xref: /kernel/linux/linux-6.6/fs/btrfs/backref.h (revision 62306a36)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2011 STRATO.  All rights reserved.
4 */
5
6#ifndef BTRFS_BACKREF_H
7#define BTRFS_BACKREF_H
8
9#include <linux/btrfs.h>
10#include "messages.h"
11#include "ulist.h"
12#include "disk-io.h"
13#include "extent_io.h"
14
15/*
16 * Used by implementations of iterate_extent_inodes_t (see definition below) to
17 * signal that backref iteration can stop immediately and no error happened.
18 * The value must be non-negative and must not be 0, 1 (which is a common return
19 * value from things like btrfs_search_slot() and used internally in the backref
20 * walking code) and different from BACKREF_FOUND_SHARED and
21 * BACKREF_FOUND_NOT_SHARED
22 */
23#define BTRFS_ITERATE_EXTENT_INODES_STOP 5
24
25/*
26 * Should return 0 if no errors happened and iteration of backrefs should
27 * continue. Can return BTRFS_ITERATE_EXTENT_INODES_STOP or any other non-zero
28 * value to immediately stop iteration and possibly signal an error back to
29 * the caller.
30 */
31typedef int (iterate_extent_inodes_t)(u64 inum, u64 offset, u64 num_bytes,
32				      u64 root, void *ctx);
33
34/*
35 * Context and arguments for backref walking functions. Some of the fields are
36 * to be filled by the caller of such functions while other are filled by the
37 * functions themselves, as described below.
38 */
39struct btrfs_backref_walk_ctx {
40	/*
41	 * The address of the extent for which we are doing backref walking.
42	 * Can be either a data extent or a metadata extent.
43	 *
44	 * Must always be set by the top level caller.
45	 */
46	u64 bytenr;
47	/*
48	 * Offset relative to the target extent. This is only used for data
49	 * extents, and it's meaningful because we can have file extent items
50	 * that point only to a section of a data extent ("bookend" extents),
51	 * and we want to filter out any that don't point to a section of the
52	 * data extent containing the given offset.
53	 *
54	 * Must always be set by the top level caller.
55	 */
56	u64 extent_item_pos;
57	/*
58	 * If true and bytenr corresponds to a data extent, then references from
59	 * all file extent items that point to the data extent are considered,
60	 * @extent_item_pos is ignored.
61	 */
62	bool ignore_extent_item_pos;
63	/*
64	 * If true and bytenr corresponds to a data extent, then the inode list
65	 * (each member describing inode number, file offset and root) is not
66	 * added to each reference added to the @refs ulist.
67	 */
68	bool skip_inode_ref_list;
69	/* A valid transaction handle or NULL. */
70	struct btrfs_trans_handle *trans;
71	/*
72	 * The file system's info object, can not be NULL.
73	 *
74	 * Must always be set by the top level caller.
75	 */
76	struct btrfs_fs_info *fs_info;
77	/*
78	 * Time sequence acquired from btrfs_get_tree_mod_seq(), in case the
79	 * caller joined the tree mod log to get a consistent view of b+trees
80	 * while we do backref walking, or BTRFS_SEQ_LAST.
81	 * When using BTRFS_SEQ_LAST, delayed refs are not checked and it uses
82	 * commit roots when searching b+trees - this is a special case for
83	 * qgroups used during a transaction commit.
84	 */
85	u64 time_seq;
86	/*
87	 * Used to collect the bytenr of metadata extents that point to the
88	 * target extent.
89	 */
90	struct ulist *refs;
91	/*
92	 * List used to collect the IDs of the roots from which the target
93	 * extent is accessible. Can be NULL in case the caller does not care
94	 * about collecting root IDs.
95	 */
96	struct ulist *roots;
97	/*
98	 * Used by iterate_extent_inodes() and the main backref walk code
99	 * (find_parent_nodes()). Lookup and store functions for an optional
100	 * cache which maps the logical address (bytenr) of leaves to an array
101	 * of root IDs.
102	 */
103	bool (*cache_lookup)(u64 leaf_bytenr, void *user_ctx,
104			     const u64 **root_ids_ret, int *root_count_ret);
105	void (*cache_store)(u64 leaf_bytenr, const struct ulist *root_ids,
106			    void *user_ctx);
107	/*
108	 * If this is not NULL, then the backref walking code will call this
109	 * for each indirect data extent reference as soon as it finds one,
110	 * before collecting all the remaining backrefs and before resolving
111	 * indirect backrefs. This allows for the caller to terminate backref
112	 * walking as soon as it finds one backref that matches some specific
113	 * criteria. The @cache_lookup and @cache_store callbacks should not
114	 * be NULL in order to use this callback.
115	 */
116	iterate_extent_inodes_t *indirect_ref_iterator;
117	/*
118	 * If this is not NULL, then the backref walking code will call this for
119	 * each extent item it's meant to process before it actually starts
120	 * processing it. If this returns anything other than 0, then it stops
121	 * the backref walking code immediately.
122	 */
123	int (*check_extent_item)(u64 bytenr, const struct btrfs_extent_item *ei,
124				 const struct extent_buffer *leaf, void *user_ctx);
125	/*
126	 * If this is not NULL, then the backref walking code will call this for
127	 * each extent data ref it finds (BTRFS_EXTENT_DATA_REF_KEY keys) before
128	 * processing that data ref. If this callback return false, then it will
129	 * ignore this data ref and it will never resolve the indirect data ref,
130	 * saving time searching for leaves in a fs tree with file extent items
131	 * matching the data ref.
132	 */
133	bool (*skip_data_ref)(u64 root, u64 ino, u64 offset, void *user_ctx);
134	/* Context object to pass to the callbacks defined above. */
135	void *user_ctx;
136};
137
138struct inode_fs_paths {
139	struct btrfs_path		*btrfs_path;
140	struct btrfs_root		*fs_root;
141	struct btrfs_data_container	*fspath;
142};
143
144struct btrfs_backref_shared_cache_entry {
145	u64 bytenr;
146	u64 gen;
147	bool is_shared;
148};
149
150#define BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE 8
151
152struct btrfs_backref_share_check_ctx {
153	/* Ulists used during backref walking. */
154	struct ulist refs;
155	/*
156	 * The current leaf the caller of btrfs_is_data_extent_shared() is at.
157	 * Typically the caller (at the moment only fiemap) tries to determine
158	 * the sharedness of data extents point by file extent items from entire
159	 * leaves.
160	 */
161	u64 curr_leaf_bytenr;
162	/*
163	 * The previous leaf the caller was at in the previous call to
164	 * btrfs_is_data_extent_shared(). This may be the same as the current
165	 * leaf. On the first call it must be 0.
166	 */
167	u64 prev_leaf_bytenr;
168	/*
169	 * A path from a root to a leaf that has a file extent item pointing to
170	 * a given data extent should never exceed the maximum b+tree height.
171	 */
172	struct btrfs_backref_shared_cache_entry path_cache_entries[BTRFS_MAX_LEVEL];
173	bool use_path_cache;
174	/*
175	 * Cache the sharedness result for the last few extents we have found,
176	 * but only for extents for which we have multiple file extent items
177	 * that point to them.
178	 * It's very common to have several file extent items that point to the
179	 * same extent (bytenr) but with different offsets and lengths. This
180	 * typically happens for COW writes, partial writes into prealloc
181	 * extents, NOCOW writes after snapshoting a root, hole punching or
182	 * reflinking within the same file (less common perhaps).
183	 * So keep a small cache with the lookup results for the extent pointed
184	 * by the last few file extent items. This cache is checked, with a
185	 * linear scan, whenever btrfs_is_data_extent_shared() is called, so
186	 * it must be small so that it does not negatively affect performance in
187	 * case we don't have multiple file extent items that point to the same
188	 * data extent.
189	 */
190	struct {
191		u64 bytenr;
192		bool is_shared;
193	} prev_extents_cache[BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE];
194	/*
195	 * The slot in the prev_extents_cache array that will be used for
196	 * storing the sharedness result of a new data extent.
197	 */
198	int prev_extents_cache_slot;
199};
200
201struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void);
202void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx);
203
204int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
205			struct btrfs_path *path, struct btrfs_key *found_key,
206			u64 *flags);
207
208int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
209			    struct btrfs_key *key, struct btrfs_extent_item *ei,
210			    u32 item_size, u64 *out_root, u8 *out_level);
211
212int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
213			  bool search_commit_root,
214			  iterate_extent_inodes_t *iterate, void *user_ctx);
215
216int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
217				struct btrfs_path *path, void *ctx,
218				bool ignore_offset);
219
220int paths_from_inode(u64 inum, struct inode_fs_paths *ipath);
221
222int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx);
223int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
224			 bool skip_commit_root_sem);
225char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
226			u32 name_len, unsigned long name_off,
227			struct extent_buffer *eb_in, u64 parent,
228			char *dest, u32 size);
229
230struct btrfs_data_container *init_data_container(u32 total_bytes);
231struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
232					struct btrfs_path *path);
233void free_ipath(struct inode_fs_paths *ipath);
234
235int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
236			  u64 start_off, struct btrfs_path *path,
237			  struct btrfs_inode_extref **ret_extref,
238			  u64 *found_off);
239int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
240				u64 extent_gen,
241				struct btrfs_backref_share_check_ctx *ctx);
242
243int __init btrfs_prelim_ref_init(void);
244void __cold btrfs_prelim_ref_exit(void);
245
246struct prelim_ref {
247	struct rb_node rbnode;
248	u64 root_id;
249	struct btrfs_key key_for_search;
250	int level;
251	int count;
252	struct extent_inode_elem *inode_list;
253	u64 parent;
254	u64 wanted_disk_byte;
255};
256
257/*
258 * Iterate backrefs of one extent.
259 *
260 * Now it only supports iteration of tree block in commit root.
261 */
262struct btrfs_backref_iter {
263	u64 bytenr;
264	struct btrfs_path *path;
265	struct btrfs_fs_info *fs_info;
266	struct btrfs_key cur_key;
267	u32 item_ptr;
268	u32 cur_ptr;
269	u32 end_ptr;
270};
271
272struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info);
273
274static inline void btrfs_backref_iter_free(struct btrfs_backref_iter *iter)
275{
276	if (!iter)
277		return;
278	btrfs_free_path(iter->path);
279	kfree(iter);
280}
281
282static inline struct extent_buffer *btrfs_backref_get_eb(
283		struct btrfs_backref_iter *iter)
284{
285	if (!iter)
286		return NULL;
287	return iter->path->nodes[0];
288}
289
290/*
291 * For metadata with EXTENT_ITEM key (non-skinny) case, the first inline data
292 * is btrfs_tree_block_info, without a btrfs_extent_inline_ref header.
293 *
294 * This helper determines if that's the case.
295 */
296static inline bool btrfs_backref_has_tree_block_info(
297		struct btrfs_backref_iter *iter)
298{
299	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY &&
300	    iter->cur_ptr - iter->item_ptr == sizeof(struct btrfs_extent_item))
301		return true;
302	return false;
303}
304
305int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr);
306
307int btrfs_backref_iter_next(struct btrfs_backref_iter *iter);
308
309static inline bool btrfs_backref_iter_is_inline_ref(
310		struct btrfs_backref_iter *iter)
311{
312	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
313	    iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
314		return true;
315	return false;
316}
317
318static inline void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
319{
320	iter->bytenr = 0;
321	iter->item_ptr = 0;
322	iter->cur_ptr = 0;
323	iter->end_ptr = 0;
324	btrfs_release_path(iter->path);
325	memset(&iter->cur_key, 0, sizeof(iter->cur_key));
326}
327
328/*
329 * Backref cache related structures
330 *
331 * The whole objective of backref_cache is to build a bi-directional map
332 * of tree blocks (represented by backref_node) and all their parents.
333 */
334
335/*
336 * Represent a tree block in the backref cache
337 */
338struct btrfs_backref_node {
339	struct {
340		struct rb_node rb_node;
341		u64 bytenr;
342	}; /* Use rb_simple_node for search/insert */
343
344	u64 new_bytenr;
345	/* Objectid of tree block owner, can be not uptodate */
346	u64 owner;
347	/* Link to pending, changed or detached list */
348	struct list_head list;
349
350	/* List of upper level edges, which link this node to its parents */
351	struct list_head upper;
352	/* List of lower level edges, which link this node to its children */
353	struct list_head lower;
354
355	/* NULL if this node is not tree root */
356	struct btrfs_root *root;
357	/* Extent buffer got by COWing the block */
358	struct extent_buffer *eb;
359	/* Level of the tree block */
360	unsigned int level:8;
361	/* Is the block in a non-shareable tree */
362	unsigned int cowonly:1;
363	/* 1 if no child node is in the cache */
364	unsigned int lowest:1;
365	/* Is the extent buffer locked */
366	unsigned int locked:1;
367	/* Has the block been processed */
368	unsigned int processed:1;
369	/* Have backrefs of this block been checked */
370	unsigned int checked:1;
371	/*
372	 * 1 if corresponding block has been COWed but some upper level block
373	 * pointers may not point to the new location
374	 */
375	unsigned int pending:1;
376	/* 1 if the backref node isn't connected to any other backref node */
377	unsigned int detached:1;
378
379	/*
380	 * For generic purpose backref cache, where we only care if it's a reloc
381	 * root, doesn't care the source subvolid.
382	 */
383	unsigned int is_reloc_root:1;
384};
385
386#define LOWER	0
387#define UPPER	1
388
389/*
390 * Represent an edge connecting upper and lower backref nodes.
391 */
392struct btrfs_backref_edge {
393	/*
394	 * list[LOWER] is linked to btrfs_backref_node::upper of lower level
395	 * node, and list[UPPER] is linked to btrfs_backref_node::lower of
396	 * upper level node.
397	 *
398	 * Also, build_backref_tree() uses list[UPPER] for pending edges, before
399	 * linking list[UPPER] to its upper level nodes.
400	 */
401	struct list_head list[2];
402
403	/* Two related nodes */
404	struct btrfs_backref_node *node[2];
405};
406
407struct btrfs_backref_cache {
408	/* Red black tree of all backref nodes in the cache */
409	struct rb_root rb_root;
410	/* For passing backref nodes to btrfs_reloc_cow_block */
411	struct btrfs_backref_node *path[BTRFS_MAX_LEVEL];
412	/*
413	 * List of blocks that have been COWed but some block pointers in upper
414	 * level blocks may not reflect the new location
415	 */
416	struct list_head pending[BTRFS_MAX_LEVEL];
417	/* List of backref nodes with no child node */
418	struct list_head leaves;
419	/* List of blocks that have been COWed in current transaction */
420	struct list_head changed;
421	/* List of detached backref node. */
422	struct list_head detached;
423
424	u64 last_trans;
425
426	int nr_nodes;
427	int nr_edges;
428
429	/* List of unchecked backref edges during backref cache build */
430	struct list_head pending_edge;
431
432	/* List of useless backref nodes during backref cache build */
433	struct list_head useless_node;
434
435	struct btrfs_fs_info *fs_info;
436
437	/*
438	 * Whether this cache is for relocation
439	 *
440	 * Reloction backref cache require more info for reloc root compared
441	 * to generic backref cache.
442	 */
443	unsigned int is_reloc;
444};
445
446void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
447			      struct btrfs_backref_cache *cache, int is_reloc);
448struct btrfs_backref_node *btrfs_backref_alloc_node(
449		struct btrfs_backref_cache *cache, u64 bytenr, int level);
450struct btrfs_backref_edge *btrfs_backref_alloc_edge(
451		struct btrfs_backref_cache *cache);
452
453#define		LINK_LOWER	(1 << 0)
454#define		LINK_UPPER	(1 << 1)
455static inline void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
456					   struct btrfs_backref_node *lower,
457					   struct btrfs_backref_node *upper,
458					   int link_which)
459{
460	ASSERT(upper && lower && upper->level == lower->level + 1);
461	edge->node[LOWER] = lower;
462	edge->node[UPPER] = upper;
463	if (link_which & LINK_LOWER)
464		list_add_tail(&edge->list[LOWER], &lower->upper);
465	if (link_which & LINK_UPPER)
466		list_add_tail(&edge->list[UPPER], &upper->lower);
467}
468
469static inline void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
470					   struct btrfs_backref_node *node)
471{
472	if (node) {
473		ASSERT(list_empty(&node->list));
474		ASSERT(list_empty(&node->lower));
475		ASSERT(node->eb == NULL);
476		cache->nr_nodes--;
477		btrfs_put_root(node->root);
478		kfree(node);
479	}
480}
481
482static inline void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
483					   struct btrfs_backref_edge *edge)
484{
485	if (edge) {
486		cache->nr_edges--;
487		kfree(edge);
488	}
489}
490
491static inline void btrfs_backref_unlock_node_buffer(
492		struct btrfs_backref_node *node)
493{
494	if (node->locked) {
495		btrfs_tree_unlock(node->eb);
496		node->locked = 0;
497	}
498}
499
500static inline void btrfs_backref_drop_node_buffer(
501		struct btrfs_backref_node *node)
502{
503	if (node->eb) {
504		btrfs_backref_unlock_node_buffer(node);
505		free_extent_buffer(node->eb);
506		node->eb = NULL;
507	}
508}
509
510/*
511 * Drop the backref node from cache without cleaning up its children
512 * edges.
513 *
514 * This can only be called on node without parent edges.
515 * The children edges are still kept as is.
516 */
517static inline void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
518					   struct btrfs_backref_node *node)
519{
520	ASSERT(list_empty(&node->upper));
521
522	btrfs_backref_drop_node_buffer(node);
523	list_del_init(&node->list);
524	list_del_init(&node->lower);
525	if (!RB_EMPTY_NODE(&node->rb_node))
526		rb_erase(&node->rb_node, &tree->rb_root);
527	btrfs_backref_free_node(tree, node);
528}
529
530void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
531				struct btrfs_backref_node *node);
532
533void btrfs_backref_release_cache(struct btrfs_backref_cache *cache);
534
535static inline void btrfs_backref_panic(struct btrfs_fs_info *fs_info,
536				       u64 bytenr, int errno)
537{
538	btrfs_panic(fs_info, errno,
539		    "Inconsistency in backref cache found at offset %llu",
540		    bytenr);
541}
542
543int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
544				struct btrfs_backref_cache *cache,
545				struct btrfs_path *path,
546				struct btrfs_backref_iter *iter,
547				struct btrfs_key *node_key,
548				struct btrfs_backref_node *cur);
549
550int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
551				     struct btrfs_backref_node *start);
552
553void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
554				 struct btrfs_backref_node *node);
555
556#endif
557