1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/usb.h>
12#include <linux/overflow.h>
13#include <linux/pci.h>
14#include <linux/slab.h>
15#include <linux/dmapool.h>
16#include <linux/dma-mapping.h>
17
18#include "xhci.h"
19#include "xhci-trace.h"
20#include "xhci-debugfs.h"
21
22/*
23 * Allocates a generic ring segment from the ring pool, sets the dma address,
24 * initializes the segment to zero, and sets the private next pointer to NULL.
25 *
26 * Section 4.11.1.1:
27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 */
29static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30					       unsigned int cycle_state,
31					       unsigned int max_packet,
32					       gfp_t flags)
33{
34	struct xhci_segment *seg;
35	dma_addr_t	dma;
36	int		i;
37	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
38
39	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
40	if (!seg)
41		return NULL;
42
43	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
44	if (!seg->trbs) {
45		kfree(seg);
46		return NULL;
47	}
48
49	if (max_packet) {
50		seg->bounce_buf = kzalloc_node(max_packet, flags,
51					dev_to_node(dev));
52		if (!seg->bounce_buf) {
53			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
54			kfree(seg);
55			return NULL;
56		}
57	}
58	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
59	if (cycle_state == 0) {
60		for (i = 0; i < TRBS_PER_SEGMENT; i++)
61			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
62	}
63	seg->dma = dma;
64	seg->next = NULL;
65
66	return seg;
67}
68
69static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
70{
71	if (seg->trbs) {
72		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
73		seg->trbs = NULL;
74	}
75	kfree(seg->bounce_buf);
76	kfree(seg);
77}
78
79static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
80				struct xhci_segment *first)
81{
82	struct xhci_segment *seg;
83
84	seg = first->next;
85	while (seg != first) {
86		struct xhci_segment *next = seg->next;
87		xhci_segment_free(xhci, seg);
88		seg = next;
89	}
90	xhci_segment_free(xhci, first);
91}
92
93/*
94 * Make the prev segment point to the next segment.
95 *
96 * Change the last TRB in the prev segment to be a Link TRB which points to the
97 * DMA address of the next segment.  The caller needs to set any Link TRB
98 * related flags, such as End TRB, Toggle Cycle, and no snoop.
99 */
100static void xhci_link_segments(struct xhci_segment *prev,
101			       struct xhci_segment *next,
102			       enum xhci_ring_type type, bool chain_links)
103{
104	u32 val;
105
106	if (!prev || !next)
107		return;
108	prev->next = next;
109	if (type != TYPE_EVENT) {
110		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
111			cpu_to_le64(next->dma);
112
113		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
114		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
115		val &= ~TRB_TYPE_BITMASK;
116		val |= TRB_TYPE(TRB_LINK);
117		if (chain_links)
118			val |= TRB_CHAIN;
119		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120	}
121}
122
123/*
124 * Link the ring to the new segments.
125 * Set Toggle Cycle for the new ring if needed.
126 */
127static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128		struct xhci_segment *first, struct xhci_segment *last,
129		unsigned int num_segs)
130{
131	struct xhci_segment *next;
132	bool chain_links;
133
134	if (!ring || !first || !last)
135		return;
136
137	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
138	chain_links = !!(xhci_link_trb_quirk(xhci) ||
139			 (ring->type == TYPE_ISOC &&
140			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
141
142	next = ring->enq_seg->next;
143	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
144	xhci_link_segments(last, next, ring->type, chain_links);
145	ring->num_segs += num_segs;
146
147	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149			&= ~cpu_to_le32(LINK_TOGGLE);
150		last->trbs[TRBS_PER_SEGMENT-1].link.control
151			|= cpu_to_le32(LINK_TOGGLE);
152		ring->last_seg = last;
153	}
154}
155
156/*
157 * We need a radix tree for mapping physical addresses of TRBs to which stream
158 * ID they belong to.  We need to do this because the host controller won't tell
159 * us which stream ring the TRB came from.  We could store the stream ID in an
160 * event data TRB, but that doesn't help us for the cancellation case, since the
161 * endpoint may stop before it reaches that event data TRB.
162 *
163 * The radix tree maps the upper portion of the TRB DMA address to a ring
164 * segment that has the same upper portion of DMA addresses.  For example, say I
165 * have segments of size 1KB, that are always 1KB aligned.  A segment may
166 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168 * pass the radix tree a key to get the right stream ID:
169 *
170 *	0x10c90fff >> 10 = 0x43243
171 *	0x10c912c0 >> 10 = 0x43244
172 *	0x10c91400 >> 10 = 0x43245
173 *
174 * Obviously, only those TRBs with DMA addresses that are within the segment
175 * will make the radix tree return the stream ID for that ring.
176 *
177 * Caveats for the radix tree:
178 *
179 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184 * extended systems (where the DMA address can be bigger than 32-bits),
185 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186 */
187static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188		struct xhci_ring *ring,
189		struct xhci_segment *seg,
190		gfp_t mem_flags)
191{
192	unsigned long key;
193	int ret;
194
195	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196	/* Skip any segments that were already added. */
197	if (radix_tree_lookup(trb_address_map, key))
198		return 0;
199
200	ret = radix_tree_maybe_preload(mem_flags);
201	if (ret)
202		return ret;
203	ret = radix_tree_insert(trb_address_map,
204			key, ring);
205	radix_tree_preload_end();
206	return ret;
207}
208
209static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210		struct xhci_segment *seg)
211{
212	unsigned long key;
213
214	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215	if (radix_tree_lookup(trb_address_map, key))
216		radix_tree_delete(trb_address_map, key);
217}
218
219static int xhci_update_stream_segment_mapping(
220		struct radix_tree_root *trb_address_map,
221		struct xhci_ring *ring,
222		struct xhci_segment *first_seg,
223		struct xhci_segment *last_seg,
224		gfp_t mem_flags)
225{
226	struct xhci_segment *seg;
227	struct xhci_segment *failed_seg;
228	int ret;
229
230	if (WARN_ON_ONCE(trb_address_map == NULL))
231		return 0;
232
233	seg = first_seg;
234	do {
235		ret = xhci_insert_segment_mapping(trb_address_map,
236				ring, seg, mem_flags);
237		if (ret)
238			goto remove_streams;
239		if (seg == last_seg)
240			return 0;
241		seg = seg->next;
242	} while (seg != first_seg);
243
244	return 0;
245
246remove_streams:
247	failed_seg = seg;
248	seg = first_seg;
249	do {
250		xhci_remove_segment_mapping(trb_address_map, seg);
251		if (seg == failed_seg)
252			return ret;
253		seg = seg->next;
254	} while (seg != first_seg);
255
256	return ret;
257}
258
259static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260{
261	struct xhci_segment *seg;
262
263	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264		return;
265
266	seg = ring->first_seg;
267	do {
268		xhci_remove_segment_mapping(ring->trb_address_map, seg);
269		seg = seg->next;
270	} while (seg != ring->first_seg);
271}
272
273static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274{
275	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276			ring->first_seg, ring->last_seg, mem_flags);
277}
278
279/* XXX: Do we need the hcd structure in all these functions? */
280void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281{
282	if (!ring)
283		return;
284
285	trace_xhci_ring_free(ring);
286
287	if (ring->first_seg) {
288		if (ring->type == TYPE_STREAM)
289			xhci_remove_stream_mapping(ring);
290		xhci_free_segments_for_ring(xhci, ring->first_seg);
291	}
292
293	kfree(ring);
294}
295
296void xhci_initialize_ring_info(struct xhci_ring *ring,
297			       unsigned int cycle_state)
298{
299	/* The ring is empty, so the enqueue pointer == dequeue pointer */
300	ring->enqueue = ring->first_seg->trbs;
301	ring->enq_seg = ring->first_seg;
302	ring->dequeue = ring->enqueue;
303	ring->deq_seg = ring->first_seg;
304	/* The ring is initialized to 0. The producer must write 1 to the cycle
305	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
306	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
307	 *
308	 * New rings are initialized with cycle state equal to 1; if we are
309	 * handling ring expansion, set the cycle state equal to the old ring.
310	 */
311	ring->cycle_state = cycle_state;
312
313	/*
314	 * Each segment has a link TRB, and leave an extra TRB for SW
315	 * accounting purpose
316	 */
317	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318}
319
320/* Allocate segments and link them for a ring */
321static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322		struct xhci_segment **first, struct xhci_segment **last,
323		unsigned int num_segs, unsigned int cycle_state,
324		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325{
326	struct xhci_segment *prev;
327	bool chain_links;
328
329	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330	chain_links = !!(xhci_link_trb_quirk(xhci) ||
331			 (type == TYPE_ISOC &&
332			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335	if (!prev)
336		return -ENOMEM;
337	num_segs--;
338
339	*first = prev;
340	while (num_segs > 0) {
341		struct xhci_segment	*next;
342
343		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344		if (!next) {
345			prev = *first;
346			while (prev) {
347				next = prev->next;
348				xhci_segment_free(xhci, prev);
349				prev = next;
350			}
351			return -ENOMEM;
352		}
353		xhci_link_segments(prev, next, type, chain_links);
354
355		prev = next;
356		num_segs--;
357	}
358	xhci_link_segments(prev, *first, type, chain_links);
359	*last = prev;
360
361	return 0;
362}
363
364/*
365 * Create a new ring with zero or more segments.
366 *
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
370 */
371struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372		unsigned int num_segs, unsigned int cycle_state,
373		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374{
375	struct xhci_ring	*ring;
376	int ret;
377	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380	if (!ring)
381		return NULL;
382
383	ring->num_segs = num_segs;
384	ring->bounce_buf_len = max_packet;
385	INIT_LIST_HEAD(&ring->td_list);
386	ring->type = type;
387	if (num_segs == 0)
388		return ring;
389
390	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391			&ring->last_seg, num_segs, cycle_state, type,
392			max_packet, flags);
393	if (ret)
394		goto fail;
395
396	/* Only event ring does not use link TRB */
397	if (type != TYPE_EVENT) {
398		/* See section 4.9.2.1 and 6.4.4.1 */
399		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400			cpu_to_le32(LINK_TOGGLE);
401	}
402	xhci_initialize_ring_info(ring, cycle_state);
403	trace_xhci_ring_alloc(ring);
404	return ring;
405
406fail:
407	kfree(ring);
408	return NULL;
409}
410
411void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412		struct xhci_virt_device *virt_dev,
413		unsigned int ep_index)
414{
415	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416	virt_dev->eps[ep_index].ring = NULL;
417}
418
419/*
420 * Expand an existing ring.
421 * Allocate a new ring which has same segment numbers and link the two rings.
422 */
423int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424				unsigned int num_new_segs, gfp_t flags)
425{
426	struct xhci_segment	*first;
427	struct xhci_segment	*last;
428	int			ret;
429
430	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
431			num_new_segs, ring->cycle_state, ring->type,
432			ring->bounce_buf_len, flags);
433	if (ret)
434		return -ENOMEM;
435
436	if (ring->type == TYPE_STREAM)
437		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
438						ring, first, last, flags);
439	if (ret) {
440		struct xhci_segment *next;
441		do {
442			next = first->next;
443			xhci_segment_free(xhci, first);
444			if (first == last)
445				break;
446			first = next;
447		} while (true);
448		return ret;
449	}
450
451	xhci_link_rings(xhci, ring, first, last, num_new_segs);
452	trace_xhci_ring_expansion(ring);
453	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
454			"ring expansion succeed, now has %d segments",
455			ring->num_segs);
456
457	return 0;
458}
459
460struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
461						    int type, gfp_t flags)
462{
463	struct xhci_container_ctx *ctx;
464	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
465
466	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
467		return NULL;
468
469	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
470	if (!ctx)
471		return NULL;
472
473	ctx->type = type;
474	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
475	if (type == XHCI_CTX_TYPE_INPUT)
476		ctx->size += CTX_SIZE(xhci->hcc_params);
477
478	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
479	if (!ctx->bytes) {
480		kfree(ctx);
481		return NULL;
482	}
483	return ctx;
484}
485
486void xhci_free_container_ctx(struct xhci_hcd *xhci,
487			     struct xhci_container_ctx *ctx)
488{
489	if (!ctx)
490		return;
491	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
492	kfree(ctx);
493}
494
495struct xhci_input_control_ctx *xhci_get_input_control_ctx(
496					      struct xhci_container_ctx *ctx)
497{
498	if (ctx->type != XHCI_CTX_TYPE_INPUT)
499		return NULL;
500
501	return (struct xhci_input_control_ctx *)ctx->bytes;
502}
503
504struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
505					struct xhci_container_ctx *ctx)
506{
507	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
508		return (struct xhci_slot_ctx *)ctx->bytes;
509
510	return (struct xhci_slot_ctx *)
511		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
512}
513
514struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
515				    struct xhci_container_ctx *ctx,
516				    unsigned int ep_index)
517{
518	/* increment ep index by offset of start of ep ctx array */
519	ep_index++;
520	if (ctx->type == XHCI_CTX_TYPE_INPUT)
521		ep_index++;
522
523	return (struct xhci_ep_ctx *)
524		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
525}
526EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
527
528/***************** Streams structures manipulation *************************/
529
530static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
531		unsigned int num_stream_ctxs,
532		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
533{
534	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
535	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
536
537	if (size > MEDIUM_STREAM_ARRAY_SIZE)
538		dma_free_coherent(dev, size, stream_ctx, dma);
539	else if (size > SMALL_STREAM_ARRAY_SIZE)
540		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
541	else
542		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
543}
544
545/*
546 * The stream context array for each endpoint with bulk streams enabled can
547 * vary in size, based on:
548 *  - how many streams the endpoint supports,
549 *  - the maximum primary stream array size the host controller supports,
550 *  - and how many streams the device driver asks for.
551 *
552 * The stream context array must be a power of 2, and can be as small as
553 * 64 bytes or as large as 1MB.
554 */
555static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
556		unsigned int num_stream_ctxs, dma_addr_t *dma,
557		gfp_t mem_flags)
558{
559	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
560	size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
561
562	if (size > MEDIUM_STREAM_ARRAY_SIZE)
563		return dma_alloc_coherent(dev, size, dma, mem_flags);
564	if (size > SMALL_STREAM_ARRAY_SIZE)
565		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
566	else
567		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
568}
569
570struct xhci_ring *xhci_dma_to_transfer_ring(
571		struct xhci_virt_ep *ep,
572		u64 address)
573{
574	if (ep->ep_state & EP_HAS_STREAMS)
575		return radix_tree_lookup(&ep->stream_info->trb_address_map,
576				address >> TRB_SEGMENT_SHIFT);
577	return ep->ring;
578}
579
580/*
581 * Change an endpoint's internal structure so it supports stream IDs.  The
582 * number of requested streams includes stream 0, which cannot be used by device
583 * drivers.
584 *
585 * The number of stream contexts in the stream context array may be bigger than
586 * the number of streams the driver wants to use.  This is because the number of
587 * stream context array entries must be a power of two.
588 */
589struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
590		unsigned int num_stream_ctxs,
591		unsigned int num_streams,
592		unsigned int max_packet, gfp_t mem_flags)
593{
594	struct xhci_stream_info *stream_info;
595	u32 cur_stream;
596	struct xhci_ring *cur_ring;
597	u64 addr;
598	int ret;
599	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
600
601	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
602			num_streams, num_stream_ctxs);
603	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
604		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
605		return NULL;
606	}
607	xhci->cmd_ring_reserved_trbs++;
608
609	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
610			dev_to_node(dev));
611	if (!stream_info)
612		goto cleanup_trbs;
613
614	stream_info->num_streams = num_streams;
615	stream_info->num_stream_ctxs = num_stream_ctxs;
616
617	/* Initialize the array of virtual pointers to stream rings. */
618	stream_info->stream_rings = kcalloc_node(
619			num_streams, sizeof(struct xhci_ring *), mem_flags,
620			dev_to_node(dev));
621	if (!stream_info->stream_rings)
622		goto cleanup_info;
623
624	/* Initialize the array of DMA addresses for stream rings for the HW. */
625	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
626			num_stream_ctxs, &stream_info->ctx_array_dma,
627			mem_flags);
628	if (!stream_info->stream_ctx_array)
629		goto cleanup_ring_array;
630
631	/* Allocate everything needed to free the stream rings later */
632	stream_info->free_streams_command =
633		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
634	if (!stream_info->free_streams_command)
635		goto cleanup_ctx;
636
637	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
638
639	/* Allocate rings for all the streams that the driver will use,
640	 * and add their segment DMA addresses to the radix tree.
641	 * Stream 0 is reserved.
642	 */
643
644	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
645		stream_info->stream_rings[cur_stream] =
646			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
647					mem_flags);
648		cur_ring = stream_info->stream_rings[cur_stream];
649		if (!cur_ring)
650			goto cleanup_rings;
651		cur_ring->stream_id = cur_stream;
652		cur_ring->trb_address_map = &stream_info->trb_address_map;
653		/* Set deq ptr, cycle bit, and stream context type */
654		addr = cur_ring->first_seg->dma |
655			SCT_FOR_CTX(SCT_PRI_TR) |
656			cur_ring->cycle_state;
657		stream_info->stream_ctx_array[cur_stream].stream_ring =
658			cpu_to_le64(addr);
659		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
660
661		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
662		if (ret) {
663			xhci_ring_free(xhci, cur_ring);
664			stream_info->stream_rings[cur_stream] = NULL;
665			goto cleanup_rings;
666		}
667	}
668	/* Leave the other unused stream ring pointers in the stream context
669	 * array initialized to zero.  This will cause the xHC to give us an
670	 * error if the device asks for a stream ID we don't have setup (if it
671	 * was any other way, the host controller would assume the ring is
672	 * "empty" and wait forever for data to be queued to that stream ID).
673	 */
674
675	return stream_info;
676
677cleanup_rings:
678	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
679		cur_ring = stream_info->stream_rings[cur_stream];
680		if (cur_ring) {
681			xhci_ring_free(xhci, cur_ring);
682			stream_info->stream_rings[cur_stream] = NULL;
683		}
684	}
685	xhci_free_command(xhci, stream_info->free_streams_command);
686cleanup_ctx:
687	xhci_free_stream_ctx(xhci,
688		stream_info->num_stream_ctxs,
689		stream_info->stream_ctx_array,
690		stream_info->ctx_array_dma);
691cleanup_ring_array:
692	kfree(stream_info->stream_rings);
693cleanup_info:
694	kfree(stream_info);
695cleanup_trbs:
696	xhci->cmd_ring_reserved_trbs--;
697	return NULL;
698}
699/*
700 * Sets the MaxPStreams field and the Linear Stream Array field.
701 * Sets the dequeue pointer to the stream context array.
702 */
703void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
704		struct xhci_ep_ctx *ep_ctx,
705		struct xhci_stream_info *stream_info)
706{
707	u32 max_primary_streams;
708	/* MaxPStreams is the number of stream context array entries, not the
709	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
710	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
711	 */
712	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
713	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
714			"Setting number of stream ctx array entries to %u",
715			1 << (max_primary_streams + 1));
716	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
717	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
718				       | EP_HAS_LSA);
719	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
720}
721
722/*
723 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
724 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
725 * not at the beginning of the ring).
726 */
727void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
728		struct xhci_virt_ep *ep)
729{
730	dma_addr_t addr;
731	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
732	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
733	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
734}
735
736/* Frees all stream contexts associated with the endpoint,
737 *
738 * Caller should fix the endpoint context streams fields.
739 */
740void xhci_free_stream_info(struct xhci_hcd *xhci,
741		struct xhci_stream_info *stream_info)
742{
743	int cur_stream;
744	struct xhci_ring *cur_ring;
745
746	if (!stream_info)
747		return;
748
749	for (cur_stream = 1; cur_stream < stream_info->num_streams;
750			cur_stream++) {
751		cur_ring = stream_info->stream_rings[cur_stream];
752		if (cur_ring) {
753			xhci_ring_free(xhci, cur_ring);
754			stream_info->stream_rings[cur_stream] = NULL;
755		}
756	}
757	xhci_free_command(xhci, stream_info->free_streams_command);
758	xhci->cmd_ring_reserved_trbs--;
759	if (stream_info->stream_ctx_array)
760		xhci_free_stream_ctx(xhci,
761				stream_info->num_stream_ctxs,
762				stream_info->stream_ctx_array,
763				stream_info->ctx_array_dma);
764
765	kfree(stream_info->stream_rings);
766	kfree(stream_info);
767}
768
769
770/***************** Device context manipulation *************************/
771
772static void xhci_free_tt_info(struct xhci_hcd *xhci,
773		struct xhci_virt_device *virt_dev,
774		int slot_id)
775{
776	struct list_head *tt_list_head;
777	struct xhci_tt_bw_info *tt_info, *next;
778	bool slot_found = false;
779
780	/* If the device never made it past the Set Address stage,
781	 * it may not have the real_port set correctly.
782	 */
783	if (virt_dev->real_port == 0 ||
784			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
785		xhci_dbg(xhci, "Bad real port.\n");
786		return;
787	}
788
789	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
790	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
791		/* Multi-TT hubs will have more than one entry */
792		if (tt_info->slot_id == slot_id) {
793			slot_found = true;
794			list_del(&tt_info->tt_list);
795			kfree(tt_info);
796		} else if (slot_found) {
797			break;
798		}
799	}
800}
801
802int xhci_alloc_tt_info(struct xhci_hcd *xhci,
803		struct xhci_virt_device *virt_dev,
804		struct usb_device *hdev,
805		struct usb_tt *tt, gfp_t mem_flags)
806{
807	struct xhci_tt_bw_info		*tt_info;
808	unsigned int			num_ports;
809	int				i, j;
810	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
811
812	if (!tt->multi)
813		num_ports = 1;
814	else
815		num_ports = hdev->maxchild;
816
817	for (i = 0; i < num_ports; i++, tt_info++) {
818		struct xhci_interval_bw_table *bw_table;
819
820		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
821				dev_to_node(dev));
822		if (!tt_info)
823			goto free_tts;
824		INIT_LIST_HEAD(&tt_info->tt_list);
825		list_add(&tt_info->tt_list,
826				&xhci->rh_bw[virt_dev->real_port - 1].tts);
827		tt_info->slot_id = virt_dev->udev->slot_id;
828		if (tt->multi)
829			tt_info->ttport = i+1;
830		bw_table = &tt_info->bw_table;
831		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
832			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
833	}
834	return 0;
835
836free_tts:
837	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
838	return -ENOMEM;
839}
840
841
842/* All the xhci_tds in the ring's TD list should be freed at this point.
843 * Should be called with xhci->lock held if there is any chance the TT lists
844 * will be manipulated by the configure endpoint, allocate device, or update
845 * hub functions while this function is removing the TT entries from the list.
846 */
847void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
848{
849	struct xhci_virt_device *dev;
850	int i;
851	int old_active_eps = 0;
852
853	/* Slot ID 0 is reserved */
854	if (slot_id == 0 || !xhci->devs[slot_id])
855		return;
856
857	dev = xhci->devs[slot_id];
858
859	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
860	if (!dev)
861		return;
862
863	trace_xhci_free_virt_device(dev);
864
865	if (dev->tt_info)
866		old_active_eps = dev->tt_info->active_eps;
867
868	for (i = 0; i < 31; i++) {
869		if (dev->eps[i].ring)
870			xhci_ring_free(xhci, dev->eps[i].ring);
871		if (dev->eps[i].stream_info)
872			xhci_free_stream_info(xhci,
873					dev->eps[i].stream_info);
874		/*
875		 * Endpoints are normally deleted from the bandwidth list when
876		 * endpoints are dropped, before device is freed.
877		 * If host is dying or being removed then endpoints aren't
878		 * dropped cleanly, so delete the endpoint from list here.
879		 * Only applicable for hosts with software bandwidth checking.
880		 */
881
882		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
883			list_del_init(&dev->eps[i].bw_endpoint_list);
884			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
885				 slot_id, i);
886		}
887	}
888	/* If this is a hub, free the TT(s) from the TT list */
889	xhci_free_tt_info(xhci, dev, slot_id);
890	/* If necessary, update the number of active TTs on this root port */
891	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
892
893	if (dev->in_ctx)
894		xhci_free_container_ctx(xhci, dev->in_ctx);
895	if (dev->out_ctx)
896		xhci_free_container_ctx(xhci, dev->out_ctx);
897
898	if (dev->udev && dev->udev->slot_id)
899		dev->udev->slot_id = 0;
900	kfree(xhci->devs[slot_id]);
901	xhci->devs[slot_id] = NULL;
902}
903
904/*
905 * Free a virt_device structure.
906 * If the virt_device added a tt_info (a hub) and has children pointing to
907 * that tt_info, then free the child first. Recursive.
908 * We can't rely on udev at this point to find child-parent relationships.
909 */
910static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
911{
912	struct xhci_virt_device *vdev;
913	struct list_head *tt_list_head;
914	struct xhci_tt_bw_info *tt_info, *next;
915	int i;
916
917	vdev = xhci->devs[slot_id];
918	if (!vdev)
919		return;
920
921	if (vdev->real_port == 0 ||
922			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
923		xhci_dbg(xhci, "Bad vdev->real_port.\n");
924		goto out;
925	}
926
927	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
928	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
929		/* is this a hub device that added a tt_info to the tts list */
930		if (tt_info->slot_id == slot_id) {
931			/* are any devices using this tt_info? */
932			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
933				vdev = xhci->devs[i];
934				if (vdev && (vdev->tt_info == tt_info))
935					xhci_free_virt_devices_depth_first(
936						xhci, i);
937			}
938		}
939	}
940out:
941	/* we are now at a leaf device */
942	xhci_debugfs_remove_slot(xhci, slot_id);
943	xhci_free_virt_device(xhci, slot_id);
944}
945
946int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
947		struct usb_device *udev, gfp_t flags)
948{
949	struct xhci_virt_device *dev;
950	int i;
951
952	/* Slot ID 0 is reserved */
953	if (slot_id == 0 || xhci->devs[slot_id]) {
954		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
955		return 0;
956	}
957
958	dev = kzalloc(sizeof(*dev), flags);
959	if (!dev)
960		return 0;
961
962	dev->slot_id = slot_id;
963
964	/* Allocate the (output) device context that will be used in the HC. */
965	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
966	if (!dev->out_ctx)
967		goto fail;
968
969	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
970
971	/* Allocate the (input) device context for address device command */
972	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
973	if (!dev->in_ctx)
974		goto fail;
975
976	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
977
978	/* Initialize the cancellation and bandwidth list for each ep */
979	for (i = 0; i < 31; i++) {
980		dev->eps[i].ep_index = i;
981		dev->eps[i].vdev = dev;
982		dev->eps[i].xhci = xhci;
983		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
984		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
985	}
986
987	/* Allocate endpoint 0 ring */
988	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
989	if (!dev->eps[0].ring)
990		goto fail;
991
992	dev->udev = udev;
993
994	/* Point to output device context in dcbaa. */
995	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
996	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
997		 slot_id,
998		 &xhci->dcbaa->dev_context_ptrs[slot_id],
999		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1000
1001	trace_xhci_alloc_virt_device(dev);
1002
1003	xhci->devs[slot_id] = dev;
1004
1005	return 1;
1006fail:
1007
1008	if (dev->in_ctx)
1009		xhci_free_container_ctx(xhci, dev->in_ctx);
1010	if (dev->out_ctx)
1011		xhci_free_container_ctx(xhci, dev->out_ctx);
1012	kfree(dev);
1013
1014	return 0;
1015}
1016
1017void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1018		struct usb_device *udev)
1019{
1020	struct xhci_virt_device *virt_dev;
1021	struct xhci_ep_ctx	*ep0_ctx;
1022	struct xhci_ring	*ep_ring;
1023
1024	virt_dev = xhci->devs[udev->slot_id];
1025	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1026	ep_ring = virt_dev->eps[0].ring;
1027	/*
1028	 * FIXME we don't keep track of the dequeue pointer very well after a
1029	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1030	 * host to our enqueue pointer.  This should only be called after a
1031	 * configured device has reset, so all control transfers should have
1032	 * been completed or cancelled before the reset.
1033	 */
1034	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1035							ep_ring->enqueue)
1036				   | ep_ring->cycle_state);
1037}
1038
1039/*
1040 * The xHCI roothub may have ports of differing speeds in any order in the port
1041 * status registers.
1042 *
1043 * The xHCI hardware wants to know the roothub port number that the USB device
1044 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1045 * know is the index of that port under either the USB 2.0 or the USB 3.0
1046 * roothub, but that doesn't give us the real index into the HW port status
1047 * registers. Call xhci_find_raw_port_number() to get real index.
1048 */
1049static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1050		struct usb_device *udev)
1051{
1052	struct usb_device *top_dev;
1053	struct usb_hcd *hcd;
1054
1055	if (udev->speed >= USB_SPEED_SUPER)
1056		hcd = xhci_get_usb3_hcd(xhci);
1057	else
1058		hcd = xhci->main_hcd;
1059
1060	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1061			top_dev = top_dev->parent)
1062		/* Found device below root hub */;
1063
1064	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1065}
1066
1067/* Setup an xHCI virtual device for a Set Address command */
1068int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1069{
1070	struct xhci_virt_device *dev;
1071	struct xhci_ep_ctx	*ep0_ctx;
1072	struct xhci_slot_ctx    *slot_ctx;
1073	u32			port_num;
1074	u32			max_packets;
1075	struct usb_device *top_dev;
1076
1077	dev = xhci->devs[udev->slot_id];
1078	/* Slot ID 0 is reserved */
1079	if (udev->slot_id == 0 || !dev) {
1080		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1081				udev->slot_id);
1082		return -EINVAL;
1083	}
1084	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1085	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1086
1087	/* 3) Only the control endpoint is valid - one endpoint context */
1088	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1089	switch (udev->speed) {
1090	case USB_SPEED_SUPER_PLUS:
1091		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1092		max_packets = MAX_PACKET(512);
1093		break;
1094	case USB_SPEED_SUPER:
1095		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1096		max_packets = MAX_PACKET(512);
1097		break;
1098	case USB_SPEED_HIGH:
1099		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1100		max_packets = MAX_PACKET(64);
1101		break;
1102	/* USB core guesses at a 64-byte max packet first for FS devices */
1103	case USB_SPEED_FULL:
1104		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1105		max_packets = MAX_PACKET(64);
1106		break;
1107	case USB_SPEED_LOW:
1108		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1109		max_packets = MAX_PACKET(8);
1110		break;
1111	default:
1112		/* Speed was set earlier, this shouldn't happen. */
1113		return -EINVAL;
1114	}
1115	/* Find the root hub port this device is under */
1116	port_num = xhci_find_real_port_number(xhci, udev);
1117	if (!port_num)
1118		return -EINVAL;
1119	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1120	/* Set the port number in the virtual_device to the faked port number */
1121	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1122			top_dev = top_dev->parent)
1123		/* Found device below root hub */;
1124	dev->fake_port = top_dev->portnum;
1125	dev->real_port = port_num;
1126	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1127	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1128
1129	/* Find the right bandwidth table that this device will be a part of.
1130	 * If this is a full speed device attached directly to a root port (or a
1131	 * decendent of one), it counts as a primary bandwidth domain, not a
1132	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1133	 * will never be created for the HS root hub.
1134	 */
1135	if (!udev->tt || !udev->tt->hub->parent) {
1136		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1137	} else {
1138		struct xhci_root_port_bw_info *rh_bw;
1139		struct xhci_tt_bw_info *tt_bw;
1140
1141		rh_bw = &xhci->rh_bw[port_num - 1];
1142		/* Find the right TT. */
1143		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1144			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1145				continue;
1146
1147			if (!dev->udev->tt->multi ||
1148					(udev->tt->multi &&
1149					 tt_bw->ttport == dev->udev->ttport)) {
1150				dev->bw_table = &tt_bw->bw_table;
1151				dev->tt_info = tt_bw;
1152				break;
1153			}
1154		}
1155		if (!dev->tt_info)
1156			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1157	}
1158
1159	/* Is this a LS/FS device under an external HS hub? */
1160	if (udev->tt && udev->tt->hub->parent) {
1161		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1162						(udev->ttport << 8));
1163		if (udev->tt->multi)
1164			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1165	}
1166	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1167	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1168
1169	/* Step 4 - ring already allocated */
1170	/* Step 5 */
1171	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1172
1173	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1174	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1175					 max_packets);
1176
1177	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1178				   dev->eps[0].ring->cycle_state);
1179
1180	trace_xhci_setup_addressable_virt_device(dev);
1181
1182	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1183
1184	return 0;
1185}
1186
1187/*
1188 * Convert interval expressed as 2^(bInterval - 1) == interval into
1189 * straight exponent value 2^n == interval.
1190 *
1191 */
1192static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1193		struct usb_host_endpoint *ep)
1194{
1195	unsigned int interval;
1196
1197	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1198	if (interval != ep->desc.bInterval - 1)
1199		dev_warn(&udev->dev,
1200			 "ep %#x - rounding interval to %d %sframes\n",
1201			 ep->desc.bEndpointAddress,
1202			 1 << interval,
1203			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1204
1205	if (udev->speed == USB_SPEED_FULL) {
1206		/*
1207		 * Full speed isoc endpoints specify interval in frames,
1208		 * not microframes. We are using microframes everywhere,
1209		 * so adjust accordingly.
1210		 */
1211		interval += 3;	/* 1 frame = 2^3 uframes */
1212	}
1213
1214	return interval;
1215}
1216
1217/*
1218 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1219 * microframes, rounded down to nearest power of 2.
1220 */
1221static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1222		struct usb_host_endpoint *ep, unsigned int desc_interval,
1223		unsigned int min_exponent, unsigned int max_exponent)
1224{
1225	unsigned int interval;
1226
1227	interval = fls(desc_interval) - 1;
1228	interval = clamp_val(interval, min_exponent, max_exponent);
1229	if ((1 << interval) != desc_interval)
1230		dev_dbg(&udev->dev,
1231			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1232			 ep->desc.bEndpointAddress,
1233			 1 << interval,
1234			 desc_interval);
1235
1236	return interval;
1237}
1238
1239static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1240		struct usb_host_endpoint *ep)
1241{
1242	if (ep->desc.bInterval == 0)
1243		return 0;
1244	return xhci_microframes_to_exponent(udev, ep,
1245			ep->desc.bInterval, 0, 15);
1246}
1247
1248
1249static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1250		struct usb_host_endpoint *ep)
1251{
1252	return xhci_microframes_to_exponent(udev, ep,
1253			ep->desc.bInterval * 8, 3, 10);
1254}
1255
1256/* Return the polling or NAK interval.
1257 *
1258 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1259 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1260 *
1261 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1262 * is set to 0.
1263 */
1264static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1265		struct usb_host_endpoint *ep)
1266{
1267	unsigned int interval = 0;
1268
1269	switch (udev->speed) {
1270	case USB_SPEED_HIGH:
1271		/* Max NAK rate */
1272		if (usb_endpoint_xfer_control(&ep->desc) ||
1273		    usb_endpoint_xfer_bulk(&ep->desc)) {
1274			interval = xhci_parse_microframe_interval(udev, ep);
1275			break;
1276		}
1277		fallthrough;	/* SS and HS isoc/int have same decoding */
1278
1279	case USB_SPEED_SUPER_PLUS:
1280	case USB_SPEED_SUPER:
1281		if (usb_endpoint_xfer_int(&ep->desc) ||
1282		    usb_endpoint_xfer_isoc(&ep->desc)) {
1283			interval = xhci_parse_exponent_interval(udev, ep);
1284		}
1285		break;
1286
1287	case USB_SPEED_FULL:
1288		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1289			interval = xhci_parse_exponent_interval(udev, ep);
1290			break;
1291		}
1292		/*
1293		 * Fall through for interrupt endpoint interval decoding
1294		 * since it uses the same rules as low speed interrupt
1295		 * endpoints.
1296		 */
1297		fallthrough;
1298
1299	case USB_SPEED_LOW:
1300		if (usb_endpoint_xfer_int(&ep->desc) ||
1301		    usb_endpoint_xfer_isoc(&ep->desc)) {
1302
1303			interval = xhci_parse_frame_interval(udev, ep);
1304		}
1305		break;
1306
1307	default:
1308		BUG();
1309	}
1310	return interval;
1311}
1312
1313/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1314 * High speed endpoint descriptors can define "the number of additional
1315 * transaction opportunities per microframe", but that goes in the Max Burst
1316 * endpoint context field.
1317 */
1318static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1319		struct usb_host_endpoint *ep)
1320{
1321	if (udev->speed < USB_SPEED_SUPER ||
1322			!usb_endpoint_xfer_isoc(&ep->desc))
1323		return 0;
1324	return ep->ss_ep_comp.bmAttributes;
1325}
1326
1327static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1328				       struct usb_host_endpoint *ep)
1329{
1330	/* Super speed and Plus have max burst in ep companion desc */
1331	if (udev->speed >= USB_SPEED_SUPER)
1332		return ep->ss_ep_comp.bMaxBurst;
1333
1334	if (udev->speed == USB_SPEED_HIGH &&
1335	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1336	     usb_endpoint_xfer_int(&ep->desc)))
1337		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1338
1339	return 0;
1340}
1341
1342static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1343{
1344	int in;
1345
1346	in = usb_endpoint_dir_in(&ep->desc);
1347
1348	switch (usb_endpoint_type(&ep->desc)) {
1349	case USB_ENDPOINT_XFER_CONTROL:
1350		return CTRL_EP;
1351	case USB_ENDPOINT_XFER_BULK:
1352		return in ? BULK_IN_EP : BULK_OUT_EP;
1353	case USB_ENDPOINT_XFER_ISOC:
1354		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1355	case USB_ENDPOINT_XFER_INT:
1356		return in ? INT_IN_EP : INT_OUT_EP;
1357	}
1358	return 0;
1359}
1360
1361/* Return the maximum endpoint service interval time (ESIT) payload.
1362 * Basically, this is the maxpacket size, multiplied by the burst size
1363 * and mult size.
1364 */
1365static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1366		struct usb_host_endpoint *ep)
1367{
1368	int max_burst;
1369	int max_packet;
1370
1371	/* Only applies for interrupt or isochronous endpoints */
1372	if (usb_endpoint_xfer_control(&ep->desc) ||
1373			usb_endpoint_xfer_bulk(&ep->desc))
1374		return 0;
1375
1376	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1377	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1378	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1379		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1380
1381	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1382	if (udev->speed >= USB_SPEED_SUPER)
1383		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1384
1385	max_packet = usb_endpoint_maxp(&ep->desc);
1386	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1387	/* A 0 in max burst means 1 transfer per ESIT */
1388	return max_packet * max_burst;
1389}
1390
1391/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1392 * Drivers will have to call usb_alloc_streams() to do that.
1393 */
1394int xhci_endpoint_init(struct xhci_hcd *xhci,
1395		struct xhci_virt_device *virt_dev,
1396		struct usb_device *udev,
1397		struct usb_host_endpoint *ep,
1398		gfp_t mem_flags)
1399{
1400	unsigned int ep_index;
1401	struct xhci_ep_ctx *ep_ctx;
1402	struct xhci_ring *ep_ring;
1403	unsigned int max_packet;
1404	enum xhci_ring_type ring_type;
1405	u32 max_esit_payload;
1406	u32 endpoint_type;
1407	unsigned int max_burst;
1408	unsigned int interval;
1409	unsigned int mult;
1410	unsigned int avg_trb_len;
1411	unsigned int err_count = 0;
1412
1413	ep_index = xhci_get_endpoint_index(&ep->desc);
1414	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1415
1416	endpoint_type = xhci_get_endpoint_type(ep);
1417	if (!endpoint_type)
1418		return -EINVAL;
1419
1420	ring_type = usb_endpoint_type(&ep->desc);
1421
1422	/*
1423	 * Get values to fill the endpoint context, mostly from ep descriptor.
1424	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1425	 * have no clue on scatter gather list entry size. For Isoc and Int,
1426	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1427	 */
1428	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1429	interval = xhci_get_endpoint_interval(udev, ep);
1430
1431	/* Periodic endpoint bInterval limit quirk */
1432	if (usb_endpoint_xfer_int(&ep->desc) ||
1433	    usb_endpoint_xfer_isoc(&ep->desc)) {
1434		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1435		    udev->speed >= USB_SPEED_HIGH &&
1436		    interval >= 7) {
1437			interval = 6;
1438		}
1439	}
1440
1441	mult = xhci_get_endpoint_mult(udev, ep);
1442	max_packet = usb_endpoint_maxp(&ep->desc);
1443	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1444	avg_trb_len = max_esit_payload;
1445
1446	/* FIXME dig Mult and streams info out of ep companion desc */
1447
1448	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1449	if (!usb_endpoint_xfer_isoc(&ep->desc))
1450		err_count = 3;
1451	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1452	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1453		if (udev->speed == USB_SPEED_HIGH)
1454			max_packet = 512;
1455		if (udev->speed == USB_SPEED_FULL) {
1456			max_packet = rounddown_pow_of_two(max_packet);
1457			max_packet = clamp_val(max_packet, 8, 64);
1458		}
1459	}
1460	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1461	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1462		avg_trb_len = 8;
1463	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1464	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1465		mult = 0;
1466
1467	/* Set up the endpoint ring */
1468	virt_dev->eps[ep_index].new_ring =
1469		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1470	if (!virt_dev->eps[ep_index].new_ring)
1471		return -ENOMEM;
1472
1473	virt_dev->eps[ep_index].skip = false;
1474	ep_ring = virt_dev->eps[ep_index].new_ring;
1475
1476	/* Fill the endpoint context */
1477	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1478				      EP_INTERVAL(interval) |
1479				      EP_MULT(mult));
1480	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1481				       MAX_PACKET(max_packet) |
1482				       MAX_BURST(max_burst) |
1483				       ERROR_COUNT(err_count));
1484	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1485				  ep_ring->cycle_state);
1486
1487	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1488				      EP_AVG_TRB_LENGTH(avg_trb_len));
1489
1490	return 0;
1491}
1492
1493void xhci_endpoint_zero(struct xhci_hcd *xhci,
1494		struct xhci_virt_device *virt_dev,
1495		struct usb_host_endpoint *ep)
1496{
1497	unsigned int ep_index;
1498	struct xhci_ep_ctx *ep_ctx;
1499
1500	ep_index = xhci_get_endpoint_index(&ep->desc);
1501	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1502
1503	ep_ctx->ep_info = 0;
1504	ep_ctx->ep_info2 = 0;
1505	ep_ctx->deq = 0;
1506	ep_ctx->tx_info = 0;
1507	/* Don't free the endpoint ring until the set interface or configuration
1508	 * request succeeds.
1509	 */
1510}
1511
1512void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1513{
1514	bw_info->ep_interval = 0;
1515	bw_info->mult = 0;
1516	bw_info->num_packets = 0;
1517	bw_info->max_packet_size = 0;
1518	bw_info->type = 0;
1519	bw_info->max_esit_payload = 0;
1520}
1521
1522void xhci_update_bw_info(struct xhci_hcd *xhci,
1523		struct xhci_container_ctx *in_ctx,
1524		struct xhci_input_control_ctx *ctrl_ctx,
1525		struct xhci_virt_device *virt_dev)
1526{
1527	struct xhci_bw_info *bw_info;
1528	struct xhci_ep_ctx *ep_ctx;
1529	unsigned int ep_type;
1530	int i;
1531
1532	for (i = 1; i < 31; i++) {
1533		bw_info = &virt_dev->eps[i].bw_info;
1534
1535		/* We can't tell what endpoint type is being dropped, but
1536		 * unconditionally clearing the bandwidth info for non-periodic
1537		 * endpoints should be harmless because the info will never be
1538		 * set in the first place.
1539		 */
1540		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1541			/* Dropped endpoint */
1542			xhci_clear_endpoint_bw_info(bw_info);
1543			continue;
1544		}
1545
1546		if (EP_IS_ADDED(ctrl_ctx, i)) {
1547			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1548			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1549
1550			/* Ignore non-periodic endpoints */
1551			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1552					ep_type != ISOC_IN_EP &&
1553					ep_type != INT_IN_EP)
1554				continue;
1555
1556			/* Added or changed endpoint */
1557			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1558					le32_to_cpu(ep_ctx->ep_info));
1559			/* Number of packets and mult are zero-based in the
1560			 * input context, but we want one-based for the
1561			 * interval table.
1562			 */
1563			bw_info->mult = CTX_TO_EP_MULT(
1564					le32_to_cpu(ep_ctx->ep_info)) + 1;
1565			bw_info->num_packets = CTX_TO_MAX_BURST(
1566					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1567			bw_info->max_packet_size = MAX_PACKET_DECODED(
1568					le32_to_cpu(ep_ctx->ep_info2));
1569			bw_info->type = ep_type;
1570			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1571					le32_to_cpu(ep_ctx->tx_info));
1572		}
1573	}
1574}
1575
1576/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1577 * Useful when you want to change one particular aspect of the endpoint and then
1578 * issue a configure endpoint command.
1579 */
1580void xhci_endpoint_copy(struct xhci_hcd *xhci,
1581		struct xhci_container_ctx *in_ctx,
1582		struct xhci_container_ctx *out_ctx,
1583		unsigned int ep_index)
1584{
1585	struct xhci_ep_ctx *out_ep_ctx;
1586	struct xhci_ep_ctx *in_ep_ctx;
1587
1588	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1589	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1590
1591	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1592	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1593	in_ep_ctx->deq = out_ep_ctx->deq;
1594	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1595	if (xhci->quirks & XHCI_MTK_HOST) {
1596		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1597		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1598	}
1599}
1600
1601/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1602 * Useful when you want to change one particular aspect of the endpoint and then
1603 * issue a configure endpoint command.  Only the context entries field matters,
1604 * but we'll copy the whole thing anyway.
1605 */
1606void xhci_slot_copy(struct xhci_hcd *xhci,
1607		struct xhci_container_ctx *in_ctx,
1608		struct xhci_container_ctx *out_ctx)
1609{
1610	struct xhci_slot_ctx *in_slot_ctx;
1611	struct xhci_slot_ctx *out_slot_ctx;
1612
1613	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1614	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1615
1616	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1617	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1618	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1619	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1620}
1621
1622/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1623static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1624{
1625	int i;
1626	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1627	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1628
1629	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1630			"Allocating %d scratchpad buffers", num_sp);
1631
1632	if (!num_sp)
1633		return 0;
1634
1635	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1636				dev_to_node(dev));
1637	if (!xhci->scratchpad)
1638		goto fail_sp;
1639
1640	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1641				     size_mul(sizeof(u64), num_sp),
1642				     &xhci->scratchpad->sp_dma, flags);
1643	if (!xhci->scratchpad->sp_array)
1644		goto fail_sp2;
1645
1646	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1647					flags, dev_to_node(dev));
1648	if (!xhci->scratchpad->sp_buffers)
1649		goto fail_sp3;
1650
1651	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1652	for (i = 0; i < num_sp; i++) {
1653		dma_addr_t dma;
1654		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1655					       flags);
1656		if (!buf)
1657			goto fail_sp4;
1658
1659		xhci->scratchpad->sp_array[i] = dma;
1660		xhci->scratchpad->sp_buffers[i] = buf;
1661	}
1662
1663	return 0;
1664
1665 fail_sp4:
1666	while (i--)
1667		dma_free_coherent(dev, xhci->page_size,
1668				    xhci->scratchpad->sp_buffers[i],
1669				    xhci->scratchpad->sp_array[i]);
1670
1671	kfree(xhci->scratchpad->sp_buffers);
1672
1673 fail_sp3:
1674	dma_free_coherent(dev, num_sp * sizeof(u64),
1675			    xhci->scratchpad->sp_array,
1676			    xhci->scratchpad->sp_dma);
1677
1678 fail_sp2:
1679	kfree(xhci->scratchpad);
1680	xhci->scratchpad = NULL;
1681
1682 fail_sp:
1683	return -ENOMEM;
1684}
1685
1686static void scratchpad_free(struct xhci_hcd *xhci)
1687{
1688	int num_sp;
1689	int i;
1690	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1691
1692	if (!xhci->scratchpad)
1693		return;
1694
1695	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1696
1697	for (i = 0; i < num_sp; i++) {
1698		dma_free_coherent(dev, xhci->page_size,
1699				    xhci->scratchpad->sp_buffers[i],
1700				    xhci->scratchpad->sp_array[i]);
1701	}
1702	kfree(xhci->scratchpad->sp_buffers);
1703	dma_free_coherent(dev, num_sp * sizeof(u64),
1704			    xhci->scratchpad->sp_array,
1705			    xhci->scratchpad->sp_dma);
1706	kfree(xhci->scratchpad);
1707	xhci->scratchpad = NULL;
1708}
1709
1710struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1711		bool allocate_completion, gfp_t mem_flags)
1712{
1713	struct xhci_command *command;
1714	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1715
1716	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1717	if (!command)
1718		return NULL;
1719
1720	if (allocate_completion) {
1721		command->completion =
1722			kzalloc_node(sizeof(struct completion), mem_flags,
1723				dev_to_node(dev));
1724		if (!command->completion) {
1725			kfree(command);
1726			return NULL;
1727		}
1728		init_completion(command->completion);
1729	}
1730
1731	command->status = 0;
1732	INIT_LIST_HEAD(&command->cmd_list);
1733	return command;
1734}
1735
1736struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1737		bool allocate_completion, gfp_t mem_flags)
1738{
1739	struct xhci_command *command;
1740
1741	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1742	if (!command)
1743		return NULL;
1744
1745	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1746						   mem_flags);
1747	if (!command->in_ctx) {
1748		kfree(command->completion);
1749		kfree(command);
1750		return NULL;
1751	}
1752	return command;
1753}
1754
1755void xhci_urb_free_priv(struct urb_priv *urb_priv)
1756{
1757	kfree(urb_priv);
1758}
1759
1760void xhci_free_command(struct xhci_hcd *xhci,
1761		struct xhci_command *command)
1762{
1763	xhci_free_container_ctx(xhci,
1764			command->in_ctx);
1765	kfree(command->completion);
1766	kfree(command);
1767}
1768
1769int xhci_alloc_erst(struct xhci_hcd *xhci,
1770		    struct xhci_ring *evt_ring,
1771		    struct xhci_erst *erst,
1772		    gfp_t flags)
1773{
1774	size_t size;
1775	unsigned int val;
1776	struct xhci_segment *seg;
1777	struct xhci_erst_entry *entry;
1778
1779	size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1780	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1781					   size, &erst->erst_dma_addr, flags);
1782	if (!erst->entries)
1783		return -ENOMEM;
1784
1785	erst->num_entries = evt_ring->num_segs;
1786
1787	seg = evt_ring->first_seg;
1788	for (val = 0; val < evt_ring->num_segs; val++) {
1789		entry = &erst->entries[val];
1790		entry->seg_addr = cpu_to_le64(seg->dma);
1791		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1792		entry->rsvd = 0;
1793		seg = seg->next;
1794	}
1795
1796	return 0;
1797}
1798
1799static void
1800xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1801{
1802	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1803	size_t erst_size;
1804	u64 tmp64;
1805	u32 tmp;
1806
1807	if (!ir)
1808		return;
1809
1810	erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1811	if (ir->erst.entries)
1812		dma_free_coherent(dev, erst_size,
1813				  ir->erst.entries,
1814				  ir->erst.erst_dma_addr);
1815	ir->erst.entries = NULL;
1816
1817	/*
1818	 * Clean out interrupter registers except ERSTBA. Clearing either the
1819	 * low or high 32 bits of ERSTBA immediately causes the controller to
1820	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1821	 */
1822	if (ir->ir_set) {
1823		tmp = readl(&ir->ir_set->erst_size);
1824		tmp &= ERST_SIZE_MASK;
1825		writel(tmp, &ir->ir_set->erst_size);
1826
1827		tmp64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
1828		tmp64 &= (u64) ERST_PTR_MASK;
1829		xhci_write_64(xhci, tmp64, &ir->ir_set->erst_dequeue);
1830	}
1831
1832	/* free interrrupter event ring */
1833	if (ir->event_ring)
1834		xhci_ring_free(xhci, ir->event_ring);
1835	ir->event_ring = NULL;
1836
1837	kfree(ir);
1838}
1839
1840void xhci_mem_cleanup(struct xhci_hcd *xhci)
1841{
1842	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1843	int i, j, num_ports;
1844
1845	cancel_delayed_work_sync(&xhci->cmd_timer);
1846
1847	xhci_free_interrupter(xhci, xhci->interrupter);
1848	xhci->interrupter = NULL;
1849	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed primary event ring");
1850
1851	if (xhci->cmd_ring)
1852		xhci_ring_free(xhci, xhci->cmd_ring);
1853	xhci->cmd_ring = NULL;
1854	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1855	xhci_cleanup_command_queue(xhci);
1856
1857	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1858	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1859		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1860		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1861			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1862			while (!list_empty(ep))
1863				list_del_init(ep->next);
1864		}
1865	}
1866
1867	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1868		xhci_free_virt_devices_depth_first(xhci, i);
1869
1870	dma_pool_destroy(xhci->segment_pool);
1871	xhci->segment_pool = NULL;
1872	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1873
1874	dma_pool_destroy(xhci->device_pool);
1875	xhci->device_pool = NULL;
1876	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1877
1878	dma_pool_destroy(xhci->small_streams_pool);
1879	xhci->small_streams_pool = NULL;
1880	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1881			"Freed small stream array pool");
1882
1883	dma_pool_destroy(xhci->medium_streams_pool);
1884	xhci->medium_streams_pool = NULL;
1885	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1886			"Freed medium stream array pool");
1887
1888	if (xhci->dcbaa)
1889		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1890				xhci->dcbaa, xhci->dcbaa->dma);
1891	xhci->dcbaa = NULL;
1892
1893	scratchpad_free(xhci);
1894
1895	if (!xhci->rh_bw)
1896		goto no_bw;
1897
1898	for (i = 0; i < num_ports; i++) {
1899		struct xhci_tt_bw_info *tt, *n;
1900		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1901			list_del(&tt->tt_list);
1902			kfree(tt);
1903		}
1904	}
1905
1906no_bw:
1907	xhci->cmd_ring_reserved_trbs = 0;
1908	xhci->usb2_rhub.num_ports = 0;
1909	xhci->usb3_rhub.num_ports = 0;
1910	xhci->num_active_eps = 0;
1911	kfree(xhci->usb2_rhub.ports);
1912	kfree(xhci->usb3_rhub.ports);
1913	kfree(xhci->hw_ports);
1914	kfree(xhci->rh_bw);
1915	kfree(xhci->ext_caps);
1916	for (i = 0; i < xhci->num_port_caps; i++)
1917		kfree(xhci->port_caps[i].psi);
1918	kfree(xhci->port_caps);
1919	xhci->num_port_caps = 0;
1920
1921	xhci->usb2_rhub.ports = NULL;
1922	xhci->usb3_rhub.ports = NULL;
1923	xhci->hw_ports = NULL;
1924	xhci->rh_bw = NULL;
1925	xhci->ext_caps = NULL;
1926	xhci->port_caps = NULL;
1927
1928	xhci->page_size = 0;
1929	xhci->page_shift = 0;
1930	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1931	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1932}
1933
1934static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1935{
1936	u64 temp;
1937	dma_addr_t deq;
1938
1939	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1940			ir->event_ring->dequeue);
1941	if (!deq)
1942		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1943	/* Update HC event ring dequeue pointer */
1944	temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
1945	temp &= ERST_PTR_MASK;
1946	/* Don't clear the EHB bit (which is RW1C) because
1947	 * there might be more events to service.
1948	 */
1949	temp &= ~ERST_EHB;
1950	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1951		       "// Write event ring dequeue pointer, preserving EHB bit");
1952	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1953			&ir->ir_set->erst_dequeue);
1954}
1955
1956static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1957		__le32 __iomem *addr, int max_caps)
1958{
1959	u32 temp, port_offset, port_count;
1960	int i;
1961	u8 major_revision, minor_revision, tmp_minor_revision;
1962	struct xhci_hub *rhub;
1963	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1964	struct xhci_port_cap *port_cap;
1965
1966	temp = readl(addr);
1967	major_revision = XHCI_EXT_PORT_MAJOR(temp);
1968	minor_revision = XHCI_EXT_PORT_MINOR(temp);
1969
1970	if (major_revision == 0x03) {
1971		rhub = &xhci->usb3_rhub;
1972		/*
1973		 * Some hosts incorrectly use sub-minor version for minor
1974		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
1975		 * for bcdUSB 0x310). Since there is no USB release with sub
1976		 * minor version 0x301 to 0x309, we can assume that they are
1977		 * incorrect and fix it here.
1978		 */
1979		if (minor_revision > 0x00 && minor_revision < 0x10)
1980			minor_revision <<= 4;
1981		/*
1982		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
1983		 * but only support Gen1.
1984		 */
1985		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
1986			tmp_minor_revision = minor_revision;
1987			minor_revision = 0;
1988		}
1989
1990	} else if (major_revision <= 0x02) {
1991		rhub = &xhci->usb2_rhub;
1992	} else {
1993		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
1994				addr, major_revision);
1995		/* Ignoring port protocol we can't understand. FIXME */
1996		return;
1997	}
1998
1999	/* Port offset and count in the third dword, see section 7.2 */
2000	temp = readl(addr + 2);
2001	port_offset = XHCI_EXT_PORT_OFF(temp);
2002	port_count = XHCI_EXT_PORT_COUNT(temp);
2003	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2004		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2005		       addr, port_offset, port_count, major_revision);
2006	/* Port count includes the current port offset */
2007	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2008		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2009		return;
2010
2011	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2012	if (xhci->num_port_caps > max_caps)
2013		return;
2014
2015	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2016
2017	if (port_cap->psi_count) {
2018		port_cap->psi = kcalloc_node(port_cap->psi_count,
2019					     sizeof(*port_cap->psi),
2020					     GFP_KERNEL, dev_to_node(dev));
2021		if (!port_cap->psi)
2022			port_cap->psi_count = 0;
2023
2024		port_cap->psi_uid_count++;
2025		for (i = 0; i < port_cap->psi_count; i++) {
2026			port_cap->psi[i] = readl(addr + 4 + i);
2027
2028			/* count unique ID values, two consecutive entries can
2029			 * have the same ID if link is assymetric
2030			 */
2031			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2032				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2033				port_cap->psi_uid_count++;
2034
2035			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2036			    major_revision == 0x03 &&
2037			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2038				minor_revision = tmp_minor_revision;
2039
2040			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2041				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2042				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2043				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2044				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2045				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2046				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2047		}
2048	}
2049
2050	rhub->maj_rev = major_revision;
2051
2052	if (rhub->min_rev < minor_revision)
2053		rhub->min_rev = minor_revision;
2054
2055	port_cap->maj_rev = major_revision;
2056	port_cap->min_rev = minor_revision;
2057
2058	/* cache usb2 port capabilities */
2059	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2060		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2061
2062	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2063		 (temp & XHCI_HLC)) {
2064		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2065			       "xHCI 1.0: support USB2 hardware lpm");
2066		xhci->hw_lpm_support = 1;
2067	}
2068
2069	port_offset--;
2070	for (i = port_offset; i < (port_offset + port_count); i++) {
2071		struct xhci_port *hw_port = &xhci->hw_ports[i];
2072		/* Duplicate entry.  Ignore the port if the revisions differ. */
2073		if (hw_port->rhub) {
2074			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2075			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2076					hw_port->rhub->maj_rev, major_revision);
2077			/* Only adjust the roothub port counts if we haven't
2078			 * found a similar duplicate.
2079			 */
2080			if (hw_port->rhub != rhub &&
2081				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2082				hw_port->rhub->num_ports--;
2083				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2084			}
2085			continue;
2086		}
2087		hw_port->rhub = rhub;
2088		hw_port->port_cap = port_cap;
2089		rhub->num_ports++;
2090	}
2091	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2092}
2093
2094static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2095					struct xhci_hub *rhub, gfp_t flags)
2096{
2097	int port_index = 0;
2098	int i;
2099	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2100
2101	if (!rhub->num_ports)
2102		return;
2103	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2104			flags, dev_to_node(dev));
2105	if (!rhub->ports)
2106		return;
2107
2108	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2109		if (xhci->hw_ports[i].rhub != rhub ||
2110		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2111			continue;
2112		xhci->hw_ports[i].hcd_portnum = port_index;
2113		rhub->ports[port_index] = &xhci->hw_ports[i];
2114		port_index++;
2115		if (port_index == rhub->num_ports)
2116			break;
2117	}
2118}
2119
2120/*
2121 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2122 * specify what speeds each port is supposed to be.  We can't count on the port
2123 * speed bits in the PORTSC register being correct until a device is connected,
2124 * but we need to set up the two fake roothubs with the correct number of USB
2125 * 3.0 and USB 2.0 ports at host controller initialization time.
2126 */
2127static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2128{
2129	void __iomem *base;
2130	u32 offset;
2131	unsigned int num_ports;
2132	int i, j;
2133	int cap_count = 0;
2134	u32 cap_start;
2135	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2136
2137	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2138	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2139				flags, dev_to_node(dev));
2140	if (!xhci->hw_ports)
2141		return -ENOMEM;
2142
2143	for (i = 0; i < num_ports; i++) {
2144		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2145			NUM_PORT_REGS * i;
2146		xhci->hw_ports[i].hw_portnum = i;
2147
2148		init_completion(&xhci->hw_ports[i].rexit_done);
2149		init_completion(&xhci->hw_ports[i].u3exit_done);
2150	}
2151
2152	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2153				   dev_to_node(dev));
2154	if (!xhci->rh_bw)
2155		return -ENOMEM;
2156	for (i = 0; i < num_ports; i++) {
2157		struct xhci_interval_bw_table *bw_table;
2158
2159		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2160		bw_table = &xhci->rh_bw[i].bw_table;
2161		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2162			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2163	}
2164	base = &xhci->cap_regs->hc_capbase;
2165
2166	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2167	if (!cap_start) {
2168		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2169		return -ENODEV;
2170	}
2171
2172	offset = cap_start;
2173	/* count extended protocol capability entries for later caching */
2174	while (offset) {
2175		cap_count++;
2176		offset = xhci_find_next_ext_cap(base, offset,
2177						      XHCI_EXT_CAPS_PROTOCOL);
2178	}
2179
2180	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2181				flags, dev_to_node(dev));
2182	if (!xhci->ext_caps)
2183		return -ENOMEM;
2184
2185	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2186				flags, dev_to_node(dev));
2187	if (!xhci->port_caps)
2188		return -ENOMEM;
2189
2190	offset = cap_start;
2191
2192	while (offset) {
2193		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2194		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2195		    num_ports)
2196			break;
2197		offset = xhci_find_next_ext_cap(base, offset,
2198						XHCI_EXT_CAPS_PROTOCOL);
2199	}
2200	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2201		xhci_warn(xhci, "No ports on the roothubs?\n");
2202		return -ENODEV;
2203	}
2204	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2205		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2206		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2207
2208	/* Place limits on the number of roothub ports so that the hub
2209	 * descriptors aren't longer than the USB core will allocate.
2210	 */
2211	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2212		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2213				"Limiting USB 3.0 roothub ports to %u.",
2214				USB_SS_MAXPORTS);
2215		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2216	}
2217	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2218		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2219				"Limiting USB 2.0 roothub ports to %u.",
2220				USB_MAXCHILDREN);
2221		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2222	}
2223
2224	if (!xhci->usb2_rhub.num_ports)
2225		xhci_info(xhci, "USB2 root hub has no ports\n");
2226
2227	if (!xhci->usb3_rhub.num_ports)
2228		xhci_info(xhci, "USB3 root hub has no ports\n");
2229
2230	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2231	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2232
2233	return 0;
2234}
2235
2236static struct xhci_interrupter *
2237xhci_alloc_interrupter(struct xhci_hcd *xhci, gfp_t flags)
2238{
2239	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2240	struct xhci_interrupter *ir;
2241	int ret;
2242
2243	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2244	if (!ir)
2245		return NULL;
2246
2247	ir->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2248					0, flags);
2249	if (!ir->event_ring) {
2250		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2251		kfree(ir);
2252		return NULL;
2253	}
2254
2255	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2256	if (ret) {
2257		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2258		xhci_ring_free(xhci, ir->event_ring);
2259		kfree(ir);
2260		return NULL;
2261	}
2262
2263	return ir;
2264}
2265
2266static int
2267xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2268		     unsigned int intr_num)
2269{
2270	u64 erst_base;
2271	u32 erst_size;
2272
2273	if (intr_num > xhci->max_interrupters) {
2274		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2275			  intr_num, xhci->max_interrupters);
2276		return -EINVAL;
2277	}
2278
2279	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2280
2281	/* set ERST count with the number of entries in the segment table */
2282	erst_size = readl(&ir->ir_set->erst_size);
2283	erst_size &= ERST_SIZE_MASK;
2284	erst_size |= ERST_NUM_SEGS;
2285	writel(erst_size, &ir->ir_set->erst_size);
2286
2287	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2288	erst_base &= ERST_BASE_RSVDP;
2289	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2290	xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2291
2292	/* Set the event ring dequeue address of this interrupter */
2293	xhci_set_hc_event_deq(xhci, ir);
2294
2295	return 0;
2296}
2297
2298int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2299{
2300	dma_addr_t	dma;
2301	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2302	unsigned int	val, val2;
2303	u64		val_64;
2304	u32		page_size, temp;
2305	int		i;
2306
2307	INIT_LIST_HEAD(&xhci->cmd_list);
2308
2309	/* init command timeout work */
2310	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2311	init_completion(&xhci->cmd_ring_stop_completion);
2312
2313	page_size = readl(&xhci->op_regs->page_size);
2314	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2315			"Supported page size register = 0x%x", page_size);
2316	i = ffs(page_size);
2317	if (i < 16)
2318		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2319			"Supported page size of %iK", (1 << (i+12)) / 1024);
2320	else
2321		xhci_warn(xhci, "WARN: no supported page size\n");
2322	/* Use 4K pages, since that's common and the minimum the HC supports */
2323	xhci->page_shift = 12;
2324	xhci->page_size = 1 << xhci->page_shift;
2325	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2326			"HCD page size set to %iK", xhci->page_size / 1024);
2327
2328	/*
2329	 * Program the Number of Device Slots Enabled field in the CONFIG
2330	 * register with the max value of slots the HC can handle.
2331	 */
2332	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2333	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2334			"// xHC can handle at most %d device slots.", val);
2335	val2 = readl(&xhci->op_regs->config_reg);
2336	val |= (val2 & ~HCS_SLOTS_MASK);
2337	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2338			"// Setting Max device slots reg = 0x%x.", val);
2339	writel(val, &xhci->op_regs->config_reg);
2340
2341	/*
2342	 * xHCI section 5.4.6 - Device Context array must be
2343	 * "physically contiguous and 64-byte (cache line) aligned".
2344	 */
2345	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2346			flags);
2347	if (!xhci->dcbaa)
2348		goto fail;
2349	xhci->dcbaa->dma = dma;
2350	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2351			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2352			&xhci->dcbaa->dma, xhci->dcbaa);
2353	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2354
2355	/*
2356	 * Initialize the ring segment pool.  The ring must be a contiguous
2357	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2358	 * however, the command ring segment needs 64-byte aligned segments
2359	 * and our use of dma addresses in the trb_address_map radix tree needs
2360	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2361	 */
2362	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2363		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2364				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2365	else
2366		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2367				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2368
2369	/* See Table 46 and Note on Figure 55 */
2370	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2371			2112, 64, xhci->page_size);
2372	if (!xhci->segment_pool || !xhci->device_pool)
2373		goto fail;
2374
2375	/* Linear stream context arrays don't have any boundary restrictions,
2376	 * and only need to be 16-byte aligned.
2377	 */
2378	xhci->small_streams_pool =
2379		dma_pool_create("xHCI 256 byte stream ctx arrays",
2380			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2381	xhci->medium_streams_pool =
2382		dma_pool_create("xHCI 1KB stream ctx arrays",
2383			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2384	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2385	 * will be allocated with dma_alloc_coherent()
2386	 */
2387
2388	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2389		goto fail;
2390
2391	/* Set up the command ring to have one segments for now. */
2392	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2393	if (!xhci->cmd_ring)
2394		goto fail;
2395	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2396			"Allocated command ring at %p", xhci->cmd_ring);
2397	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2398			&xhci->cmd_ring->first_seg->dma);
2399
2400	/* Set the address in the Command Ring Control register */
2401	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2402	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2403		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2404		xhci->cmd_ring->cycle_state;
2405	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406			"// Setting command ring address to 0x%016llx", val_64);
2407	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2408
2409	/* Reserve one command ring TRB for disabling LPM.
2410	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2411	 * disabling LPM, we only need to reserve one TRB for all devices.
2412	 */
2413	xhci->cmd_ring_reserved_trbs++;
2414
2415	val = readl(&xhci->cap_regs->db_off);
2416	val &= DBOFF_MASK;
2417	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2419		       val);
2420	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2421
2422	/* Allocate and set up primary interrupter 0 with an event ring. */
2423	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2424		       "Allocating primary event ring");
2425	xhci->interrupter = xhci_alloc_interrupter(xhci, flags);
2426	if (!xhci->interrupter)
2427		goto fail;
2428
2429	if (xhci_add_interrupter(xhci, xhci->interrupter, 0))
2430		goto fail;
2431
2432	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2433
2434	/*
2435	 * XXX: Might need to set the Interrupter Moderation Register to
2436	 * something other than the default (~1ms minimum between interrupts).
2437	 * See section 5.5.1.2.
2438	 */
2439	for (i = 0; i < MAX_HC_SLOTS; i++)
2440		xhci->devs[i] = NULL;
2441
2442	if (scratchpad_alloc(xhci, flags))
2443		goto fail;
2444	if (xhci_setup_port_arrays(xhci, flags))
2445		goto fail;
2446
2447	/* Enable USB 3.0 device notifications for function remote wake, which
2448	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2449	 * U3 (device suspend).
2450	 */
2451	temp = readl(&xhci->op_regs->dev_notification);
2452	temp &= ~DEV_NOTE_MASK;
2453	temp |= DEV_NOTE_FWAKE;
2454	writel(temp, &xhci->op_regs->dev_notification);
2455
2456	return 0;
2457
2458fail:
2459	xhci_halt(xhci);
2460	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2461	xhci_mem_cleanup(xhci);
2462	return -ENOMEM;
2463}
2464