1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * (C) Copyright 2008
4 * Stefano Babic, DENX Software Engineering, sbabic@denx.de.
5 *
6 * This driver implements a lcd device for the ILITEK 922x display
7 * controller. The interface to the display is SPI and the display's
8 * memory is cyclically updated over the RGB interface.
9 */
10
11#include <linux/fb.h>
12#include <linux/delay.h>
13#include <linux/errno.h>
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/lcd.h>
17#include <linux/module.h>
18#include <linux/of.h>
19#include <linux/slab.h>
20#include <linux/spi/spi.h>
21#include <linux/string.h>
22
23/* Register offset, see manual section 8.2 */
24#define REG_START_OSCILLATION			0x00
25#define REG_DRIVER_CODE_READ			0x00
26#define REG_DRIVER_OUTPUT_CONTROL		0x01
27#define REG_LCD_AC_DRIVEING_CONTROL		0x02
28#define REG_ENTRY_MODE				0x03
29#define REG_COMPARE_1				0x04
30#define REG_COMPARE_2				0x05
31#define REG_DISPLAY_CONTROL_1			0x07
32#define REG_DISPLAY_CONTROL_2			0x08
33#define REG_DISPLAY_CONTROL_3			0x09
34#define REG_FRAME_CYCLE_CONTROL			0x0B
35#define REG_EXT_INTF_CONTROL			0x0C
36#define REG_POWER_CONTROL_1			0x10
37#define REG_POWER_CONTROL_2			0x11
38#define REG_POWER_CONTROL_3			0x12
39#define REG_POWER_CONTROL_4			0x13
40#define REG_RAM_ADDRESS_SET			0x21
41#define REG_WRITE_DATA_TO_GRAM			0x22
42#define REG_RAM_WRITE_MASK1			0x23
43#define REG_RAM_WRITE_MASK2			0x24
44#define REG_GAMMA_CONTROL_1			0x30
45#define REG_GAMMA_CONTROL_2			0x31
46#define REG_GAMMA_CONTROL_3			0x32
47#define REG_GAMMA_CONTROL_4			0x33
48#define REG_GAMMA_CONTROL_5			0x34
49#define REG_GAMMA_CONTROL_6			0x35
50#define REG_GAMMA_CONTROL_7			0x36
51#define REG_GAMMA_CONTROL_8			0x37
52#define REG_GAMMA_CONTROL_9			0x38
53#define REG_GAMMA_CONTROL_10			0x39
54#define REG_GATE_SCAN_CONTROL			0x40
55#define REG_VERT_SCROLL_CONTROL			0x41
56#define REG_FIRST_SCREEN_DRIVE_POS		0x42
57#define REG_SECOND_SCREEN_DRIVE_POS		0x43
58#define REG_RAM_ADDR_POS_H			0x44
59#define REG_RAM_ADDR_POS_V			0x45
60#define REG_OSCILLATOR_CONTROL			0x4F
61#define REG_GPIO				0x60
62#define REG_OTP_VCM_PROGRAMMING			0x61
63#define REG_OTP_VCM_STATUS_ENABLE		0x62
64#define REG_OTP_PROGRAMMING_ID_KEY		0x65
65
66/*
67 * maximum frequency for register access
68 * (not for the GRAM access)
69 */
70#define ILITEK_MAX_FREQ_REG	4000000
71
72/*
73 * Device ID as found in the datasheet (supports 9221 and 9222)
74 */
75#define ILITEK_DEVICE_ID	0x9220
76#define ILITEK_DEVICE_ID_MASK	0xFFF0
77
78/* Last two bits in the START BYTE */
79#define START_RS_INDEX		0
80#define START_RS_REG		1
81#define START_RW_WRITE		0
82#define START_RW_READ		1
83
84/**
85 * START_BYTE(id, rs, rw)
86 *
87 * Set the start byte according to the required operation.
88 * The start byte is defined as:
89 *   ----------------------------------
90 *  | 0 | 1 | 1 | 1 | 0 | ID | RS | RW |
91 *   ----------------------------------
92 * @id: display's id as set by the manufacturer
93 * @rs: operation type bit, one of:
94 *	  - START_RS_INDEX	set the index register
95 *	  - START_RS_REG	write/read registers/GRAM
96 * @rw: read/write operation
97 *	 - START_RW_WRITE	write
98 *	 - START_RW_READ	read
99 */
100#define START_BYTE(id, rs, rw)	\
101	(0x70 | (((id) & 0x01) << 2) | (((rs) & 0x01) << 1) | ((rw) & 0x01))
102
103/**
104 * CHECK_FREQ_REG(spi_device s, spi_transfer x) - Check the frequency
105 *	for the SPI transfer. According to the datasheet, the controller
106 *	accept higher frequency for the GRAM transfer, but it requires
107 *	lower frequency when the registers are read/written.
108 *	The macro sets the frequency in the spi_transfer structure if
109 *	the frequency exceeds the maximum value.
110 * @s: pointer to an SPI device
111 * @x: pointer to the read/write buffer pair
112 */
113#define CHECK_FREQ_REG(s, x)	\
114	do {			\
115		if (s->max_speed_hz > ILITEK_MAX_FREQ_REG)	\
116			((struct spi_transfer *)x)->speed_hz =	\
117					ILITEK_MAX_FREQ_REG;	\
118	} while (0)
119
120#define CMD_BUFSIZE		16
121
122#define POWER_IS_ON(pwr)	((pwr) <= FB_BLANK_NORMAL)
123
124#define set_tx_byte(b)		(tx_invert ? ~(b) : b)
125
126/*
127 * ili922x_id - id as set by manufacturer
128 */
129static int ili922x_id = 1;
130module_param(ili922x_id, int, 0);
131
132static int tx_invert;
133module_param(tx_invert, int, 0);
134
135/*
136 * driver's private structure
137 */
138struct ili922x {
139	struct spi_device *spi;
140	struct lcd_device *ld;
141	int power;
142};
143
144/**
145 * ili922x_read_status - read status register from display
146 * @spi: spi device
147 * @rs:  output value
148 */
149static int ili922x_read_status(struct spi_device *spi, u16 *rs)
150{
151	struct spi_message msg;
152	struct spi_transfer xfer;
153	unsigned char tbuf[CMD_BUFSIZE];
154	unsigned char rbuf[CMD_BUFSIZE];
155	int ret, i;
156
157	memset(&xfer, 0, sizeof(struct spi_transfer));
158	spi_message_init(&msg);
159	xfer.tx_buf = tbuf;
160	xfer.rx_buf = rbuf;
161	xfer.cs_change = 1;
162	CHECK_FREQ_REG(spi, &xfer);
163
164	tbuf[0] = set_tx_byte(START_BYTE(ili922x_id, START_RS_INDEX,
165					 START_RW_READ));
166	/*
167	 * we need 4-byte xfer here due to invalid dummy byte
168	 * received after start byte
169	 */
170	for (i = 1; i < 4; i++)
171		tbuf[i] = set_tx_byte(0);	/* dummy */
172
173	xfer.bits_per_word = 8;
174	xfer.len = 4;
175	spi_message_add_tail(&xfer, &msg);
176	ret = spi_sync(spi, &msg);
177	if (ret < 0) {
178		dev_dbg(&spi->dev, "Error sending SPI message 0x%x", ret);
179		return ret;
180	}
181
182	*rs = (rbuf[2] << 8) + rbuf[3];
183	return 0;
184}
185
186/**
187 * ili922x_read - read register from display
188 * @spi: spi device
189 * @reg: offset of the register to be read
190 * @rx:  output value
191 */
192static int ili922x_read(struct spi_device *spi, u8 reg, u16 *rx)
193{
194	struct spi_message msg;
195	struct spi_transfer xfer_regindex, xfer_regvalue;
196	unsigned char tbuf[CMD_BUFSIZE];
197	unsigned char rbuf[CMD_BUFSIZE];
198	int ret, len = 0, send_bytes;
199
200	memset(&xfer_regindex, 0, sizeof(struct spi_transfer));
201	memset(&xfer_regvalue, 0, sizeof(struct spi_transfer));
202	spi_message_init(&msg);
203	xfer_regindex.tx_buf = tbuf;
204	xfer_regindex.rx_buf = rbuf;
205	xfer_regindex.cs_change = 1;
206	CHECK_FREQ_REG(spi, &xfer_regindex);
207
208	tbuf[0] = set_tx_byte(START_BYTE(ili922x_id, START_RS_INDEX,
209					 START_RW_WRITE));
210	tbuf[1] = set_tx_byte(0);
211	tbuf[2] = set_tx_byte(reg);
212	xfer_regindex.bits_per_word = 8;
213	len = xfer_regindex.len = 3;
214	spi_message_add_tail(&xfer_regindex, &msg);
215
216	send_bytes = len;
217
218	tbuf[len++] = set_tx_byte(START_BYTE(ili922x_id, START_RS_REG,
219					     START_RW_READ));
220	tbuf[len++] = set_tx_byte(0);
221	tbuf[len] = set_tx_byte(0);
222
223	xfer_regvalue.cs_change = 1;
224	xfer_regvalue.len = 3;
225	xfer_regvalue.tx_buf = &tbuf[send_bytes];
226	xfer_regvalue.rx_buf = &rbuf[send_bytes];
227	CHECK_FREQ_REG(spi, &xfer_regvalue);
228
229	spi_message_add_tail(&xfer_regvalue, &msg);
230	ret = spi_sync(spi, &msg);
231	if (ret < 0) {
232		dev_dbg(&spi->dev, "Error sending SPI message 0x%x", ret);
233		return ret;
234	}
235
236	*rx = (rbuf[1 + send_bytes] << 8) + rbuf[2 + send_bytes];
237	return 0;
238}
239
240/**
241 * ili922x_write - write a controller register
242 * @spi: struct spi_device *
243 * @reg: offset of the register to be written
244 * @value: value to be written
245 */
246static int ili922x_write(struct spi_device *spi, u8 reg, u16 value)
247{
248	struct spi_message msg;
249	struct spi_transfer xfer_regindex, xfer_regvalue;
250	unsigned char tbuf[CMD_BUFSIZE];
251	unsigned char rbuf[CMD_BUFSIZE];
252	int ret;
253
254	memset(&xfer_regindex, 0, sizeof(struct spi_transfer));
255	memset(&xfer_regvalue, 0, sizeof(struct spi_transfer));
256
257	spi_message_init(&msg);
258	xfer_regindex.tx_buf = tbuf;
259	xfer_regindex.rx_buf = rbuf;
260	xfer_regindex.cs_change = 1;
261	CHECK_FREQ_REG(spi, &xfer_regindex);
262
263	tbuf[0] = set_tx_byte(START_BYTE(ili922x_id, START_RS_INDEX,
264					 START_RW_WRITE));
265	tbuf[1] = set_tx_byte(0);
266	tbuf[2] = set_tx_byte(reg);
267	xfer_regindex.bits_per_word = 8;
268	xfer_regindex.len = 3;
269	spi_message_add_tail(&xfer_regindex, &msg);
270
271	ret = spi_sync(spi, &msg);
272
273	spi_message_init(&msg);
274	tbuf[0] = set_tx_byte(START_BYTE(ili922x_id, START_RS_REG,
275					 START_RW_WRITE));
276	tbuf[1] = set_tx_byte((value & 0xFF00) >> 8);
277	tbuf[2] = set_tx_byte(value & 0x00FF);
278
279	xfer_regvalue.cs_change = 1;
280	xfer_regvalue.len = 3;
281	xfer_regvalue.tx_buf = tbuf;
282	xfer_regvalue.rx_buf = rbuf;
283	CHECK_FREQ_REG(spi, &xfer_regvalue);
284
285	spi_message_add_tail(&xfer_regvalue, &msg);
286
287	ret = spi_sync(spi, &msg);
288	if (ret < 0) {
289		dev_err(&spi->dev, "Error sending SPI message 0x%x", ret);
290		return ret;
291	}
292	return 0;
293}
294
295#ifdef DEBUG
296/**
297 * ili922x_reg_dump - dump all registers
298 *
299 * @spi: pointer to an SPI device
300 */
301static void ili922x_reg_dump(struct spi_device *spi)
302{
303	u8 reg;
304	u16 rx;
305
306	dev_dbg(&spi->dev, "ILI922x configuration registers:\n");
307	for (reg = REG_START_OSCILLATION;
308	     reg <= REG_OTP_PROGRAMMING_ID_KEY; reg++) {
309		ili922x_read(spi, reg, &rx);
310		dev_dbg(&spi->dev, "reg @ 0x%02X: 0x%04X\n", reg, rx);
311	}
312}
313#else
314static inline void ili922x_reg_dump(struct spi_device *spi) {}
315#endif
316
317/**
318 * set_write_to_gram_reg - initialize the display to write the GRAM
319 * @spi: spi device
320 */
321static void set_write_to_gram_reg(struct spi_device *spi)
322{
323	struct spi_message msg;
324	struct spi_transfer xfer;
325	unsigned char tbuf[CMD_BUFSIZE];
326
327	memset(&xfer, 0, sizeof(struct spi_transfer));
328
329	spi_message_init(&msg);
330	xfer.tx_buf = tbuf;
331	xfer.rx_buf = NULL;
332	xfer.cs_change = 1;
333
334	tbuf[0] = START_BYTE(ili922x_id, START_RS_INDEX, START_RW_WRITE);
335	tbuf[1] = 0;
336	tbuf[2] = REG_WRITE_DATA_TO_GRAM;
337
338	xfer.bits_per_word = 8;
339	xfer.len = 3;
340	spi_message_add_tail(&xfer, &msg);
341	spi_sync(spi, &msg);
342}
343
344/**
345 * ili922x_poweron - turn the display on
346 * @spi: spi device
347 *
348 * The sequence to turn on the display is taken from
349 * the datasheet and/or the example code provided by the
350 * manufacturer.
351 */
352static int ili922x_poweron(struct spi_device *spi)
353{
354	int ret;
355
356	/* Power on */
357	ret = ili922x_write(spi, REG_POWER_CONTROL_1, 0x0000);
358	usleep_range(10000, 10500);
359	ret += ili922x_write(spi, REG_POWER_CONTROL_2, 0x0000);
360	ret += ili922x_write(spi, REG_POWER_CONTROL_3, 0x0000);
361	msleep(40);
362	ret += ili922x_write(spi, REG_POWER_CONTROL_4, 0x0000);
363	msleep(40);
364	/* register 0x56 is not documented in the datasheet */
365	ret += ili922x_write(spi, 0x56, 0x080F);
366	ret += ili922x_write(spi, REG_POWER_CONTROL_1, 0x4240);
367	usleep_range(10000, 10500);
368	ret += ili922x_write(spi, REG_POWER_CONTROL_2, 0x0000);
369	ret += ili922x_write(spi, REG_POWER_CONTROL_3, 0x0014);
370	msleep(40);
371	ret += ili922x_write(spi, REG_POWER_CONTROL_4, 0x1319);
372	msleep(40);
373
374	return ret;
375}
376
377/**
378 * ili922x_poweroff - turn the display off
379 * @spi: spi device
380 */
381static int ili922x_poweroff(struct spi_device *spi)
382{
383	int ret;
384
385	/* Power off */
386	ret = ili922x_write(spi, REG_POWER_CONTROL_1, 0x0000);
387	usleep_range(10000, 10500);
388	ret += ili922x_write(spi, REG_POWER_CONTROL_2, 0x0000);
389	ret += ili922x_write(spi, REG_POWER_CONTROL_3, 0x0000);
390	msleep(40);
391	ret += ili922x_write(spi, REG_POWER_CONTROL_4, 0x0000);
392	msleep(40);
393
394	return ret;
395}
396
397/**
398 * ili922x_display_init - initialize the display by setting
399 *			  the configuration registers
400 * @spi: spi device
401 */
402static void ili922x_display_init(struct spi_device *spi)
403{
404	ili922x_write(spi, REG_START_OSCILLATION, 1);
405	usleep_range(10000, 10500);
406	ili922x_write(spi, REG_DRIVER_OUTPUT_CONTROL, 0x691B);
407	ili922x_write(spi, REG_LCD_AC_DRIVEING_CONTROL, 0x0700);
408	ili922x_write(spi, REG_ENTRY_MODE, 0x1030);
409	ili922x_write(spi, REG_COMPARE_1, 0x0000);
410	ili922x_write(spi, REG_COMPARE_2, 0x0000);
411	ili922x_write(spi, REG_DISPLAY_CONTROL_1, 0x0037);
412	ili922x_write(spi, REG_DISPLAY_CONTROL_2, 0x0202);
413	ili922x_write(spi, REG_DISPLAY_CONTROL_3, 0x0000);
414	ili922x_write(spi, REG_FRAME_CYCLE_CONTROL, 0x0000);
415
416	/* Set RGB interface */
417	ili922x_write(spi, REG_EXT_INTF_CONTROL, 0x0110);
418
419	ili922x_poweron(spi);
420
421	ili922x_write(spi, REG_GAMMA_CONTROL_1, 0x0302);
422	ili922x_write(spi, REG_GAMMA_CONTROL_2, 0x0407);
423	ili922x_write(spi, REG_GAMMA_CONTROL_3, 0x0304);
424	ili922x_write(spi, REG_GAMMA_CONTROL_4, 0x0203);
425	ili922x_write(spi, REG_GAMMA_CONTROL_5, 0x0706);
426	ili922x_write(spi, REG_GAMMA_CONTROL_6, 0x0407);
427	ili922x_write(spi, REG_GAMMA_CONTROL_7, 0x0706);
428	ili922x_write(spi, REG_GAMMA_CONTROL_8, 0x0000);
429	ili922x_write(spi, REG_GAMMA_CONTROL_9, 0x0C06);
430	ili922x_write(spi, REG_GAMMA_CONTROL_10, 0x0F00);
431	ili922x_write(spi, REG_RAM_ADDRESS_SET, 0x0000);
432	ili922x_write(spi, REG_GATE_SCAN_CONTROL, 0x0000);
433	ili922x_write(spi, REG_VERT_SCROLL_CONTROL, 0x0000);
434	ili922x_write(spi, REG_FIRST_SCREEN_DRIVE_POS, 0xDB00);
435	ili922x_write(spi, REG_SECOND_SCREEN_DRIVE_POS, 0xDB00);
436	ili922x_write(spi, REG_RAM_ADDR_POS_H, 0xAF00);
437	ili922x_write(spi, REG_RAM_ADDR_POS_V, 0xDB00);
438	ili922x_reg_dump(spi);
439	set_write_to_gram_reg(spi);
440}
441
442static int ili922x_lcd_power(struct ili922x *lcd, int power)
443{
444	int ret = 0;
445
446	if (POWER_IS_ON(power) && !POWER_IS_ON(lcd->power))
447		ret = ili922x_poweron(lcd->spi);
448	else if (!POWER_IS_ON(power) && POWER_IS_ON(lcd->power))
449		ret = ili922x_poweroff(lcd->spi);
450
451	if (!ret)
452		lcd->power = power;
453
454	return ret;
455}
456
457static int ili922x_set_power(struct lcd_device *ld, int power)
458{
459	struct ili922x *ili = lcd_get_data(ld);
460
461	return ili922x_lcd_power(ili, power);
462}
463
464static int ili922x_get_power(struct lcd_device *ld)
465{
466	struct ili922x *ili = lcd_get_data(ld);
467
468	return ili->power;
469}
470
471static struct lcd_ops ili922x_ops = {
472	.get_power = ili922x_get_power,
473	.set_power = ili922x_set_power,
474};
475
476static int ili922x_probe(struct spi_device *spi)
477{
478	struct ili922x *ili;
479	struct lcd_device *lcd;
480	int ret;
481	u16 reg = 0;
482
483	ili = devm_kzalloc(&spi->dev, sizeof(*ili), GFP_KERNEL);
484	if (!ili)
485		return -ENOMEM;
486
487	ili->spi = spi;
488	spi_set_drvdata(spi, ili);
489
490	/* check if the device is connected */
491	ret = ili922x_read(spi, REG_DRIVER_CODE_READ, &reg);
492	if (ret || ((reg & ILITEK_DEVICE_ID_MASK) != ILITEK_DEVICE_ID)) {
493		dev_err(&spi->dev,
494			"no LCD found: Chip ID 0x%x, ret %d\n",
495			reg, ret);
496		return -ENODEV;
497	}
498
499	dev_info(&spi->dev, "ILI%x found, SPI freq %d, mode %d\n",
500		 reg, spi->max_speed_hz, spi->mode);
501
502	ret = ili922x_read_status(spi, &reg);
503	if (ret) {
504		dev_err(&spi->dev, "reading RS failed...\n");
505		return ret;
506	}
507
508	dev_dbg(&spi->dev, "status: 0x%x\n", reg);
509
510	ili922x_display_init(spi);
511
512	ili->power = FB_BLANK_POWERDOWN;
513
514	lcd = devm_lcd_device_register(&spi->dev, "ili922xlcd", &spi->dev, ili,
515					&ili922x_ops);
516	if (IS_ERR(lcd)) {
517		dev_err(&spi->dev, "cannot register LCD\n");
518		return PTR_ERR(lcd);
519	}
520
521	ili->ld = lcd;
522	spi_set_drvdata(spi, ili);
523
524	ili922x_lcd_power(ili, FB_BLANK_UNBLANK);
525
526	return 0;
527}
528
529static void ili922x_remove(struct spi_device *spi)
530{
531	ili922x_poweroff(spi);
532}
533
534static struct spi_driver ili922x_driver = {
535	.driver = {
536		.name = "ili922x",
537	},
538	.probe = ili922x_probe,
539	.remove = ili922x_remove,
540};
541
542module_spi_driver(ili922x_driver);
543
544MODULE_AUTHOR("Stefano Babic <sbabic@denx.de>");
545MODULE_DESCRIPTION("ILI9221/9222 LCD driver");
546MODULE_LICENSE("GPL");
547MODULE_PARM_DESC(ili922x_id, "set controller identifier (default=1)");
548MODULE_PARM_DESC(tx_invert, "invert bytes before sending");
549