1/*
2 * intelfb
3 *
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5 *
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 *                   2004 Sylvain Meyer
8 *
9 * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12 * provides the code to program the hardware.  Most of it is derived from
13 * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
15 *
16 * Author: David Dawes
17 *
18 */
19
20/* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/errno.h>
25#include <linux/string.h>
26#include <linux/mm.h>
27#include <linux/delay.h>
28#include <linux/fb.h>
29#include <linux/ioport.h>
30#include <linux/init.h>
31#include <linux/pci.h>
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/interrupt.h>
35
36#include <asm/io.h>
37
38#include "intelfb.h"
39#include "intelfbhw.h"
40
41struct pll_min_max {
42	int min_m, max_m, min_m1, max_m1;
43	int min_m2, max_m2, min_n, max_n;
44	int min_p, max_p, min_p1, max_p1;
45	int min_vco, max_vco, p_transition_clk, ref_clk;
46	int p_inc_lo, p_inc_hi;
47};
48
49#define PLLS_I8xx 0
50#define PLLS_I9xx 1
51#define PLLS_MAX 2
52
53static struct pll_min_max plls[PLLS_MAX] = {
54	{ 108, 140, 18, 26,
55	  6, 16, 3, 16,
56	  4, 128, 0, 31,
57	  930000, 1400000, 165000, 48000,
58	  4, 2 },		/* I8xx */
59
60	{ 75, 120, 10, 20,
61	  5, 9, 4, 7,
62	  5, 80, 1, 8,
63	  1400000, 2800000, 200000, 96000,
64	  10, 5 }		/* I9xx */
65};
66
67int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
68{
69	u32 tmp;
70	if (!pdev || !dinfo)
71		return 1;
72
73	switch (pdev->device) {
74	case PCI_DEVICE_ID_INTEL_830M:
75		dinfo->name = "Intel(R) 830M";
76		dinfo->chipset = INTEL_830M;
77		dinfo->mobile = 1;
78		dinfo->pll_index = PLLS_I8xx;
79		return 0;
80	case PCI_DEVICE_ID_INTEL_845G:
81		dinfo->name = "Intel(R) 845G";
82		dinfo->chipset = INTEL_845G;
83		dinfo->mobile = 0;
84		dinfo->pll_index = PLLS_I8xx;
85		return 0;
86	case PCI_DEVICE_ID_INTEL_854:
87		dinfo->mobile = 1;
88		dinfo->name = "Intel(R) 854";
89		dinfo->chipset = INTEL_854;
90		return 0;
91	case PCI_DEVICE_ID_INTEL_85XGM:
92		tmp = 0;
93		dinfo->mobile = 1;
94		dinfo->pll_index = PLLS_I8xx;
95		pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
96		switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
97			INTEL_85X_VARIANT_MASK) {
98		case INTEL_VAR_855GME:
99			dinfo->name = "Intel(R) 855GME";
100			dinfo->chipset = INTEL_855GME;
101			return 0;
102		case INTEL_VAR_855GM:
103			dinfo->name = "Intel(R) 855GM";
104			dinfo->chipset = INTEL_855GM;
105			return 0;
106		case INTEL_VAR_852GME:
107			dinfo->name = "Intel(R) 852GME";
108			dinfo->chipset = INTEL_852GME;
109			return 0;
110		case INTEL_VAR_852GM:
111			dinfo->name = "Intel(R) 852GM";
112			dinfo->chipset = INTEL_852GM;
113			return 0;
114		default:
115			dinfo->name = "Intel(R) 852GM/855GM";
116			dinfo->chipset = INTEL_85XGM;
117			return 0;
118		}
119		break;
120	case PCI_DEVICE_ID_INTEL_865G:
121		dinfo->name = "Intel(R) 865G";
122		dinfo->chipset = INTEL_865G;
123		dinfo->mobile = 0;
124		dinfo->pll_index = PLLS_I8xx;
125		return 0;
126	case PCI_DEVICE_ID_INTEL_915G:
127		dinfo->name = "Intel(R) 915G";
128		dinfo->chipset = INTEL_915G;
129		dinfo->mobile = 0;
130		dinfo->pll_index = PLLS_I9xx;
131		return 0;
132	case PCI_DEVICE_ID_INTEL_915GM:
133		dinfo->name = "Intel(R) 915GM";
134		dinfo->chipset = INTEL_915GM;
135		dinfo->mobile = 1;
136		dinfo->pll_index = PLLS_I9xx;
137		return 0;
138	case PCI_DEVICE_ID_INTEL_945G:
139		dinfo->name = "Intel(R) 945G";
140		dinfo->chipset = INTEL_945G;
141		dinfo->mobile = 0;
142		dinfo->pll_index = PLLS_I9xx;
143		return 0;
144	case PCI_DEVICE_ID_INTEL_945GM:
145		dinfo->name = "Intel(R) 945GM";
146		dinfo->chipset = INTEL_945GM;
147		dinfo->mobile = 1;
148		dinfo->pll_index = PLLS_I9xx;
149		return 0;
150	case PCI_DEVICE_ID_INTEL_945GME:
151		dinfo->name = "Intel(R) 945GME";
152		dinfo->chipset = INTEL_945GME;
153		dinfo->mobile = 1;
154		dinfo->pll_index = PLLS_I9xx;
155		return 0;
156	case PCI_DEVICE_ID_INTEL_965G:
157		dinfo->name = "Intel(R) 965G";
158		dinfo->chipset = INTEL_965G;
159		dinfo->mobile = 0;
160		dinfo->pll_index = PLLS_I9xx;
161		return 0;
162	case PCI_DEVICE_ID_INTEL_965GM:
163		dinfo->name = "Intel(R) 965GM";
164		dinfo->chipset = INTEL_965GM;
165		dinfo->mobile = 1;
166		dinfo->pll_index = PLLS_I9xx;
167		return 0;
168	default:
169		return 1;
170	}
171}
172
173int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
174			 int *stolen_size)
175{
176	struct pci_dev *bridge_dev;
177	u16 tmp;
178	int stolen_overhead;
179
180	if (!pdev || !aperture_size || !stolen_size)
181		return 1;
182
183	/* Find the bridge device.  It is always 0:0.0 */
184	bridge_dev = pci_get_domain_bus_and_slot(pci_domain_nr(pdev->bus), 0,
185						 PCI_DEVFN(0, 0));
186	if (!bridge_dev) {
187		ERR_MSG("cannot find bridge device\n");
188		return 1;
189	}
190
191	/* Get the fb aperture size and "stolen" memory amount. */
192	tmp = 0;
193	pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
194	pci_dev_put(bridge_dev);
195
196	switch (pdev->device) {
197	case PCI_DEVICE_ID_INTEL_915G:
198	case PCI_DEVICE_ID_INTEL_915GM:
199	case PCI_DEVICE_ID_INTEL_945G:
200	case PCI_DEVICE_ID_INTEL_945GM:
201	case PCI_DEVICE_ID_INTEL_945GME:
202	case PCI_DEVICE_ID_INTEL_965G:
203	case PCI_DEVICE_ID_INTEL_965GM:
204		/*
205		 * 915, 945 and 965 chipsets support 64MB, 128MB or 256MB
206		 * aperture. Determine size from PCI resource length.
207		 */
208		*aperture_size = pci_resource_len(pdev, 2);
209		break;
210	default:
211		if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
212			*aperture_size = MB(64);
213		else
214			*aperture_size = MB(128);
215		break;
216	}
217
218	/* Stolen memory size is reduced by the GTT and the popup.
219	   GTT is 1K per MB of aperture size, and popup is 4K. */
220	stolen_overhead = (*aperture_size / MB(1)) + 4;
221	switch(pdev->device) {
222	case PCI_DEVICE_ID_INTEL_830M:
223	case PCI_DEVICE_ID_INTEL_845G:
224		switch (tmp & INTEL_830_GMCH_GMS_MASK) {
225		case INTEL_830_GMCH_GMS_STOLEN_512:
226			*stolen_size = KB(512) - KB(stolen_overhead);
227			return 0;
228		case INTEL_830_GMCH_GMS_STOLEN_1024:
229			*stolen_size = MB(1) - KB(stolen_overhead);
230			return 0;
231		case INTEL_830_GMCH_GMS_STOLEN_8192:
232			*stolen_size = MB(8) - KB(stolen_overhead);
233			return 0;
234		case INTEL_830_GMCH_GMS_LOCAL:
235			ERR_MSG("only local memory found\n");
236			return 1;
237		case INTEL_830_GMCH_GMS_DISABLED:
238			ERR_MSG("video memory is disabled\n");
239			return 1;
240		default:
241			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
242				tmp & INTEL_830_GMCH_GMS_MASK);
243			return 1;
244		}
245		break;
246	default:
247		switch (tmp & INTEL_855_GMCH_GMS_MASK) {
248		case INTEL_855_GMCH_GMS_STOLEN_1M:
249			*stolen_size = MB(1) - KB(stolen_overhead);
250			return 0;
251		case INTEL_855_GMCH_GMS_STOLEN_4M:
252			*stolen_size = MB(4) - KB(stolen_overhead);
253			return 0;
254		case INTEL_855_GMCH_GMS_STOLEN_8M:
255			*stolen_size = MB(8) - KB(stolen_overhead);
256			return 0;
257		case INTEL_855_GMCH_GMS_STOLEN_16M:
258			*stolen_size = MB(16) - KB(stolen_overhead);
259			return 0;
260		case INTEL_855_GMCH_GMS_STOLEN_32M:
261			*stolen_size = MB(32) - KB(stolen_overhead);
262			return 0;
263		case INTEL_915G_GMCH_GMS_STOLEN_48M:
264			*stolen_size = MB(48) - KB(stolen_overhead);
265			return 0;
266		case INTEL_915G_GMCH_GMS_STOLEN_64M:
267			*stolen_size = MB(64) - KB(stolen_overhead);
268			return 0;
269		case INTEL_855_GMCH_GMS_DISABLED:
270			ERR_MSG("video memory is disabled\n");
271			return 0;
272		default:
273			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
274				tmp & INTEL_855_GMCH_GMS_MASK);
275			return 1;
276		}
277	}
278}
279
280int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
281{
282	int dvo = 0;
283
284	if (INREG(LVDS) & PORT_ENABLE)
285		dvo |= LVDS_PORT;
286	if (INREG(DVOA) & PORT_ENABLE)
287		dvo |= DVOA_PORT;
288	if (INREG(DVOB) & PORT_ENABLE)
289		dvo |= DVOB_PORT;
290	if (INREG(DVOC) & PORT_ENABLE)
291		dvo |= DVOC_PORT;
292
293	return dvo;
294}
295
296const char * intelfbhw_dvo_to_string(int dvo)
297{
298	if (dvo & DVOA_PORT)
299		return "DVO port A";
300	else if (dvo & DVOB_PORT)
301		return "DVO port B";
302	else if (dvo & DVOC_PORT)
303		return "DVO port C";
304	else if (dvo & LVDS_PORT)
305		return "LVDS port";
306	else
307		return NULL;
308}
309
310
311int intelfbhw_validate_mode(struct intelfb_info *dinfo,
312			    struct fb_var_screeninfo *var)
313{
314	int bytes_per_pixel;
315	int tmp;
316
317#if VERBOSE > 0
318	DBG_MSG("intelfbhw_validate_mode\n");
319#endif
320
321	bytes_per_pixel = var->bits_per_pixel / 8;
322	if (bytes_per_pixel == 3)
323		bytes_per_pixel = 4;
324
325	/* Check if enough video memory. */
326	tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
327	if (tmp > dinfo->fb.size) {
328		WRN_MSG("Not enough video ram for mode "
329			"(%d KByte vs %d KByte).\n",
330			BtoKB(tmp), BtoKB(dinfo->fb.size));
331		return 1;
332	}
333
334	/* Check if x/y limits are OK. */
335	if (var->xres - 1 > HACTIVE_MASK) {
336		WRN_MSG("X resolution too large (%d vs %d).\n",
337			var->xres, HACTIVE_MASK + 1);
338		return 1;
339	}
340	if (var->yres - 1 > VACTIVE_MASK) {
341		WRN_MSG("Y resolution too large (%d vs %d).\n",
342			var->yres, VACTIVE_MASK + 1);
343		return 1;
344	}
345	if (var->xres < 4) {
346		WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
347		return 1;
348	}
349	if (var->yres < 4) {
350		WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
351		return 1;
352	}
353
354	/* Check for doublescan modes. */
355	if (var->vmode & FB_VMODE_DOUBLE) {
356		WRN_MSG("Mode is double-scan.\n");
357		return 1;
358	}
359
360	if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
361		WRN_MSG("Odd number of lines in interlaced mode\n");
362		return 1;
363	}
364
365	/* Check if clock is OK. */
366	tmp = 1000000000 / var->pixclock;
367	if (tmp < MIN_CLOCK) {
368		WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
369			(tmp + 500) / 1000, MIN_CLOCK / 1000);
370		return 1;
371	}
372	if (tmp > MAX_CLOCK) {
373		WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
374			(tmp + 500) / 1000, MAX_CLOCK / 1000);
375		return 1;
376	}
377
378	return 0;
379}
380
381int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
382{
383	struct intelfb_info *dinfo = GET_DINFO(info);
384	u32 offset, xoffset, yoffset;
385
386#if VERBOSE > 0
387	DBG_MSG("intelfbhw_pan_display\n");
388#endif
389
390	xoffset = ROUND_DOWN_TO(var->xoffset, 8);
391	yoffset = var->yoffset;
392
393	if ((xoffset + info->var.xres > info->var.xres_virtual) ||
394	    (yoffset + info->var.yres > info->var.yres_virtual))
395		return -EINVAL;
396
397	offset = (yoffset * dinfo->pitch) +
398		 (xoffset * info->var.bits_per_pixel) / 8;
399
400	offset += dinfo->fb.offset << 12;
401
402	dinfo->vsync.pan_offset = offset;
403	if ((var->activate & FB_ACTIVATE_VBL) &&
404	    !intelfbhw_enable_irq(dinfo))
405		dinfo->vsync.pan_display = 1;
406	else {
407		dinfo->vsync.pan_display = 0;
408		OUTREG(DSPABASE, offset);
409	}
410
411	return 0;
412}
413
414/* Blank the screen. */
415void intelfbhw_do_blank(int blank, struct fb_info *info)
416{
417	struct intelfb_info *dinfo = GET_DINFO(info);
418	u32 tmp;
419
420#if VERBOSE > 0
421	DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
422#endif
423
424	/* Turn plane A on or off */
425	tmp = INREG(DSPACNTR);
426	if (blank)
427		tmp &= ~DISPPLANE_PLANE_ENABLE;
428	else
429		tmp |= DISPPLANE_PLANE_ENABLE;
430	OUTREG(DSPACNTR, tmp);
431	/* Flush */
432	tmp = INREG(DSPABASE);
433	OUTREG(DSPABASE, tmp);
434
435	/* Turn off/on the HW cursor */
436#if VERBOSE > 0
437	DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
438#endif
439	if (dinfo->cursor_on) {
440		if (blank)
441			intelfbhw_cursor_hide(dinfo);
442		else
443			intelfbhw_cursor_show(dinfo);
444		dinfo->cursor_on = 1;
445	}
446	dinfo->cursor_blanked = blank;
447
448	/* Set DPMS level */
449	tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
450	switch (blank) {
451	case FB_BLANK_UNBLANK:
452	case FB_BLANK_NORMAL:
453		tmp |= ADPA_DPMS_D0;
454		break;
455	case FB_BLANK_VSYNC_SUSPEND:
456		tmp |= ADPA_DPMS_D1;
457		break;
458	case FB_BLANK_HSYNC_SUSPEND:
459		tmp |= ADPA_DPMS_D2;
460		break;
461	case FB_BLANK_POWERDOWN:
462		tmp |= ADPA_DPMS_D3;
463		break;
464	}
465	OUTREG(ADPA, tmp);
466
467	return;
468}
469
470
471/* Check which pipe is connected to an active display plane. */
472int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
473{
474	int pipe = -1;
475
476	/* keep old default behaviour - prefer PIPE_A */
477	if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
478		pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
479		pipe &= PIPE_MASK;
480		if (unlikely(pipe == PIPE_A))
481			return PIPE_A;
482	}
483	if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
484		pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
485		pipe &= PIPE_MASK;
486		if (likely(pipe == PIPE_A))
487			return PIPE_A;
488	}
489	/* Impossible that no pipe is selected - return PIPE_A */
490	WARN_ON(pipe == -1);
491	if (unlikely(pipe == -1))
492		pipe = PIPE_A;
493
494	return pipe;
495}
496
497void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
498			 unsigned red, unsigned green, unsigned blue,
499			 unsigned transp)
500{
501	u32 palette_reg = (dinfo->pipe == PIPE_A) ?
502			  PALETTE_A : PALETTE_B;
503
504#if VERBOSE > 0
505	DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
506		regno, red, green, blue);
507#endif
508
509	OUTREG(palette_reg + (regno << 2),
510	       (red << PALETTE_8_RED_SHIFT) |
511	       (green << PALETTE_8_GREEN_SHIFT) |
512	       (blue << PALETTE_8_BLUE_SHIFT));
513}
514
515
516int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
517			    struct intelfb_hwstate *hw, int flag)
518{
519	int i;
520
521#if VERBOSE > 0
522	DBG_MSG("intelfbhw_read_hw_state\n");
523#endif
524
525	if (!hw || !dinfo)
526		return -1;
527
528	/* Read in as much of the HW state as possible. */
529	hw->vga0_divisor = INREG(VGA0_DIVISOR);
530	hw->vga1_divisor = INREG(VGA1_DIVISOR);
531	hw->vga_pd = INREG(VGAPD);
532	hw->dpll_a = INREG(DPLL_A);
533	hw->dpll_b = INREG(DPLL_B);
534	hw->fpa0 = INREG(FPA0);
535	hw->fpa1 = INREG(FPA1);
536	hw->fpb0 = INREG(FPB0);
537	hw->fpb1 = INREG(FPB1);
538
539	if (flag == 1)
540		return flag;
541
542#if 0
543	/* This seems to be a problem with the 852GM/855GM */
544	for (i = 0; i < PALETTE_8_ENTRIES; i++) {
545		hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
546		hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
547	}
548#endif
549
550	if (flag == 2)
551		return flag;
552
553	hw->htotal_a = INREG(HTOTAL_A);
554	hw->hblank_a = INREG(HBLANK_A);
555	hw->hsync_a = INREG(HSYNC_A);
556	hw->vtotal_a = INREG(VTOTAL_A);
557	hw->vblank_a = INREG(VBLANK_A);
558	hw->vsync_a = INREG(VSYNC_A);
559	hw->src_size_a = INREG(SRC_SIZE_A);
560	hw->bclrpat_a = INREG(BCLRPAT_A);
561	hw->htotal_b = INREG(HTOTAL_B);
562	hw->hblank_b = INREG(HBLANK_B);
563	hw->hsync_b = INREG(HSYNC_B);
564	hw->vtotal_b = INREG(VTOTAL_B);
565	hw->vblank_b = INREG(VBLANK_B);
566	hw->vsync_b = INREG(VSYNC_B);
567	hw->src_size_b = INREG(SRC_SIZE_B);
568	hw->bclrpat_b = INREG(BCLRPAT_B);
569
570	if (flag == 3)
571		return flag;
572
573	hw->adpa = INREG(ADPA);
574	hw->dvoa = INREG(DVOA);
575	hw->dvob = INREG(DVOB);
576	hw->dvoc = INREG(DVOC);
577	hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
578	hw->dvob_srcdim = INREG(DVOB_SRCDIM);
579	hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
580	hw->lvds = INREG(LVDS);
581
582	if (flag == 4)
583		return flag;
584
585	hw->pipe_a_conf = INREG(PIPEACONF);
586	hw->pipe_b_conf = INREG(PIPEBCONF);
587	hw->disp_arb = INREG(DISPARB);
588
589	if (flag == 5)
590		return flag;
591
592	hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
593	hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
594	hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
595	hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
596
597	if (flag == 6)
598		return flag;
599
600	for (i = 0; i < 4; i++) {
601		hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
602		hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
603	}
604
605	if (flag == 7)
606		return flag;
607
608	hw->cursor_size = INREG(CURSOR_SIZE);
609
610	if (flag == 8)
611		return flag;
612
613	hw->disp_a_ctrl = INREG(DSPACNTR);
614	hw->disp_b_ctrl = INREG(DSPBCNTR);
615	hw->disp_a_base = INREG(DSPABASE);
616	hw->disp_b_base = INREG(DSPBBASE);
617	hw->disp_a_stride = INREG(DSPASTRIDE);
618	hw->disp_b_stride = INREG(DSPBSTRIDE);
619
620	if (flag == 9)
621		return flag;
622
623	hw->vgacntrl = INREG(VGACNTRL);
624
625	if (flag == 10)
626		return flag;
627
628	hw->add_id = INREG(ADD_ID);
629
630	if (flag == 11)
631		return flag;
632
633	for (i = 0; i < 7; i++) {
634		hw->swf0x[i] = INREG(SWF00 + (i << 2));
635		hw->swf1x[i] = INREG(SWF10 + (i << 2));
636		if (i < 3)
637			hw->swf3x[i] = INREG(SWF30 + (i << 2));
638	}
639
640	for (i = 0; i < 8; i++)
641		hw->fence[i] = INREG(FENCE + (i << 2));
642
643	hw->instpm = INREG(INSTPM);
644	hw->mem_mode = INREG(MEM_MODE);
645	hw->fw_blc_0 = INREG(FW_BLC_0);
646	hw->fw_blc_1 = INREG(FW_BLC_1);
647
648	hw->hwstam = INREG16(HWSTAM);
649	hw->ier = INREG16(IER);
650	hw->iir = INREG16(IIR);
651	hw->imr = INREG16(IMR);
652
653	return 0;
654}
655
656
657static int calc_vclock3(int index, int m, int n, int p)
658{
659	if (p == 0 || n == 0)
660		return 0;
661	return plls[index].ref_clk * m / n / p;
662}
663
664static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
665		       int lvds)
666{
667	struct pll_min_max *pll = &plls[index];
668	u32 m, vco, p;
669
670	m = (5 * (m1 + 2)) + (m2 + 2);
671	n += 2;
672	vco = pll->ref_clk * m / n;
673
674	if (index == PLLS_I8xx)
675		p = ((p1 + 2) * (1 << (p2 + 1)));
676	else
677		p = ((p1) * (p2 ? 5 : 10));
678	return vco / p;
679}
680
681#if REGDUMP
682static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
683			       int *o_p1, int *o_p2)
684{
685	int p1, p2;
686
687	if (IS_I9XX(dinfo)) {
688		if (dpll & DPLL_P1_FORCE_DIV2)
689			p1 = 1;
690		else
691			p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
692
693		p1 = ffs(p1);
694
695		p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
696	} else {
697		if (dpll & DPLL_P1_FORCE_DIV2)
698			p1 = 0;
699		else
700			p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
701		p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
702	}
703
704	*o_p1 = p1;
705	*o_p2 = p2;
706}
707#endif
708
709
710void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
711			      struct intelfb_hwstate *hw)
712{
713#if REGDUMP
714	int i, m1, m2, n, p1, p2;
715	int index = dinfo->pll_index;
716	DBG_MSG("intelfbhw_print_hw_state\n");
717
718	if (!hw)
719		return;
720	/* Read in as much of the HW state as possible. */
721	printk("hw state dump start\n");
722	printk("	VGA0_DIVISOR:		0x%08x\n", hw->vga0_divisor);
723	printk("	VGA1_DIVISOR:		0x%08x\n", hw->vga1_divisor);
724	printk("	VGAPD:			0x%08x\n", hw->vga_pd);
725	n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
726	m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
727	m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
728
729	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
730
731	printk("	VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
732	       m1, m2, n, p1, p2);
733	printk("	VGA0: clock is %d\n",
734	       calc_vclock(index, m1, m2, n, p1, p2, 0));
735
736	n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
737	m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
738	m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
739
740	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
741	printk("	VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
742	       m1, m2, n, p1, p2);
743	printk("	VGA1: clock is %d\n",
744	       calc_vclock(index, m1, m2, n, p1, p2, 0));
745
746	printk("	DPLL_A:			0x%08x\n", hw->dpll_a);
747	printk("	DPLL_B:			0x%08x\n", hw->dpll_b);
748	printk("	FPA0:			0x%08x\n", hw->fpa0);
749	printk("	FPA1:			0x%08x\n", hw->fpa1);
750	printk("	FPB0:			0x%08x\n", hw->fpb0);
751	printk("	FPB1:			0x%08x\n", hw->fpb1);
752
753	n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
754	m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
755	m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
756
757	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
758
759	printk("	PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
760	       m1, m2, n, p1, p2);
761	printk("	PLLA0: clock is %d\n",
762	       calc_vclock(index, m1, m2, n, p1, p2, 0));
763
764	n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
765	m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
766	m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
767
768	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
769
770	printk("	PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
771	       m1, m2, n, p1, p2);
772	printk("	PLLA1: clock is %d\n",
773	       calc_vclock(index, m1, m2, n, p1, p2, 0));
774
775#if 0
776	printk("	PALETTE_A:\n");
777	for (i = 0; i < PALETTE_8_ENTRIES)
778		printk("	%3d:	0x%08x\n", i, hw->palette_a[i]);
779	printk("	PALETTE_B:\n");
780	for (i = 0; i < PALETTE_8_ENTRIES)
781		printk("	%3d:	0x%08x\n", i, hw->palette_b[i]);
782#endif
783
784	printk("	HTOTAL_A:		0x%08x\n", hw->htotal_a);
785	printk("	HBLANK_A:		0x%08x\n", hw->hblank_a);
786	printk("	HSYNC_A:		0x%08x\n", hw->hsync_a);
787	printk("	VTOTAL_A:		0x%08x\n", hw->vtotal_a);
788	printk("	VBLANK_A:		0x%08x\n", hw->vblank_a);
789	printk("	VSYNC_A:		0x%08x\n", hw->vsync_a);
790	printk("	SRC_SIZE_A:		0x%08x\n", hw->src_size_a);
791	printk("	BCLRPAT_A:		0x%08x\n", hw->bclrpat_a);
792	printk("	HTOTAL_B:		0x%08x\n", hw->htotal_b);
793	printk("	HBLANK_B:		0x%08x\n", hw->hblank_b);
794	printk("	HSYNC_B:		0x%08x\n", hw->hsync_b);
795	printk("	VTOTAL_B:		0x%08x\n", hw->vtotal_b);
796	printk("	VBLANK_B:		0x%08x\n", hw->vblank_b);
797	printk("	VSYNC_B:		0x%08x\n", hw->vsync_b);
798	printk("	SRC_SIZE_B:		0x%08x\n", hw->src_size_b);
799	printk("	BCLRPAT_B:		0x%08x\n", hw->bclrpat_b);
800
801	printk("	ADPA:			0x%08x\n", hw->adpa);
802	printk("	DVOA:			0x%08x\n", hw->dvoa);
803	printk("	DVOB:			0x%08x\n", hw->dvob);
804	printk("	DVOC:			0x%08x\n", hw->dvoc);
805	printk("	DVOA_SRCDIM:		0x%08x\n", hw->dvoa_srcdim);
806	printk("	DVOB_SRCDIM:		0x%08x\n", hw->dvob_srcdim);
807	printk("	DVOC_SRCDIM:		0x%08x\n", hw->dvoc_srcdim);
808	printk("	LVDS:			0x%08x\n", hw->lvds);
809
810	printk("	PIPEACONF:		0x%08x\n", hw->pipe_a_conf);
811	printk("	PIPEBCONF:		0x%08x\n", hw->pipe_b_conf);
812	printk("	DISPARB:		0x%08x\n", hw->disp_arb);
813
814	printk("	CURSOR_A_CONTROL:	0x%08x\n", hw->cursor_a_control);
815	printk("	CURSOR_B_CONTROL:	0x%08x\n", hw->cursor_b_control);
816	printk("	CURSOR_A_BASEADDR:	0x%08x\n", hw->cursor_a_base);
817	printk("	CURSOR_B_BASEADDR:	0x%08x\n", hw->cursor_b_base);
818
819	printk("	CURSOR_A_PALETTE:	");
820	for (i = 0; i < 4; i++) {
821		printk("0x%08x", hw->cursor_a_palette[i]);
822		if (i < 3)
823			printk(", ");
824	}
825	printk("\n");
826	printk("	CURSOR_B_PALETTE:	");
827	for (i = 0; i < 4; i++) {
828		printk("0x%08x", hw->cursor_b_palette[i]);
829		if (i < 3)
830			printk(", ");
831	}
832	printk("\n");
833
834	printk("	CURSOR_SIZE:		0x%08x\n", hw->cursor_size);
835
836	printk("	DSPACNTR:		0x%08x\n", hw->disp_a_ctrl);
837	printk("	DSPBCNTR:		0x%08x\n", hw->disp_b_ctrl);
838	printk("	DSPABASE:		0x%08x\n", hw->disp_a_base);
839	printk("	DSPBBASE:		0x%08x\n", hw->disp_b_base);
840	printk("	DSPASTRIDE:		0x%08x\n", hw->disp_a_stride);
841	printk("	DSPBSTRIDE:		0x%08x\n", hw->disp_b_stride);
842
843	printk("	VGACNTRL:		0x%08x\n", hw->vgacntrl);
844	printk("	ADD_ID:			0x%08x\n", hw->add_id);
845
846	for (i = 0; i < 7; i++) {
847		printk("	SWF0%d			0x%08x\n", i,
848			hw->swf0x[i]);
849	}
850	for (i = 0; i < 7; i++) {
851		printk("	SWF1%d			0x%08x\n", i,
852			hw->swf1x[i]);
853	}
854	for (i = 0; i < 3; i++) {
855		printk("	SWF3%d			0x%08x\n", i,
856		       hw->swf3x[i]);
857	}
858	for (i = 0; i < 8; i++)
859		printk("	FENCE%d			0x%08x\n", i,
860		       hw->fence[i]);
861
862	printk("	INSTPM			0x%08x\n", hw->instpm);
863	printk("	MEM_MODE		0x%08x\n", hw->mem_mode);
864	printk("	FW_BLC_0		0x%08x\n", hw->fw_blc_0);
865	printk("	FW_BLC_1		0x%08x\n", hw->fw_blc_1);
866
867	printk("	HWSTAM			0x%04x\n", hw->hwstam);
868	printk("	IER			0x%04x\n", hw->ier);
869	printk("	IIR			0x%04x\n", hw->iir);
870	printk("	IMR			0x%04x\n", hw->imr);
871	printk("hw state dump end\n");
872#endif
873}
874
875
876
877/* Split the M parameter into M1 and M2. */
878static int splitm(int index, unsigned int m, unsigned int *retm1,
879		  unsigned int *retm2)
880{
881	int m1, m2;
882	int testm;
883	struct pll_min_max *pll = &plls[index];
884
885	/* no point optimising too much - brute force m */
886	for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
887		for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
888			testm = (5 * (m1 + 2)) + (m2 + 2);
889			if (testm == m) {
890				*retm1 = (unsigned int)m1;
891				*retm2 = (unsigned int)m2;
892				return 0;
893			}
894		}
895	}
896	return 1;
897}
898
899/* Split the P parameter into P1 and P2. */
900static int splitp(int index, unsigned int p, unsigned int *retp1,
901		  unsigned int *retp2)
902{
903	int p1, p2;
904	struct pll_min_max *pll = &plls[index];
905
906	if (index == PLLS_I9xx) {
907		p2 = (p % 10) ? 1 : 0;
908
909		p1 = p / (p2 ? 5 : 10);
910
911		*retp1 = (unsigned int)p1;
912		*retp2 = (unsigned int)p2;
913		return 0;
914	}
915
916	if (p % 4 == 0)
917		p2 = 1;
918	else
919		p2 = 0;
920	p1 = (p / (1 << (p2 + 1))) - 2;
921	if (p % 4 == 0 && p1 < pll->min_p1) {
922		p2 = 0;
923		p1 = (p / (1 << (p2 + 1))) - 2;
924	}
925	if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
926	    (p1 + 2) * (1 << (p2 + 1)) != p) {
927		return 1;
928	} else {
929		*retp1 = (unsigned int)p1;
930		*retp2 = (unsigned int)p2;
931		return 0;
932	}
933}
934
935static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
936			   u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
937{
938	u32 m1, m2, n, p1, p2, n1, testm;
939	u32 f_vco, p, p_best = 0, m, f_out = 0;
940	u32 err_best = 10000000;
941	u32 n_best = 0, m_best = 0, f_err;
942	u32 p_min, p_max, p_inc, div_max;
943	struct pll_min_max *pll = &plls[index];
944
945	DBG_MSG("Clock is %d\n", clock);
946
947	div_max = pll->max_vco / clock;
948
949	p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
950	p_min = p_inc;
951	p_max = ROUND_DOWN_TO(div_max, p_inc);
952	if (p_min < pll->min_p)
953		p_min = pll->min_p;
954	if (p_max > pll->max_p)
955		p_max = pll->max_p;
956
957	DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
958
959	p = p_min;
960	do {
961		if (splitp(index, p, &p1, &p2)) {
962			WRN_MSG("cannot split p = %d\n", p);
963			p += p_inc;
964			continue;
965		}
966		n = pll->min_n;
967		f_vco = clock * p;
968
969		do {
970			m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
971			if (m < pll->min_m)
972				m = pll->min_m + 1;
973			if (m > pll->max_m)
974				m = pll->max_m - 1;
975			for (testm = m - 1; testm <= m; testm++) {
976				f_out = calc_vclock3(index, testm, n, p);
977				if (splitm(index, testm, &m1, &m2)) {
978					WRN_MSG("cannot split m = %d\n",
979						testm);
980					continue;
981				}
982				if (clock > f_out)
983					f_err = clock - f_out;
984				else/* slightly bias the error for bigger clocks */
985					f_err = f_out - clock + 1;
986
987				if (f_err < err_best) {
988					m_best = testm;
989					n_best = n;
990					p_best = p;
991					err_best = f_err;
992				}
993			}
994			n++;
995		} while ((n <= pll->max_n) && (f_out >= clock));
996		p += p_inc;
997	} while ((p <= p_max));
998
999	if (!m_best) {
1000		WRN_MSG("cannot find parameters for clock %d\n", clock);
1001		return 1;
1002	}
1003	m = m_best;
1004	n = n_best;
1005	p = p_best;
1006	splitm(index, m, &m1, &m2);
1007	splitp(index, p, &p1, &p2);
1008	n1 = n - 2;
1009
1010	DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1011		"f: %d (%d), VCO: %d\n",
1012		m, m1, m2, n, n1, p, p1, p2,
1013		calc_vclock3(index, m, n, p),
1014		calc_vclock(index, m1, m2, n1, p1, p2, 0),
1015		calc_vclock3(index, m, n, p) * p);
1016	*retm1 = m1;
1017	*retm2 = m2;
1018	*retn = n1;
1019	*retp1 = p1;
1020	*retp2 = p2;
1021	*retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1022
1023	return 0;
1024}
1025
1026static __inline__ int check_overflow(u32 value, u32 limit,
1027				     const char *description)
1028{
1029	if (value > limit) {
1030		WRN_MSG("%s value %d exceeds limit %d\n",
1031			description, value, limit);
1032		return 1;
1033	}
1034	return 0;
1035}
1036
1037/* It is assumed that hw is filled in with the initial state information. */
1038int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1039			 struct intelfb_hwstate *hw,
1040			 struct fb_var_screeninfo *var)
1041{
1042	int pipe = intelfbhw_active_pipe(hw);
1043	u32 *dpll, *fp0, *fp1;
1044	u32 m1, m2, n, p1, p2, clock_target, clock;
1045	u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1046	u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1047	u32 vsync_pol, hsync_pol;
1048	u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1049	u32 stride_alignment;
1050
1051	DBG_MSG("intelfbhw_mode_to_hw\n");
1052
1053	/* Disable VGA */
1054	hw->vgacntrl |= VGA_DISABLE;
1055
1056	/* Set which pipe's registers will be set. */
1057	if (pipe == PIPE_B) {
1058		dpll = &hw->dpll_b;
1059		fp0 = &hw->fpb0;
1060		fp1 = &hw->fpb1;
1061		hs = &hw->hsync_b;
1062		hb = &hw->hblank_b;
1063		ht = &hw->htotal_b;
1064		vs = &hw->vsync_b;
1065		vb = &hw->vblank_b;
1066		vt = &hw->vtotal_b;
1067		ss = &hw->src_size_b;
1068		pipe_conf = &hw->pipe_b_conf;
1069	} else {
1070		dpll = &hw->dpll_a;
1071		fp0 = &hw->fpa0;
1072		fp1 = &hw->fpa1;
1073		hs = &hw->hsync_a;
1074		hb = &hw->hblank_a;
1075		ht = &hw->htotal_a;
1076		vs = &hw->vsync_a;
1077		vb = &hw->vblank_a;
1078		vt = &hw->vtotal_a;
1079		ss = &hw->src_size_a;
1080		pipe_conf = &hw->pipe_a_conf;
1081	}
1082
1083	/* Use ADPA register for sync control. */
1084	hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1085
1086	/* sync polarity */
1087	hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1088			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1089	vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1090			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1091	hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1092		      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1093	hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1094		    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1095
1096	/* Connect correct pipe to the analog port DAC */
1097	hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1098	hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1099
1100	/* Set DPMS state to D0 (on) */
1101	hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1102	hw->adpa |= ADPA_DPMS_D0;
1103
1104	hw->adpa |= ADPA_DAC_ENABLE;
1105
1106	*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1107	*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1108	*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1109
1110	/* Desired clock in kHz */
1111	clock_target = 1000000000 / var->pixclock;
1112
1113	if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1114			    &n, &p1, &p2, &clock)) {
1115		WRN_MSG("calc_pll_params failed\n");
1116		return 1;
1117	}
1118
1119	/* Check for overflow. */
1120	if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1121		return 1;
1122	if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1123		return 1;
1124	if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1125		return 1;
1126	if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1127		return 1;
1128	if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1129		return 1;
1130
1131	*dpll &= ~DPLL_P1_FORCE_DIV2;
1132	*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1133		   (DPLL_P1_MASK << DPLL_P1_SHIFT));
1134
1135	if (IS_I9XX(dinfo)) {
1136		*dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1137		*dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1138	} else
1139		*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1140
1141	*fp0 = (n << FP_N_DIVISOR_SHIFT) |
1142	       (m1 << FP_M1_DIVISOR_SHIFT) |
1143	       (m2 << FP_M2_DIVISOR_SHIFT);
1144	*fp1 = *fp0;
1145
1146	hw->dvob &= ~PORT_ENABLE;
1147	hw->dvoc &= ~PORT_ENABLE;
1148
1149	/* Use display plane A. */
1150	hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1151	hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1152	hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1153	switch (intelfb_var_to_depth(var)) {
1154	case 8:
1155		hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1156		break;
1157	case 15:
1158		hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1159		break;
1160	case 16:
1161		hw->disp_a_ctrl |= DISPPLANE_16BPP;
1162		break;
1163	case 24:
1164		hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1165		break;
1166	}
1167	hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1168	hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1169
1170	/* Set CRTC registers. */
1171	hactive = var->xres;
1172	hsync_start = hactive + var->right_margin;
1173	hsync_end = hsync_start + var->hsync_len;
1174	htotal = hsync_end + var->left_margin;
1175	hblank_start = hactive;
1176	hblank_end = htotal;
1177
1178	DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1179		hactive, hsync_start, hsync_end, htotal, hblank_start,
1180		hblank_end);
1181
1182	vactive = var->yres;
1183	if (var->vmode & FB_VMODE_INTERLACED)
1184		vactive--; /* the chip adds 2 halflines automatically */
1185	vsync_start = vactive + var->lower_margin;
1186	vsync_end = vsync_start + var->vsync_len;
1187	vtotal = vsync_end + var->upper_margin;
1188	vblank_start = vactive;
1189	vblank_end = vsync_end + 1;
1190
1191	DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1192		vactive, vsync_start, vsync_end, vtotal, vblank_start,
1193		vblank_end);
1194
1195	/* Adjust for register values, and check for overflow. */
1196	hactive--;
1197	if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1198		return 1;
1199	hsync_start--;
1200	if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1201		return 1;
1202	hsync_end--;
1203	if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1204		return 1;
1205	htotal--;
1206	if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1207		return 1;
1208	hblank_start--;
1209	if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1210		return 1;
1211	hblank_end--;
1212	if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1213		return 1;
1214
1215	vactive--;
1216	if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1217		return 1;
1218	vsync_start--;
1219	if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1220		return 1;
1221	vsync_end--;
1222	if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1223		return 1;
1224	vtotal--;
1225	if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1226		return 1;
1227	vblank_start--;
1228	if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1229		return 1;
1230	vblank_end--;
1231	if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1232		return 1;
1233
1234	*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1235	*hb = (hblank_start << HBLANKSTART_SHIFT) |
1236	      (hblank_end << HSYNCEND_SHIFT);
1237	*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1238
1239	*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1240	*vb = (vblank_start << VBLANKSTART_SHIFT) |
1241	      (vblank_end << VSYNCEND_SHIFT);
1242	*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1243	*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1244	      (vactive << SRC_SIZE_VERT_SHIFT);
1245
1246	hw->disp_a_stride = dinfo->pitch;
1247	DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1248
1249	hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1250			  var->xoffset * var->bits_per_pixel / 8;
1251
1252	hw->disp_a_base += dinfo->fb.offset << 12;
1253
1254	/* Check stride alignment. */
1255	stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1256					    STRIDE_ALIGNMENT;
1257	if (hw->disp_a_stride % stride_alignment != 0) {
1258		WRN_MSG("display stride %d has bad alignment %d\n",
1259			hw->disp_a_stride, stride_alignment);
1260		return 1;
1261	}
1262
1263	/* Set the palette to 8-bit mode. */
1264	*pipe_conf &= ~PIPECONF_GAMMA;
1265
1266	if (var->vmode & FB_VMODE_INTERLACED)
1267		*pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1268	else
1269		*pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1270
1271	return 0;
1272}
1273
1274/* Program a (non-VGA) video mode. */
1275int intelfbhw_program_mode(struct intelfb_info *dinfo,
1276			   const struct intelfb_hwstate *hw, int blank)
1277{
1278	u32 tmp;
1279	const u32 *dpll, *fp0, *fp1, *pipe_conf;
1280	const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1281	u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1282	u32 hsync_reg, htotal_reg, hblank_reg;
1283	u32 vsync_reg, vtotal_reg, vblank_reg;
1284	u32 src_size_reg;
1285	u32 count, tmp_val[3];
1286
1287	/* Assume single pipe */
1288
1289#if VERBOSE > 0
1290	DBG_MSG("intelfbhw_program_mode\n");
1291#endif
1292
1293	/* Disable VGA */
1294	tmp = INREG(VGACNTRL);
1295	tmp |= VGA_DISABLE;
1296	OUTREG(VGACNTRL, tmp);
1297
1298	dinfo->pipe = intelfbhw_active_pipe(hw);
1299
1300	if (dinfo->pipe == PIPE_B) {
1301		dpll = &hw->dpll_b;
1302		fp0 = &hw->fpb0;
1303		fp1 = &hw->fpb1;
1304		pipe_conf = &hw->pipe_b_conf;
1305		hs = &hw->hsync_b;
1306		hb = &hw->hblank_b;
1307		ht = &hw->htotal_b;
1308		vs = &hw->vsync_b;
1309		vb = &hw->vblank_b;
1310		vt = &hw->vtotal_b;
1311		ss = &hw->src_size_b;
1312		dpll_reg = DPLL_B;
1313		fp0_reg = FPB0;
1314		fp1_reg = FPB1;
1315		pipe_conf_reg = PIPEBCONF;
1316		pipe_stat_reg = PIPEBSTAT;
1317		hsync_reg = HSYNC_B;
1318		htotal_reg = HTOTAL_B;
1319		hblank_reg = HBLANK_B;
1320		vsync_reg = VSYNC_B;
1321		vtotal_reg = VTOTAL_B;
1322		vblank_reg = VBLANK_B;
1323		src_size_reg = SRC_SIZE_B;
1324	} else {
1325		dpll = &hw->dpll_a;
1326		fp0 = &hw->fpa0;
1327		fp1 = &hw->fpa1;
1328		pipe_conf = &hw->pipe_a_conf;
1329		hs = &hw->hsync_a;
1330		hb = &hw->hblank_a;
1331		ht = &hw->htotal_a;
1332		vs = &hw->vsync_a;
1333		vb = &hw->vblank_a;
1334		vt = &hw->vtotal_a;
1335		ss = &hw->src_size_a;
1336		dpll_reg = DPLL_A;
1337		fp0_reg = FPA0;
1338		fp1_reg = FPA1;
1339		pipe_conf_reg = PIPEACONF;
1340		pipe_stat_reg = PIPEASTAT;
1341		hsync_reg = HSYNC_A;
1342		htotal_reg = HTOTAL_A;
1343		hblank_reg = HBLANK_A;
1344		vsync_reg = VSYNC_A;
1345		vtotal_reg = VTOTAL_A;
1346		vblank_reg = VBLANK_A;
1347		src_size_reg = SRC_SIZE_A;
1348	}
1349
1350	/* turn off pipe */
1351	tmp = INREG(pipe_conf_reg);
1352	tmp &= ~PIPECONF_ENABLE;
1353	OUTREG(pipe_conf_reg, tmp);
1354
1355	count = 0;
1356	do {
1357		tmp_val[count % 3] = INREG(PIPEA_DSL);
1358		if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1359			break;
1360		count++;
1361		udelay(1);
1362		if (count % 200 == 0) {
1363			tmp = INREG(pipe_conf_reg);
1364			tmp &= ~PIPECONF_ENABLE;
1365			OUTREG(pipe_conf_reg, tmp);
1366		}
1367	} while (count < 2000);
1368
1369	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1370
1371	/* Disable planes A and B. */
1372	tmp = INREG(DSPACNTR);
1373	tmp &= ~DISPPLANE_PLANE_ENABLE;
1374	OUTREG(DSPACNTR, tmp);
1375	tmp = INREG(DSPBCNTR);
1376	tmp &= ~DISPPLANE_PLANE_ENABLE;
1377	OUTREG(DSPBCNTR, tmp);
1378
1379	/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1380	mdelay(20);
1381
1382	OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1383	OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1384	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1385
1386	/* Disable Sync */
1387	tmp = INREG(ADPA);
1388	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1389	tmp |= ADPA_DPMS_D3;
1390	OUTREG(ADPA, tmp);
1391
1392	/* do some funky magic - xyzzy */
1393	OUTREG(0x61204, 0xabcd0000);
1394
1395	/* turn off PLL */
1396	tmp = INREG(dpll_reg);
1397	tmp &= ~DPLL_VCO_ENABLE;
1398	OUTREG(dpll_reg, tmp);
1399
1400	/* Set PLL parameters */
1401	OUTREG(fp0_reg, *fp0);
1402	OUTREG(fp1_reg, *fp1);
1403
1404	/* Enable PLL */
1405	OUTREG(dpll_reg, *dpll);
1406
1407	/* Set DVOs B/C */
1408	OUTREG(DVOB, hw->dvob);
1409	OUTREG(DVOC, hw->dvoc);
1410
1411	/* undo funky magic */
1412	OUTREG(0x61204, 0x00000000);
1413
1414	/* Set ADPA */
1415	OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1416	OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1417
1418	/* Set pipe parameters */
1419	OUTREG(hsync_reg, *hs);
1420	OUTREG(hblank_reg, *hb);
1421	OUTREG(htotal_reg, *ht);
1422	OUTREG(vsync_reg, *vs);
1423	OUTREG(vblank_reg, *vb);
1424	OUTREG(vtotal_reg, *vt);
1425	OUTREG(src_size_reg, *ss);
1426
1427	switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1428					  FB_VMODE_ODD_FLD_FIRST)) {
1429	case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1430		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1431		break;
1432	case FB_VMODE_INTERLACED: /* even lines first */
1433		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1434		break;
1435	default:		/* non-interlaced */
1436		OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1437	}
1438	/* Enable pipe */
1439	OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1440
1441	/* Enable sync */
1442	tmp = INREG(ADPA);
1443	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1444	tmp |= ADPA_DPMS_D0;
1445	OUTREG(ADPA, tmp);
1446
1447	/* setup display plane */
1448	if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1449		/*
1450		 *      i830M errata: the display plane must be enabled
1451		 *      to allow writes to the other bits in the plane
1452		 *      control register.
1453		 */
1454		tmp = INREG(DSPACNTR);
1455		if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1456			tmp |= DISPPLANE_PLANE_ENABLE;
1457			OUTREG(DSPACNTR, tmp);
1458			OUTREG(DSPACNTR,
1459			       hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1460			mdelay(1);
1461		}
1462	}
1463
1464	OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1465	OUTREG(DSPASTRIDE, hw->disp_a_stride);
1466	OUTREG(DSPABASE, hw->disp_a_base);
1467
1468	/* Enable plane */
1469	if (!blank) {
1470		tmp = INREG(DSPACNTR);
1471		tmp |= DISPPLANE_PLANE_ENABLE;
1472		OUTREG(DSPACNTR, tmp);
1473		OUTREG(DSPABASE, hw->disp_a_base);
1474	}
1475
1476	return 0;
1477}
1478
1479/* forward declarations */
1480static void refresh_ring(struct intelfb_info *dinfo);
1481static void reset_state(struct intelfb_info *dinfo);
1482static void do_flush(struct intelfb_info *dinfo);
1483
1484static  u32 get_ring_space(struct intelfb_info *dinfo)
1485{
1486	u32 ring_space;
1487
1488	if (dinfo->ring_tail >= dinfo->ring_head)
1489		ring_space = dinfo->ring.size -
1490			(dinfo->ring_tail - dinfo->ring_head);
1491	else
1492		ring_space = dinfo->ring_head - dinfo->ring_tail;
1493
1494	if (ring_space > RING_MIN_FREE)
1495		ring_space -= RING_MIN_FREE;
1496	else
1497		ring_space = 0;
1498
1499	return ring_space;
1500}
1501
1502static int wait_ring(struct intelfb_info *dinfo, int n)
1503{
1504	int i = 0;
1505	unsigned long end;
1506	u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1507
1508#if VERBOSE > 0
1509	DBG_MSG("wait_ring: %d\n", n);
1510#endif
1511
1512	end = jiffies + (HZ * 3);
1513	while (dinfo->ring_space < n) {
1514		dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1515		dinfo->ring_space = get_ring_space(dinfo);
1516
1517		if (dinfo->ring_head != last_head) {
1518			end = jiffies + (HZ * 3);
1519			last_head = dinfo->ring_head;
1520		}
1521		i++;
1522		if (time_before(end, jiffies)) {
1523			if (!i) {
1524				/* Try again */
1525				reset_state(dinfo);
1526				refresh_ring(dinfo);
1527				do_flush(dinfo);
1528				end = jiffies + (HZ * 3);
1529				i = 1;
1530			} else {
1531				WRN_MSG("ring buffer : space: %d wanted %d\n",
1532					dinfo->ring_space, n);
1533				WRN_MSG("lockup - turning off hardware "
1534					"acceleration\n");
1535				dinfo->ring_lockup = 1;
1536				break;
1537			}
1538		}
1539		udelay(1);
1540	}
1541	return i;
1542}
1543
1544static void do_flush(struct intelfb_info *dinfo)
1545{
1546	START_RING(2);
1547	OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1548	OUT_RING(MI_NOOP);
1549	ADVANCE_RING();
1550}
1551
1552void intelfbhw_do_sync(struct intelfb_info *dinfo)
1553{
1554#if VERBOSE > 0
1555	DBG_MSG("intelfbhw_do_sync\n");
1556#endif
1557
1558	if (!dinfo->accel)
1559		return;
1560
1561	/*
1562	 * Send a flush, then wait until the ring is empty.  This is what
1563	 * the XFree86 driver does, and actually it doesn't seem a lot worse
1564	 * than the recommended method (both have problems).
1565	 */
1566	do_flush(dinfo);
1567	wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1568	dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1569}
1570
1571static void refresh_ring(struct intelfb_info *dinfo)
1572{
1573#if VERBOSE > 0
1574	DBG_MSG("refresh_ring\n");
1575#endif
1576
1577	dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1578	dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1579	dinfo->ring_space = get_ring_space(dinfo);
1580}
1581
1582static void reset_state(struct intelfb_info *dinfo)
1583{
1584	int i;
1585	u32 tmp;
1586
1587#if VERBOSE > 0
1588	DBG_MSG("reset_state\n");
1589#endif
1590
1591	for (i = 0; i < FENCE_NUM; i++)
1592		OUTREG(FENCE + (i << 2), 0);
1593
1594	/* Flush the ring buffer if it's enabled. */
1595	tmp = INREG(PRI_RING_LENGTH);
1596	if (tmp & RING_ENABLE) {
1597#if VERBOSE > 0
1598		DBG_MSG("reset_state: ring was enabled\n");
1599#endif
1600		refresh_ring(dinfo);
1601		intelfbhw_do_sync(dinfo);
1602		DO_RING_IDLE();
1603	}
1604
1605	OUTREG(PRI_RING_LENGTH, 0);
1606	OUTREG(PRI_RING_HEAD, 0);
1607	OUTREG(PRI_RING_TAIL, 0);
1608	OUTREG(PRI_RING_START, 0);
1609}
1610
1611/* Stop the 2D engine, and turn off the ring buffer. */
1612void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1613{
1614#if VERBOSE > 0
1615	DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1616		dinfo->accel, dinfo->ring_active);
1617#endif
1618
1619	if (!dinfo->accel)
1620		return;
1621
1622	dinfo->ring_active = 0;
1623	reset_state(dinfo);
1624}
1625
1626/*
1627 * Enable the ring buffer, and initialise the 2D engine.
1628 * It is assumed that the graphics engine has been stopped by previously
1629 * calling intelfb_2d_stop().
1630 */
1631void intelfbhw_2d_start(struct intelfb_info *dinfo)
1632{
1633#if VERBOSE > 0
1634	DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1635		dinfo->accel, dinfo->ring_active);
1636#endif
1637
1638	if (!dinfo->accel)
1639		return;
1640
1641	/* Initialise the primary ring buffer. */
1642	OUTREG(PRI_RING_LENGTH, 0);
1643	OUTREG(PRI_RING_TAIL, 0);
1644	OUTREG(PRI_RING_HEAD, 0);
1645
1646	OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1647	OUTREG(PRI_RING_LENGTH,
1648		((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1649		RING_NO_REPORT | RING_ENABLE);
1650	refresh_ring(dinfo);
1651	dinfo->ring_active = 1;
1652}
1653
1654/* 2D fillrect (solid fill or invert) */
1655void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1656			   u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1657{
1658	u32 br00, br09, br13, br14, br16;
1659
1660#if VERBOSE > 0
1661	DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1662		"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1663#endif
1664
1665	br00 = COLOR_BLT_CMD;
1666	br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1667	br13 = (rop << ROP_SHIFT) | pitch;
1668	br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1669	br16 = color;
1670
1671	switch (bpp) {
1672	case 8:
1673		br13 |= COLOR_DEPTH_8;
1674		break;
1675	case 16:
1676		br13 |= COLOR_DEPTH_16;
1677		break;
1678	case 32:
1679		br13 |= COLOR_DEPTH_32;
1680		br00 |= WRITE_ALPHA | WRITE_RGB;
1681		break;
1682	}
1683
1684	START_RING(6);
1685	OUT_RING(br00);
1686	OUT_RING(br13);
1687	OUT_RING(br14);
1688	OUT_RING(br09);
1689	OUT_RING(br16);
1690	OUT_RING(MI_NOOP);
1691	ADVANCE_RING();
1692
1693#if VERBOSE > 0
1694	DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1695		dinfo->ring_tail, dinfo->ring_space);
1696#endif
1697}
1698
1699void
1700intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1701		    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1702{
1703	u32 br00, br09, br11, br12, br13, br22, br23, br26;
1704
1705#if VERBOSE > 0
1706	DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1707		curx, cury, dstx, dsty, w, h, pitch, bpp);
1708#endif
1709
1710	br00 = XY_SRC_COPY_BLT_CMD;
1711	br09 = dinfo->fb_start;
1712	br11 = (pitch << PITCH_SHIFT);
1713	br12 = dinfo->fb_start;
1714	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1715	br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1716	br23 = ((dstx + w) << WIDTH_SHIFT) |
1717	       ((dsty + h) << HEIGHT_SHIFT);
1718	br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1719
1720	switch (bpp) {
1721	case 8:
1722		br13 |= COLOR_DEPTH_8;
1723		break;
1724	case 16:
1725		br13 |= COLOR_DEPTH_16;
1726		break;
1727	case 32:
1728		br13 |= COLOR_DEPTH_32;
1729		br00 |= WRITE_ALPHA | WRITE_RGB;
1730		break;
1731	}
1732
1733	START_RING(8);
1734	OUT_RING(br00);
1735	OUT_RING(br13);
1736	OUT_RING(br22);
1737	OUT_RING(br23);
1738	OUT_RING(br09);
1739	OUT_RING(br26);
1740	OUT_RING(br11);
1741	OUT_RING(br12);
1742	ADVANCE_RING();
1743}
1744
1745int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1746			   u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1747			   u32 bpp)
1748{
1749	int nbytes, ndwords, pad, tmp;
1750	u32 br00, br09, br13, br18, br19, br22, br23;
1751	int dat, ix, iy, iw;
1752	int i, j;
1753
1754#if VERBOSE > 0
1755	DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1756#endif
1757
1758	/* size in bytes of a padded scanline */
1759	nbytes = ROUND_UP_TO(w, 16) / 8;
1760
1761	/* Total bytes of padded scanline data to write out. */
1762	nbytes = nbytes * h;
1763
1764	/*
1765	 * Check if the glyph data exceeds the immediate mode limit.
1766	 * It would take a large font (1K pixels) to hit this limit.
1767	 */
1768	if (nbytes > MAX_MONO_IMM_SIZE)
1769		return 0;
1770
1771	/* Src data is packaged a dword (32-bit) at a time. */
1772	ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1773
1774	/*
1775	 * Ring has to be padded to a quad word. But because the command starts
1776	   with 7 bytes, pad only if there is an even number of ndwords
1777	 */
1778	pad = !(ndwords % 2);
1779
1780	tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1781	br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1782	br09 = dinfo->fb_start;
1783	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1784	br18 = bg;
1785	br19 = fg;
1786	br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1787	br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1788
1789	switch (bpp) {
1790	case 8:
1791		br13 |= COLOR_DEPTH_8;
1792		break;
1793	case 16:
1794		br13 |= COLOR_DEPTH_16;
1795		break;
1796	case 32:
1797		br13 |= COLOR_DEPTH_32;
1798		br00 |= WRITE_ALPHA | WRITE_RGB;
1799		break;
1800	}
1801
1802	START_RING(8 + ndwords);
1803	OUT_RING(br00);
1804	OUT_RING(br13);
1805	OUT_RING(br22);
1806	OUT_RING(br23);
1807	OUT_RING(br09);
1808	OUT_RING(br18);
1809	OUT_RING(br19);
1810	ix = iy = 0;
1811	iw = ROUND_UP_TO(w, 8) / 8;
1812	while (ndwords--) {
1813		dat = 0;
1814		for (j = 0; j < 2; ++j) {
1815			for (i = 0; i < 2; ++i) {
1816				if (ix != iw || i == 0)
1817					dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1818			}
1819			if (ix == iw && iy != (h-1)) {
1820				ix = 0;
1821				++iy;
1822			}
1823		}
1824		OUT_RING(dat);
1825	}
1826	if (pad)
1827		OUT_RING(MI_NOOP);
1828	ADVANCE_RING();
1829
1830	return 1;
1831}
1832
1833/* HW cursor functions. */
1834void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1835{
1836	u32 tmp;
1837
1838#if VERBOSE > 0
1839	DBG_MSG("intelfbhw_cursor_init\n");
1840#endif
1841
1842	if (dinfo->mobile || IS_I9XX(dinfo)) {
1843		if (!dinfo->cursor.physical)
1844			return;
1845		tmp = INREG(CURSOR_A_CONTROL);
1846		tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1847			 CURSOR_MEM_TYPE_LOCAL |
1848			 (1 << CURSOR_PIPE_SELECT_SHIFT));
1849		tmp |= CURSOR_MODE_DISABLE;
1850		OUTREG(CURSOR_A_CONTROL, tmp);
1851		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1852	} else {
1853		tmp = INREG(CURSOR_CONTROL);
1854		tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1855			 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1856		tmp |= CURSOR_FORMAT_3C;
1857		OUTREG(CURSOR_CONTROL, tmp);
1858		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1859		tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1860		      (64 << CURSOR_SIZE_V_SHIFT);
1861		OUTREG(CURSOR_SIZE, tmp);
1862	}
1863}
1864
1865void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1866{
1867	u32 tmp;
1868
1869#if VERBOSE > 0
1870	DBG_MSG("intelfbhw_cursor_hide\n");
1871#endif
1872
1873	dinfo->cursor_on = 0;
1874	if (dinfo->mobile || IS_I9XX(dinfo)) {
1875		if (!dinfo->cursor.physical)
1876			return;
1877		tmp = INREG(CURSOR_A_CONTROL);
1878		tmp &= ~CURSOR_MODE_MASK;
1879		tmp |= CURSOR_MODE_DISABLE;
1880		OUTREG(CURSOR_A_CONTROL, tmp);
1881		/* Flush changes */
1882		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1883	} else {
1884		tmp = INREG(CURSOR_CONTROL);
1885		tmp &= ~CURSOR_ENABLE;
1886		OUTREG(CURSOR_CONTROL, tmp);
1887	}
1888}
1889
1890void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1891{
1892	u32 tmp;
1893
1894#if VERBOSE > 0
1895	DBG_MSG("intelfbhw_cursor_show\n");
1896#endif
1897
1898	dinfo->cursor_on = 1;
1899
1900	if (dinfo->cursor_blanked)
1901		return;
1902
1903	if (dinfo->mobile || IS_I9XX(dinfo)) {
1904		if (!dinfo->cursor.physical)
1905			return;
1906		tmp = INREG(CURSOR_A_CONTROL);
1907		tmp &= ~CURSOR_MODE_MASK;
1908		tmp |= CURSOR_MODE_64_4C_AX;
1909		OUTREG(CURSOR_A_CONTROL, tmp);
1910		/* Flush changes */
1911		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1912	} else {
1913		tmp = INREG(CURSOR_CONTROL);
1914		tmp |= CURSOR_ENABLE;
1915		OUTREG(CURSOR_CONTROL, tmp);
1916	}
1917}
1918
1919void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1920{
1921	u32 tmp;
1922
1923#if VERBOSE > 0
1924	DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1925#endif
1926
1927	/*
1928	 * Sets the position. The coordinates are assumed to already
1929	 * have any offset adjusted. Assume that the cursor is never
1930	 * completely off-screen, and that x, y are always >= 0.
1931	 */
1932
1933	tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1934	      ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1935	OUTREG(CURSOR_A_POSITION, tmp);
1936
1937	if (IS_I9XX(dinfo))
1938		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1939}
1940
1941void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1942{
1943#if VERBOSE > 0
1944	DBG_MSG("intelfbhw_cursor_setcolor\n");
1945#endif
1946
1947	OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1948	OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1949	OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1950	OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1951}
1952
1953void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1954			   u8 *data)
1955{
1956	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1957	int i, j, w = width / 8;
1958	int mod = width % 8, t_mask, d_mask;
1959
1960#if VERBOSE > 0
1961	DBG_MSG("intelfbhw_cursor_load\n");
1962#endif
1963
1964	if (!dinfo->cursor.virtual)
1965		return;
1966
1967	t_mask = 0xff >> mod;
1968	d_mask = ~(0xff >> mod);
1969	for (i = height; i--; ) {
1970		for (j = 0; j < w; j++) {
1971			writeb(0x00, addr + j);
1972			writeb(*(data++), addr + j+8);
1973		}
1974		if (mod) {
1975			writeb(t_mask, addr + j);
1976			writeb(*(data++) & d_mask, addr + j+8);
1977		}
1978		addr += 16;
1979	}
1980}
1981
1982void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1983{
1984	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1985	int i, j;
1986
1987#if VERBOSE > 0
1988	DBG_MSG("intelfbhw_cursor_reset\n");
1989#endif
1990
1991	if (!dinfo->cursor.virtual)
1992		return;
1993
1994	for (i = 64; i--; ) {
1995		for (j = 0; j < 8; j++) {
1996			writeb(0xff, addr + j+0);
1997			writeb(0x00, addr + j+8);
1998		}
1999		addr += 16;
2000	}
2001}
2002
2003static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
2004{
2005	u16 tmp;
2006	struct intelfb_info *dinfo = dev_id;
2007
2008	spin_lock(&dinfo->int_lock);
2009
2010	tmp = INREG16(IIR);
2011	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2012		tmp &= PIPE_A_EVENT_INTERRUPT;
2013	else
2014		tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2015
2016	if (tmp == 0) {
2017		spin_unlock(&dinfo->int_lock);
2018		return IRQ_RETVAL(0); /* not us */
2019	}
2020
2021	/* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2022	OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2023
2024	OUTREG16(IIR, tmp);
2025	if (dinfo->vsync.pan_display) {
2026		dinfo->vsync.pan_display = 0;
2027		OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2028	}
2029
2030	dinfo->vsync.count++;
2031	wake_up_interruptible(&dinfo->vsync.wait);
2032
2033	spin_unlock(&dinfo->int_lock);
2034
2035	return IRQ_RETVAL(1);
2036}
2037
2038int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2039{
2040	u16 tmp;
2041	if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2042		if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2043				"intelfb", dinfo)) {
2044			clear_bit(0, &dinfo->irq_flags);
2045			return -EINVAL;
2046		}
2047
2048		spin_lock_irq(&dinfo->int_lock);
2049		OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2050		OUTREG16(IMR, 0);
2051	} else
2052		spin_lock_irq(&dinfo->int_lock);
2053
2054	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2055		tmp = PIPE_A_EVENT_INTERRUPT;
2056	else
2057		tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2058	if (tmp != INREG16(IER)) {
2059		DBG_MSG("changing IER to 0x%X\n", tmp);
2060		OUTREG16(IER, tmp);
2061	}
2062
2063	spin_unlock_irq(&dinfo->int_lock);
2064	return 0;
2065}
2066
2067void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2068{
2069	if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2070		if (dinfo->vsync.pan_display) {
2071			dinfo->vsync.pan_display = 0;
2072			OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2073		}
2074		spin_lock_irq(&dinfo->int_lock);
2075		OUTREG16(HWSTAM, 0xffff);
2076		OUTREG16(IMR, 0xffff);
2077		OUTREG16(IER, 0x0);
2078
2079		OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2080		spin_unlock_irq(&dinfo->int_lock);
2081
2082		free_irq(dinfo->pdev->irq, dinfo);
2083	}
2084}
2085
2086int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2087{
2088	struct intelfb_vsync *vsync;
2089	unsigned int count;
2090	int ret;
2091
2092	switch (pipe) {
2093		case 0:
2094			vsync = &dinfo->vsync;
2095			break;
2096		default:
2097			return -ENODEV;
2098	}
2099
2100	ret = intelfbhw_enable_irq(dinfo);
2101	if (ret)
2102		return ret;
2103
2104	count = vsync->count;
2105	ret = wait_event_interruptible_timeout(vsync->wait,
2106					       count != vsync->count, HZ / 10);
2107	if (ret < 0)
2108		return ret;
2109	if (ret == 0) {
2110		DBG_MSG("wait_for_vsync timed out!\n");
2111		return -ETIMEDOUT;
2112	}
2113
2114	return 0;
2115}
2116