1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) Intel Corp. 2007.
4 * All Rights Reserved.
5 *
6 * Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
7 * develop this driver.
8 *
9 * This file is part of the Vermilion Range fb driver.
10 *
11 * Authors:
12 *   Thomas Hellström <thomas-at-tungstengraphics-dot-com>
13 *   Michel Dänzer <michel-at-tungstengraphics-dot-com>
14 *   Alan Hourihane <alanh-at-tungstengraphics-dot-com>
15 */
16
17#include <linux/aperture.h>
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/delay.h>
23#include <linux/slab.h>
24#include <linux/mm.h>
25#include <linux/fb.h>
26#include <linux/pci.h>
27#include <asm/set_memory.h>
28#include <asm/tlbflush.h>
29#include <linux/mmzone.h>
30
31/* #define VERMILION_DEBUG */
32
33#include "vermilion.h"
34
35#define MODULE_NAME "vmlfb"
36
37#define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
38
39static struct mutex vml_mutex;
40static struct list_head global_no_mode;
41static struct list_head global_has_mode;
42static struct fb_ops vmlfb_ops;
43static struct vml_sys *subsys = NULL;
44static char *vml_default_mode = "1024x768@60";
45static const struct fb_videomode defaultmode = {
46	NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
47	0, FB_VMODE_NONINTERLACED
48};
49
50static u32 vml_mem_requested = (10 * 1024 * 1024);
51static u32 vml_mem_contig = (4 * 1024 * 1024);
52static u32 vml_mem_min = (4 * 1024 * 1024);
53
54static u32 vml_clocks[] = {
55	6750,
56	13500,
57	27000,
58	29700,
59	37125,
60	54000,
61	59400,
62	74250,
63	120000,
64	148500
65};
66
67static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
68
69/*
70 * Allocate a contiguous vram area and make its linear kernel map
71 * uncached.
72 */
73
74static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
75				 unsigned min_order)
76{
77	gfp_t flags;
78	unsigned long i;
79
80	max_order++;
81	do {
82		/*
83		 * Really try hard to get the needed memory.
84		 * We need memory below the first 32MB, so we
85		 * add the __GFP_DMA flag that guarantees that we are
86		 * below the first 16MB.
87		 */
88
89		flags = __GFP_DMA | __GFP_HIGH | __GFP_KSWAPD_RECLAIM;
90		va->logical =
91			 __get_free_pages(flags, --max_order);
92	} while (va->logical == 0 && max_order > min_order);
93
94	if (!va->logical)
95		return -ENOMEM;
96
97	va->phys = virt_to_phys((void *)va->logical);
98	va->size = PAGE_SIZE << max_order;
99	va->order = max_order;
100
101	/*
102	 * It seems like __get_free_pages only ups the usage count
103	 * of the first page. This doesn't work with fault mapping, so
104	 * up the usage count once more (XXX: should use split_page or
105	 * compound page).
106	 */
107
108	memset((void *)va->logical, 0x00, va->size);
109	for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
110		get_page(virt_to_page(i));
111	}
112
113	/*
114	 * Change caching policy of the linear kernel map to avoid
115	 * mapping type conflicts with user-space mappings.
116	 */
117	set_pages_uc(virt_to_page(va->logical), va->size >> PAGE_SHIFT);
118
119	printk(KERN_DEBUG MODULE_NAME
120	       ": Allocated %ld bytes vram area at 0x%08lx\n",
121	       va->size, va->phys);
122
123	return 0;
124}
125
126/*
127 * Free a contiguous vram area and reset its linear kernel map
128 * mapping type.
129 */
130
131static void vmlfb_free_vram_area(struct vram_area *va)
132{
133	unsigned long j;
134
135	if (va->logical) {
136
137		/*
138		 * Reset the linear kernel map caching policy.
139		 */
140
141		set_pages_wb(virt_to_page(va->logical),
142				 va->size >> PAGE_SHIFT);
143
144		/*
145		 * Decrease the usage count on the pages we've used
146		 * to compensate for upping when allocating.
147		 */
148
149		for (j = va->logical; j < va->logical + va->size;
150		     j += PAGE_SIZE) {
151			(void)put_page_testzero(virt_to_page(j));
152		}
153
154		printk(KERN_DEBUG MODULE_NAME
155		       ": Freeing %ld bytes vram area at 0x%08lx\n",
156		       va->size, va->phys);
157		free_pages(va->logical, va->order);
158
159		va->logical = 0;
160	}
161}
162
163/*
164 * Free allocated vram.
165 */
166
167static void vmlfb_free_vram(struct vml_info *vinfo)
168{
169	int i;
170
171	for (i = 0; i < vinfo->num_areas; ++i) {
172		vmlfb_free_vram_area(&vinfo->vram[i]);
173	}
174	vinfo->num_areas = 0;
175}
176
177/*
178 * Allocate vram. Currently we try to allocate contiguous areas from the
179 * __GFP_DMA zone and puzzle them together. A better approach would be to
180 * allocate one contiguous area for scanout and use one-page allocations for
181 * offscreen areas. This requires user-space and GPU virtual mappings.
182 */
183
184static int vmlfb_alloc_vram(struct vml_info *vinfo,
185			    size_t requested,
186			    size_t min_total, size_t min_contig)
187{
188	int i, j;
189	int order;
190	int contiguous;
191	int err;
192	struct vram_area *va;
193	struct vram_area *va2;
194
195	vinfo->num_areas = 0;
196	for (i = 0; i < VML_VRAM_AREAS; ++i) {
197		va = &vinfo->vram[i];
198		order = 0;
199
200		while (requested > (PAGE_SIZE << order) && order <= MAX_ORDER)
201			order++;
202
203		err = vmlfb_alloc_vram_area(va, order, 0);
204
205		if (err)
206			break;
207
208		if (i == 0) {
209			vinfo->vram_start = va->phys;
210			vinfo->vram_logical = (void __iomem *) va->logical;
211			vinfo->vram_contig_size = va->size;
212			vinfo->num_areas = 1;
213		} else {
214			contiguous = 0;
215
216			for (j = 0; j < i; ++j) {
217				va2 = &vinfo->vram[j];
218				if (va->phys + va->size == va2->phys ||
219				    va2->phys + va2->size == va->phys) {
220					contiguous = 1;
221					break;
222				}
223			}
224
225			if (contiguous) {
226				vinfo->num_areas++;
227				if (va->phys < vinfo->vram_start) {
228					vinfo->vram_start = va->phys;
229					vinfo->vram_logical =
230						(void __iomem *)va->logical;
231				}
232				vinfo->vram_contig_size += va->size;
233			} else {
234				vmlfb_free_vram_area(va);
235				break;
236			}
237		}
238
239		if (requested < va->size)
240			break;
241		else
242			requested -= va->size;
243	}
244
245	if (vinfo->vram_contig_size > min_total &&
246	    vinfo->vram_contig_size > min_contig) {
247
248		printk(KERN_DEBUG MODULE_NAME
249		       ": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
250		       (unsigned long)vinfo->vram_contig_size,
251		       (unsigned long)vinfo->vram_start);
252
253		return 0;
254	}
255
256	printk(KERN_ERR MODULE_NAME
257	       ": Could not allocate requested minimal amount of vram.\n");
258
259	vmlfb_free_vram(vinfo);
260
261	return -ENOMEM;
262}
263
264/*
265 * Find the GPU to use with our display controller.
266 */
267
268static int vmlfb_get_gpu(struct vml_par *par)
269{
270	mutex_lock(&vml_mutex);
271
272	par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
273
274	if (!par->gpu) {
275		mutex_unlock(&vml_mutex);
276		return -ENODEV;
277	}
278
279	mutex_unlock(&vml_mutex);
280
281	if (pci_enable_device(par->gpu) < 0) {
282		pci_dev_put(par->gpu);
283		return -ENODEV;
284	}
285
286	return 0;
287}
288
289/*
290 * Find a contiguous vram area that contains a given offset from vram start.
291 */
292static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
293{
294	unsigned long aoffset;
295	unsigned i;
296
297	for (i = 0; i < vinfo->num_areas; ++i) {
298		aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
299
300		if (aoffset < vinfo->vram[i].size) {
301			return 0;
302		}
303	}
304
305	return -EINVAL;
306}
307
308/*
309 * Remap the MMIO register spaces of the VDC and the GPU.
310 */
311
312static int vmlfb_enable_mmio(struct vml_par *par)
313{
314	int err;
315
316	par->vdc_mem_base = pci_resource_start(par->vdc, 0);
317	par->vdc_mem_size = pci_resource_len(par->vdc, 0);
318	if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
319		printk(KERN_ERR MODULE_NAME
320		       ": Could not claim display controller MMIO.\n");
321		return -EBUSY;
322	}
323	par->vdc_mem = ioremap(par->vdc_mem_base, par->vdc_mem_size);
324	if (par->vdc_mem == NULL) {
325		printk(KERN_ERR MODULE_NAME
326		       ": Could not map display controller MMIO.\n");
327		err = -ENOMEM;
328		goto out_err_0;
329	}
330
331	par->gpu_mem_base = pci_resource_start(par->gpu, 0);
332	par->gpu_mem_size = pci_resource_len(par->gpu, 0);
333	if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
334		printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
335		err = -EBUSY;
336		goto out_err_1;
337	}
338	par->gpu_mem = ioremap(par->gpu_mem_base, par->gpu_mem_size);
339	if (par->gpu_mem == NULL) {
340		printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
341		err = -ENOMEM;
342		goto out_err_2;
343	}
344
345	return 0;
346
347out_err_2:
348	release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
349out_err_1:
350	iounmap(par->vdc_mem);
351out_err_0:
352	release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
353	return err;
354}
355
356/*
357 * Unmap the VDC and GPU register spaces.
358 */
359
360static void vmlfb_disable_mmio(struct vml_par *par)
361{
362	iounmap(par->gpu_mem);
363	release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
364	iounmap(par->vdc_mem);
365	release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
366}
367
368/*
369 * Release and uninit the VDC and GPU.
370 */
371
372static void vmlfb_release_devices(struct vml_par *par)
373{
374	if (atomic_dec_and_test(&par->refcount)) {
375		pci_disable_device(par->gpu);
376		pci_disable_device(par->vdc);
377	}
378}
379
380/*
381 * Free up allocated resources for a device.
382 */
383
384static void vml_pci_remove(struct pci_dev *dev)
385{
386	struct fb_info *info;
387	struct vml_info *vinfo;
388	struct vml_par *par;
389
390	info = pci_get_drvdata(dev);
391	if (info) {
392		vinfo = container_of(info, struct vml_info, info);
393		par = vinfo->par;
394		mutex_lock(&vml_mutex);
395		unregister_framebuffer(info);
396		fb_dealloc_cmap(&info->cmap);
397		vmlfb_free_vram(vinfo);
398		vmlfb_disable_mmio(par);
399		vmlfb_release_devices(par);
400		kfree(vinfo);
401		kfree(par);
402		mutex_unlock(&vml_mutex);
403	}
404}
405
406static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
407{
408	switch (var->bits_per_pixel) {
409	case 16:
410		var->blue.offset = 0;
411		var->blue.length = 5;
412		var->green.offset = 5;
413		var->green.length = 5;
414		var->red.offset = 10;
415		var->red.length = 5;
416		var->transp.offset = 15;
417		var->transp.length = 1;
418		break;
419	case 32:
420		var->blue.offset = 0;
421		var->blue.length = 8;
422		var->green.offset = 8;
423		var->green.length = 8;
424		var->red.offset = 16;
425		var->red.length = 8;
426		var->transp.offset = 24;
427		var->transp.length = 0;
428		break;
429	default:
430		break;
431	}
432
433	var->blue.msb_right = var->green.msb_right =
434	    var->red.msb_right = var->transp.msb_right = 0;
435}
436
437/*
438 * Device initialization.
439 * We initialize one vml_par struct per device and one vml_info
440 * struct per pipe. Currently we have only one pipe.
441 */
442
443static int vml_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
444{
445	struct vml_info *vinfo;
446	struct fb_info *info;
447	struct vml_par *par;
448	int err;
449
450	err = aperture_remove_conflicting_pci_devices(dev, "vmlfb");
451	if (err)
452		return err;
453
454	par = kzalloc(sizeof(*par), GFP_KERNEL);
455	if (par == NULL)
456		return -ENOMEM;
457
458	vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
459	if (vinfo == NULL) {
460		err = -ENOMEM;
461		goto out_err_0;
462	}
463
464	vinfo->par = par;
465	par->vdc = dev;
466	atomic_set(&par->refcount, 1);
467
468	switch (id->device) {
469	case VML_DEVICE_VDC:
470		if ((err = vmlfb_get_gpu(par)))
471			goto out_err_1;
472		pci_set_drvdata(dev, &vinfo->info);
473		break;
474	default:
475		err = -ENODEV;
476		goto out_err_1;
477	}
478
479	info = &vinfo->info;
480	info->flags = FBINFO_PARTIAL_PAN_OK;
481
482	err = vmlfb_enable_mmio(par);
483	if (err)
484		goto out_err_2;
485
486	err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
487			       vml_mem_contig, vml_mem_min);
488	if (err)
489		goto out_err_3;
490
491	strcpy(info->fix.id, "Vermilion Range");
492	info->fix.mmio_start = 0;
493	info->fix.mmio_len = 0;
494	info->fix.smem_start = vinfo->vram_start;
495	info->fix.smem_len = vinfo->vram_contig_size;
496	info->fix.type = FB_TYPE_PACKED_PIXELS;
497	info->fix.visual = FB_VISUAL_TRUECOLOR;
498	info->fix.ypanstep = 1;
499	info->fix.xpanstep = 1;
500	info->fix.ywrapstep = 0;
501	info->fix.accel = FB_ACCEL_NONE;
502	info->screen_base = vinfo->vram_logical;
503	info->pseudo_palette = vinfo->pseudo_palette;
504	info->par = par;
505	info->fbops = &vmlfb_ops;
506	info->device = &dev->dev;
507
508	INIT_LIST_HEAD(&vinfo->head);
509	vinfo->pipe_disabled = 1;
510	vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
511
512	info->var.grayscale = 0;
513	info->var.bits_per_pixel = 16;
514	vmlfb_set_pref_pixel_format(&info->var);
515
516	if (!fb_find_mode
517	    (&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
518		printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
519	}
520
521	if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
522		err = -ENOMEM;
523		goto out_err_4;
524	}
525
526	err = register_framebuffer(info);
527	if (err) {
528		printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
529		goto out_err_5;
530	}
531
532	printk("Initialized vmlfb\n");
533
534	return 0;
535
536out_err_5:
537	fb_dealloc_cmap(&info->cmap);
538out_err_4:
539	vmlfb_free_vram(vinfo);
540out_err_3:
541	vmlfb_disable_mmio(par);
542out_err_2:
543	vmlfb_release_devices(par);
544out_err_1:
545	kfree(vinfo);
546out_err_0:
547	kfree(par);
548	return err;
549}
550
551static int vmlfb_open(struct fb_info *info, int user)
552{
553	/*
554	 * Save registers here?
555	 */
556	return 0;
557}
558
559static int vmlfb_release(struct fb_info *info, int user)
560{
561	/*
562	 * Restore registers here.
563	 */
564
565	return 0;
566}
567
568static int vml_nearest_clock(int clock)
569{
570
571	int i;
572	int cur_index;
573	int cur_diff;
574	int diff;
575
576	cur_index = 0;
577	cur_diff = clock - vml_clocks[0];
578	cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
579	for (i = 1; i < vml_num_clocks; ++i) {
580		diff = clock - vml_clocks[i];
581		diff = (diff < 0) ? -diff : diff;
582		if (diff < cur_diff) {
583			cur_index = i;
584			cur_diff = diff;
585		}
586	}
587	return vml_clocks[cur_index];
588}
589
590static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
591				  struct vml_info *vinfo)
592{
593	u32 pitch;
594	u64 mem;
595	int nearest_clock;
596	int clock;
597	int clock_diff;
598	struct fb_var_screeninfo v;
599
600	v = *var;
601	clock = PICOS2KHZ(var->pixclock);
602
603	if (subsys && subsys->nearest_clock) {
604		nearest_clock = subsys->nearest_clock(subsys, clock);
605	} else {
606		nearest_clock = vml_nearest_clock(clock);
607	}
608
609	/*
610	 * Accept a 20% diff.
611	 */
612
613	clock_diff = nearest_clock - clock;
614	clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
615	if (clock_diff > clock / 5) {
616#if 0
617		printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
618#endif
619		return -EINVAL;
620	}
621
622	v.pixclock = KHZ2PICOS(nearest_clock);
623
624	if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
625		printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
626		return -EINVAL;
627	}
628	if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
629		printk(KERN_DEBUG MODULE_NAME
630		       ": Virtual resolution failure.\n");
631		return -EINVAL;
632	}
633	switch (v.bits_per_pixel) {
634	case 0 ... 16:
635		v.bits_per_pixel = 16;
636		break;
637	case 17 ... 32:
638		v.bits_per_pixel = 32;
639		break;
640	default:
641		printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
642		       var->bits_per_pixel);
643		return -EINVAL;
644	}
645
646	pitch = ALIGN((var->xres * var->bits_per_pixel) >> 3, 0x40);
647	mem = (u64)pitch * var->yres_virtual;
648	if (mem > vinfo->vram_contig_size) {
649		return -ENOMEM;
650	}
651
652	switch (v.bits_per_pixel) {
653	case 16:
654		if (var->blue.offset != 0 ||
655		    var->blue.length != 5 ||
656		    var->green.offset != 5 ||
657		    var->green.length != 5 ||
658		    var->red.offset != 10 ||
659		    var->red.length != 5 ||
660		    var->transp.offset != 15 || var->transp.length != 1) {
661			vmlfb_set_pref_pixel_format(&v);
662		}
663		break;
664	case 32:
665		if (var->blue.offset != 0 ||
666		    var->blue.length != 8 ||
667		    var->green.offset != 8 ||
668		    var->green.length != 8 ||
669		    var->red.offset != 16 ||
670		    var->red.length != 8 ||
671		    (var->transp.length != 0 && var->transp.length != 8) ||
672		    (var->transp.length == 8 && var->transp.offset != 24)) {
673			vmlfb_set_pref_pixel_format(&v);
674		}
675		break;
676	default:
677		return -EINVAL;
678	}
679
680	*var = v;
681
682	return 0;
683}
684
685static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
686{
687	struct vml_info *vinfo = container_of(info, struct vml_info, info);
688	int ret;
689
690	mutex_lock(&vml_mutex);
691	ret = vmlfb_check_var_locked(var, vinfo);
692	mutex_unlock(&vml_mutex);
693
694	return ret;
695}
696
697static void vml_wait_vblank(struct vml_info *vinfo)
698{
699	/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
700	mdelay(20);
701}
702
703static void vmlfb_disable_pipe(struct vml_info *vinfo)
704{
705	struct vml_par *par = vinfo->par;
706
707	/* Disable the MDVO pad */
708	VML_WRITE32(par, VML_RCOMPSTAT, 0);
709	while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
710
711	/* Disable display planes */
712	VML_WRITE32(par, VML_DSPCCNTR,
713		    VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
714	(void)VML_READ32(par, VML_DSPCCNTR);
715	/* Wait for vblank for the disable to take effect */
716	vml_wait_vblank(vinfo);
717
718	/* Next, disable display pipes */
719	VML_WRITE32(par, VML_PIPEACONF, 0);
720	(void)VML_READ32(par, VML_PIPEACONF);
721
722	vinfo->pipe_disabled = 1;
723}
724
725#ifdef VERMILION_DEBUG
726static void vml_dump_regs(struct vml_info *vinfo)
727{
728	struct vml_par *par = vinfo->par;
729
730	printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
731	printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A         : 0x%08x\n",
732	       (unsigned)VML_READ32(par, VML_HTOTAL_A));
733	printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A         : 0x%08x\n",
734	       (unsigned)VML_READ32(par, VML_HBLANK_A));
735	printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A          : 0x%08x\n",
736	       (unsigned)VML_READ32(par, VML_HSYNC_A));
737	printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A         : 0x%08x\n",
738	       (unsigned)VML_READ32(par, VML_VTOTAL_A));
739	printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A         : 0x%08x\n",
740	       (unsigned)VML_READ32(par, VML_VBLANK_A));
741	printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A          : 0x%08x\n",
742	       (unsigned)VML_READ32(par, VML_VSYNC_A));
743	printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE       : 0x%08x\n",
744	       (unsigned)VML_READ32(par, VML_DSPCSTRIDE));
745	printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE         : 0x%08x\n",
746	       (unsigned)VML_READ32(par, VML_DSPCSIZE));
747	printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS          : 0x%08x\n",
748	       (unsigned)VML_READ32(par, VML_DSPCPOS));
749	printk(KERN_DEBUG MODULE_NAME ": \tDSPARB           : 0x%08x\n",
750	       (unsigned)VML_READ32(par, VML_DSPARB));
751	printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR         : 0x%08x\n",
752	       (unsigned)VML_READ32(par, VML_DSPCADDR));
753	printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A        : 0x%08x\n",
754	       (unsigned)VML_READ32(par, VML_BCLRPAT_A));
755	printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A       : 0x%08x\n",
756	       (unsigned)VML_READ32(par, VML_CANVSCLR_A));
757	printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC         : 0x%08x\n",
758	       (unsigned)VML_READ32(par, VML_PIPEASRC));
759	printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF        : 0x%08x\n",
760	       (unsigned)VML_READ32(par, VML_PIPEACONF));
761	printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR         : 0x%08x\n",
762	       (unsigned)VML_READ32(par, VML_DSPCCNTR));
763	printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT        : 0x%08x\n",
764	       (unsigned)VML_READ32(par, VML_RCOMPSTAT));
765	printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
766}
767#endif
768
769static int vmlfb_set_par_locked(struct vml_info *vinfo)
770{
771	struct vml_par *par = vinfo->par;
772	struct fb_info *info = &vinfo->info;
773	struct fb_var_screeninfo *var = &info->var;
774	u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
775	u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
776	u32 dspcntr;
777	int clock;
778
779	vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
780	vinfo->stride = ALIGN(var->xres_virtual * vinfo->bytes_per_pixel, 0x40);
781	info->fix.line_length = vinfo->stride;
782
783	if (!subsys)
784		return 0;
785
786	htotal =
787	    var->xres + var->right_margin + var->hsync_len + var->left_margin;
788	hactive = var->xres;
789	hblank_start = var->xres;
790	hblank_end = htotal;
791	hsync_start = hactive + var->right_margin;
792	hsync_end = hsync_start + var->hsync_len;
793
794	vtotal =
795	    var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
796	vactive = var->yres;
797	vblank_start = var->yres;
798	vblank_end = vtotal;
799	vsync_start = vactive + var->lower_margin;
800	vsync_end = vsync_start + var->vsync_len;
801
802	dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
803	clock = PICOS2KHZ(var->pixclock);
804
805	if (subsys->nearest_clock) {
806		clock = subsys->nearest_clock(subsys, clock);
807	} else {
808		clock = vml_nearest_clock(clock);
809	}
810	printk(KERN_DEBUG MODULE_NAME
811	       ": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
812	       ((clock / htotal) * 1000) / vtotal);
813
814	switch (var->bits_per_pixel) {
815	case 16:
816		dspcntr |= VML_GFX_ARGB1555;
817		break;
818	case 32:
819		if (var->transp.length == 8)
820			dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
821		else
822			dspcntr |= VML_GFX_RGB0888;
823		break;
824	default:
825		return -EINVAL;
826	}
827
828	vmlfb_disable_pipe(vinfo);
829	mb();
830
831	if (subsys->set_clock)
832		subsys->set_clock(subsys, clock);
833	else
834		return -EINVAL;
835
836	VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
837	VML_WRITE32(par, VML_HBLANK_A,
838		    ((hblank_end - 1) << 16) | (hblank_start - 1));
839	VML_WRITE32(par, VML_HSYNC_A,
840		    ((hsync_end - 1) << 16) | (hsync_start - 1));
841	VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
842	VML_WRITE32(par, VML_VBLANK_A,
843		    ((vblank_end - 1) << 16) | (vblank_start - 1));
844	VML_WRITE32(par, VML_VSYNC_A,
845		    ((vsync_end - 1) << 16) | (vsync_start - 1));
846	VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
847	VML_WRITE32(par, VML_DSPCSIZE,
848		    ((var->yres - 1) << 16) | (var->xres - 1));
849	VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
850	VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
851	VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
852	VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
853	VML_WRITE32(par, VML_PIPEASRC,
854		    ((var->xres - 1) << 16) | (var->yres - 1));
855
856	wmb();
857	VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
858	wmb();
859	VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
860	wmb();
861	VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
862		    var->yoffset * vinfo->stride +
863		    var->xoffset * vinfo->bytes_per_pixel);
864
865	VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
866
867	while (!(VML_READ32(par, VML_RCOMPSTAT) &
868		 (VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
869
870	vinfo->pipe_disabled = 0;
871#ifdef VERMILION_DEBUG
872	vml_dump_regs(vinfo);
873#endif
874
875	return 0;
876}
877
878static int vmlfb_set_par(struct fb_info *info)
879{
880	struct vml_info *vinfo = container_of(info, struct vml_info, info);
881	int ret;
882
883	mutex_lock(&vml_mutex);
884	list_move(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
885	ret = vmlfb_set_par_locked(vinfo);
886
887	mutex_unlock(&vml_mutex);
888	return ret;
889}
890
891static int vmlfb_blank_locked(struct vml_info *vinfo)
892{
893	struct vml_par *par = vinfo->par;
894	u32 cur = VML_READ32(par, VML_PIPEACONF);
895
896	switch (vinfo->cur_blank_mode) {
897	case FB_BLANK_UNBLANK:
898		if (vinfo->pipe_disabled) {
899			vmlfb_set_par_locked(vinfo);
900		}
901		VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
902		(void)VML_READ32(par, VML_PIPEACONF);
903		break;
904	case FB_BLANK_NORMAL:
905		if (vinfo->pipe_disabled) {
906			vmlfb_set_par_locked(vinfo);
907		}
908		VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
909		(void)VML_READ32(par, VML_PIPEACONF);
910		break;
911	case FB_BLANK_VSYNC_SUSPEND:
912	case FB_BLANK_HSYNC_SUSPEND:
913		if (!vinfo->pipe_disabled) {
914			vmlfb_disable_pipe(vinfo);
915		}
916		break;
917	case FB_BLANK_POWERDOWN:
918		if (!vinfo->pipe_disabled) {
919			vmlfb_disable_pipe(vinfo);
920		}
921		break;
922	default:
923		return -EINVAL;
924	}
925
926	return 0;
927}
928
929static int vmlfb_blank(int blank_mode, struct fb_info *info)
930{
931	struct vml_info *vinfo = container_of(info, struct vml_info, info);
932	int ret;
933
934	mutex_lock(&vml_mutex);
935	vinfo->cur_blank_mode = blank_mode;
936	ret = vmlfb_blank_locked(vinfo);
937	mutex_unlock(&vml_mutex);
938	return ret;
939}
940
941static int vmlfb_pan_display(struct fb_var_screeninfo *var,
942			     struct fb_info *info)
943{
944	struct vml_info *vinfo = container_of(info, struct vml_info, info);
945	struct vml_par *par = vinfo->par;
946
947	mutex_lock(&vml_mutex);
948	VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
949		    var->yoffset * vinfo->stride +
950		    var->xoffset * vinfo->bytes_per_pixel);
951	(void)VML_READ32(par, VML_DSPCADDR);
952	mutex_unlock(&vml_mutex);
953
954	return 0;
955}
956
957static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
958			   u_int transp, struct fb_info *info)
959{
960	u32 v;
961
962	if (regno >= 16)
963		return -EINVAL;
964
965	if (info->var.grayscale) {
966		red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
967	}
968
969	if (info->fix.visual != FB_VISUAL_TRUECOLOR)
970		return -EINVAL;
971
972	red = VML_TOHW(red, info->var.red.length);
973	blue = VML_TOHW(blue, info->var.blue.length);
974	green = VML_TOHW(green, info->var.green.length);
975	transp = VML_TOHW(transp, info->var.transp.length);
976
977	v = (red << info->var.red.offset) |
978	    (green << info->var.green.offset) |
979	    (blue << info->var.blue.offset) |
980	    (transp << info->var.transp.offset);
981
982	switch (info->var.bits_per_pixel) {
983	case 16:
984		((u32 *) info->pseudo_palette)[regno] = v;
985		break;
986	case 24:
987	case 32:
988		((u32 *) info->pseudo_palette)[regno] = v;
989		break;
990	}
991	return 0;
992}
993
994static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
995{
996	struct vml_info *vinfo = container_of(info, struct vml_info, info);
997	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
998	int ret;
999	unsigned long prot;
1000
1001	ret = vmlfb_vram_offset(vinfo, offset);
1002	if (ret)
1003		return -EINVAL;
1004
1005	prot = pgprot_val(vma->vm_page_prot) & ~_PAGE_CACHE_MASK;
1006	pgprot_val(vma->vm_page_prot) =
1007		prot | cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS);
1008
1009	return vm_iomap_memory(vma, vinfo->vram_start,
1010			vinfo->vram_contig_size);
1011}
1012
1013static int vmlfb_sync(struct fb_info *info)
1014{
1015	return 0;
1016}
1017
1018static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1019{
1020	return -EINVAL;	/* just to force soft_cursor() call */
1021}
1022
1023static struct fb_ops vmlfb_ops = {
1024	.owner = THIS_MODULE,
1025	.fb_open = vmlfb_open,
1026	.fb_release = vmlfb_release,
1027	.fb_check_var = vmlfb_check_var,
1028	.fb_set_par = vmlfb_set_par,
1029	.fb_blank = vmlfb_blank,
1030	.fb_pan_display = vmlfb_pan_display,
1031	.fb_fillrect = cfb_fillrect,
1032	.fb_copyarea = cfb_copyarea,
1033	.fb_imageblit = cfb_imageblit,
1034	.fb_cursor = vmlfb_cursor,
1035	.fb_sync = vmlfb_sync,
1036	.fb_mmap = vmlfb_mmap,
1037	.fb_setcolreg = vmlfb_setcolreg
1038};
1039
1040static const struct pci_device_id vml_ids[] = {
1041	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
1042	{0}
1043};
1044
1045static struct pci_driver vmlfb_pci_driver = {
1046	.name = "vmlfb",
1047	.id_table = vml_ids,
1048	.probe = vml_pci_probe,
1049	.remove = vml_pci_remove,
1050};
1051
1052static void __exit vmlfb_cleanup(void)
1053{
1054	pci_unregister_driver(&vmlfb_pci_driver);
1055}
1056
1057static int __init vmlfb_init(void)
1058{
1059
1060#ifndef MODULE
1061	char *option = NULL;
1062#endif
1063
1064	if (fb_modesetting_disabled("vmlfb"))
1065		return -ENODEV;
1066
1067#ifndef MODULE
1068	if (fb_get_options(MODULE_NAME, &option))
1069		return -ENODEV;
1070#endif
1071
1072	printk(KERN_DEBUG MODULE_NAME ": initializing\n");
1073	mutex_init(&vml_mutex);
1074	INIT_LIST_HEAD(&global_no_mode);
1075	INIT_LIST_HEAD(&global_has_mode);
1076
1077	return pci_register_driver(&vmlfb_pci_driver);
1078}
1079
1080int vmlfb_register_subsys(struct vml_sys *sys)
1081{
1082	struct vml_info *entry;
1083	struct list_head *list;
1084	u32 save_activate;
1085
1086	mutex_lock(&vml_mutex);
1087	if (subsys != NULL) {
1088		subsys->restore(subsys);
1089	}
1090	subsys = sys;
1091	subsys->save(subsys);
1092
1093	/*
1094	 * We need to restart list traversal for each item, since we
1095	 * release the list mutex in the loop.
1096	 */
1097
1098	list = global_no_mode.next;
1099	while (list != &global_no_mode) {
1100		list_del_init(list);
1101		entry = list_entry(list, struct vml_info, head);
1102
1103		/*
1104		 * First, try the current mode which might not be
1105		 * completely validated with respect to the pixel clock.
1106		 */
1107
1108		if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
1109			vmlfb_set_par_locked(entry);
1110			list_add_tail(list, &global_has_mode);
1111		} else {
1112
1113			/*
1114			 * Didn't work. Try to find another mode,
1115			 * that matches this subsys.
1116			 */
1117
1118			mutex_unlock(&vml_mutex);
1119			save_activate = entry->info.var.activate;
1120			entry->info.var.bits_per_pixel = 16;
1121			vmlfb_set_pref_pixel_format(&entry->info.var);
1122			if (fb_find_mode(&entry->info.var,
1123					 &entry->info,
1124					 vml_default_mode, NULL, 0, NULL, 16)) {
1125				entry->info.var.activate |=
1126				    FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
1127				fb_set_var(&entry->info, &entry->info.var);
1128			} else {
1129				printk(KERN_ERR MODULE_NAME
1130				       ": Sorry. no mode found for this subsys.\n");
1131			}
1132			entry->info.var.activate = save_activate;
1133			mutex_lock(&vml_mutex);
1134		}
1135		vmlfb_blank_locked(entry);
1136		list = global_no_mode.next;
1137	}
1138	mutex_unlock(&vml_mutex);
1139
1140	printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
1141				subsys->name ? subsys->name : "unknown");
1142	return 0;
1143}
1144
1145EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
1146
1147void vmlfb_unregister_subsys(struct vml_sys *sys)
1148{
1149	struct vml_info *entry, *next;
1150
1151	mutex_lock(&vml_mutex);
1152	if (subsys != sys) {
1153		mutex_unlock(&vml_mutex);
1154		return;
1155	}
1156	subsys->restore(subsys);
1157	subsys = NULL;
1158	list_for_each_entry_safe(entry, next, &global_has_mode, head) {
1159		printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
1160		vmlfb_disable_pipe(entry);
1161		list_move_tail(&entry->head, &global_no_mode);
1162	}
1163	mutex_unlock(&vml_mutex);
1164}
1165
1166EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
1167
1168module_init(vmlfb_init);
1169module_exit(vmlfb_cleanup);
1170
1171MODULE_AUTHOR("Tungsten Graphics");
1172MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
1173MODULE_VERSION("1.0.0");
1174MODULE_LICENSE("GPL");
1175