1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2016 IBM Corporation
4 *
5 * Joel Stanley <joel@jms.id.au>
6 */
7
8#include <linux/bits.h>
9#include <linux/delay.h>
10#include <linux/interrupt.h>
11#include <linux/io.h>
12#include <linux/kernel.h>
13#include <linux/kstrtox.h>
14#include <linux/module.h>
15#include <linux/of.h>
16#include <linux/of_irq.h>
17#include <linux/platform_device.h>
18#include <linux/watchdog.h>
19
20static bool nowayout = WATCHDOG_NOWAYOUT;
21module_param(nowayout, bool, 0);
22MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
23				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
24
25struct aspeed_wdt_config {
26	u32 ext_pulse_width_mask;
27	u32 irq_shift;
28	u32 irq_mask;
29};
30
31struct aspeed_wdt {
32	struct watchdog_device	wdd;
33	void __iomem		*base;
34	u32			ctrl;
35	const struct aspeed_wdt_config *cfg;
36};
37
38static const struct aspeed_wdt_config ast2400_config = {
39	.ext_pulse_width_mask = 0xff,
40	.irq_shift = 0,
41	.irq_mask = 0,
42};
43
44static const struct aspeed_wdt_config ast2500_config = {
45	.ext_pulse_width_mask = 0xfffff,
46	.irq_shift = 12,
47	.irq_mask = GENMASK(31, 12),
48};
49
50static const struct aspeed_wdt_config ast2600_config = {
51	.ext_pulse_width_mask = 0xfffff,
52	.irq_shift = 0,
53	.irq_mask = GENMASK(31, 10),
54};
55
56static const struct of_device_id aspeed_wdt_of_table[] = {
57	{ .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
58	{ .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
59	{ .compatible = "aspeed,ast2600-wdt", .data = &ast2600_config },
60	{ },
61};
62MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
63
64#define WDT_STATUS		0x00
65#define WDT_RELOAD_VALUE	0x04
66#define WDT_RESTART		0x08
67#define WDT_CTRL		0x0C
68#define   WDT_CTRL_BOOT_SECONDARY	BIT(7)
69#define   WDT_CTRL_RESET_MODE_SOC	(0x00 << 5)
70#define   WDT_CTRL_RESET_MODE_FULL_CHIP	(0x01 << 5)
71#define   WDT_CTRL_RESET_MODE_ARM_CPU	(0x10 << 5)
72#define   WDT_CTRL_1MHZ_CLK		BIT(4)
73#define   WDT_CTRL_WDT_EXT		BIT(3)
74#define   WDT_CTRL_WDT_INTR		BIT(2)
75#define   WDT_CTRL_RESET_SYSTEM		BIT(1)
76#define   WDT_CTRL_ENABLE		BIT(0)
77#define WDT_TIMEOUT_STATUS	0x10
78#define   WDT_TIMEOUT_STATUS_IRQ		BIT(2)
79#define   WDT_TIMEOUT_STATUS_BOOT_SECONDARY	BIT(1)
80#define WDT_CLEAR_TIMEOUT_STATUS	0x14
81#define   WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION	BIT(0)
82
83/*
84 * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
85 * enabled), specifically:
86 *
87 * * Pulse duration
88 * * Drive mode: push-pull vs open-drain
89 * * Polarity: Active high or active low
90 *
91 * Pulse duration configuration is available on both the AST2400 and AST2500,
92 * though the field changes between SoCs:
93 *
94 * AST2400: Bits 7:0
95 * AST2500: Bits 19:0
96 *
97 * This difference is captured in struct aspeed_wdt_config.
98 *
99 * The AST2500 exposes the drive mode and polarity options, but not in a
100 * regular fashion. For read purposes, bit 31 represents active high or low,
101 * and bit 30 represents push-pull or open-drain. With respect to write, magic
102 * values need to be written to the top byte to change the state of the drive
103 * mode and polarity bits. Any other value written to the top byte has no
104 * effect on the state of the drive mode or polarity bits. However, the pulse
105 * width value must be preserved (as desired) if written.
106 */
107#define WDT_RESET_WIDTH		0x18
108#define   WDT_RESET_WIDTH_ACTIVE_HIGH	BIT(31)
109#define     WDT_ACTIVE_HIGH_MAGIC	(0xA5 << 24)
110#define     WDT_ACTIVE_LOW_MAGIC	(0x5A << 24)
111#define   WDT_RESET_WIDTH_PUSH_PULL	BIT(30)
112#define     WDT_PUSH_PULL_MAGIC		(0xA8 << 24)
113#define     WDT_OPEN_DRAIN_MAGIC	(0x8A << 24)
114
115#define WDT_RESTART_MAGIC	0x4755
116
117/* 32 bits at 1MHz, in milliseconds */
118#define WDT_MAX_TIMEOUT_MS	4294967
119#define WDT_DEFAULT_TIMEOUT	30
120#define WDT_RATE_1MHZ		1000000
121
122static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
123{
124	return container_of(wdd, struct aspeed_wdt, wdd);
125}
126
127static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
128{
129	wdt->ctrl |= WDT_CTRL_ENABLE;
130
131	writel(0, wdt->base + WDT_CTRL);
132	writel(count, wdt->base + WDT_RELOAD_VALUE);
133	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
134	writel(wdt->ctrl, wdt->base + WDT_CTRL);
135}
136
137static int aspeed_wdt_start(struct watchdog_device *wdd)
138{
139	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
140
141	aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
142
143	return 0;
144}
145
146static int aspeed_wdt_stop(struct watchdog_device *wdd)
147{
148	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
149
150	wdt->ctrl &= ~WDT_CTRL_ENABLE;
151	writel(wdt->ctrl, wdt->base + WDT_CTRL);
152
153	return 0;
154}
155
156static int aspeed_wdt_ping(struct watchdog_device *wdd)
157{
158	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
159
160	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
161
162	return 0;
163}
164
165static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
166				  unsigned int timeout)
167{
168	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
169	u32 actual;
170
171	wdd->timeout = timeout;
172
173	actual = min(timeout, wdd->max_hw_heartbeat_ms / 1000);
174
175	writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
176	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
177
178	return 0;
179}
180
181static int aspeed_wdt_set_pretimeout(struct watchdog_device *wdd,
182				     unsigned int pretimeout)
183{
184	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
185	u32 actual = pretimeout * WDT_RATE_1MHZ;
186	u32 s = wdt->cfg->irq_shift;
187	u32 m = wdt->cfg->irq_mask;
188
189	wdd->pretimeout = pretimeout;
190	wdt->ctrl &= ~m;
191	if (pretimeout)
192		wdt->ctrl |= ((actual << s) & m) | WDT_CTRL_WDT_INTR;
193	else
194		wdt->ctrl &= ~WDT_CTRL_WDT_INTR;
195
196	writel(wdt->ctrl, wdt->base + WDT_CTRL);
197
198	return 0;
199}
200
201static int aspeed_wdt_restart(struct watchdog_device *wdd,
202			      unsigned long action, void *data)
203{
204	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
205
206	wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
207	aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
208
209	mdelay(1000);
210
211	return 0;
212}
213
214/* access_cs0 shows if cs0 is accessible, hence the reverted bit */
215static ssize_t access_cs0_show(struct device *dev,
216			       struct device_attribute *attr, char *buf)
217{
218	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
219	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
220
221	return sysfs_emit(buf, "%u\n",
222			  !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
223}
224
225static ssize_t access_cs0_store(struct device *dev,
226				struct device_attribute *attr, const char *buf,
227				size_t size)
228{
229	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
230	unsigned long val;
231
232	if (kstrtoul(buf, 10, &val))
233		return -EINVAL;
234
235	if (val)
236		writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
237		       wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
238
239	return size;
240}
241
242/*
243 * This attribute exists only if the system has booted from the alternate
244 * flash with 'alt-boot' option.
245 *
246 * At alternate flash the 'access_cs0' sysfs node provides:
247 *   ast2400: a way to get access to the primary SPI flash chip at CS0
248 *            after booting from the alternate chip at CS1.
249 *   ast2500: a way to restore the normal address mapping from
250 *            (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
251 *
252 * Clearing the boot code selection and timeout counter also resets to the
253 * initial state the chip select line mapping. When the SoC is in normal
254 * mapping state (i.e. booted from CS0), clearing those bits does nothing for
255 * both versions of the SoC. For alternate boot mode (booted from CS1 due to
256 * wdt2 expiration) the behavior differs as described above.
257 *
258 * This option can be used with wdt2 (watchdog1) only.
259 */
260static DEVICE_ATTR_RW(access_cs0);
261
262static struct attribute *bswitch_attrs[] = {
263	&dev_attr_access_cs0.attr,
264	NULL
265};
266ATTRIBUTE_GROUPS(bswitch);
267
268static const struct watchdog_ops aspeed_wdt_ops = {
269	.start		= aspeed_wdt_start,
270	.stop		= aspeed_wdt_stop,
271	.ping		= aspeed_wdt_ping,
272	.set_timeout	= aspeed_wdt_set_timeout,
273	.set_pretimeout = aspeed_wdt_set_pretimeout,
274	.restart	= aspeed_wdt_restart,
275	.owner		= THIS_MODULE,
276};
277
278static const struct watchdog_info aspeed_wdt_info = {
279	.options	= WDIOF_KEEPALIVEPING
280			| WDIOF_MAGICCLOSE
281			| WDIOF_SETTIMEOUT,
282	.identity	= KBUILD_MODNAME,
283};
284
285static const struct watchdog_info aspeed_wdt_pretimeout_info = {
286	.options	= WDIOF_KEEPALIVEPING
287			| WDIOF_PRETIMEOUT
288			| WDIOF_MAGICCLOSE
289			| WDIOF_SETTIMEOUT,
290	.identity	= KBUILD_MODNAME,
291};
292
293static irqreturn_t aspeed_wdt_irq(int irq, void *arg)
294{
295	struct watchdog_device *wdd = arg;
296	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
297	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
298
299	if (status & WDT_TIMEOUT_STATUS_IRQ)
300		watchdog_notify_pretimeout(wdd);
301
302	return IRQ_HANDLED;
303}
304
305static int aspeed_wdt_probe(struct platform_device *pdev)
306{
307	struct device *dev = &pdev->dev;
308	const struct of_device_id *ofdid;
309	struct aspeed_wdt *wdt;
310	struct device_node *np;
311	const char *reset_type;
312	u32 duration;
313	u32 status;
314	int ret;
315
316	wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
317	if (!wdt)
318		return -ENOMEM;
319
320	np = dev->of_node;
321
322	ofdid = of_match_node(aspeed_wdt_of_table, np);
323	if (!ofdid)
324		return -EINVAL;
325	wdt->cfg = ofdid->data;
326
327	wdt->base = devm_platform_ioremap_resource(pdev, 0);
328	if (IS_ERR(wdt->base))
329		return PTR_ERR(wdt->base);
330
331	wdt->wdd.info = &aspeed_wdt_info;
332
333	if (wdt->cfg->irq_mask) {
334		int irq = platform_get_irq_optional(pdev, 0);
335
336		if (irq > 0) {
337			ret = devm_request_irq(dev, irq, aspeed_wdt_irq,
338					       IRQF_SHARED, dev_name(dev),
339					       wdt);
340			if (ret)
341				return ret;
342
343			wdt->wdd.info = &aspeed_wdt_pretimeout_info;
344		}
345	}
346
347	wdt->wdd.ops = &aspeed_wdt_ops;
348	wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
349	wdt->wdd.parent = dev;
350
351	wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
352	watchdog_init_timeout(&wdt->wdd, 0, dev);
353
354	watchdog_set_nowayout(&wdt->wdd, nowayout);
355
356	/*
357	 * On clock rates:
358	 *  - ast2400 wdt can run at PCLK, or 1MHz
359	 *  - ast2500 only runs at 1MHz, hard coding bit 4 to 1
360	 *  - ast2600 always runs at 1MHz
361	 *
362	 * Set the ast2400 to run at 1MHz as it simplifies the driver.
363	 */
364	if (of_device_is_compatible(np, "aspeed,ast2400-wdt"))
365		wdt->ctrl = WDT_CTRL_1MHZ_CLK;
366
367	/*
368	 * Control reset on a per-device basis to ensure the
369	 * host is not affected by a BMC reboot
370	 */
371	ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
372	if (ret) {
373		wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
374	} else {
375		if (!strcmp(reset_type, "cpu"))
376			wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
377				     WDT_CTRL_RESET_SYSTEM;
378		else if (!strcmp(reset_type, "soc"))
379			wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
380				     WDT_CTRL_RESET_SYSTEM;
381		else if (!strcmp(reset_type, "system"))
382			wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
383				     WDT_CTRL_RESET_SYSTEM;
384		else if (strcmp(reset_type, "none"))
385			return -EINVAL;
386	}
387	if (of_property_read_bool(np, "aspeed,external-signal"))
388		wdt->ctrl |= WDT_CTRL_WDT_EXT;
389	if (of_property_read_bool(np, "aspeed,alt-boot"))
390		wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
391
392	if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE)  {
393		/*
394		 * The watchdog is running, but invoke aspeed_wdt_start() to
395		 * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
396		 * configuration conforms to the driver's expectations.
397		 * Primarily, ensure we're using the 1MHz clock source.
398		 */
399		aspeed_wdt_start(&wdt->wdd);
400		set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
401	}
402
403	if ((of_device_is_compatible(np, "aspeed,ast2500-wdt")) ||
404		(of_device_is_compatible(np, "aspeed,ast2600-wdt"))) {
405		u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
406
407		reg &= wdt->cfg->ext_pulse_width_mask;
408		if (of_property_read_bool(np, "aspeed,ext-active-high"))
409			reg |= WDT_ACTIVE_HIGH_MAGIC;
410		else
411			reg |= WDT_ACTIVE_LOW_MAGIC;
412
413		writel(reg, wdt->base + WDT_RESET_WIDTH);
414
415		reg &= wdt->cfg->ext_pulse_width_mask;
416		if (of_property_read_bool(np, "aspeed,ext-push-pull"))
417			reg |= WDT_PUSH_PULL_MAGIC;
418		else
419			reg |= WDT_OPEN_DRAIN_MAGIC;
420
421		writel(reg, wdt->base + WDT_RESET_WIDTH);
422	}
423
424	if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
425		u32 max_duration = wdt->cfg->ext_pulse_width_mask + 1;
426
427		if (duration == 0 || duration > max_duration) {
428			dev_err(dev, "Invalid pulse duration: %uus\n",
429				duration);
430			duration = max(1U, min(max_duration, duration));
431			dev_info(dev, "Pulse duration set to %uus\n",
432				 duration);
433		}
434
435		/*
436		 * The watchdog is always configured with a 1MHz source, so
437		 * there is no need to scale the microsecond value. However we
438		 * need to offset it - from the datasheet:
439		 *
440		 * "This register decides the asserting duration of wdt_ext and
441		 * wdt_rstarm signal. The default value is 0xFF. It means the
442		 * default asserting duration of wdt_ext and wdt_rstarm is
443		 * 256us."
444		 *
445		 * This implies a value of 0 gives a 1us pulse.
446		 */
447		writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
448	}
449
450	status = readl(wdt->base + WDT_TIMEOUT_STATUS);
451	if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
452		wdt->wdd.bootstatus = WDIOF_CARDRESET;
453
454		if (of_device_is_compatible(np, "aspeed,ast2400-wdt") ||
455		    of_device_is_compatible(np, "aspeed,ast2500-wdt"))
456			wdt->wdd.groups = bswitch_groups;
457	}
458
459	dev_set_drvdata(dev, wdt);
460
461	return devm_watchdog_register_device(dev, &wdt->wdd);
462}
463
464static struct platform_driver aspeed_watchdog_driver = {
465	.probe = aspeed_wdt_probe,
466	.driver = {
467		.name = KBUILD_MODNAME,
468		.of_match_table = aspeed_wdt_of_table,
469	},
470};
471
472static int __init aspeed_wdt_init(void)
473{
474	return platform_driver_register(&aspeed_watchdog_driver);
475}
476arch_initcall(aspeed_wdt_init);
477
478static void __exit aspeed_wdt_exit(void)
479{
480	platform_driver_unregister(&aspeed_watchdog_driver);
481}
482module_exit(aspeed_wdt_exit);
483
484MODULE_DESCRIPTION("Aspeed Watchdog Driver");
485MODULE_LICENSE("GPL");
486