror != fbio->bbio->mirror_num);
220
221done:
222	btrfs_repair_done(fbio);
223	bio_put(&repair_bbio->bio);
224}
225
226/*
227 * Try to kick off a repair read to the next available mirror for a bad sector.
228 *
229 * This primarily tries to recover good data to serve the actual read request,
230 * but also tries to write the good data back to the bad mirror(s) when a
231 * read succeeded to restore the redundancy.
232 */
233static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
234						  u32 bio_offset,
235						  struct bio_vec *bv,
236						  struct btrfs_failed_bio *fbio)
237{
238	struct btrfs_inode *inode = failed_bbio->inode;
239	struct btrfs_fs_info *fs_info = inode->root->fs_info;
240	const u32 sectorsize = fs_info->sectorsize;
241	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
242	struct btrfs_bio *repair_bbio;
243	struct bio *repair_bio;
244	int num_copies;
245	int mirror;
246
247	btrfs_debug(fs_info, "repair read error: read error at %llu",
248		    failed_bbio->file_offset + bio_offset);
249
250	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
251	if (num_copies == 1) {
252		btrfs_debug(fs_info, "no copy to repair from");
253		failed_bbio->bio.bi_status = BLK_STS_IOERR;
254		return fbio;
255	}
256
257	if (!fbio) {
258		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
259		fbio->bbio = failed_bbio;
260		fbio->num_copies = num_copies;
261		atomic_set(&fbio->repair_count, 1);
262	}
263
264	atomic_inc(&fbio->repair_count);
265
266	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
267				      &btrfs_repair_bioset);
268	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
269	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
270
271	repair_bbio = btrfs_bio(repair_bio);
272	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
273	repair_bbio->inode = failed_bbio->inode;
274	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
275
276	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
277	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
278	btrfs_submit_bio(repair_bbio, mirror);
279	return fbio;
280}
281
282static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
283{
284	struct btrfs_inode *inode = bbio->inode;
285	struct btrfs_fs_info *fs_info = inode->root->fs_info;
286	u32 sectorsize = fs_info->sectorsize;
287	struct bvec_iter *iter = &bbio->saved_iter;
288	blk_status_t status = bbio->bio.bi_status;
289	struct btrfs_failed_bio *fbio = NULL;
290	u32 offset = 0;
291
292	/* Read-repair requires the inode field to be set by the submitter. */
293	ASSERT(inode);
294
295	/*
296	 * Hand off repair bios to the repair code as there is no upper level
297	 * submitter for them.
298	 */
299	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
300		btrfs_end_repair_bio(bbio, dev);
301		return;
302	}
303
304	/* Clear the I/O error. A failed repair will reset it. */
305	bbio->bio.bi_status = BLK_STS_OK;
306
307	while (iter->bi_size) {
308		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
309
310		bv.bv_len = min(bv.bv_len, sectorsize);
311		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
312			fbio = repair_one_sector(bbio, offset, &bv, fbio);
313
314		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
315		offset += sectorsize;
316	}
317
318	if (bbio->csum != bbio->csum_inline)
319		kfree(bbio->csum);
320
321	if (fbio)
322		btrfs_repair_done(fbio);
323	else
324		btrfs_orig_bbio_end_io(bbio);
325}
326
327static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
328{
329	if (!dev || !dev->bdev)
330		return;
331	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
332		return;
333
334	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
335		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
336	else if (!(bio->bi_opf & REQ_RAHEAD))
337		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
338	if (bio->bi_opf & REQ_PREFLUSH)
339		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
340}
341
342static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
343						struct bio *bio)
344{
345	if (bio->bi_opf & REQ_META)
346		return fs_info->endio_meta_workers;
347	return fs_info->endio_workers;
348}
349
350static void btrfs_end_bio_work(struct work_struct *work)
351{
352	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
353
354	/* Metadata reads are checked and repaired by the submitter. */
355	if (is_data_bbio(bbio))
356		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
357	else
358		btrfs_orig_bbio_end_io(bbio);
359}
360
361static void btrfs_simple_end_io(struct bio *bio)
362{
363	struct btrfs_bio *bbio = btrfs_bio(bio);
364	struct btrfs_device *dev = bio->bi_private;
365	struct btrfs_fs_info *fs_info = bbio->fs_info;
366
367	btrfs_bio_counter_dec(fs_info);
368
369	if (bio->bi_status)
370		btrfs_log_dev_io_error(bio, dev);
371
372	if (bio_op(bio) == REQ_OP_READ) {
373		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
374		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
375	} else {
376		if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
377			btrfs_record_physical_zoned(bbio);
378		btrfs_orig_bbio_end_io(bbio);
379	}
380}
381
382static void btrfs_raid56_end_io(struct bio *bio)
383{
384	struct btrfs_io_context *bioc = bio->bi_private;
385	struct btrfs_bio *bbio = btrfs_bio(bio);
386
387	btrfs_bio_counter_dec(bioc->fs_info);
388	bbio->mirror_num = bioc->mirror_num;
389	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
390		btrfs_check_read_bio(bbio, NULL);
391	else
392		btrfs_orig_bbio_end_io(bbio);
393
394	btrfs_put_bioc(bioc);
395}
396
397static void btrfs_orig_write_end_io(struct bio *bio)
398{
399	struct btrfs_io_stripe *stripe = bio->bi_private;
400	struct btrfs_io_context *bioc = stripe->bioc;
401	struct btrfs_bio *bbio = btrfs_bio(bio);
402
403	btrfs_bio_counter_dec(bioc->fs_info);
404
405	if (bio->bi_status) {
406		atomic_inc(&bioc->error);
407		btrfs_log_dev_io_error(bio, stripe->dev);
408	}
409
410	/*
411	 * Only send an error to the higher layers if it is beyond the tolerance
412	 * threshold.
413	 */
414	if (atomic_read(&bioc->error) > bioc->max_errors)
415		bio->bi_status = BLK_STS_IOERR;
416	else
417		bio->bi_status = BLK_STS_OK;
418
419	btrfs_orig_bbio_end_io(bbio);
420	btrfs_put_bioc(bioc);
421}
422
423static void btrfs_clone_write_end_io(struct bio *bio)
424{
425	struct btrfs_io_stripe *stripe = bio->bi_private;
426
427	if (bio->bi_status) {
428		atomic_inc(&stripe->bioc->error);
429		btrfs_log_dev_io_error(bio, stripe->dev);
430	}
431
432	/* Pass on control to the original bio this one was cloned from */
433	bio_endio(stripe->bioc->orig_bio);
434	bio_put(bio);
435}
436
437static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
438{
439	if (!dev || !dev->bdev ||
440	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
441	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
442	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
443		bio_io_error(bio);
444		return;
445	}
446
447	bio_set_dev(bio, dev->bdev);
448
449	/*
450	 * For zone append writing, bi_sector must point the beginning of the
451	 * zone
452	 */
453	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
454		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
455		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
456
457		ASSERT(btrfs_dev_is_sequential(dev, physical));
458		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
459	}
460	btrfs_debug_in_rcu(dev->fs_info,
461	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
462		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
463		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
464		dev->devid, bio->bi_iter.bi_size);
465
466	btrfsic_check_bio(bio);
467
468	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
469		blkcg_punt_bio_submit(bio);
470	else
471		submit_bio(bio);
472}
473
474static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
475{
476	struct bio *orig_bio = bioc->orig_bio, *bio;
477
478	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
479
480	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
481	if (dev_nr == bioc->num_stripes - 1) {
482		bio = orig_bio;
483		bio->bi_end_io = btrfs_orig_write_end_io;
484	} else {
485		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
486		bio_inc_remaining(orig_bio);
487		bio->bi_end_io = btrfs_clone_write_end_io;
488	}
489
490	bio->bi_private = &bioc->stripes[dev_nr];
491	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
492	bioc->stripes[dev_nr].bioc = bioc;
493	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
494}
495
496static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
497			       struct btrfs_io_stripe *smap, int mirror_num)
498{
499	if (!bioc) {
500		/* Single mirror read/write fast path. */
501		btrfs_bio(bio)->mirror_num = mirror_num;
502		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
503		if (bio_op(bio) != REQ_OP_READ)
504			btrfs_bio(bio)->orig_physical = smap->physical;
505		bio->bi_private = smap->dev;
506		bio->bi_end_io = btrfs_simple_end_io;
507		btrfs_submit_dev_bio(smap->dev, bio);
508	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
509		/* Parity RAID write or read recovery. */
510		bio->bi_private = bioc;
511		bio->bi_end_io = btrfs_raid56_end_io;
512		if (bio_op(bio) == REQ_OP_READ)
513			raid56_parity_recover(bio, bioc, mirror_num);
514		else
515			raid56_parity_write(bio, bioc);
516	} else {
517		/* Write to multiple mirrors. */
518		int total_devs = bioc->num_stripes;
519
520		bioc->orig_bio = bio;
521		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
522			btrfs_submit_mirrored_bio(bioc, dev_nr);
523	}
524}
525
526static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
527{
528	if (bbio->bio.bi_opf & REQ_META)
529		return btree_csum_one_bio(bbio);
530	return btrfs_csum_one_bio(bbio);
531}
532
533/*
534 * Async submit bios are used to offload expensive checksumming onto the worker
535 * threads.
536 */
537struct async_submit_bio {
538	struct btrfs_bio *bbio;
539	struct btrfs_io_context *bioc;
540	struct btrfs_io_stripe smap;
541	int mirror_num;
542	struct btrfs_work work;
543};
544
545/*
546 * In order to insert checksums into the metadata in large chunks, we wait
547 * until bio submission time.   All the pages in the bio are checksummed and
548 * sums are attached onto the ordered extent record.
549 *
550 * At IO completion time the csums attached on the ordered extent record are
551 * inserted into the btree.
552 */
553static void run_one_async_start(struct btrfs_work *work)
554{
555	struct async_submit_bio *async =
556		container_of(work, struct async_submit_bio, work);
557	blk_status_t ret;
558
559	ret = btrfs_bio_csum(async->bbio);
560	if (ret)
561		async->bbio->bio.bi_status = ret;
562}
563
564/*
565 * In order to insert checksums into the metadata in large chunks, we wait
566 * until bio submission time.   All the pages in the bio are checksummed and
567 * sums are attached onto the ordered extent record.
568 *
569 * At IO completion time the csums attached on the ordered extent record are
570 * inserted into the tree.
571 */
572static void run_one_async_done(struct btrfs_work *work)
573{
574	struct async_submit_bio *async =
575		container_of(work, struct async_submit_bio, work);
576	struct bio *bio = &async->bbio->bio;
577
578	/* If an error occurred we just want to clean up the bio and move on. */
579	if (bio->bi_status) {
580		btrfs_orig_bbio_end_io(async->bbio);
581		return;
582	}
583
584	/*
585	 * All of the bios that pass through here are from async helpers.
586	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
587	 * context.  This changes nothing when cgroups aren't in use.
588	 */
589	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
590	__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
591}
592
593static void run_one_async_free(struct btrfs_work *work)
594{
595	kfree(container_of(work, struct async_submit_bio, work));
596}
597
598static bool should_async_write(struct btrfs_bio *bbio)
599{
600	/* Submit synchronously if the checksum implementation is fast. */
601	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
602		return false;
603
604	/*
605	 * Try to defer the submission to a workqueue to parallelize the
606	 * checksum calculation unless the I/O is issued synchronously.
607	 */
608	if (op_is_sync(bbio->bio.bi_opf))
609		return false;
610
611	/* Zoned devices require I/O to be submitted in order. */
612	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
613		return false;
614
615	return true;
616}
617
618/*
619 * Submit bio to an async queue.
620 *
621 * Return true if the work has been succesfuly submitted, else false.
622 */
623static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
624				struct btrfs_io_context *bioc,
625				struct btrfs_io_stripe *smap, int mirror_num)
626{
627	struct btrfs_fs_info *fs_info = bbio->fs_info;
628	struct async_submit_bio *async;
629
630	async = kmalloc(sizeof(*async), GFP_NOFS);
631	if (!async)
632		return false;
633
634	async->bbio = bbio;
635	async->bioc = bioc;
636	async->smap = *smap;
637	async->mirror_num = mirror_num;
638
639	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
640			run_one_async_free);
641	btrfs_queue_work(fs_info->workers, &async->work);
642	return true;
643}
644
645static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
646{
647	struct btrfs_inode *inode = bbio->inode;
648	struct btrfs_fs_info *fs_info = bbio->fs_info;
649	struct btrfs_bio *orig_bbio = bbio;
650	struct bio *bio = &bbio->bio;
651	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
652	u64 length = bio->bi_iter.bi_size;
653	u64 map_length = length;
654	bool use_append = btrfs_use_zone_append(bbio);
655	struct btrfs_io_context *bioc = NULL;
656	struct btrfs_io_stripe smap;
657	blk_status_t ret;
658	int error;
659
660	btrfs_bio_counter_inc_blocked(fs_info);
661	error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
662				&bioc, &smap, &mirror_num, 1);
663	if (error) {
664		ret = errno_to_blk_status(error);
665		goto fail;
666	}
667
668	map_length = min(map_length, length);
669	if (use_append)
670		map_length = min(map_length, fs_info->max_zone_append_size);
671
672	if (map_length < length) {
673		bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
674		bio = &bbio->bio;
675	}
676
677	/*
678	 * Save the iter for the end_io handler and preload the checksums for
679	 * data reads.
680	 */
681	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
682		bbio->saved_iter = bio->bi_iter;
683		ret = btrfs_lookup_bio_sums(bbio);
684		if (ret)
685			goto fail_put_bio;
686	}
687
688	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
689		if (use_append) {
690			bio->bi_opf &= ~REQ_OP_WRITE;
691			bio->bi_opf |= REQ_OP_ZONE_APPEND;
692		}
693
694		/*
695		 * Csum items for reloc roots have already been cloned at this
696		 * point, so they are handled as part of the no-checksum case.
697		 */
698		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
699		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
700		    !btrfs_is_data_reloc_root(inode->root)) {
701			if (should_async_write(bbio) &&
702			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
703				goto done;
704
705			ret = btrfs_bio_csum(bbio);
706			if (ret)
707				goto fail_put_bio;
708		} else if (use_append) {
709			ret = btrfs_alloc_dummy_sum(bbio);
710			if (ret)
711				goto fail_put_bio;
712		}
713	}
714
715	__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
716done:
717	return map_length == length;
718
719fail_put_bio:
720	if (map_length < length)
721		btrfs_cleanup_bio(bbio);
722fail:
723	btrfs_bio_counter_dec(fs_info);
724	btrfs_bio_end_io(orig_bbio, ret);
725	/* Do not submit another chunk */
726	return true;
727}
728
729void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
730{
731	/* If bbio->inode is not populated, its file_offset must be 0. */
732	ASSERT(bbio->inode || bbio->file_offset == 0);
733
734	while (!btrfs_submit_chunk(bbio, mirror_num))
735		;
736}
737
738/*
739 * Submit a repair write.
740 *
741 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
742 * RAID setup.  Here we only want to write the one bad copy, so we do the
743 * mapping ourselves and submit the bio directly.
744 *
745 * The I/O is issued synchronously to block the repair read completion from
746 * freeing the bio.
747 */
748int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
749			    u64 length, u64 logical, struct page *page,
750			    unsigned int pg_offset, int mirror_num)
751{
752	struct btrfs_io_stripe smap = { 0 };
753	struct bio_vec bvec;
754	struct bio bio;
755	int ret = 0;
756
757	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
758	BUG_ON(!mirror_num);
759
760	if (btrfs_repair_one_zone(fs_info, logical))
761		return 0;
762
763	/*
764	 * Avoid races with device replace and make sure our bioc has devices
765	 * associated to its stripes that don't go away while we are doing the
766	 * read repair operation.
767	 */
768	btrfs_bio_counter_inc_blocked(fs_info);
769	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
770	if (ret < 0)
771		goto out_counter_dec;
772
773	if (!smap.dev->bdev ||
774	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
775		ret = -EIO;
776		goto out_counter_dec;
777	}
778
779	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
780	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
781	__bio_add_page(&bio, page, length, pg_offset);
782
783	btrfsic_check_bio(&bio);
784	ret = submit_bio_wait(&bio);
785	if (ret) {
786		/* try to remap that extent elsewhere? */
787		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
788		goto out_bio_uninit;
789	}
790
791	btrfs_info_rl_in_rcu(fs_info,
792		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
793			     ino, start, btrfs_dev_name(smap.dev),
794			     smap.physical >> SECTOR_SHIFT);
795	ret = 0;
796
797out_bio_uninit:
798	bio_uninit(&bio);
799out_counter_dec:
800	btrfs_bio_counter_dec(fs_info);
801	return ret;
802}
803
804/*
805 * Submit a btrfs_bio based repair write.
806 *
807 * If @dev_replace is true, the write would be submitted to dev-replace target.
808 */
809void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
810{
811	struct btrfs_fs_info *fs_info = bbio->fs_info;
812	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
813	u64 length = bbio->bio.bi_iter.bi_size;
814	struct btrfs_io_stripe smap = { 0 };
815	int ret;
816
817	ASSERT(fs_info);
818	ASSERT(mirror_num > 0);
819	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
820	ASSERT(!bbio->inode);
821
822	btrfs_bio_counter_inc_blocked(fs_info);
823	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
824	if (ret < 0)
825		goto fail;
826
827	if (dev_replace) {
828		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
829		smap.dev = fs_info->dev_replace.tgtdev;
830	}
831	__btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
832	return;
833
834fail:
835	btrfs_bio_counter_dec(fs_info);
836	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
837}
838
839int __init btrfs_bioset_init(void)
840{
841	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
842			offsetof(struct btrfs_bio, bio),
843			BIOSET_NEED_BVECS))
844		return -ENOMEM;
845	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
846			offsetof(struct btrfs_bio, bio), 0))
847		goto out_free_bioset;
848	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
849			offsetof(struct btrfs_bio, bio),
850			BIOSET_NEED_BVECS))
851		goto out_free_clone_bioset;
852	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
853				      sizeof(struct btrfs_failed_bio)))
854		goto out_free_repair_bioset;
855	return 0;
856
857out_free_repair_bioset:
858	bioset_exit(&btrfs_repair_bioset);
859out_free_clone_bioset:
860	bioset_exit(&btrfs_clone_bioset);
861out_free_bioset:
862	bioset_exit(&btrfs_bioset);
863	return -ENOMEM;
864}
865
866void __cold btrfs_bioset_exit(void)
867{
868	mempool_exit(&btrfs_failed_bio_pool);
869	bioset_exit(&btrfs_repair_bioset);
870	bioset_exit(&btrfs_clone_bioset);
871	bioset_exit(&btrfs_bioset);
872}
873