xref: /kernel/linux/linux-6.6/fs/btrfs/backref.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO.  All rights reserved.
4 */
5
6#include <linux/mm.h>
7#include <linux/rbtree.h>
8#include <trace/events/btrfs.h>
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
15#include "locking.h"
16#include "misc.h"
17#include "tree-mod-log.h"
18#include "fs.h"
19#include "accessors.h"
20#include "extent-tree.h"
21#include "relocation.h"
22#include "tree-checker.h"
23
24/* Just arbitrary numbers so we can be sure one of these happened. */
25#define BACKREF_FOUND_SHARED     6
26#define BACKREF_FOUND_NOT_SHARED 7
27
28struct extent_inode_elem {
29	u64 inum;
30	u64 offset;
31	u64 num_bytes;
32	struct extent_inode_elem *next;
33};
34
35static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36			      const struct btrfs_key *key,
37			      const struct extent_buffer *eb,
38			      const struct btrfs_file_extent_item *fi,
39			      struct extent_inode_elem **eie)
40{
41	const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42	u64 offset = key->offset;
43	struct extent_inode_elem *e;
44	const u64 *root_ids;
45	int root_count;
46	bool cached;
47
48	if (!ctx->ignore_extent_item_pos &&
49	    !btrfs_file_extent_compression(eb, fi) &&
50	    !btrfs_file_extent_encryption(eb, fi) &&
51	    !btrfs_file_extent_other_encoding(eb, fi)) {
52		u64 data_offset;
53
54		data_offset = btrfs_file_extent_offset(eb, fi);
55
56		if (ctx->extent_item_pos < data_offset ||
57		    ctx->extent_item_pos >= data_offset + data_len)
58			return 1;
59		offset += ctx->extent_item_pos - data_offset;
60	}
61
62	if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63		goto add_inode_elem;
64
65	cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66				   &root_count);
67	if (!cached)
68		goto add_inode_elem;
69
70	for (int i = 0; i < root_count; i++) {
71		int ret;
72
73		ret = ctx->indirect_ref_iterator(key->objectid, offset,
74						 data_len, root_ids[i],
75						 ctx->user_ctx);
76		if (ret)
77			return ret;
78	}
79
80add_inode_elem:
81	e = kmalloc(sizeof(*e), GFP_NOFS);
82	if (!e)
83		return -ENOMEM;
84
85	e->next = *eie;
86	e->inum = key->objectid;
87	e->offset = offset;
88	e->num_bytes = data_len;
89	*eie = e;
90
91	return 0;
92}
93
94static void free_inode_elem_list(struct extent_inode_elem *eie)
95{
96	struct extent_inode_elem *eie_next;
97
98	for (; eie; eie = eie_next) {
99		eie_next = eie->next;
100		kfree(eie);
101	}
102}
103
104static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105			     const struct extent_buffer *eb,
106			     struct extent_inode_elem **eie)
107{
108	u64 disk_byte;
109	struct btrfs_key key;
110	struct btrfs_file_extent_item *fi;
111	int slot;
112	int nritems;
113	int extent_type;
114	int ret;
115
116	/*
117	 * from the shared data ref, we only have the leaf but we need
118	 * the key. thus, we must look into all items and see that we
119	 * find one (some) with a reference to our extent item.
120	 */
121	nritems = btrfs_header_nritems(eb);
122	for (slot = 0; slot < nritems; ++slot) {
123		btrfs_item_key_to_cpu(eb, &key, slot);
124		if (key.type != BTRFS_EXTENT_DATA_KEY)
125			continue;
126		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127		extent_type = btrfs_file_extent_type(eb, fi);
128		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129			continue;
130		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132		if (disk_byte != ctx->bytenr)
133			continue;
134
135		ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136		if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137			return ret;
138	}
139
140	return 0;
141}
142
143struct preftree {
144	struct rb_root_cached root;
145	unsigned int count;
146};
147
148#define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
149
150struct preftrees {
151	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153	struct preftree indirect_missing_keys;
154};
155
156/*
157 * Checks for a shared extent during backref search.
158 *
159 * The share_count tracks prelim_refs (direct and indirect) having a
160 * ref->count >0:
161 *  - incremented when a ref->count transitions to >0
162 *  - decremented when a ref->count transitions to <1
163 */
164struct share_check {
165	struct btrfs_backref_share_check_ctx *ctx;
166	struct btrfs_root *root;
167	u64 inum;
168	u64 data_bytenr;
169	u64 data_extent_gen;
170	/*
171	 * Counts number of inodes that refer to an extent (different inodes in
172	 * the same root or different roots) that we could find. The sharedness
173	 * check typically stops once this counter gets greater than 1, so it
174	 * may not reflect the total number of inodes.
175	 */
176	int share_count;
177	/*
178	 * The number of times we found our inode refers to the data extent we
179	 * are determining the sharedness. In other words, how many file extent
180	 * items we could find for our inode that point to our target data
181	 * extent. The value we get here after finishing the extent sharedness
182	 * check may be smaller than reality, but if it ends up being greater
183	 * than 1, then we know for sure the inode has multiple file extent
184	 * items that point to our inode, and we can safely assume it's useful
185	 * to cache the sharedness check result.
186	 */
187	int self_ref_count;
188	bool have_delayed_delete_refs;
189};
190
191static inline int extent_is_shared(struct share_check *sc)
192{
193	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194}
195
196static struct kmem_cache *btrfs_prelim_ref_cache;
197
198int __init btrfs_prelim_ref_init(void)
199{
200	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201					sizeof(struct prelim_ref),
202					0,
203					SLAB_MEM_SPREAD,
204					NULL);
205	if (!btrfs_prelim_ref_cache)
206		return -ENOMEM;
207	return 0;
208}
209
210void __cold btrfs_prelim_ref_exit(void)
211{
212	kmem_cache_destroy(btrfs_prelim_ref_cache);
213}
214
215static void free_pref(struct prelim_ref *ref)
216{
217	kmem_cache_free(btrfs_prelim_ref_cache, ref);
218}
219
220/*
221 * Return 0 when both refs are for the same block (and can be merged).
222 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
223 * indicates a 'higher' block.
224 */
225static int prelim_ref_compare(struct prelim_ref *ref1,
226			      struct prelim_ref *ref2)
227{
228	if (ref1->level < ref2->level)
229		return -1;
230	if (ref1->level > ref2->level)
231		return 1;
232	if (ref1->root_id < ref2->root_id)
233		return -1;
234	if (ref1->root_id > ref2->root_id)
235		return 1;
236	if (ref1->key_for_search.type < ref2->key_for_search.type)
237		return -1;
238	if (ref1->key_for_search.type > ref2->key_for_search.type)
239		return 1;
240	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
241		return -1;
242	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
243		return 1;
244	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
245		return -1;
246	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
247		return 1;
248	if (ref1->parent < ref2->parent)
249		return -1;
250	if (ref1->parent > ref2->parent)
251		return 1;
252
253	return 0;
254}
255
256static void update_share_count(struct share_check *sc, int oldcount,
257			       int newcount, struct prelim_ref *newref)
258{
259	if ((!sc) || (oldcount == 0 && newcount < 1))
260		return;
261
262	if (oldcount > 0 && newcount < 1)
263		sc->share_count--;
264	else if (oldcount < 1 && newcount > 0)
265		sc->share_count++;
266
267	if (newref->root_id == sc->root->root_key.objectid &&
268	    newref->wanted_disk_byte == sc->data_bytenr &&
269	    newref->key_for_search.objectid == sc->inum)
270		sc->self_ref_count += newref->count;
271}
272
273/*
274 * Add @newref to the @root rbtree, merging identical refs.
275 *
276 * Callers should assume that newref has been freed after calling.
277 */
278static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
279			      struct preftree *preftree,
280			      struct prelim_ref *newref,
281			      struct share_check *sc)
282{
283	struct rb_root_cached *root;
284	struct rb_node **p;
285	struct rb_node *parent = NULL;
286	struct prelim_ref *ref;
287	int result;
288	bool leftmost = true;
289
290	root = &preftree->root;
291	p = &root->rb_root.rb_node;
292
293	while (*p) {
294		parent = *p;
295		ref = rb_entry(parent, struct prelim_ref, rbnode);
296		result = prelim_ref_compare(ref, newref);
297		if (result < 0) {
298			p = &(*p)->rb_left;
299		} else if (result > 0) {
300			p = &(*p)->rb_right;
301			leftmost = false;
302		} else {
303			/* Identical refs, merge them and free @newref */
304			struct extent_inode_elem *eie = ref->inode_list;
305
306			while (eie && eie->next)
307				eie = eie->next;
308
309			if (!eie)
310				ref->inode_list = newref->inode_list;
311			else
312				eie->next = newref->inode_list;
313			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
314						     preftree->count);
315			/*
316			 * A delayed ref can have newref->count < 0.
317			 * The ref->count is updated to follow any
318			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
319			 */
320			update_share_count(sc, ref->count,
321					   ref->count + newref->count, newref);
322			ref->count += newref->count;
323			free_pref(newref);
324			return;
325		}
326	}
327
328	update_share_count(sc, 0, newref->count, newref);
329	preftree->count++;
330	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
331	rb_link_node(&newref->rbnode, parent, p);
332	rb_insert_color_cached(&newref->rbnode, root, leftmost);
333}
334
335/*
336 * Release the entire tree.  We don't care about internal consistency so
337 * just free everything and then reset the tree root.
338 */
339static void prelim_release(struct preftree *preftree)
340{
341	struct prelim_ref *ref, *next_ref;
342
343	rbtree_postorder_for_each_entry_safe(ref, next_ref,
344					     &preftree->root.rb_root, rbnode) {
345		free_inode_elem_list(ref->inode_list);
346		free_pref(ref);
347	}
348
349	preftree->root = RB_ROOT_CACHED;
350	preftree->count = 0;
351}
352
353/*
354 * the rules for all callers of this function are:
355 * - obtaining the parent is the goal
356 * - if you add a key, you must know that it is a correct key
357 * - if you cannot add the parent or a correct key, then we will look into the
358 *   block later to set a correct key
359 *
360 * delayed refs
361 * ============
362 *        backref type | shared | indirect | shared | indirect
363 * information         |   tree |     tree |   data |     data
364 * --------------------+--------+----------+--------+----------
365 *      parent logical |    y   |     -    |    -   |     -
366 *      key to resolve |    -   |     y    |    y   |     y
367 *  tree block logical |    -   |     -    |    -   |     -
368 *  root for resolving |    y   |     y    |    y   |     y
369 *
370 * - column 1:       we've the parent -> done
371 * - column 2, 3, 4: we use the key to find the parent
372 *
373 * on disk refs (inline or keyed)
374 * ==============================
375 *        backref type | shared | indirect | shared | indirect
376 * information         |   tree |     tree |   data |     data
377 * --------------------+--------+----------+--------+----------
378 *      parent logical |    y   |     -    |    y   |     -
379 *      key to resolve |    -   |     -    |    -   |     y
380 *  tree block logical |    y   |     y    |    y   |     y
381 *  root for resolving |    -   |     y    |    y   |     y
382 *
383 * - column 1, 3: we've the parent -> done
384 * - column 2:    we take the first key from the block to find the parent
385 *                (see add_missing_keys)
386 * - column 4:    we use the key to find the parent
387 *
388 * additional information that's available but not required to find the parent
389 * block might help in merging entries to gain some speed.
390 */
391static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
392			  struct preftree *preftree, u64 root_id,
393			  const struct btrfs_key *key, int level, u64 parent,
394			  u64 wanted_disk_byte, int count,
395			  struct share_check *sc, gfp_t gfp_mask)
396{
397	struct prelim_ref *ref;
398
399	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
400		return 0;
401
402	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
403	if (!ref)
404		return -ENOMEM;
405
406	ref->root_id = root_id;
407	if (key)
408		ref->key_for_search = *key;
409	else
410		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
411
412	ref->inode_list = NULL;
413	ref->level = level;
414	ref->count = count;
415	ref->parent = parent;
416	ref->wanted_disk_byte = wanted_disk_byte;
417	prelim_ref_insert(fs_info, preftree, ref, sc);
418	return extent_is_shared(sc);
419}
420
421/* direct refs use root == 0, key == NULL */
422static int add_direct_ref(const struct btrfs_fs_info *fs_info,
423			  struct preftrees *preftrees, int level, u64 parent,
424			  u64 wanted_disk_byte, int count,
425			  struct share_check *sc, gfp_t gfp_mask)
426{
427	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
428			      parent, wanted_disk_byte, count, sc, gfp_mask);
429}
430
431/* indirect refs use parent == 0 */
432static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
433			    struct preftrees *preftrees, u64 root_id,
434			    const struct btrfs_key *key, int level,
435			    u64 wanted_disk_byte, int count,
436			    struct share_check *sc, gfp_t gfp_mask)
437{
438	struct preftree *tree = &preftrees->indirect;
439
440	if (!key)
441		tree = &preftrees->indirect_missing_keys;
442	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
443			      wanted_disk_byte, count, sc, gfp_mask);
444}
445
446static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
447{
448	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
449	struct rb_node *parent = NULL;
450	struct prelim_ref *ref = NULL;
451	struct prelim_ref target = {};
452	int result;
453
454	target.parent = bytenr;
455
456	while (*p) {
457		parent = *p;
458		ref = rb_entry(parent, struct prelim_ref, rbnode);
459		result = prelim_ref_compare(ref, &target);
460
461		if (result < 0)
462			p = &(*p)->rb_left;
463		else if (result > 0)
464			p = &(*p)->rb_right;
465		else
466			return 1;
467	}
468	return 0;
469}
470
471static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
472			   struct btrfs_root *root, struct btrfs_path *path,
473			   struct ulist *parents,
474			   struct preftrees *preftrees, struct prelim_ref *ref,
475			   int level)
476{
477	int ret = 0;
478	int slot;
479	struct extent_buffer *eb;
480	struct btrfs_key key;
481	struct btrfs_key *key_for_search = &ref->key_for_search;
482	struct btrfs_file_extent_item *fi;
483	struct extent_inode_elem *eie = NULL, *old = NULL;
484	u64 disk_byte;
485	u64 wanted_disk_byte = ref->wanted_disk_byte;
486	u64 count = 0;
487	u64 data_offset;
488	u8 type;
489
490	if (level != 0) {
491		eb = path->nodes[level];
492		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
493		if (ret < 0)
494			return ret;
495		return 0;
496	}
497
498	/*
499	 * 1. We normally enter this function with the path already pointing to
500	 *    the first item to check. But sometimes, we may enter it with
501	 *    slot == nritems.
502	 * 2. We are searching for normal backref but bytenr of this leaf
503	 *    matches shared data backref
504	 * 3. The leaf owner is not equal to the root we are searching
505	 *
506	 * For these cases, go to the next leaf before we continue.
507	 */
508	eb = path->nodes[0];
509	if (path->slots[0] >= btrfs_header_nritems(eb) ||
510	    is_shared_data_backref(preftrees, eb->start) ||
511	    ref->root_id != btrfs_header_owner(eb)) {
512		if (ctx->time_seq == BTRFS_SEQ_LAST)
513			ret = btrfs_next_leaf(root, path);
514		else
515			ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
516	}
517
518	while (!ret && count < ref->count) {
519		eb = path->nodes[0];
520		slot = path->slots[0];
521
522		btrfs_item_key_to_cpu(eb, &key, slot);
523
524		if (key.objectid != key_for_search->objectid ||
525		    key.type != BTRFS_EXTENT_DATA_KEY)
526			break;
527
528		/*
529		 * We are searching for normal backref but bytenr of this leaf
530		 * matches shared data backref, OR
531		 * the leaf owner is not equal to the root we are searching for
532		 */
533		if (slot == 0 &&
534		    (is_shared_data_backref(preftrees, eb->start) ||
535		     ref->root_id != btrfs_header_owner(eb))) {
536			if (ctx->time_seq == BTRFS_SEQ_LAST)
537				ret = btrfs_next_leaf(root, path);
538			else
539				ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
540			continue;
541		}
542		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
543		type = btrfs_file_extent_type(eb, fi);
544		if (type == BTRFS_FILE_EXTENT_INLINE)
545			goto next;
546		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
547		data_offset = btrfs_file_extent_offset(eb, fi);
548
549		if (disk_byte == wanted_disk_byte) {
550			eie = NULL;
551			old = NULL;
552			if (ref->key_for_search.offset == key.offset - data_offset)
553				count++;
554			else
555				goto next;
556			if (!ctx->skip_inode_ref_list) {
557				ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
558				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
559				    ret < 0)
560					break;
561			}
562			if (ret > 0)
563				goto next;
564			ret = ulist_add_merge_ptr(parents, eb->start,
565						  eie, (void **)&old, GFP_NOFS);
566			if (ret < 0)
567				break;
568			if (!ret && !ctx->skip_inode_ref_list) {
569				while (old->next)
570					old = old->next;
571				old->next = eie;
572			}
573			eie = NULL;
574		}
575next:
576		if (ctx->time_seq == BTRFS_SEQ_LAST)
577			ret = btrfs_next_item(root, path);
578		else
579			ret = btrfs_next_old_item(root, path, ctx->time_seq);
580	}
581
582	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
583		free_inode_elem_list(eie);
584	else if (ret > 0)
585		ret = 0;
586
587	return ret;
588}
589
590/*
591 * resolve an indirect backref in the form (root_id, key, level)
592 * to a logical address
593 */
594static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
595				struct btrfs_path *path,
596				struct preftrees *preftrees,
597				struct prelim_ref *ref, struct ulist *parents)
598{
599	struct btrfs_root *root;
600	struct extent_buffer *eb;
601	int ret = 0;
602	int root_level;
603	int level = ref->level;
604	struct btrfs_key search_key = ref->key_for_search;
605
606	/*
607	 * If we're search_commit_root we could possibly be holding locks on
608	 * other tree nodes.  This happens when qgroups does backref walks when
609	 * adding new delayed refs.  To deal with this we need to look in cache
610	 * for the root, and if we don't find it then we need to search the
611	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
612	 * here.
613	 */
614	if (path->search_commit_root)
615		root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
616	else
617		root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
618	if (IS_ERR(root)) {
619		ret = PTR_ERR(root);
620		goto out_free;
621	}
622
623	if (!path->search_commit_root &&
624	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
625		ret = -ENOENT;
626		goto out;
627	}
628
629	if (btrfs_is_testing(ctx->fs_info)) {
630		ret = -ENOENT;
631		goto out;
632	}
633
634	if (path->search_commit_root)
635		root_level = btrfs_header_level(root->commit_root);
636	else if (ctx->time_seq == BTRFS_SEQ_LAST)
637		root_level = btrfs_header_level(root->node);
638	else
639		root_level = btrfs_old_root_level(root, ctx->time_seq);
640
641	if (root_level + 1 == level)
642		goto out;
643
644	/*
645	 * We can often find data backrefs with an offset that is too large
646	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
647	 * subtracting a file's offset with the data offset of its
648	 * corresponding extent data item. This can happen for example in the
649	 * clone ioctl.
650	 *
651	 * So if we detect such case we set the search key's offset to zero to
652	 * make sure we will find the matching file extent item at
653	 * add_all_parents(), otherwise we will miss it because the offset
654	 * taken form the backref is much larger then the offset of the file
655	 * extent item. This can make us scan a very large number of file
656	 * extent items, but at least it will not make us miss any.
657	 *
658	 * This is an ugly workaround for a behaviour that should have never
659	 * existed, but it does and a fix for the clone ioctl would touch a lot
660	 * of places, cause backwards incompatibility and would not fix the
661	 * problem for extents cloned with older kernels.
662	 */
663	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
664	    search_key.offset >= LLONG_MAX)
665		search_key.offset = 0;
666	path->lowest_level = level;
667	if (ctx->time_seq == BTRFS_SEQ_LAST)
668		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
669	else
670		ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
671
672	btrfs_debug(ctx->fs_info,
673		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
674		 ref->root_id, level, ref->count, ret,
675		 ref->key_for_search.objectid, ref->key_for_search.type,
676		 ref->key_for_search.offset);
677	if (ret < 0)
678		goto out;
679
680	eb = path->nodes[level];
681	while (!eb) {
682		if (WARN_ON(!level)) {
683			ret = 1;
684			goto out;
685		}
686		level--;
687		eb = path->nodes[level];
688	}
689
690	ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
691out:
692	btrfs_put_root(root);
693out_free:
694	path->lowest_level = 0;
695	btrfs_release_path(path);
696	return ret;
697}
698
699static struct extent_inode_elem *
700unode_aux_to_inode_list(struct ulist_node *node)
701{
702	if (!node)
703		return NULL;
704	return (struct extent_inode_elem *)(uintptr_t)node->aux;
705}
706
707static void free_leaf_list(struct ulist *ulist)
708{
709	struct ulist_node *node;
710	struct ulist_iterator uiter;
711
712	ULIST_ITER_INIT(&uiter);
713	while ((node = ulist_next(ulist, &uiter)))
714		free_inode_elem_list(unode_aux_to_inode_list(node));
715
716	ulist_free(ulist);
717}
718
719/*
720 * We maintain three separate rbtrees: one for direct refs, one for
721 * indirect refs which have a key, and one for indirect refs which do not
722 * have a key. Each tree does merge on insertion.
723 *
724 * Once all of the references are located, we iterate over the tree of
725 * indirect refs with missing keys. An appropriate key is located and
726 * the ref is moved onto the tree for indirect refs. After all missing
727 * keys are thus located, we iterate over the indirect ref tree, resolve
728 * each reference, and then insert the resolved reference onto the
729 * direct tree (merging there too).
730 *
731 * New backrefs (i.e., for parent nodes) are added to the appropriate
732 * rbtree as they are encountered. The new backrefs are subsequently
733 * resolved as above.
734 */
735static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
736				 struct btrfs_path *path,
737				 struct preftrees *preftrees,
738				 struct share_check *sc)
739{
740	int err;
741	int ret = 0;
742	struct ulist *parents;
743	struct ulist_node *node;
744	struct ulist_iterator uiter;
745	struct rb_node *rnode;
746
747	parents = ulist_alloc(GFP_NOFS);
748	if (!parents)
749		return -ENOMEM;
750
751	/*
752	 * We could trade memory usage for performance here by iterating
753	 * the tree, allocating new refs for each insertion, and then
754	 * freeing the entire indirect tree when we're done.  In some test
755	 * cases, the tree can grow quite large (~200k objects).
756	 */
757	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
758		struct prelim_ref *ref;
759
760		ref = rb_entry(rnode, struct prelim_ref, rbnode);
761		if (WARN(ref->parent,
762			 "BUG: direct ref found in indirect tree")) {
763			ret = -EINVAL;
764			goto out;
765		}
766
767		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
768		preftrees->indirect.count--;
769
770		if (ref->count == 0) {
771			free_pref(ref);
772			continue;
773		}
774
775		if (sc && ref->root_id != sc->root->root_key.objectid) {
776			free_pref(ref);
777			ret = BACKREF_FOUND_SHARED;
778			goto out;
779		}
780		err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
781		/*
782		 * we can only tolerate ENOENT,otherwise,we should catch error
783		 * and return directly.
784		 */
785		if (err == -ENOENT) {
786			prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
787					  NULL);
788			continue;
789		} else if (err) {
790			free_pref(ref);
791			ret = err;
792			goto out;
793		}
794
795		/* we put the first parent into the ref at hand */
796		ULIST_ITER_INIT(&uiter);
797		node = ulist_next(parents, &uiter);
798		ref->parent = node ? node->val : 0;
799		ref->inode_list = unode_aux_to_inode_list(node);
800
801		/* Add a prelim_ref(s) for any other parent(s). */
802		while ((node = ulist_next(parents, &uiter))) {
803			struct prelim_ref *new_ref;
804
805			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
806						   GFP_NOFS);
807			if (!new_ref) {
808				free_pref(ref);
809				ret = -ENOMEM;
810				goto out;
811			}
812			memcpy(new_ref, ref, sizeof(*ref));
813			new_ref->parent = node->val;
814			new_ref->inode_list = unode_aux_to_inode_list(node);
815			prelim_ref_insert(ctx->fs_info, &preftrees->direct,
816					  new_ref, NULL);
817		}
818
819		/*
820		 * Now it's a direct ref, put it in the direct tree. We must
821		 * do this last because the ref could be merged/freed here.
822		 */
823		prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
824
825		ulist_reinit(parents);
826		cond_resched();
827	}
828out:
829	/*
830	 * We may have inode lists attached to refs in the parents ulist, so we
831	 * must free them before freeing the ulist and its refs.
832	 */
833	free_leaf_list(parents);
834	return ret;
835}
836
837/*
838 * read tree blocks and add keys where required.
839 */
840static int add_missing_keys(struct btrfs_fs_info *fs_info,
841			    struct preftrees *preftrees, bool lock)
842{
843	struct prelim_ref *ref;
844	struct extent_buffer *eb;
845	struct preftree *tree = &preftrees->indirect_missing_keys;
846	struct rb_node *node;
847
848	while ((node = rb_first_cached(&tree->root))) {
849		struct btrfs_tree_parent_check check = { 0 };
850
851		ref = rb_entry(node, struct prelim_ref, rbnode);
852		rb_erase_cached(node, &tree->root);
853
854		BUG_ON(ref->parent);	/* should not be a direct ref */
855		BUG_ON(ref->key_for_search.type);
856		BUG_ON(!ref->wanted_disk_byte);
857
858		check.level = ref->level - 1;
859		check.owner_root = ref->root_id;
860
861		eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
862		if (IS_ERR(eb)) {
863			free_pref(ref);
864			return PTR_ERR(eb);
865		}
866		if (!extent_buffer_uptodate(eb)) {
867			free_pref(ref);
868			free_extent_buffer(eb);
869			return -EIO;
870		}
871
872		if (lock)
873			btrfs_tree_read_lock(eb);
874		if (btrfs_header_level(eb) == 0)
875			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
876		else
877			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
878		if (lock)
879			btrfs_tree_read_unlock(eb);
880		free_extent_buffer(eb);
881		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
882		cond_resched();
883	}
884	return 0;
885}
886
887/*
888 * add all currently queued delayed refs from this head whose seq nr is
889 * smaller or equal that seq to the list
890 */
891static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
892			    struct btrfs_delayed_ref_head *head, u64 seq,
893			    struct preftrees *preftrees, struct share_check *sc)
894{
895	struct btrfs_delayed_ref_node *node;
896	struct btrfs_key key;
897	struct rb_node *n;
898	int count;
899	int ret = 0;
900
901	spin_lock(&head->lock);
902	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
903		node = rb_entry(n, struct btrfs_delayed_ref_node,
904				ref_node);
905		if (node->seq > seq)
906			continue;
907
908		switch (node->action) {
909		case BTRFS_ADD_DELAYED_EXTENT:
910		case BTRFS_UPDATE_DELAYED_HEAD:
911			WARN_ON(1);
912			continue;
913		case BTRFS_ADD_DELAYED_REF:
914			count = node->ref_mod;
915			break;
916		case BTRFS_DROP_DELAYED_REF:
917			count = node->ref_mod * -1;
918			break;
919		default:
920			BUG();
921		}
922		switch (node->type) {
923		case BTRFS_TREE_BLOCK_REF_KEY: {
924			/* NORMAL INDIRECT METADATA backref */
925			struct btrfs_delayed_tree_ref *ref;
926			struct btrfs_key *key_ptr = NULL;
927
928			if (head->extent_op && head->extent_op->update_key) {
929				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
930				key_ptr = &key;
931			}
932
933			ref = btrfs_delayed_node_to_tree_ref(node);
934			ret = add_indirect_ref(fs_info, preftrees, ref->root,
935					       key_ptr, ref->level + 1,
936					       node->bytenr, count, sc,
937					       GFP_ATOMIC);
938			break;
939		}
940		case BTRFS_SHARED_BLOCK_REF_KEY: {
941			/* SHARED DIRECT METADATA backref */
942			struct btrfs_delayed_tree_ref *ref;
943
944			ref = btrfs_delayed_node_to_tree_ref(node);
945
946			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
947					     ref->parent, node->bytenr, count,
948					     sc, GFP_ATOMIC);
949			break;
950		}
951		case BTRFS_EXTENT_DATA_REF_KEY: {
952			/* NORMAL INDIRECT DATA backref */
953			struct btrfs_delayed_data_ref *ref;
954			ref = btrfs_delayed_node_to_data_ref(node);
955
956			key.objectid = ref->objectid;
957			key.type = BTRFS_EXTENT_DATA_KEY;
958			key.offset = ref->offset;
959
960			/*
961			 * If we have a share check context and a reference for
962			 * another inode, we can't exit immediately. This is
963			 * because even if this is a BTRFS_ADD_DELAYED_REF
964			 * reference we may find next a BTRFS_DROP_DELAYED_REF
965			 * which cancels out this ADD reference.
966			 *
967			 * If this is a DROP reference and there was no previous
968			 * ADD reference, then we need to signal that when we
969			 * process references from the extent tree (through
970			 * add_inline_refs() and add_keyed_refs()), we should
971			 * not exit early if we find a reference for another
972			 * inode, because one of the delayed DROP references
973			 * may cancel that reference in the extent tree.
974			 */
975			if (sc && count < 0)
976				sc->have_delayed_delete_refs = true;
977
978			ret = add_indirect_ref(fs_info, preftrees, ref->root,
979					       &key, 0, node->bytenr, count, sc,
980					       GFP_ATOMIC);
981			break;
982		}
983		case BTRFS_SHARED_DATA_REF_KEY: {
984			/* SHARED DIRECT FULL backref */
985			struct btrfs_delayed_data_ref *ref;
986
987			ref = btrfs_delayed_node_to_data_ref(node);
988
989			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
990					     node->bytenr, count, sc,
991					     GFP_ATOMIC);
992			break;
993		}
994		default:
995			WARN_ON(1);
996		}
997		/*
998		 * We must ignore BACKREF_FOUND_SHARED until all delayed
999		 * refs have been checked.
1000		 */
1001		if (ret && (ret != BACKREF_FOUND_SHARED))
1002			break;
1003	}
1004	if (!ret)
1005		ret = extent_is_shared(sc);
1006
1007	spin_unlock(&head->lock);
1008	return ret;
1009}
1010
1011/*
1012 * add all inline backrefs for bytenr to the list
1013 *
1014 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1015 */
1016static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1017			   struct btrfs_path *path,
1018			   int *info_level, struct preftrees *preftrees,
1019			   struct share_check *sc)
1020{
1021	int ret = 0;
1022	int slot;
1023	struct extent_buffer *leaf;
1024	struct btrfs_key key;
1025	struct btrfs_key found_key;
1026	unsigned long ptr;
1027	unsigned long end;
1028	struct btrfs_extent_item *ei;
1029	u64 flags;
1030	u64 item_size;
1031
1032	/*
1033	 * enumerate all inline refs
1034	 */
1035	leaf = path->nodes[0];
1036	slot = path->slots[0];
1037
1038	item_size = btrfs_item_size(leaf, slot);
1039	BUG_ON(item_size < sizeof(*ei));
1040
1041	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1042
1043	if (ctx->check_extent_item) {
1044		ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1045		if (ret)
1046			return ret;
1047	}
1048
1049	flags = btrfs_extent_flags(leaf, ei);
1050	btrfs_item_key_to_cpu(leaf, &found_key, slot);
1051
1052	ptr = (unsigned long)(ei + 1);
1053	end = (unsigned long)ei + item_size;
1054
1055	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1056	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1057		struct btrfs_tree_block_info *info;
1058
1059		info = (struct btrfs_tree_block_info *)ptr;
1060		*info_level = btrfs_tree_block_level(leaf, info);
1061		ptr += sizeof(struct btrfs_tree_block_info);
1062		BUG_ON(ptr > end);
1063	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1064		*info_level = found_key.offset;
1065	} else {
1066		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1067	}
1068
1069	while (ptr < end) {
1070		struct btrfs_extent_inline_ref *iref;
1071		u64 offset;
1072		int type;
1073
1074		iref = (struct btrfs_extent_inline_ref *)ptr;
1075		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1076							BTRFS_REF_TYPE_ANY);
1077		if (type == BTRFS_REF_TYPE_INVALID)
1078			return -EUCLEAN;
1079
1080		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1081
1082		switch (type) {
1083		case BTRFS_SHARED_BLOCK_REF_KEY:
1084			ret = add_direct_ref(ctx->fs_info, preftrees,
1085					     *info_level + 1, offset,
1086					     ctx->bytenr, 1, NULL, GFP_NOFS);
1087			break;
1088		case BTRFS_SHARED_DATA_REF_KEY: {
1089			struct btrfs_shared_data_ref *sdref;
1090			int count;
1091
1092			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1093			count = btrfs_shared_data_ref_count(leaf, sdref);
1094
1095			ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1096					     ctx->bytenr, count, sc, GFP_NOFS);
1097			break;
1098		}
1099		case BTRFS_TREE_BLOCK_REF_KEY:
1100			ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1101					       NULL, *info_level + 1,
1102					       ctx->bytenr, 1, NULL, GFP_NOFS);
1103			break;
1104		case BTRFS_EXTENT_DATA_REF_KEY: {
1105			struct btrfs_extent_data_ref *dref;
1106			int count;
1107			u64 root;
1108
1109			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1110			count = btrfs_extent_data_ref_count(leaf, dref);
1111			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1112								      dref);
1113			key.type = BTRFS_EXTENT_DATA_KEY;
1114			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1115
1116			if (sc && key.objectid != sc->inum &&
1117			    !sc->have_delayed_delete_refs) {
1118				ret = BACKREF_FOUND_SHARED;
1119				break;
1120			}
1121
1122			root = btrfs_extent_data_ref_root(leaf, dref);
1123
1124			if (!ctx->skip_data_ref ||
1125			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1126						ctx->user_ctx))
1127				ret = add_indirect_ref(ctx->fs_info, preftrees,
1128						       root, &key, 0, ctx->bytenr,
1129						       count, sc, GFP_NOFS);
1130			break;
1131		}
1132		default:
1133			WARN_ON(1);
1134		}
1135		if (ret)
1136			return ret;
1137		ptr += btrfs_extent_inline_ref_size(type);
1138	}
1139
1140	return 0;
1141}
1142
1143/*
1144 * add all non-inline backrefs for bytenr to the list
1145 *
1146 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1147 */
1148static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1149			  struct btrfs_root *extent_root,
1150			  struct btrfs_path *path,
1151			  int info_level, struct preftrees *preftrees,
1152			  struct share_check *sc)
1153{
1154	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1155	int ret;
1156	int slot;
1157	struct extent_buffer *leaf;
1158	struct btrfs_key key;
1159
1160	while (1) {
1161		ret = btrfs_next_item(extent_root, path);
1162		if (ret < 0)
1163			break;
1164		if (ret) {
1165			ret = 0;
1166			break;
1167		}
1168
1169		slot = path->slots[0];
1170		leaf = path->nodes[0];
1171		btrfs_item_key_to_cpu(leaf, &key, slot);
1172
1173		if (key.objectid != ctx->bytenr)
1174			break;
1175		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1176			continue;
1177		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1178			break;
1179
1180		switch (key.type) {
1181		case BTRFS_SHARED_BLOCK_REF_KEY:
1182			/* SHARED DIRECT METADATA backref */
1183			ret = add_direct_ref(fs_info, preftrees,
1184					     info_level + 1, key.offset,
1185					     ctx->bytenr, 1, NULL, GFP_NOFS);
1186			break;
1187		case BTRFS_SHARED_DATA_REF_KEY: {
1188			/* SHARED DIRECT FULL backref */
1189			struct btrfs_shared_data_ref *sdref;
1190			int count;
1191
1192			sdref = btrfs_item_ptr(leaf, slot,
1193					      struct btrfs_shared_data_ref);
1194			count = btrfs_shared_data_ref_count(leaf, sdref);
1195			ret = add_direct_ref(fs_info, preftrees, 0,
1196					     key.offset, ctx->bytenr, count,
1197					     sc, GFP_NOFS);
1198			break;
1199		}
1200		case BTRFS_TREE_BLOCK_REF_KEY:
1201			/* NORMAL INDIRECT METADATA backref */
1202			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1203					       NULL, info_level + 1, ctx->bytenr,
1204					       1, NULL, GFP_NOFS);
1205			break;
1206		case BTRFS_EXTENT_DATA_REF_KEY: {
1207			/* NORMAL INDIRECT DATA backref */
1208			struct btrfs_extent_data_ref *dref;
1209			int count;
1210			u64 root;
1211
1212			dref = btrfs_item_ptr(leaf, slot,
1213					      struct btrfs_extent_data_ref);
1214			count = btrfs_extent_data_ref_count(leaf, dref);
1215			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1216								      dref);
1217			key.type = BTRFS_EXTENT_DATA_KEY;
1218			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1219
1220			if (sc && key.objectid != sc->inum &&
1221			    !sc->have_delayed_delete_refs) {
1222				ret = BACKREF_FOUND_SHARED;
1223				break;
1224			}
1225
1226			root = btrfs_extent_data_ref_root(leaf, dref);
1227
1228			if (!ctx->skip_data_ref ||
1229			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1230						ctx->user_ctx))
1231				ret = add_indirect_ref(fs_info, preftrees, root,
1232						       &key, 0, ctx->bytenr,
1233						       count, sc, GFP_NOFS);
1234			break;
1235		}
1236		default:
1237			WARN_ON(1);
1238		}
1239		if (ret)
1240			return ret;
1241
1242	}
1243
1244	return ret;
1245}
1246
1247/*
1248 * The caller has joined a transaction or is holding a read lock on the
1249 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1250 * snapshot field changing while updating or checking the cache.
1251 */
1252static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1253					struct btrfs_root *root,
1254					u64 bytenr, int level, bool *is_shared)
1255{
1256	const struct btrfs_fs_info *fs_info = root->fs_info;
1257	struct btrfs_backref_shared_cache_entry *entry;
1258
1259	if (!current->journal_info)
1260		lockdep_assert_held(&fs_info->commit_root_sem);
1261
1262	if (!ctx->use_path_cache)
1263		return false;
1264
1265	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1266		return false;
1267
1268	/*
1269	 * Level -1 is used for the data extent, which is not reliable to cache
1270	 * because its reference count can increase or decrease without us
1271	 * realizing. We cache results only for extent buffers that lead from
1272	 * the root node down to the leaf with the file extent item.
1273	 */
1274	ASSERT(level >= 0);
1275
1276	entry = &ctx->path_cache_entries[level];
1277
1278	/* Unused cache entry or being used for some other extent buffer. */
1279	if (entry->bytenr != bytenr)
1280		return false;
1281
1282	/*
1283	 * We cached a false result, but the last snapshot generation of the
1284	 * root changed, so we now have a snapshot. Don't trust the result.
1285	 */
1286	if (!entry->is_shared &&
1287	    entry->gen != btrfs_root_last_snapshot(&root->root_item))
1288		return false;
1289
1290	/*
1291	 * If we cached a true result and the last generation used for dropping
1292	 * a root changed, we can not trust the result, because the dropped root
1293	 * could be a snapshot sharing this extent buffer.
1294	 */
1295	if (entry->is_shared &&
1296	    entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1297		return false;
1298
1299	*is_shared = entry->is_shared;
1300	/*
1301	 * If the node at this level is shared, than all nodes below are also
1302	 * shared. Currently some of the nodes below may be marked as not shared
1303	 * because we have just switched from one leaf to another, and switched
1304	 * also other nodes above the leaf and below the current level, so mark
1305	 * them as shared.
1306	 */
1307	if (*is_shared) {
1308		for (int i = 0; i < level; i++) {
1309			ctx->path_cache_entries[i].is_shared = true;
1310			ctx->path_cache_entries[i].gen = entry->gen;
1311		}
1312	}
1313
1314	return true;
1315}
1316
1317/*
1318 * The caller has joined a transaction or is holding a read lock on the
1319 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1320 * snapshot field changing while updating or checking the cache.
1321 */
1322static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1323				       struct btrfs_root *root,
1324				       u64 bytenr, int level, bool is_shared)
1325{
1326	const struct btrfs_fs_info *fs_info = root->fs_info;
1327	struct btrfs_backref_shared_cache_entry *entry;
1328	u64 gen;
1329
1330	if (!current->journal_info)
1331		lockdep_assert_held(&fs_info->commit_root_sem);
1332
1333	if (!ctx->use_path_cache)
1334		return;
1335
1336	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1337		return;
1338
1339	/*
1340	 * Level -1 is used for the data extent, which is not reliable to cache
1341	 * because its reference count can increase or decrease without us
1342	 * realizing. We cache results only for extent buffers that lead from
1343	 * the root node down to the leaf with the file extent item.
1344	 */
1345	ASSERT(level >= 0);
1346
1347	if (is_shared)
1348		gen = btrfs_get_last_root_drop_gen(fs_info);
1349	else
1350		gen = btrfs_root_last_snapshot(&root->root_item);
1351
1352	entry = &ctx->path_cache_entries[level];
1353	entry->bytenr = bytenr;
1354	entry->is_shared = is_shared;
1355	entry->gen = gen;
1356
1357	/*
1358	 * If we found an extent buffer is shared, set the cache result for all
1359	 * extent buffers below it to true. As nodes in the path are COWed,
1360	 * their sharedness is moved to their children, and if a leaf is COWed,
1361	 * then the sharedness of a data extent becomes direct, the refcount of
1362	 * data extent is increased in the extent item at the extent tree.
1363	 */
1364	if (is_shared) {
1365		for (int i = 0; i < level; i++) {
1366			entry = &ctx->path_cache_entries[i];
1367			entry->is_shared = is_shared;
1368			entry->gen = gen;
1369		}
1370	}
1371}
1372
1373/*
1374 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1375 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1376 * indirect refs to their parent bytenr.
1377 * When roots are found, they're added to the roots list
1378 *
1379 * @ctx:     Backref walking context object, must be not NULL.
1380 * @sc:      If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1381 *           shared extent is detected.
1382 *
1383 * Otherwise this returns 0 for success and <0 for an error.
1384 *
1385 * FIXME some caching might speed things up
1386 */
1387static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1388			     struct share_check *sc)
1389{
1390	struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1391	struct btrfs_key key;
1392	struct btrfs_path *path;
1393	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1394	struct btrfs_delayed_ref_head *head;
1395	int info_level = 0;
1396	int ret;
1397	struct prelim_ref *ref;
1398	struct rb_node *node;
1399	struct extent_inode_elem *eie = NULL;
1400	struct preftrees preftrees = {
1401		.direct = PREFTREE_INIT,
1402		.indirect = PREFTREE_INIT,
1403		.indirect_missing_keys = PREFTREE_INIT
1404	};
1405
1406	/* Roots ulist is not needed when using a sharedness check context. */
1407	if (sc)
1408		ASSERT(ctx->roots == NULL);
1409
1410	key.objectid = ctx->bytenr;
1411	key.offset = (u64)-1;
1412	if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1413		key.type = BTRFS_METADATA_ITEM_KEY;
1414	else
1415		key.type = BTRFS_EXTENT_ITEM_KEY;
1416
1417	path = btrfs_alloc_path();
1418	if (!path)
1419		return -ENOMEM;
1420	if (!ctx->trans) {
1421		path->search_commit_root = 1;
1422		path->skip_locking = 1;
1423	}
1424
1425	if (ctx->time_seq == BTRFS_SEQ_LAST)
1426		path->skip_locking = 1;
1427
1428again:
1429	head = NULL;
1430
1431	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1432	if (ret < 0)
1433		goto out;
1434	if (ret == 0) {
1435		/* This shouldn't happen, indicates a bug or fs corruption. */
1436		ASSERT(ret != 0);
1437		ret = -EUCLEAN;
1438		goto out;
1439	}
1440
1441	if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1442	    ctx->time_seq != BTRFS_SEQ_LAST) {
1443		/*
1444		 * We have a specific time_seq we care about and trans which
1445		 * means we have the path lock, we need to grab the ref head and
1446		 * lock it so we have a consistent view of the refs at the given
1447		 * time.
1448		 */
1449		delayed_refs = &ctx->trans->transaction->delayed_refs;
1450		spin_lock(&delayed_refs->lock);
1451		head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr);
1452		if (head) {
1453			if (!mutex_trylock(&head->mutex)) {
1454				refcount_inc(&head->refs);
1455				spin_unlock(&delayed_refs->lock);
1456
1457				btrfs_release_path(path);
1458
1459				/*
1460				 * Mutex was contended, block until it's
1461				 * released and try again
1462				 */
1463				mutex_lock(&head->mutex);
1464				mutex_unlock(&head->mutex);
1465				btrfs_put_delayed_ref_head(head);
1466				goto again;
1467			}
1468			spin_unlock(&delayed_refs->lock);
1469			ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1470					       &preftrees, sc);
1471			mutex_unlock(&head->mutex);
1472			if (ret)
1473				goto out;
1474		} else {
1475			spin_unlock(&delayed_refs->lock);
1476		}
1477	}
1478
1479	if (path->slots[0]) {
1480		struct extent_buffer *leaf;
1481		int slot;
1482
1483		path->slots[0]--;
1484		leaf = path->nodes[0];
1485		slot = path->slots[0];
1486		btrfs_item_key_to_cpu(leaf, &key, slot);
1487		if (key.objectid == ctx->bytenr &&
1488		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1489		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1490			ret = add_inline_refs(ctx, path, &info_level,
1491					      &preftrees, sc);
1492			if (ret)
1493				goto out;
1494			ret = add_keyed_refs(ctx, root, path, info_level,
1495					     &preftrees, sc);
1496			if (ret)
1497				goto out;
1498		}
1499	}
1500
1501	/*
1502	 * If we have a share context and we reached here, it means the extent
1503	 * is not directly shared (no multiple reference items for it),
1504	 * otherwise we would have exited earlier with a return value of
1505	 * BACKREF_FOUND_SHARED after processing delayed references or while
1506	 * processing inline or keyed references from the extent tree.
1507	 * The extent may however be indirectly shared through shared subtrees
1508	 * as a result from creating snapshots, so we determine below what is
1509	 * its parent node, in case we are dealing with a metadata extent, or
1510	 * what's the leaf (or leaves), from a fs tree, that has a file extent
1511	 * item pointing to it in case we are dealing with a data extent.
1512	 */
1513	ASSERT(extent_is_shared(sc) == 0);
1514
1515	/*
1516	 * If we are here for a data extent and we have a share_check structure
1517	 * it means the data extent is not directly shared (does not have
1518	 * multiple reference items), so we have to check if a path in the fs
1519	 * tree (going from the root node down to the leaf that has the file
1520	 * extent item pointing to the data extent) is shared, that is, if any
1521	 * of the extent buffers in the path is referenced by other trees.
1522	 */
1523	if (sc && ctx->bytenr == sc->data_bytenr) {
1524		/*
1525		 * If our data extent is from a generation more recent than the
1526		 * last generation used to snapshot the root, then we know that
1527		 * it can not be shared through subtrees, so we can skip
1528		 * resolving indirect references, there's no point in
1529		 * determining the extent buffers for the path from the fs tree
1530		 * root node down to the leaf that has the file extent item that
1531		 * points to the data extent.
1532		 */
1533		if (sc->data_extent_gen >
1534		    btrfs_root_last_snapshot(&sc->root->root_item)) {
1535			ret = BACKREF_FOUND_NOT_SHARED;
1536			goto out;
1537		}
1538
1539		/*
1540		 * If we are only determining if a data extent is shared or not
1541		 * and the corresponding file extent item is located in the same
1542		 * leaf as the previous file extent item, we can skip resolving
1543		 * indirect references for a data extent, since the fs tree path
1544		 * is the same (same leaf, so same path). We skip as long as the
1545		 * cached result for the leaf is valid and only if there's only
1546		 * one file extent item pointing to the data extent, because in
1547		 * the case of multiple file extent items, they may be located
1548		 * in different leaves and therefore we have multiple paths.
1549		 */
1550		if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1551		    sc->self_ref_count == 1) {
1552			bool cached;
1553			bool is_shared;
1554
1555			cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1556						     sc->ctx->curr_leaf_bytenr,
1557						     0, &is_shared);
1558			if (cached) {
1559				if (is_shared)
1560					ret = BACKREF_FOUND_SHARED;
1561				else
1562					ret = BACKREF_FOUND_NOT_SHARED;
1563				goto out;
1564			}
1565		}
1566	}
1567
1568	btrfs_release_path(path);
1569
1570	ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1571	if (ret)
1572		goto out;
1573
1574	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1575
1576	ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1577	if (ret)
1578		goto out;
1579
1580	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1581
1582	/*
1583	 * This walks the tree of merged and resolved refs. Tree blocks are
1584	 * read in as needed. Unique entries are added to the ulist, and
1585	 * the list of found roots is updated.
1586	 *
1587	 * We release the entire tree in one go before returning.
1588	 */
1589	node = rb_first_cached(&preftrees.direct.root);
1590	while (node) {
1591		ref = rb_entry(node, struct prelim_ref, rbnode);
1592		node = rb_next(&ref->rbnode);
1593		/*
1594		 * ref->count < 0 can happen here if there are delayed
1595		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1596		 * prelim_ref_insert() relies on this when merging
1597		 * identical refs to keep the overall count correct.
1598		 * prelim_ref_insert() will merge only those refs
1599		 * which compare identically.  Any refs having
1600		 * e.g. different offsets would not be merged,
1601		 * and would retain their original ref->count < 0.
1602		 */
1603		if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1604			/* no parent == root of tree */
1605			ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1606			if (ret < 0)
1607				goto out;
1608		}
1609		if (ref->count && ref->parent) {
1610			if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1611			    ref->level == 0) {
1612				struct btrfs_tree_parent_check check = { 0 };
1613				struct extent_buffer *eb;
1614
1615				check.level = ref->level;
1616
1617				eb = read_tree_block(ctx->fs_info, ref->parent,
1618						     &check);
1619				if (IS_ERR(eb)) {
1620					ret = PTR_ERR(eb);
1621					goto out;
1622				}
1623				if (!extent_buffer_uptodate(eb)) {
1624					free_extent_buffer(eb);
1625					ret = -EIO;
1626					goto out;
1627				}
1628
1629				if (!path->skip_locking)
1630					btrfs_tree_read_lock(eb);
1631				ret = find_extent_in_eb(ctx, eb, &eie);
1632				if (!path->skip_locking)
1633					btrfs_tree_read_unlock(eb);
1634				free_extent_buffer(eb);
1635				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1636				    ret < 0)
1637					goto out;
1638				ref->inode_list = eie;
1639				/*
1640				 * We transferred the list ownership to the ref,
1641				 * so set to NULL to avoid a double free in case
1642				 * an error happens after this.
1643				 */
1644				eie = NULL;
1645			}
1646			ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1647						  ref->inode_list,
1648						  (void **)&eie, GFP_NOFS);
1649			if (ret < 0)
1650				goto out;
1651			if (!ret && !ctx->skip_inode_ref_list) {
1652				/*
1653				 * We've recorded that parent, so we must extend
1654				 * its inode list here.
1655				 *
1656				 * However if there was corruption we may not
1657				 * have found an eie, return an error in this
1658				 * case.
1659				 */
1660				ASSERT(eie);
1661				if (!eie) {
1662					ret = -EUCLEAN;
1663					goto out;
1664				}
1665				while (eie->next)
1666					eie = eie->next;
1667				eie->next = ref->inode_list;
1668			}
1669			eie = NULL;
1670			/*
1671			 * We have transferred the inode list ownership from
1672			 * this ref to the ref we added to the 'refs' ulist.
1673			 * So set this ref's inode list to NULL to avoid
1674			 * use-after-free when our caller uses it or double
1675			 * frees in case an error happens before we return.
1676			 */
1677			ref->inode_list = NULL;
1678		}
1679		cond_resched();
1680	}
1681
1682out:
1683	btrfs_free_path(path);
1684
1685	prelim_release(&preftrees.direct);
1686	prelim_release(&preftrees.indirect);
1687	prelim_release(&preftrees.indirect_missing_keys);
1688
1689	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1690		free_inode_elem_list(eie);
1691	return ret;
1692}
1693
1694/*
1695 * Finds all leaves with a reference to the specified combination of
1696 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1697 * added to the ulist at @ctx->refs, and that ulist is allocated by this
1698 * function. The caller should free the ulist with free_leaf_list() if
1699 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1700 * enough.
1701 *
1702 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1703 */
1704int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1705{
1706	int ret;
1707
1708	ASSERT(ctx->refs == NULL);
1709
1710	ctx->refs = ulist_alloc(GFP_NOFS);
1711	if (!ctx->refs)
1712		return -ENOMEM;
1713
1714	ret = find_parent_nodes(ctx, NULL);
1715	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1716	    (ret < 0 && ret != -ENOENT)) {
1717		free_leaf_list(ctx->refs);
1718		ctx->refs = NULL;
1719		return ret;
1720	}
1721
1722	return 0;
1723}
1724
1725/*
1726 * Walk all backrefs for a given extent to find all roots that reference this
1727 * extent. Walking a backref means finding all extents that reference this
1728 * extent and in turn walk the backrefs of those, too. Naturally this is a
1729 * recursive process, but here it is implemented in an iterative fashion: We
1730 * find all referencing extents for the extent in question and put them on a
1731 * list. In turn, we find all referencing extents for those, further appending
1732 * to the list. The way we iterate the list allows adding more elements after
1733 * the current while iterating. The process stops when we reach the end of the
1734 * list.
1735 *
1736 * Found roots are added to @ctx->roots, which is allocated by this function if
1737 * it points to NULL, in which case the caller is responsible for freeing it
1738 * after it's not needed anymore.
1739 * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1740 * ulist to do temporary work, and frees it before returning.
1741 *
1742 * Returns 0 on success, < 0 on error.
1743 */
1744static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1745{
1746	const u64 orig_bytenr = ctx->bytenr;
1747	const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1748	bool roots_ulist_allocated = false;
1749	struct ulist_iterator uiter;
1750	int ret = 0;
1751
1752	ASSERT(ctx->refs == NULL);
1753
1754	ctx->refs = ulist_alloc(GFP_NOFS);
1755	if (!ctx->refs)
1756		return -ENOMEM;
1757
1758	if (!ctx->roots) {
1759		ctx->roots = ulist_alloc(GFP_NOFS);
1760		if (!ctx->roots) {
1761			ulist_free(ctx->refs);
1762			ctx->refs = NULL;
1763			return -ENOMEM;
1764		}
1765		roots_ulist_allocated = true;
1766	}
1767
1768	ctx->skip_inode_ref_list = true;
1769
1770	ULIST_ITER_INIT(&uiter);
1771	while (1) {
1772		struct ulist_node *node;
1773
1774		ret = find_parent_nodes(ctx, NULL);
1775		if (ret < 0 && ret != -ENOENT) {
1776			if (roots_ulist_allocated) {
1777				ulist_free(ctx->roots);
1778				ctx->roots = NULL;
1779			}
1780			break;
1781		}
1782		ret = 0;
1783		node = ulist_next(ctx->refs, &uiter);
1784		if (!node)
1785			break;
1786		ctx->bytenr = node->val;
1787		cond_resched();
1788	}
1789
1790	ulist_free(ctx->refs);
1791	ctx->refs = NULL;
1792	ctx->bytenr = orig_bytenr;
1793	ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1794
1795	return ret;
1796}
1797
1798int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1799			 bool skip_commit_root_sem)
1800{
1801	int ret;
1802
1803	if (!ctx->trans && !skip_commit_root_sem)
1804		down_read(&ctx->fs_info->commit_root_sem);
1805	ret = btrfs_find_all_roots_safe(ctx);
1806	if (!ctx->trans && !skip_commit_root_sem)
1807		up_read(&ctx->fs_info->commit_root_sem);
1808	return ret;
1809}
1810
1811struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1812{
1813	struct btrfs_backref_share_check_ctx *ctx;
1814
1815	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1816	if (!ctx)
1817		return NULL;
1818
1819	ulist_init(&ctx->refs);
1820
1821	return ctx;
1822}
1823
1824void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1825{
1826	if (!ctx)
1827		return;
1828
1829	ulist_release(&ctx->refs);
1830	kfree(ctx);
1831}
1832
1833/*
1834 * Check if a data extent is shared or not.
1835 *
1836 * @inode:       The inode whose extent we are checking.
1837 * @bytenr:      Logical bytenr of the extent we are checking.
1838 * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1839 *               not known.
1840 * @ctx:         A backref sharedness check context.
1841 *
1842 * btrfs_is_data_extent_shared uses the backref walking code but will short
1843 * circuit as soon as it finds a root or inode that doesn't match the
1844 * one passed in. This provides a significant performance benefit for
1845 * callers (such as fiemap) which want to know whether the extent is
1846 * shared but do not need a ref count.
1847 *
1848 * This attempts to attach to the running transaction in order to account for
1849 * delayed refs, but continues on even when no running transaction exists.
1850 *
1851 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1852 */
1853int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1854				u64 extent_gen,
1855				struct btrfs_backref_share_check_ctx *ctx)
1856{
1857	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1858	struct btrfs_root *root = inode->root;
1859	struct btrfs_fs_info *fs_info = root->fs_info;
1860	struct btrfs_trans_handle *trans;
1861	struct ulist_iterator uiter;
1862	struct ulist_node *node;
1863	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1864	int ret = 0;
1865	struct share_check shared = {
1866		.ctx = ctx,
1867		.root = root,
1868		.inum = btrfs_ino(inode),
1869		.data_bytenr = bytenr,
1870		.data_extent_gen = extent_gen,
1871		.share_count = 0,
1872		.self_ref_count = 0,
1873		.have_delayed_delete_refs = false,
1874	};
1875	int level;
1876	bool leaf_cached;
1877	bool leaf_is_shared;
1878
1879	for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1880		if (ctx->prev_extents_cache[i].bytenr == bytenr)
1881			return ctx->prev_extents_cache[i].is_shared;
1882	}
1883
1884	ulist_init(&ctx->refs);
1885
1886	trans = btrfs_join_transaction_nostart(root);
1887	if (IS_ERR(trans)) {
1888		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1889			ret = PTR_ERR(trans);
1890			goto out;
1891		}
1892		trans = NULL;
1893		down_read(&fs_info->commit_root_sem);
1894	} else {
1895		btrfs_get_tree_mod_seq(fs_info, &elem);
1896		walk_ctx.time_seq = elem.seq;
1897	}
1898
1899	ctx->use_path_cache = true;
1900
1901	/*
1902	 * We may have previously determined that the current leaf is shared.
1903	 * If it is, then we have a data extent that is shared due to a shared
1904	 * subtree (caused by snapshotting) and we don't need to check for data
1905	 * backrefs. If the leaf is not shared, then we must do backref walking
1906	 * to determine if the data extent is shared through reflinks.
1907	 */
1908	leaf_cached = lookup_backref_shared_cache(ctx, root,
1909						  ctx->curr_leaf_bytenr, 0,
1910						  &leaf_is_shared);
1911	if (leaf_cached && leaf_is_shared) {
1912		ret = 1;
1913		goto out_trans;
1914	}
1915
1916	walk_ctx.skip_inode_ref_list = true;
1917	walk_ctx.trans = trans;
1918	walk_ctx.fs_info = fs_info;
1919	walk_ctx.refs = &ctx->refs;
1920
1921	/* -1 means we are in the bytenr of the data extent. */
1922	level = -1;
1923	ULIST_ITER_INIT(&uiter);
1924	while (1) {
1925		const unsigned long prev_ref_count = ctx->refs.nnodes;
1926
1927		walk_ctx.bytenr = bytenr;
1928		ret = find_parent_nodes(&walk_ctx, &shared);
1929		if (ret == BACKREF_FOUND_SHARED ||
1930		    ret == BACKREF_FOUND_NOT_SHARED) {
1931			/* If shared must return 1, otherwise return 0. */
1932			ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1933			if (level >= 0)
1934				store_backref_shared_cache(ctx, root, bytenr,
1935							   level, ret == 1);
1936			break;
1937		}
1938		if (ret < 0 && ret != -ENOENT)
1939			break;
1940		ret = 0;
1941
1942		/*
1943		 * More than one extent buffer (bytenr) may have been added to
1944		 * the ctx->refs ulist, in which case we have to check multiple
1945		 * tree paths in case the first one is not shared, so we can not
1946		 * use the path cache which is made for a single path. Multiple
1947		 * extent buffers at the current level happen when:
1948		 *
1949		 * 1) level -1, the data extent: If our data extent was not
1950		 *    directly shared (without multiple reference items), then
1951		 *    it might have a single reference item with a count > 1 for
1952		 *    the same offset, which means there are 2 (or more) file
1953		 *    extent items that point to the data extent - this happens
1954		 *    when a file extent item needs to be split and then one
1955		 *    item gets moved to another leaf due to a b+tree leaf split
1956		 *    when inserting some item. In this case the file extent
1957		 *    items may be located in different leaves and therefore
1958		 *    some of the leaves may be referenced through shared
1959		 *    subtrees while others are not. Since our extent buffer
1960		 *    cache only works for a single path (by far the most common
1961		 *    case and simpler to deal with), we can not use it if we
1962		 *    have multiple leaves (which implies multiple paths).
1963		 *
1964		 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1965		 *    and indirect references on a b+tree node/leaf, so we have
1966		 *    to check multiple paths, and the extent buffer (the
1967		 *    current bytenr) may be shared or not. One example is
1968		 *    during relocation as we may get a shared tree block ref
1969		 *    (direct ref) and a non-shared tree block ref (indirect
1970		 *    ref) for the same node/leaf.
1971		 */
1972		if ((ctx->refs.nnodes - prev_ref_count) > 1)
1973			ctx->use_path_cache = false;
1974
1975		if (level >= 0)
1976			store_backref_shared_cache(ctx, root, bytenr,
1977						   level, false);
1978		node = ulist_next(&ctx->refs, &uiter);
1979		if (!node)
1980			break;
1981		bytenr = node->val;
1982		if (ctx->use_path_cache) {
1983			bool is_shared;
1984			bool cached;
1985
1986			level++;
1987			cached = lookup_backref_shared_cache(ctx, root, bytenr,
1988							     level, &is_shared);
1989			if (cached) {
1990				ret = (is_shared ? 1 : 0);
1991				break;
1992			}
1993		}
1994		shared.share_count = 0;
1995		shared.have_delayed_delete_refs = false;
1996		cond_resched();
1997	}
1998
1999	/*
2000	 * If the path cache is disabled, then it means at some tree level we
2001	 * got multiple parents due to a mix of direct and indirect backrefs or
2002	 * multiple leaves with file extent items pointing to the same data
2003	 * extent. We have to invalidate the cache and cache only the sharedness
2004	 * result for the levels where we got only one node/reference.
2005	 */
2006	if (!ctx->use_path_cache) {
2007		int i = 0;
2008
2009		level--;
2010		if (ret >= 0 && level >= 0) {
2011			bytenr = ctx->path_cache_entries[level].bytenr;
2012			ctx->use_path_cache = true;
2013			store_backref_shared_cache(ctx, root, bytenr, level, ret);
2014			i = level + 1;
2015		}
2016
2017		for ( ; i < BTRFS_MAX_LEVEL; i++)
2018			ctx->path_cache_entries[i].bytenr = 0;
2019	}
2020
2021	/*
2022	 * Cache the sharedness result for the data extent if we know our inode
2023	 * has more than 1 file extent item that refers to the data extent.
2024	 */
2025	if (ret >= 0 && shared.self_ref_count > 1) {
2026		int slot = ctx->prev_extents_cache_slot;
2027
2028		ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2029		ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2030
2031		slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2032		ctx->prev_extents_cache_slot = slot;
2033	}
2034
2035out_trans:
2036	if (trans) {
2037		btrfs_put_tree_mod_seq(fs_info, &elem);
2038		btrfs_end_transaction(trans);
2039	} else {
2040		up_read(&fs_info->commit_root_sem);
2041	}
2042out:
2043	ulist_release(&ctx->refs);
2044	ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2045
2046	return ret;
2047}
2048
2049int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2050			  u64 start_off, struct btrfs_path *path,
2051			  struct btrfs_inode_extref **ret_extref,
2052			  u64 *found_off)
2053{
2054	int ret, slot;
2055	struct btrfs_key key;
2056	struct btrfs_key found_key;
2057	struct btrfs_inode_extref *extref;
2058	const struct extent_buffer *leaf;
2059	unsigned long ptr;
2060
2061	key.objectid = inode_objectid;
2062	key.type = BTRFS_INODE_EXTREF_KEY;
2063	key.offset = start_off;
2064
2065	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2066	if (ret < 0)
2067		return ret;
2068
2069	while (1) {
2070		leaf = path->nodes[0];
2071		slot = path->slots[0];
2072		if (slot >= btrfs_header_nritems(leaf)) {
2073			/*
2074			 * If the item at offset is not found,
2075			 * btrfs_search_slot will point us to the slot
2076			 * where it should be inserted. In our case
2077			 * that will be the slot directly before the
2078			 * next INODE_REF_KEY_V2 item. In the case
2079			 * that we're pointing to the last slot in a
2080			 * leaf, we must move one leaf over.
2081			 */
2082			ret = btrfs_next_leaf(root, path);
2083			if (ret) {
2084				if (ret >= 1)
2085					ret = -ENOENT;
2086				break;
2087			}
2088			continue;
2089		}
2090
2091		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2092
2093		/*
2094		 * Check that we're still looking at an extended ref key for
2095		 * this particular objectid. If we have different
2096		 * objectid or type then there are no more to be found
2097		 * in the tree and we can exit.
2098		 */
2099		ret = -ENOENT;
2100		if (found_key.objectid != inode_objectid)
2101			break;
2102		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2103			break;
2104
2105		ret = 0;
2106		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2107		extref = (struct btrfs_inode_extref *)ptr;
2108		*ret_extref = extref;
2109		if (found_off)
2110			*found_off = found_key.offset;
2111		break;
2112	}
2113
2114	return ret;
2115}
2116
2117/*
2118 * this iterates to turn a name (from iref/extref) into a full filesystem path.
2119 * Elements of the path are separated by '/' and the path is guaranteed to be
2120 * 0-terminated. the path is only given within the current file system.
2121 * Therefore, it never starts with a '/'. the caller is responsible to provide
2122 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2123 * the start point of the resulting string is returned. this pointer is within
2124 * dest, normally.
2125 * in case the path buffer would overflow, the pointer is decremented further
2126 * as if output was written to the buffer, though no more output is actually
2127 * generated. that way, the caller can determine how much space would be
2128 * required for the path to fit into the buffer. in that case, the returned
2129 * value will be smaller than dest. callers must check this!
2130 */
2131char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2132			u32 name_len, unsigned long name_off,
2133			struct extent_buffer *eb_in, u64 parent,
2134			char *dest, u32 size)
2135{
2136	int slot;
2137	u64 next_inum;
2138	int ret;
2139	s64 bytes_left = ((s64)size) - 1;
2140	struct extent_buffer *eb = eb_in;
2141	struct btrfs_key found_key;
2142	struct btrfs_inode_ref *iref;
2143
2144	if (bytes_left >= 0)
2145		dest[bytes_left] = '\0';
2146
2147	while (1) {
2148		bytes_left -= name_len;
2149		if (bytes_left >= 0)
2150			read_extent_buffer(eb, dest + bytes_left,
2151					   name_off, name_len);
2152		if (eb != eb_in) {
2153			if (!path->skip_locking)
2154				btrfs_tree_read_unlock(eb);
2155			free_extent_buffer(eb);
2156		}
2157		ret = btrfs_find_item(fs_root, path, parent, 0,
2158				BTRFS_INODE_REF_KEY, &found_key);
2159		if (ret > 0)
2160			ret = -ENOENT;
2161		if (ret)
2162			break;
2163
2164		next_inum = found_key.offset;
2165
2166		/* regular exit ahead */
2167		if (parent == next_inum)
2168			break;
2169
2170		slot = path->slots[0];
2171		eb = path->nodes[0];
2172		/* make sure we can use eb after releasing the path */
2173		if (eb != eb_in) {
2174			path->nodes[0] = NULL;
2175			path->locks[0] = 0;
2176		}
2177		btrfs_release_path(path);
2178		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2179
2180		name_len = btrfs_inode_ref_name_len(eb, iref);
2181		name_off = (unsigned long)(iref + 1);
2182
2183		parent = next_inum;
2184		--bytes_left;
2185		if (bytes_left >= 0)
2186			dest[bytes_left] = '/';
2187	}
2188
2189	btrfs_release_path(path);
2190
2191	if (ret)
2192		return ERR_PTR(ret);
2193
2194	return dest + bytes_left;
2195}
2196
2197/*
2198 * this makes the path point to (logical EXTENT_ITEM *)
2199 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2200 * tree blocks and <0 on error.
2201 */
2202int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2203			struct btrfs_path *path, struct btrfs_key *found_key,
2204			u64 *flags_ret)
2205{
2206	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2207	int ret;
2208	u64 flags;
2209	u64 size = 0;
2210	u32 item_size;
2211	const struct extent_buffer *eb;
2212	struct btrfs_extent_item *ei;
2213	struct btrfs_key key;
2214
2215	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2216		key.type = BTRFS_METADATA_ITEM_KEY;
2217	else
2218		key.type = BTRFS_EXTENT_ITEM_KEY;
2219	key.objectid = logical;
2220	key.offset = (u64)-1;
2221
2222	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2223	if (ret < 0)
2224		return ret;
2225
2226	ret = btrfs_previous_extent_item(extent_root, path, 0);
2227	if (ret) {
2228		if (ret > 0)
2229			ret = -ENOENT;
2230		return ret;
2231	}
2232	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2233	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2234		size = fs_info->nodesize;
2235	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2236		size = found_key->offset;
2237
2238	if (found_key->objectid > logical ||
2239	    found_key->objectid + size <= logical) {
2240		btrfs_debug(fs_info,
2241			"logical %llu is not within any extent", logical);
2242		return -ENOENT;
2243	}
2244
2245	eb = path->nodes[0];
2246	item_size = btrfs_item_size(eb, path->slots[0]);
2247	BUG_ON(item_size < sizeof(*ei));
2248
2249	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2250	flags = btrfs_extent_flags(eb, ei);
2251
2252	btrfs_debug(fs_info,
2253		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2254		 logical, logical - found_key->objectid, found_key->objectid,
2255		 found_key->offset, flags, item_size);
2256
2257	WARN_ON(!flags_ret);
2258	if (flags_ret) {
2259		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2260			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2261		else if (flags & BTRFS_EXTENT_FLAG_DATA)
2262			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2263		else
2264			BUG();
2265		return 0;
2266	}
2267
2268	return -EIO;
2269}
2270
2271/*
2272 * helper function to iterate extent inline refs. ptr must point to a 0 value
2273 * for the first call and may be modified. it is used to track state.
2274 * if more refs exist, 0 is returned and the next call to
2275 * get_extent_inline_ref must pass the modified ptr parameter to get the
2276 * next ref. after the last ref was processed, 1 is returned.
2277 * returns <0 on error
2278 */
2279static int get_extent_inline_ref(unsigned long *ptr,
2280				 const struct extent_buffer *eb,
2281				 const struct btrfs_key *key,
2282				 const struct btrfs_extent_item *ei,
2283				 u32 item_size,
2284				 struct btrfs_extent_inline_ref **out_eiref,
2285				 int *out_type)
2286{
2287	unsigned long end;
2288	u64 flags;
2289	struct btrfs_tree_block_info *info;
2290
2291	if (!*ptr) {
2292		/* first call */
2293		flags = btrfs_extent_flags(eb, ei);
2294		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2295			if (key->type == BTRFS_METADATA_ITEM_KEY) {
2296				/* a skinny metadata extent */
2297				*out_eiref =
2298				     (struct btrfs_extent_inline_ref *)(ei + 1);
2299			} else {
2300				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2301				info = (struct btrfs_tree_block_info *)(ei + 1);
2302				*out_eiref =
2303				   (struct btrfs_extent_inline_ref *)(info + 1);
2304			}
2305		} else {
2306			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2307		}
2308		*ptr = (unsigned long)*out_eiref;
2309		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2310			return -ENOENT;
2311	}
2312
2313	end = (unsigned long)ei + item_size;
2314	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2315	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2316						     BTRFS_REF_TYPE_ANY);
2317	if (*out_type == BTRFS_REF_TYPE_INVALID)
2318		return -EUCLEAN;
2319
2320	*ptr += btrfs_extent_inline_ref_size(*out_type);
2321	WARN_ON(*ptr > end);
2322	if (*ptr == end)
2323		return 1; /* last */
2324
2325	return 0;
2326}
2327
2328/*
2329 * reads the tree block backref for an extent. tree level and root are returned
2330 * through out_level and out_root. ptr must point to a 0 value for the first
2331 * call and may be modified (see get_extent_inline_ref comment).
2332 * returns 0 if data was provided, 1 if there was no more data to provide or
2333 * <0 on error.
2334 */
2335int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2336			    struct btrfs_key *key, struct btrfs_extent_item *ei,
2337			    u32 item_size, u64 *out_root, u8 *out_level)
2338{
2339	int ret;
2340	int type;
2341	struct btrfs_extent_inline_ref *eiref;
2342
2343	if (*ptr == (unsigned long)-1)
2344		return 1;
2345
2346	while (1) {
2347		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2348					      &eiref, &type);
2349		if (ret < 0)
2350			return ret;
2351
2352		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2353		    type == BTRFS_SHARED_BLOCK_REF_KEY)
2354			break;
2355
2356		if (ret == 1)
2357			return 1;
2358	}
2359
2360	/* we can treat both ref types equally here */
2361	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2362
2363	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2364		struct btrfs_tree_block_info *info;
2365
2366		info = (struct btrfs_tree_block_info *)(ei + 1);
2367		*out_level = btrfs_tree_block_level(eb, info);
2368	} else {
2369		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2370		*out_level = (u8)key->offset;
2371	}
2372
2373	if (ret == 1)
2374		*ptr = (unsigned long)-1;
2375
2376	return 0;
2377}
2378
2379static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2380			     struct extent_inode_elem *inode_list,
2381			     u64 root, u64 extent_item_objectid,
2382			     iterate_extent_inodes_t *iterate, void *ctx)
2383{
2384	struct extent_inode_elem *eie;
2385	int ret = 0;
2386
2387	for (eie = inode_list; eie; eie = eie->next) {
2388		btrfs_debug(fs_info,
2389			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2390			    extent_item_objectid, eie->inum,
2391			    eie->offset, root);
2392		ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2393		if (ret) {
2394			btrfs_debug(fs_info,
2395				    "stopping iteration for %llu due to ret=%d",
2396				    extent_item_objectid, ret);
2397			break;
2398		}
2399	}
2400
2401	return ret;
2402}
2403
2404/*
2405 * calls iterate() for every inode that references the extent identified by
2406 * the given parameters.
2407 * when the iterator function returns a non-zero value, iteration stops.
2408 */
2409int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2410			  bool search_commit_root,
2411			  iterate_extent_inodes_t *iterate, void *user_ctx)
2412{
2413	int ret;
2414	struct ulist *refs;
2415	struct ulist_node *ref_node;
2416	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2417	struct ulist_iterator ref_uiter;
2418
2419	btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2420		    ctx->bytenr);
2421
2422	ASSERT(ctx->trans == NULL);
2423	ASSERT(ctx->roots == NULL);
2424
2425	if (!search_commit_root) {
2426		struct btrfs_trans_handle *trans;
2427
2428		trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2429		if (IS_ERR(trans)) {
2430			if (PTR_ERR(trans) != -ENOENT &&
2431			    PTR_ERR(trans) != -EROFS)
2432				return PTR_ERR(trans);
2433			trans = NULL;
2434		}
2435		ctx->trans = trans;
2436	}
2437
2438	if (ctx->trans) {
2439		btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2440		ctx->time_seq = seq_elem.seq;
2441	} else {
2442		down_read(&ctx->fs_info->commit_root_sem);
2443	}
2444
2445	ret = btrfs_find_all_leafs(ctx);
2446	if (ret)
2447		goto out;
2448	refs = ctx->refs;
2449	ctx->refs = NULL;
2450
2451	ULIST_ITER_INIT(&ref_uiter);
2452	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2453		const u64 leaf_bytenr = ref_node->val;
2454		struct ulist_node *root_node;
2455		struct ulist_iterator root_uiter;
2456		struct extent_inode_elem *inode_list;
2457
2458		inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2459
2460		if (ctx->cache_lookup) {
2461			const u64 *root_ids;
2462			int root_count;
2463			bool cached;
2464
2465			cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2466						   &root_ids, &root_count);
2467			if (cached) {
2468				for (int i = 0; i < root_count; i++) {
2469					ret = iterate_leaf_refs(ctx->fs_info,
2470								inode_list,
2471								root_ids[i],
2472								leaf_bytenr,
2473								iterate,
2474								user_ctx);
2475					if (ret)
2476						break;
2477				}
2478				continue;
2479			}
2480		}
2481
2482		if (!ctx->roots) {
2483			ctx->roots = ulist_alloc(GFP_NOFS);
2484			if (!ctx->roots) {
2485				ret = -ENOMEM;
2486				break;
2487			}
2488		}
2489
2490		ctx->bytenr = leaf_bytenr;
2491		ret = btrfs_find_all_roots_safe(ctx);
2492		if (ret)
2493			break;
2494
2495		if (ctx->cache_store)
2496			ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2497
2498		ULIST_ITER_INIT(&root_uiter);
2499		while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2500			btrfs_debug(ctx->fs_info,
2501				    "root %llu references leaf %llu, data list %#llx",
2502				    root_node->val, ref_node->val,
2503				    ref_node->aux);
2504			ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2505						root_node->val, ctx->bytenr,
2506						iterate, user_ctx);
2507		}
2508		ulist_reinit(ctx->roots);
2509	}
2510
2511	free_leaf_list(refs);
2512out:
2513	if (ctx->trans) {
2514		btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2515		btrfs_end_transaction(ctx->trans);
2516		ctx->trans = NULL;
2517	} else {
2518		up_read(&ctx->fs_info->commit_root_sem);
2519	}
2520
2521	ulist_free(ctx->roots);
2522	ctx->roots = NULL;
2523
2524	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2525		ret = 0;
2526
2527	return ret;
2528}
2529
2530static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2531{
2532	struct btrfs_data_container *inodes = ctx;
2533	const size_t c = 3 * sizeof(u64);
2534
2535	if (inodes->bytes_left >= c) {
2536		inodes->bytes_left -= c;
2537		inodes->val[inodes->elem_cnt] = inum;
2538		inodes->val[inodes->elem_cnt + 1] = offset;
2539		inodes->val[inodes->elem_cnt + 2] = root;
2540		inodes->elem_cnt += 3;
2541	} else {
2542		inodes->bytes_missing += c - inodes->bytes_left;
2543		inodes->bytes_left = 0;
2544		inodes->elem_missed += 3;
2545	}
2546
2547	return 0;
2548}
2549
2550int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2551				struct btrfs_path *path,
2552				void *ctx, bool ignore_offset)
2553{
2554	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2555	int ret;
2556	u64 flags = 0;
2557	struct btrfs_key found_key;
2558	int search_commit_root = path->search_commit_root;
2559
2560	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2561	btrfs_release_path(path);
2562	if (ret < 0)
2563		return ret;
2564	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2565		return -EINVAL;
2566
2567	walk_ctx.bytenr = found_key.objectid;
2568	if (ignore_offset)
2569		walk_ctx.ignore_extent_item_pos = true;
2570	else
2571		walk_ctx.extent_item_pos = logical - found_key.objectid;
2572	walk_ctx.fs_info = fs_info;
2573
2574	return iterate_extent_inodes(&walk_ctx, search_commit_root,
2575				     build_ino_list, ctx);
2576}
2577
2578static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2579			 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2580
2581static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2582{
2583	int ret = 0;
2584	int slot;
2585	u32 cur;
2586	u32 len;
2587	u32 name_len;
2588	u64 parent = 0;
2589	int found = 0;
2590	struct btrfs_root *fs_root = ipath->fs_root;
2591	struct btrfs_path *path = ipath->btrfs_path;
2592	struct extent_buffer *eb;
2593	struct btrfs_inode_ref *iref;
2594	struct btrfs_key found_key;
2595
2596	while (!ret) {
2597		ret = btrfs_find_item(fs_root, path, inum,
2598				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2599				&found_key);
2600
2601		if (ret < 0)
2602			break;
2603		if (ret) {
2604			ret = found ? 0 : -ENOENT;
2605			break;
2606		}
2607		++found;
2608
2609		parent = found_key.offset;
2610		slot = path->slots[0];
2611		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2612		if (!eb) {
2613			ret = -ENOMEM;
2614			break;
2615		}
2616		btrfs_release_path(path);
2617
2618		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2619
2620		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2621			name_len = btrfs_inode_ref_name_len(eb, iref);
2622			/* path must be released before calling iterate()! */
2623			btrfs_debug(fs_root->fs_info,
2624				"following ref at offset %u for inode %llu in tree %llu",
2625				cur, found_key.objectid,
2626				fs_root->root_key.objectid);
2627			ret = inode_to_path(parent, name_len,
2628				      (unsigned long)(iref + 1), eb, ipath);
2629			if (ret)
2630				break;
2631			len = sizeof(*iref) + name_len;
2632			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2633		}
2634		free_extent_buffer(eb);
2635	}
2636
2637	btrfs_release_path(path);
2638
2639	return ret;
2640}
2641
2642static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2643{
2644	int ret;
2645	int slot;
2646	u64 offset = 0;
2647	u64 parent;
2648	int found = 0;
2649	struct btrfs_root *fs_root = ipath->fs_root;
2650	struct btrfs_path *path = ipath->btrfs_path;
2651	struct extent_buffer *eb;
2652	struct btrfs_inode_extref *extref;
2653	u32 item_size;
2654	u32 cur_offset;
2655	unsigned long ptr;
2656
2657	while (1) {
2658		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2659					    &offset);
2660		if (ret < 0)
2661			break;
2662		if (ret) {
2663			ret = found ? 0 : -ENOENT;
2664			break;
2665		}
2666		++found;
2667
2668		slot = path->slots[0];
2669		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2670		if (!eb) {
2671			ret = -ENOMEM;
2672			break;
2673		}
2674		btrfs_release_path(path);
2675
2676		item_size = btrfs_item_size(eb, slot);
2677		ptr = btrfs_item_ptr_offset(eb, slot);
2678		cur_offset = 0;
2679
2680		while (cur_offset < item_size) {
2681			u32 name_len;
2682
2683			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2684			parent = btrfs_inode_extref_parent(eb, extref);
2685			name_len = btrfs_inode_extref_name_len(eb, extref);
2686			ret = inode_to_path(parent, name_len,
2687				      (unsigned long)&extref->name, eb, ipath);
2688			if (ret)
2689				break;
2690
2691			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2692			cur_offset += sizeof(*extref);
2693		}
2694		free_extent_buffer(eb);
2695
2696		offset++;
2697	}
2698
2699	btrfs_release_path(path);
2700
2701	return ret;
2702}
2703
2704/*
2705 * returns 0 if the path could be dumped (probably truncated)
2706 * returns <0 in case of an error
2707 */
2708static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2709			 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2710{
2711	char *fspath;
2712	char *fspath_min;
2713	int i = ipath->fspath->elem_cnt;
2714	const int s_ptr = sizeof(char *);
2715	u32 bytes_left;
2716
2717	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2718					ipath->fspath->bytes_left - s_ptr : 0;
2719
2720	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2721	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2722				   name_off, eb, inum, fspath_min, bytes_left);
2723	if (IS_ERR(fspath))
2724		return PTR_ERR(fspath);
2725
2726	if (fspath > fspath_min) {
2727		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2728		++ipath->fspath->elem_cnt;
2729		ipath->fspath->bytes_left = fspath - fspath_min;
2730	} else {
2731		++ipath->fspath->elem_missed;
2732		ipath->fspath->bytes_missing += fspath_min - fspath;
2733		ipath->fspath->bytes_left = 0;
2734	}
2735
2736	return 0;
2737}
2738
2739/*
2740 * this dumps all file system paths to the inode into the ipath struct, provided
2741 * is has been created large enough. each path is zero-terminated and accessed
2742 * from ipath->fspath->val[i].
2743 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2744 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2745 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2746 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2747 * have been needed to return all paths.
2748 */
2749int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2750{
2751	int ret;
2752	int found_refs = 0;
2753
2754	ret = iterate_inode_refs(inum, ipath);
2755	if (!ret)
2756		++found_refs;
2757	else if (ret != -ENOENT)
2758		return ret;
2759
2760	ret = iterate_inode_extrefs(inum, ipath);
2761	if (ret == -ENOENT && found_refs)
2762		return 0;
2763
2764	return ret;
2765}
2766
2767struct btrfs_data_container *init_data_container(u32 total_bytes)
2768{
2769	struct btrfs_data_container *data;
2770	size_t alloc_bytes;
2771
2772	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2773	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2774	if (!data)
2775		return ERR_PTR(-ENOMEM);
2776
2777	if (total_bytes >= sizeof(*data)) {
2778		data->bytes_left = total_bytes - sizeof(*data);
2779		data->bytes_missing = 0;
2780	} else {
2781		data->bytes_missing = sizeof(*data) - total_bytes;
2782		data->bytes_left = 0;
2783	}
2784
2785	data->elem_cnt = 0;
2786	data->elem_missed = 0;
2787
2788	return data;
2789}
2790
2791/*
2792 * allocates space to return multiple file system paths for an inode.
2793 * total_bytes to allocate are passed, note that space usable for actual path
2794 * information will be total_bytes - sizeof(struct inode_fs_paths).
2795 * the returned pointer must be freed with free_ipath() in the end.
2796 */
2797struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2798					struct btrfs_path *path)
2799{
2800	struct inode_fs_paths *ifp;
2801	struct btrfs_data_container *fspath;
2802
2803	fspath = init_data_container(total_bytes);
2804	if (IS_ERR(fspath))
2805		return ERR_CAST(fspath);
2806
2807	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2808	if (!ifp) {
2809		kvfree(fspath);
2810		return ERR_PTR(-ENOMEM);
2811	}
2812
2813	ifp->btrfs_path = path;
2814	ifp->fspath = fspath;
2815	ifp->fs_root = fs_root;
2816
2817	return ifp;
2818}
2819
2820void free_ipath(struct inode_fs_paths *ipath)
2821{
2822	if (!ipath)
2823		return;
2824	kvfree(ipath->fspath);
2825	kfree(ipath);
2826}
2827
2828struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2829{
2830	struct btrfs_backref_iter *ret;
2831
2832	ret = kzalloc(sizeof(*ret), GFP_NOFS);
2833	if (!ret)
2834		return NULL;
2835
2836	ret->path = btrfs_alloc_path();
2837	if (!ret->path) {
2838		kfree(ret);
2839		return NULL;
2840	}
2841
2842	/* Current backref iterator only supports iteration in commit root */
2843	ret->path->search_commit_root = 1;
2844	ret->path->skip_locking = 1;
2845	ret->fs_info = fs_info;
2846
2847	return ret;
2848}
2849
2850int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2851{
2852	struct btrfs_fs_info *fs_info = iter->fs_info;
2853	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2854	struct btrfs_path *path = iter->path;
2855	struct btrfs_extent_item *ei;
2856	struct btrfs_key key;
2857	int ret;
2858
2859	key.objectid = bytenr;
2860	key.type = BTRFS_METADATA_ITEM_KEY;
2861	key.offset = (u64)-1;
2862	iter->bytenr = bytenr;
2863
2864	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2865	if (ret < 0)
2866		return ret;
2867	if (ret == 0) {
2868		ret = -EUCLEAN;
2869		goto release;
2870	}
2871	if (path->slots[0] == 0) {
2872		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2873		ret = -EUCLEAN;
2874		goto release;
2875	}
2876	path->slots[0]--;
2877
2878	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2879	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2880	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2881		ret = -ENOENT;
2882		goto release;
2883	}
2884	memcpy(&iter->cur_key, &key, sizeof(key));
2885	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2886						    path->slots[0]);
2887	iter->end_ptr = (u32)(iter->item_ptr +
2888			btrfs_item_size(path->nodes[0], path->slots[0]));
2889	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2890			    struct btrfs_extent_item);
2891
2892	/*
2893	 * Only support iteration on tree backref yet.
2894	 *
2895	 * This is an extra precaution for non skinny-metadata, where
2896	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2897	 * extent flags to determine if it's a tree block.
2898	 */
2899	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2900		ret = -ENOTSUPP;
2901		goto release;
2902	}
2903	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2904
2905	/* If there is no inline backref, go search for keyed backref */
2906	if (iter->cur_ptr >= iter->end_ptr) {
2907		ret = btrfs_next_item(extent_root, path);
2908
2909		/* No inline nor keyed ref */
2910		if (ret > 0) {
2911			ret = -ENOENT;
2912			goto release;
2913		}
2914		if (ret < 0)
2915			goto release;
2916
2917		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2918				path->slots[0]);
2919		if (iter->cur_key.objectid != bytenr ||
2920		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2921		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2922			ret = -ENOENT;
2923			goto release;
2924		}
2925		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2926							   path->slots[0]);
2927		iter->item_ptr = iter->cur_ptr;
2928		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2929				      path->nodes[0], path->slots[0]));
2930	}
2931
2932	return 0;
2933release:
2934	btrfs_backref_iter_release(iter);
2935	return ret;
2936}
2937
2938/*
2939 * Go to the next backref item of current bytenr, can be either inlined or
2940 * keyed.
2941 *
2942 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2943 *
2944 * Return 0 if we get next backref without problem.
2945 * Return >0 if there is no extra backref for this bytenr.
2946 * Return <0 if there is something wrong happened.
2947 */
2948int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2949{
2950	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2951	struct btrfs_root *extent_root;
2952	struct btrfs_path *path = iter->path;
2953	struct btrfs_extent_inline_ref *iref;
2954	int ret;
2955	u32 size;
2956
2957	if (btrfs_backref_iter_is_inline_ref(iter)) {
2958		/* We're still inside the inline refs */
2959		ASSERT(iter->cur_ptr < iter->end_ptr);
2960
2961		if (btrfs_backref_has_tree_block_info(iter)) {
2962			/* First tree block info */
2963			size = sizeof(struct btrfs_tree_block_info);
2964		} else {
2965			/* Use inline ref type to determine the size */
2966			int type;
2967
2968			iref = (struct btrfs_extent_inline_ref *)
2969				((unsigned long)iter->cur_ptr);
2970			type = btrfs_extent_inline_ref_type(eb, iref);
2971
2972			size = btrfs_extent_inline_ref_size(type);
2973		}
2974		iter->cur_ptr += size;
2975		if (iter->cur_ptr < iter->end_ptr)
2976			return 0;
2977
2978		/* All inline items iterated, fall through */
2979	}
2980
2981	/* We're at keyed items, there is no inline item, go to the next one */
2982	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2983	ret = btrfs_next_item(extent_root, iter->path);
2984	if (ret)
2985		return ret;
2986
2987	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2988	if (iter->cur_key.objectid != iter->bytenr ||
2989	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2990	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2991		return 1;
2992	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2993					path->slots[0]);
2994	iter->cur_ptr = iter->item_ptr;
2995	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2996						path->slots[0]);
2997	return 0;
2998}
2999
3000void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3001			      struct btrfs_backref_cache *cache, int is_reloc)
3002{
3003	int i;
3004
3005	cache->rb_root = RB_ROOT;
3006	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3007		INIT_LIST_HEAD(&cache->pending[i]);
3008	INIT_LIST_HEAD(&cache->changed);
3009	INIT_LIST_HEAD(&cache->detached);
3010	INIT_LIST_HEAD(&cache->leaves);
3011	INIT_LIST_HEAD(&cache->pending_edge);
3012	INIT_LIST_HEAD(&cache->useless_node);
3013	cache->fs_info = fs_info;
3014	cache->is_reloc = is_reloc;
3015}
3016
3017struct btrfs_backref_node *btrfs_backref_alloc_node(
3018		struct btrfs_backref_cache *cache, u64 bytenr, int level)
3019{
3020	struct btrfs_backref_node *node;
3021
3022	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3023	node = kzalloc(sizeof(*node), GFP_NOFS);
3024	if (!node)
3025		return node;
3026
3027	INIT_LIST_HEAD(&node->list);
3028	INIT_LIST_HEAD(&node->upper);
3029	INIT_LIST_HEAD(&node->lower);
3030	RB_CLEAR_NODE(&node->rb_node);
3031	cache->nr_nodes++;
3032	node->level = level;
3033	node->bytenr = bytenr;
3034
3035	return node;
3036}
3037
3038struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3039		struct btrfs_backref_cache *cache)
3040{
3041	struct btrfs_backref_edge *edge;
3042
3043	edge = kzalloc(sizeof(*edge), GFP_NOFS);
3044	if (edge)
3045		cache->nr_edges++;
3046	return edge;
3047}
3048
3049/*
3050 * Drop the backref node from cache, also cleaning up all its
3051 * upper edges and any uncached nodes in the path.
3052 *
3053 * This cleanup happens bottom up, thus the node should either
3054 * be the lowest node in the cache or a detached node.
3055 */
3056void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3057				struct btrfs_backref_node *node)
3058{
3059	struct btrfs_backref_node *upper;
3060	struct btrfs_backref_edge *edge;
3061
3062	if (!node)
3063		return;
3064
3065	BUG_ON(!node->lowest && !node->detached);
3066	while (!list_empty(&node->upper)) {
3067		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
3068				  list[LOWER]);
3069		upper = edge->node[UPPER];
3070		list_del(&edge->list[LOWER]);
3071		list_del(&edge->list[UPPER]);
3072		btrfs_backref_free_edge(cache, edge);
3073
3074		/*
3075		 * Add the node to leaf node list if no other child block
3076		 * cached.
3077		 */
3078		if (list_empty(&upper->lower)) {
3079			list_add_tail(&upper->lower, &cache->leaves);
3080			upper->lowest = 1;
3081		}
3082	}
3083
3084	btrfs_backref_drop_node(cache, node);
3085}
3086
3087/*
3088 * Release all nodes/edges from current cache
3089 */
3090void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3091{
3092	struct btrfs_backref_node *node;
3093	int i;
3094
3095	while (!list_empty(&cache->detached)) {
3096		node = list_entry(cache->detached.next,
3097				  struct btrfs_backref_node, list);
3098		btrfs_backref_cleanup_node(cache, node);
3099	}
3100
3101	while (!list_empty(&cache->leaves)) {
3102		node = list_entry(cache->leaves.next,
3103				  struct btrfs_backref_node, lower);
3104		btrfs_backref_cleanup_node(cache, node);
3105	}
3106
3107	cache->last_trans = 0;
3108
3109	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3110		ASSERT(list_empty(&cache->pending[i]));
3111	ASSERT(list_empty(&cache->pending_edge));
3112	ASSERT(list_empty(&cache->useless_node));
3113	ASSERT(list_empty(&cache->changed));
3114	ASSERT(list_empty(&cache->detached));
3115	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3116	ASSERT(!cache->nr_nodes);
3117	ASSERT(!cache->nr_edges);
3118}
3119
3120/*
3121 * Handle direct tree backref
3122 *
3123 * Direct tree backref means, the backref item shows its parent bytenr
3124 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3125 *
3126 * @ref_key:	The converted backref key.
3127 *		For keyed backref, it's the item key.
3128 *		For inlined backref, objectid is the bytenr,
3129 *		type is btrfs_inline_ref_type, offset is
3130 *		btrfs_inline_ref_offset.
3131 */
3132static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3133				      struct btrfs_key *ref_key,
3134				      struct btrfs_backref_node *cur)
3135{
3136	struct btrfs_backref_edge *edge;
3137	struct btrfs_backref_node *upper;
3138	struct rb_node *rb_node;
3139
3140	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3141
3142	/* Only reloc root uses backref pointing to itself */
3143	if (ref_key->objectid == ref_key->offset) {
3144		struct btrfs_root *root;
3145
3146		cur->is_reloc_root = 1;
3147		/* Only reloc backref cache cares about a specific root */
3148		if (cache->is_reloc) {
3149			root = find_reloc_root(cache->fs_info, cur->bytenr);
3150			if (!root)
3151				return -ENOENT;
3152			cur->root = root;
3153		} else {
3154			/*
3155			 * For generic purpose backref cache, reloc root node
3156			 * is useless.
3157			 */
3158			list_add(&cur->list, &cache->useless_node);
3159		}
3160		return 0;
3161	}
3162
3163	edge = btrfs_backref_alloc_edge(cache);
3164	if (!edge)
3165		return -ENOMEM;
3166
3167	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3168	if (!rb_node) {
3169		/* Parent node not yet cached */
3170		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3171					   cur->level + 1);
3172		if (!upper) {
3173			btrfs_backref_free_edge(cache, edge);
3174			return -ENOMEM;
3175		}
3176
3177		/*
3178		 *  Backrefs for the upper level block isn't cached, add the
3179		 *  block to pending list
3180		 */
3181		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3182	} else {
3183		/* Parent node already cached */
3184		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3185		ASSERT(upper->checked);
3186		INIT_LIST_HEAD(&edge->list[UPPER]);
3187	}
3188	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3189	return 0;
3190}
3191
3192/*
3193 * Handle indirect tree backref
3194 *
3195 * Indirect tree backref means, we only know which tree the node belongs to.
3196 * We still need to do a tree search to find out the parents. This is for
3197 * TREE_BLOCK_REF backref (keyed or inlined).
3198 *
3199 * @trans:	Transaction handle.
3200 * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
3201 * @tree_key:	The first key of this tree block.
3202 * @path:	A clean (released) path, to avoid allocating path every time
3203 *		the function get called.
3204 */
3205static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3206					struct btrfs_backref_cache *cache,
3207					struct btrfs_path *path,
3208					struct btrfs_key *ref_key,
3209					struct btrfs_key *tree_key,
3210					struct btrfs_backref_node *cur)
3211{
3212	struct btrfs_fs_info *fs_info = cache->fs_info;
3213	struct btrfs_backref_node *upper;
3214	struct btrfs_backref_node *lower;
3215	struct btrfs_backref_edge *edge;
3216	struct extent_buffer *eb;
3217	struct btrfs_root *root;
3218	struct rb_node *rb_node;
3219	int level;
3220	bool need_check = true;
3221	int ret;
3222
3223	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3224	if (IS_ERR(root))
3225		return PTR_ERR(root);
3226	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3227		cur->cowonly = 1;
3228
3229	if (btrfs_root_level(&root->root_item) == cur->level) {
3230		/* Tree root */
3231		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3232		/*
3233		 * For reloc backref cache, we may ignore reloc root.  But for
3234		 * general purpose backref cache, we can't rely on
3235		 * btrfs_should_ignore_reloc_root() as it may conflict with
3236		 * current running relocation and lead to missing root.
3237		 *
3238		 * For general purpose backref cache, reloc root detection is
3239		 * completely relying on direct backref (key->offset is parent
3240		 * bytenr), thus only do such check for reloc cache.
3241		 */
3242		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3243			btrfs_put_root(root);
3244			list_add(&cur->list, &cache->useless_node);
3245		} else {
3246			cur->root = root;
3247		}
3248		return 0;
3249	}
3250
3251	level = cur->level + 1;
3252
3253	/* Search the tree to find parent blocks referring to the block */
3254	path->search_commit_root = 1;
3255	path->skip_locking = 1;
3256	path->lowest_level = level;
3257	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3258	path->lowest_level = 0;
3259	if (ret < 0) {
3260		btrfs_put_root(root);
3261		return ret;
3262	}
3263	if (ret > 0 && path->slots[level] > 0)
3264		path->slots[level]--;
3265
3266	eb = path->nodes[level];
3267	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3268		btrfs_err(fs_info,
3269"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3270			  cur->bytenr, level - 1, root->root_key.objectid,
3271			  tree_key->objectid, tree_key->type, tree_key->offset);
3272		btrfs_put_root(root);
3273		ret = -ENOENT;
3274		goto out;
3275	}
3276	lower = cur;
3277
3278	/* Add all nodes and edges in the path */
3279	for (; level < BTRFS_MAX_LEVEL; level++) {
3280		if (!path->nodes[level]) {
3281			ASSERT(btrfs_root_bytenr(&root->root_item) ==
3282			       lower->bytenr);
3283			/* Same as previous should_ignore_reloc_root() call */
3284			if (btrfs_should_ignore_reloc_root(root) &&
3285			    cache->is_reloc) {
3286				btrfs_put_root(root);
3287				list_add(&lower->list, &cache->useless_node);
3288			} else {
3289				lower->root = root;
3290			}
3291			break;
3292		}
3293
3294		edge = btrfs_backref_alloc_edge(cache);
3295		if (!edge) {
3296			btrfs_put_root(root);
3297			ret = -ENOMEM;
3298			goto out;
3299		}
3300
3301		eb = path->nodes[level];
3302		rb_node = rb_simple_search(&cache->rb_root, eb->start);
3303		if (!rb_node) {
3304			upper = btrfs_backref_alloc_node(cache, eb->start,
3305							 lower->level + 1);
3306			if (!upper) {
3307				btrfs_put_root(root);
3308				btrfs_backref_free_edge(cache, edge);
3309				ret = -ENOMEM;
3310				goto out;
3311			}
3312			upper->owner = btrfs_header_owner(eb);
3313			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3314				upper->cowonly = 1;
3315
3316			/*
3317			 * If we know the block isn't shared we can avoid
3318			 * checking its backrefs.
3319			 */
3320			if (btrfs_block_can_be_shared(trans, root, eb))
3321				upper->checked = 0;
3322			else
3323				upper->checked = 1;
3324
3325			/*
3326			 * Add the block to pending list if we need to check its
3327			 * backrefs, we only do this once while walking up a
3328			 * tree as we will catch anything else later on.
3329			 */
3330			if (!upper->checked && need_check) {
3331				need_check = false;
3332				list_add_tail(&edge->list[UPPER],
3333					      &cache->pending_edge);
3334			} else {
3335				if (upper->checked)
3336					need_check = true;
3337				INIT_LIST_HEAD(&edge->list[UPPER]);
3338			}
3339		} else {
3340			upper = rb_entry(rb_node, struct btrfs_backref_node,
3341					 rb_node);
3342			ASSERT(upper->checked);
3343			INIT_LIST_HEAD(&edge->list[UPPER]);
3344			if (!upper->owner)
3345				upper->owner = btrfs_header_owner(eb);
3346		}
3347		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3348
3349		if (rb_node) {
3350			btrfs_put_root(root);
3351			break;
3352		}
3353		lower = upper;
3354		upper = NULL;
3355	}
3356out:
3357	btrfs_release_path(path);
3358	return ret;
3359}
3360
3361/*
3362 * Add backref node @cur into @cache.
3363 *
3364 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3365 *	 links aren't yet bi-directional. Needs to finish such links.
3366 *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
3367 *
3368 * @trans:	Transaction handle.
3369 * @path:	Released path for indirect tree backref lookup
3370 * @iter:	Released backref iter for extent tree search
3371 * @node_key:	The first key of the tree block
3372 */
3373int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3374				struct btrfs_backref_cache *cache,
3375				struct btrfs_path *path,
3376				struct btrfs_backref_iter *iter,
3377				struct btrfs_key *node_key,
3378				struct btrfs_backref_node *cur)
3379{
3380	struct btrfs_backref_edge *edge;
3381	struct btrfs_backref_node *exist;
3382	int ret;
3383
3384	ret = btrfs_backref_iter_start(iter, cur->bytenr);
3385	if (ret < 0)
3386		return ret;
3387	/*
3388	 * We skip the first btrfs_tree_block_info, as we don't use the key
3389	 * stored in it, but fetch it from the tree block
3390	 */
3391	if (btrfs_backref_has_tree_block_info(iter)) {
3392		ret = btrfs_backref_iter_next(iter);
3393		if (ret < 0)
3394			goto out;
3395		/* No extra backref? This means the tree block is corrupted */
3396		if (ret > 0) {
3397			ret = -EUCLEAN;
3398			goto out;
3399		}
3400	}
3401	WARN_ON(cur->checked);
3402	if (!list_empty(&cur->upper)) {
3403		/*
3404		 * The backref was added previously when processing backref of
3405		 * type BTRFS_TREE_BLOCK_REF_KEY
3406		 */
3407		ASSERT(list_is_singular(&cur->upper));
3408		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3409				  list[LOWER]);
3410		ASSERT(list_empty(&edge->list[UPPER]));
3411		exist = edge->node[UPPER];
3412		/*
3413		 * Add the upper level block to pending list if we need check
3414		 * its backrefs
3415		 */
3416		if (!exist->checked)
3417			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3418	} else {
3419		exist = NULL;
3420	}
3421
3422	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3423		struct extent_buffer *eb;
3424		struct btrfs_key key;
3425		int type;
3426
3427		cond_resched();
3428		eb = btrfs_backref_get_eb(iter);
3429
3430		key.objectid = iter->bytenr;
3431		if (btrfs_backref_iter_is_inline_ref(iter)) {
3432			struct btrfs_extent_inline_ref *iref;
3433
3434			/* Update key for inline backref */
3435			iref = (struct btrfs_extent_inline_ref *)
3436				((unsigned long)iter->cur_ptr);
3437			type = btrfs_get_extent_inline_ref_type(eb, iref,
3438							BTRFS_REF_TYPE_BLOCK);
3439			if (type == BTRFS_REF_TYPE_INVALID) {
3440				ret = -EUCLEAN;
3441				goto out;
3442			}
3443			key.type = type;
3444			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3445		} else {
3446			key.type = iter->cur_key.type;
3447			key.offset = iter->cur_key.offset;
3448		}
3449
3450		/*
3451		 * Parent node found and matches current inline ref, no need to
3452		 * rebuild this node for this inline ref
3453		 */
3454		if (exist &&
3455		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3456		      exist->owner == key.offset) ||
3457		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3458		      exist->bytenr == key.offset))) {
3459			exist = NULL;
3460			continue;
3461		}
3462
3463		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3464		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3465			ret = handle_direct_tree_backref(cache, &key, cur);
3466			if (ret < 0)
3467				goto out;
3468		} else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3469			/*
3470			 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3471			 * offset means the root objectid. We need to search
3472			 * the tree to get its parent bytenr.
3473			 */
3474			ret = handle_indirect_tree_backref(trans, cache, path,
3475							   &key, node_key, cur);
3476			if (ret < 0)
3477				goto out;
3478		}
3479		/*
3480		 * Unrecognized tree backref items (if it can pass tree-checker)
3481		 * would be ignored.
3482		 */
3483	}
3484	ret = 0;
3485	cur->checked = 1;
3486	WARN_ON(exist);
3487out:
3488	btrfs_backref_iter_release(iter);
3489	return ret;
3490}
3491
3492/*
3493 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3494 */
3495int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3496				     struct btrfs_backref_node *start)
3497{
3498	struct list_head *useless_node = &cache->useless_node;
3499	struct btrfs_backref_edge *edge;
3500	struct rb_node *rb_node;
3501	LIST_HEAD(pending_edge);
3502
3503	ASSERT(start->checked);
3504
3505	/* Insert this node to cache if it's not COW-only */
3506	if (!start->cowonly) {
3507		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3508					   &start->rb_node);
3509		if (rb_node)
3510			btrfs_backref_panic(cache->fs_info, start->bytenr,
3511					    -EEXIST);
3512		list_add_tail(&start->lower, &cache->leaves);
3513	}
3514
3515	/*
3516	 * Use breadth first search to iterate all related edges.
3517	 *
3518	 * The starting points are all the edges of this node
3519	 */
3520	list_for_each_entry(edge, &start->upper, list[LOWER])
3521		list_add_tail(&edge->list[UPPER], &pending_edge);
3522
3523	while (!list_empty(&pending_edge)) {
3524		struct btrfs_backref_node *upper;
3525		struct btrfs_backref_node *lower;
3526
3527		edge = list_first_entry(&pending_edge,
3528				struct btrfs_backref_edge, list[UPPER]);
3529		list_del_init(&edge->list[UPPER]);
3530		upper = edge->node[UPPER];
3531		lower = edge->node[LOWER];
3532
3533		/* Parent is detached, no need to keep any edges */
3534		if (upper->detached) {
3535			list_del(&edge->list[LOWER]);
3536			btrfs_backref_free_edge(cache, edge);
3537
3538			/* Lower node is orphan, queue for cleanup */
3539			if (list_empty(&lower->upper))
3540				list_add(&lower->list, useless_node);
3541			continue;
3542		}
3543
3544		/*
3545		 * All new nodes added in current build_backref_tree() haven't
3546		 * been linked to the cache rb tree.
3547		 * So if we have upper->rb_node populated, this means a cache
3548		 * hit. We only need to link the edge, as @upper and all its
3549		 * parents have already been linked.
3550		 */
3551		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3552			if (upper->lowest) {
3553				list_del_init(&upper->lower);
3554				upper->lowest = 0;
3555			}
3556
3557			list_add_tail(&edge->list[UPPER], &upper->lower);
3558			continue;
3559		}
3560
3561		/* Sanity check, we shouldn't have any unchecked nodes */
3562		if (!upper->checked) {
3563			ASSERT(0);
3564			return -EUCLEAN;
3565		}
3566
3567		/* Sanity check, COW-only node has non-COW-only parent */
3568		if (start->cowonly != upper->cowonly) {
3569			ASSERT(0);
3570			return -EUCLEAN;
3571		}
3572
3573		/* Only cache non-COW-only (subvolume trees) tree blocks */
3574		if (!upper->cowonly) {
3575			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3576						   &upper->rb_node);
3577			if (rb_node) {
3578				btrfs_backref_panic(cache->fs_info,
3579						upper->bytenr, -EEXIST);
3580				return -EUCLEAN;
3581			}
3582		}
3583
3584		list_add_tail(&edge->list[UPPER], &upper->lower);
3585
3586		/*
3587		 * Also queue all the parent edges of this uncached node
3588		 * to finish the upper linkage
3589		 */
3590		list_for_each_entry(edge, &upper->upper, list[LOWER])
3591			list_add_tail(&edge->list[UPPER], &pending_edge);
3592	}
3593	return 0;
3594}
3595
3596void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3597				 struct btrfs_backref_node *node)
3598{
3599	struct btrfs_backref_node *lower;
3600	struct btrfs_backref_node *upper;
3601	struct btrfs_backref_edge *edge;
3602
3603	while (!list_empty(&cache->useless_node)) {
3604		lower = list_first_entry(&cache->useless_node,
3605				   struct btrfs_backref_node, list);
3606		list_del_init(&lower->list);
3607	}
3608	while (!list_empty(&cache->pending_edge)) {
3609		edge = list_first_entry(&cache->pending_edge,
3610				struct btrfs_backref_edge, list[UPPER]);
3611		list_del(&edge->list[UPPER]);
3612		list_del(&edge->list[LOWER]);
3613		lower = edge->node[LOWER];
3614		upper = edge->node[UPPER];
3615		btrfs_backref_free_edge(cache, edge);
3616
3617		/*
3618		 * Lower is no longer linked to any upper backref nodes and
3619		 * isn't in the cache, we can free it ourselves.
3620		 */
3621		if (list_empty(&lower->upper) &&
3622		    RB_EMPTY_NODE(&lower->rb_node))
3623			list_add(&lower->list, &cache->useless_node);
3624
3625		if (!RB_EMPTY_NODE(&upper->rb_node))
3626			continue;
3627
3628		/* Add this guy's upper edges to the list to process */
3629		list_for_each_entry(edge, &upper->upper, list[LOWER])
3630			list_add_tail(&edge->list[UPPER],
3631				      &cache->pending_edge);
3632		if (list_empty(&upper->upper))
3633			list_add(&upper->list, &cache->useless_node);
3634	}
3635
3636	while (!list_empty(&cache->useless_node)) {
3637		lower = list_first_entry(&cache->useless_node,
3638				   struct btrfs_backref_node, list);
3639		list_del_init(&lower->list);
3640		if (lower == node)
3641			node = NULL;
3642		btrfs_backref_drop_node(cache, lower);
3643	}
3644
3645	btrfs_backref_cleanup_node(cache, node);
3646	ASSERT(list_empty(&cache->useless_node) &&
3647	       list_empty(&cache->pending_edge));
3648}
3649