xref: /kernel/linux/linux-6.6/drivers/usb/host/ehci-q.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2001-2004 by David Brownell
4 */
5
6/* this file is part of ehci-hcd.c */
7
8/*-------------------------------------------------------------------------*/
9
10/*
11 * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
12 *
13 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
14 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
15 * buffers needed for the larger number).  We use one QH per endpoint, queue
16 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
17 *
18 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
19 * interrupts) needs careful scheduling.  Performance improvements can be
20 * an ongoing challenge.  That's in "ehci-sched.c".
21 *
22 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
23 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
24 * (b) special fields in qh entries or (c) split iso entries.  TTs will
25 * buffer low/full speed data so the host collects it at high speed.
26 */
27
28/*-------------------------------------------------------------------------*/
29
30/* PID Codes that are used here, from EHCI specification, Table 3-16. */
31#define PID_CODE_IN    1
32#define PID_CODE_SETUP 2
33
34/* fill a qtd, returning how much of the buffer we were able to queue up */
35
36static unsigned int
37qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
38		  size_t len, int token, int maxpacket)
39{
40	unsigned int count;
41	u64	addr = buf;
42	int	i;
43
44	/* one buffer entry per 4K ... first might be short or unaligned */
45	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
46	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
47	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
48	if (likely (len < count))		/* ... iff needed */
49		count = len;
50	else {
51		buf +=  0x1000;
52		buf &= ~0x0fff;
53
54		/* per-qtd limit: from 16K to 20K (best alignment) */
55		for (i = 1; count < len && i < 5; i++) {
56			addr = buf;
57			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
58			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
59					(u32)(addr >> 32));
60			buf += 0x1000;
61			if ((count + 0x1000) < len)
62				count += 0x1000;
63			else
64				count = len;
65		}
66
67		/* short packets may only terminate transfers */
68		if (count != len)
69			count -= (count % maxpacket);
70	}
71	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
72	qtd->length = count;
73
74	return count;
75}
76
77/*-------------------------------------------------------------------------*/
78
79static inline void
80qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
81{
82	struct ehci_qh_hw *hw = qh->hw;
83
84	/* writes to an active overlay are unsafe */
85	WARN_ON(qh->qh_state != QH_STATE_IDLE);
86
87	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
88	hw->hw_alt_next = EHCI_LIST_END(ehci);
89
90	/* Except for control endpoints, we make hardware maintain data
91	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
92	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
93	 * ever clear it.
94	 */
95	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
96		unsigned	is_out, epnum;
97
98		is_out = qh->is_out;
99		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
100		if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
101			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
102			usb_settoggle(qh->ps.udev, epnum, is_out, 1);
103		}
104	}
105
106	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
107}
108
109/* if it weren't for a common silicon quirk (writing the dummy into the qh
110 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
111 * recovery (including urb dequeue) would need software changes to a QH...
112 */
113static void
114qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
115{
116	struct ehci_qtd *qtd;
117
118	qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
119
120	/*
121	 * first qtd may already be partially processed.
122	 * If we come here during unlink, the QH overlay region
123	 * might have reference to the just unlinked qtd. The
124	 * qtd is updated in qh_completions(). Update the QH
125	 * overlay here.
126	 */
127	if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
128		qh->hw->hw_qtd_next = qtd->hw_next;
129		if (qh->should_be_inactive)
130			ehci_warn(ehci, "qh %p should be inactive!\n", qh);
131	} else {
132		qh_update(ehci, qh, qtd);
133	}
134	qh->should_be_inactive = 0;
135}
136
137/*-------------------------------------------------------------------------*/
138
139static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
140
141static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
142		struct usb_host_endpoint *ep)
143{
144	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
145	struct ehci_qh		*qh = ep->hcpriv;
146	unsigned long		flags;
147
148	spin_lock_irqsave(&ehci->lock, flags);
149	qh->clearing_tt = 0;
150	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
151			&& ehci->rh_state == EHCI_RH_RUNNING)
152		qh_link_async(ehci, qh);
153	spin_unlock_irqrestore(&ehci->lock, flags);
154}
155
156static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
157		struct urb *urb, u32 token)
158{
159
160	/* If an async split transaction gets an error or is unlinked,
161	 * the TT buffer may be left in an indeterminate state.  We
162	 * have to clear the TT buffer.
163	 *
164	 * Note: this routine is never called for Isochronous transfers.
165	 */
166	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
167#ifdef CONFIG_DYNAMIC_DEBUG
168		struct usb_device *tt = urb->dev->tt->hub;
169		dev_dbg(&tt->dev,
170			"clear tt buffer port %d, a%d ep%d t%08x\n",
171			urb->dev->ttport, urb->dev->devnum,
172			usb_pipeendpoint(urb->pipe), token);
173#endif /* CONFIG_DYNAMIC_DEBUG */
174		if (!ehci_is_TDI(ehci)
175				|| urb->dev->tt->hub !=
176				   ehci_to_hcd(ehci)->self.root_hub) {
177			if (usb_hub_clear_tt_buffer(urb) == 0)
178				qh->clearing_tt = 1;
179		} else {
180
181			/* REVISIT ARC-derived cores don't clear the root
182			 * hub TT buffer in this way...
183			 */
184		}
185	}
186}
187
188static int qtd_copy_status (
189	struct ehci_hcd *ehci,
190	struct urb *urb,
191	size_t length,
192	u32 token
193)
194{
195	int	status = -EINPROGRESS;
196
197	/* count IN/OUT bytes, not SETUP (even short packets) */
198	if (likely(QTD_PID(token) != PID_CODE_SETUP))
199		urb->actual_length += length - QTD_LENGTH (token);
200
201	/* don't modify error codes */
202	if (unlikely(urb->unlinked))
203		return status;
204
205	/* force cleanup after short read; not always an error */
206	if (unlikely (IS_SHORT_READ (token)))
207		status = -EREMOTEIO;
208
209	/* serious "can't proceed" faults reported by the hardware */
210	if (token & QTD_STS_HALT) {
211		if (token & QTD_STS_BABBLE) {
212			/* FIXME "must" disable babbling device's port too */
213			status = -EOVERFLOW;
214		/*
215		 * When MMF is active and PID Code is IN, queue is halted.
216		 * EHCI Specification, Table 4-13.
217		 */
218		} else if ((token & QTD_STS_MMF) &&
219					(QTD_PID(token) == PID_CODE_IN)) {
220			status = -EPROTO;
221		/* CERR nonzero + halt --> stall */
222		} else if (QTD_CERR(token)) {
223			status = -EPIPE;
224
225		/* In theory, more than one of the following bits can be set
226		 * since they are sticky and the transaction is retried.
227		 * Which to test first is rather arbitrary.
228		 */
229		} else if (token & QTD_STS_MMF) {
230			/* fs/ls interrupt xfer missed the complete-split */
231			status = -EPROTO;
232		} else if (token & QTD_STS_DBE) {
233			status = (QTD_PID (token) == 1) /* IN ? */
234				? -ENOSR  /* hc couldn't read data */
235				: -ECOMM; /* hc couldn't write data */
236		} else if (token & QTD_STS_XACT) {
237			/* timeout, bad CRC, wrong PID, etc */
238			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
239				urb->dev->devpath,
240				usb_pipeendpoint(urb->pipe),
241				usb_pipein(urb->pipe) ? "in" : "out");
242			status = -EPROTO;
243		} else {	/* unknown */
244			status = -EPROTO;
245		}
246	}
247
248	return status;
249}
250
251static void
252ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
253{
254	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
255		/* ... update hc-wide periodic stats */
256		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
257	}
258
259	if (unlikely(urb->unlinked)) {
260		INCR(ehci->stats.unlink);
261	} else {
262		/* report non-error and short read status as zero */
263		if (status == -EINPROGRESS || status == -EREMOTEIO)
264			status = 0;
265		INCR(ehci->stats.complete);
266	}
267
268#ifdef EHCI_URB_TRACE
269	ehci_dbg (ehci,
270		"%s %s urb %p ep%d%s status %d len %d/%d\n",
271		__func__, urb->dev->devpath, urb,
272		usb_pipeendpoint (urb->pipe),
273		usb_pipein (urb->pipe) ? "in" : "out",
274		status,
275		urb->actual_length, urb->transfer_buffer_length);
276#endif
277
278	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
279	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
280}
281
282static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
283
284/*
285 * Process and free completed qtds for a qh, returning URBs to drivers.
286 * Chases up to qh->hw_current.  Returns nonzero if the caller should
287 * unlink qh.
288 */
289static unsigned
290qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
291{
292	struct ehci_qtd		*last, *end = qh->dummy;
293	struct list_head	*entry, *tmp;
294	int			last_status;
295	int			stopped;
296	u8			state;
297	struct ehci_qh_hw	*hw = qh->hw;
298
299	/* completions (or tasks on other cpus) must never clobber HALT
300	 * till we've gone through and cleaned everything up, even when
301	 * they add urbs to this qh's queue or mark them for unlinking.
302	 *
303	 * NOTE:  unlinking expects to be done in queue order.
304	 *
305	 * It's a bug for qh->qh_state to be anything other than
306	 * QH_STATE_IDLE, unless our caller is scan_async() or
307	 * scan_intr().
308	 */
309	state = qh->qh_state;
310	qh->qh_state = QH_STATE_COMPLETING;
311	stopped = (state == QH_STATE_IDLE);
312
313 rescan:
314	last = NULL;
315	last_status = -EINPROGRESS;
316	qh->dequeue_during_giveback = 0;
317
318	/* remove de-activated QTDs from front of queue.
319	 * after faults (including short reads), cleanup this urb
320	 * then let the queue advance.
321	 * if queue is stopped, handles unlinks.
322	 */
323	list_for_each_safe (entry, tmp, &qh->qtd_list) {
324		struct ehci_qtd	*qtd;
325		struct urb	*urb;
326		u32		token = 0;
327
328		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
329		urb = qtd->urb;
330
331		/* clean up any state from previous QTD ...*/
332		if (last) {
333			if (likely (last->urb != urb)) {
334				ehci_urb_done(ehci, last->urb, last_status);
335				last_status = -EINPROGRESS;
336			}
337			ehci_qtd_free (ehci, last);
338			last = NULL;
339		}
340
341		/* ignore urbs submitted during completions we reported */
342		if (qtd == end)
343			break;
344
345		/* hardware copies qtd out of qh overlay */
346		rmb ();
347		token = hc32_to_cpu(ehci, qtd->hw_token);
348
349		/* always clean up qtds the hc de-activated */
350 retry_xacterr:
351		if ((token & QTD_STS_ACTIVE) == 0) {
352
353			/* Report Data Buffer Error: non-fatal but useful */
354			if (token & QTD_STS_DBE)
355				ehci_dbg(ehci,
356					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
357					urb,
358					usb_endpoint_num(&urb->ep->desc),
359					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
360					urb->transfer_buffer_length,
361					qtd,
362					qh);
363
364			/* on STALL, error, and short reads this urb must
365			 * complete and all its qtds must be recycled.
366			 */
367			if ((token & QTD_STS_HALT) != 0) {
368
369				/* retry transaction errors until we
370				 * reach the software xacterr limit
371				 */
372				if ((token & QTD_STS_XACT) &&
373						QTD_CERR(token) == 0 &&
374						++qh->xacterrs < QH_XACTERR_MAX &&
375						!urb->unlinked) {
376					ehci_dbg(ehci,
377	"detected XactErr len %zu/%zu retry %d\n",
378	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
379
380					/* reset the token in the qtd and the
381					 * qh overlay (which still contains
382					 * the qtd) so that we pick up from
383					 * where we left off
384					 */
385					token &= ~QTD_STS_HALT;
386					token |= QTD_STS_ACTIVE |
387							(EHCI_TUNE_CERR << 10);
388					qtd->hw_token = cpu_to_hc32(ehci,
389							token);
390					wmb();
391					hw->hw_token = cpu_to_hc32(ehci,
392							token);
393					goto retry_xacterr;
394				}
395				stopped = 1;
396				qh->unlink_reason |= QH_UNLINK_HALTED;
397
398			/* magic dummy for some short reads; qh won't advance.
399			 * that silicon quirk can kick in with this dummy too.
400			 *
401			 * other short reads won't stop the queue, including
402			 * control transfers (status stage handles that) or
403			 * most other single-qtd reads ... the queue stops if
404			 * URB_SHORT_NOT_OK was set so the driver submitting
405			 * the urbs could clean it up.
406			 */
407			} else if (IS_SHORT_READ (token)
408					&& !(qtd->hw_alt_next
409						& EHCI_LIST_END(ehci))) {
410				stopped = 1;
411				qh->unlink_reason |= QH_UNLINK_SHORT_READ;
412			}
413
414		/* stop scanning when we reach qtds the hc is using */
415		} else if (likely (!stopped
416				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
417			break;
418
419		/* scan the whole queue for unlinks whenever it stops */
420		} else {
421			stopped = 1;
422
423			/* cancel everything if we halt, suspend, etc */
424			if (ehci->rh_state < EHCI_RH_RUNNING) {
425				last_status = -ESHUTDOWN;
426				qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
427			}
428
429			/* this qtd is active; skip it unless a previous qtd
430			 * for its urb faulted, or its urb was canceled.
431			 */
432			else if (last_status == -EINPROGRESS && !urb->unlinked)
433				continue;
434
435			/*
436			 * If this was the active qtd when the qh was unlinked
437			 * and the overlay's token is active, then the overlay
438			 * hasn't been written back to the qtd yet so use its
439			 * token instead of the qtd's.  After the qtd is
440			 * processed and removed, the overlay won't be valid
441			 * any more.
442			 */
443			if (state == QH_STATE_IDLE &&
444					qh->qtd_list.next == &qtd->qtd_list &&
445					(hw->hw_token & ACTIVE_BIT(ehci))) {
446				token = hc32_to_cpu(ehci, hw->hw_token);
447				hw->hw_token &= ~ACTIVE_BIT(ehci);
448				qh->should_be_inactive = 1;
449
450				/* An unlink may leave an incomplete
451				 * async transaction in the TT buffer.
452				 * We have to clear it.
453				 */
454				ehci_clear_tt_buffer(ehci, qh, urb, token);
455			}
456		}
457
458		/* unless we already know the urb's status, collect qtd status
459		 * and update count of bytes transferred.  in common short read
460		 * cases with only one data qtd (including control transfers),
461		 * queue processing won't halt.  but with two or more qtds (for
462		 * example, with a 32 KB transfer), when the first qtd gets a
463		 * short read the second must be removed by hand.
464		 */
465		if (last_status == -EINPROGRESS) {
466			last_status = qtd_copy_status(ehci, urb,
467					qtd->length, token);
468			if (last_status == -EREMOTEIO
469					&& (qtd->hw_alt_next
470						& EHCI_LIST_END(ehci)))
471				last_status = -EINPROGRESS;
472
473			/* As part of low/full-speed endpoint-halt processing
474			 * we must clear the TT buffer (11.17.5).
475			 */
476			if (unlikely(last_status != -EINPROGRESS &&
477					last_status != -EREMOTEIO)) {
478				/* The TT's in some hubs malfunction when they
479				 * receive this request following a STALL (they
480				 * stop sending isochronous packets).  Since a
481				 * STALL can't leave the TT buffer in a busy
482				 * state (if you believe Figures 11-48 - 11-51
483				 * in the USB 2.0 spec), we won't clear the TT
484				 * buffer in this case.  Strictly speaking this
485				 * is a violation of the spec.
486				 */
487				if (last_status != -EPIPE)
488					ehci_clear_tt_buffer(ehci, qh, urb,
489							token);
490			}
491		}
492
493		/* if we're removing something not at the queue head,
494		 * patch the hardware queue pointer.
495		 */
496		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
497			last = list_entry (qtd->qtd_list.prev,
498					struct ehci_qtd, qtd_list);
499			last->hw_next = qtd->hw_next;
500		}
501
502		/* remove qtd; it's recycled after possible urb completion */
503		list_del (&qtd->qtd_list);
504		last = qtd;
505
506		/* reinit the xacterr counter for the next qtd */
507		qh->xacterrs = 0;
508	}
509
510	/* last urb's completion might still need calling */
511	if (likely (last != NULL)) {
512		ehci_urb_done(ehci, last->urb, last_status);
513		ehci_qtd_free (ehci, last);
514	}
515
516	/* Do we need to rescan for URBs dequeued during a giveback? */
517	if (unlikely(qh->dequeue_during_giveback)) {
518		/* If the QH is already unlinked, do the rescan now. */
519		if (state == QH_STATE_IDLE)
520			goto rescan;
521
522		/* Otherwise the caller must unlink the QH. */
523	}
524
525	/* restore original state; caller must unlink or relink */
526	qh->qh_state = state;
527
528	/* be sure the hardware's done with the qh before refreshing
529	 * it after fault cleanup, or recovering from silicon wrongly
530	 * overlaying the dummy qtd (which reduces DMA chatter).
531	 *
532	 * We won't refresh a QH that's linked (after the HC
533	 * stopped the queue).  That avoids a race:
534	 *  - HC reads first part of QH;
535	 *  - CPU updates that first part and the token;
536	 *  - HC reads rest of that QH, including token
537	 * Result:  HC gets an inconsistent image, and then
538	 * DMAs to/from the wrong memory (corrupting it).
539	 *
540	 * That should be rare for interrupt transfers,
541	 * except maybe high bandwidth ...
542	 */
543	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
544		qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
545
546	/* Let the caller know if the QH needs to be unlinked. */
547	return qh->unlink_reason;
548}
549
550/*-------------------------------------------------------------------------*/
551
552/*
553 * reverse of qh_urb_transaction:  free a list of TDs.
554 * used for cleanup after errors, before HC sees an URB's TDs.
555 */
556static void qtd_list_free (
557	struct ehci_hcd		*ehci,
558	struct urb		*urb,
559	struct list_head	*qtd_list
560) {
561	struct list_head	*entry, *temp;
562
563	list_for_each_safe (entry, temp, qtd_list) {
564		struct ehci_qtd	*qtd;
565
566		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
567		list_del (&qtd->qtd_list);
568		ehci_qtd_free (ehci, qtd);
569	}
570}
571
572/*
573 * create a list of filled qtds for this URB; won't link into qh.
574 */
575static struct list_head *
576qh_urb_transaction (
577	struct ehci_hcd		*ehci,
578	struct urb		*urb,
579	struct list_head	*head,
580	gfp_t			flags
581) {
582	struct ehci_qtd		*qtd, *qtd_prev;
583	dma_addr_t		buf;
584	int			len, this_sg_len, maxpacket;
585	int			is_input;
586	u32			token;
587	int			i;
588	struct scatterlist	*sg;
589
590	/*
591	 * URBs map to sequences of QTDs:  one logical transaction
592	 */
593	qtd = ehci_qtd_alloc (ehci, flags);
594	if (unlikely (!qtd))
595		return NULL;
596	list_add_tail (&qtd->qtd_list, head);
597	qtd->urb = urb;
598
599	token = QTD_STS_ACTIVE;
600	token |= (EHCI_TUNE_CERR << 10);
601	/* for split transactions, SplitXState initialized to zero */
602
603	len = urb->transfer_buffer_length;
604	is_input = usb_pipein (urb->pipe);
605	if (usb_pipecontrol (urb->pipe)) {
606		/* SETUP pid */
607		qtd_fill(ehci, qtd, urb->setup_dma,
608				sizeof (struct usb_ctrlrequest),
609				token | (2 /* "setup" */ << 8), 8);
610
611		/* ... and always at least one more pid */
612		token ^= QTD_TOGGLE;
613		qtd_prev = qtd;
614		qtd = ehci_qtd_alloc (ehci, flags);
615		if (unlikely (!qtd))
616			goto cleanup;
617		qtd->urb = urb;
618		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
619		list_add_tail (&qtd->qtd_list, head);
620
621		/* for zero length DATA stages, STATUS is always IN */
622		if (len == 0)
623			token |= (1 /* "in" */ << 8);
624	}
625
626	/*
627	 * data transfer stage:  buffer setup
628	 */
629	i = urb->num_mapped_sgs;
630	if (len > 0 && i > 0) {
631		sg = urb->sg;
632		buf = sg_dma_address(sg);
633
634		/* urb->transfer_buffer_length may be smaller than the
635		 * size of the scatterlist (or vice versa)
636		 */
637		this_sg_len = min_t(int, sg_dma_len(sg), len);
638	} else {
639		sg = NULL;
640		buf = urb->transfer_dma;
641		this_sg_len = len;
642	}
643
644	if (is_input)
645		token |= (1 /* "in" */ << 8);
646	/* else it's already initted to "out" pid (0 << 8) */
647
648	maxpacket = usb_endpoint_maxp(&urb->ep->desc);
649
650	/*
651	 * buffer gets wrapped in one or more qtds;
652	 * last one may be "short" (including zero len)
653	 * and may serve as a control status ack
654	 */
655	for (;;) {
656		unsigned int this_qtd_len;
657
658		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
659				maxpacket);
660		this_sg_len -= this_qtd_len;
661		len -= this_qtd_len;
662		buf += this_qtd_len;
663
664		/*
665		 * short reads advance to a "magic" dummy instead of the next
666		 * qtd ... that forces the queue to stop, for manual cleanup.
667		 * (this will usually be overridden later.)
668		 */
669		if (is_input)
670			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
671
672		/* qh makes control packets use qtd toggle; maybe switch it */
673		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
674			token ^= QTD_TOGGLE;
675
676		if (likely(this_sg_len <= 0)) {
677			if (--i <= 0 || len <= 0)
678				break;
679			sg = sg_next(sg);
680			buf = sg_dma_address(sg);
681			this_sg_len = min_t(int, sg_dma_len(sg), len);
682		}
683
684		qtd_prev = qtd;
685		qtd = ehci_qtd_alloc (ehci, flags);
686		if (unlikely (!qtd))
687			goto cleanup;
688		qtd->urb = urb;
689		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
690		list_add_tail (&qtd->qtd_list, head);
691	}
692
693	/*
694	 * unless the caller requires manual cleanup after short reads,
695	 * have the alt_next mechanism keep the queue running after the
696	 * last data qtd (the only one, for control and most other cases).
697	 */
698	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
699				|| usb_pipecontrol (urb->pipe)))
700		qtd->hw_alt_next = EHCI_LIST_END(ehci);
701
702	/*
703	 * control requests may need a terminating data "status" ack;
704	 * other OUT ones may need a terminating short packet
705	 * (zero length).
706	 */
707	if (likely (urb->transfer_buffer_length != 0)) {
708		int	one_more = 0;
709
710		if (usb_pipecontrol (urb->pipe)) {
711			one_more = 1;
712			token ^= 0x0100;	/* "in" <--> "out"  */
713			token |= QTD_TOGGLE;	/* force DATA1 */
714		} else if (usb_pipeout(urb->pipe)
715				&& (urb->transfer_flags & URB_ZERO_PACKET)
716				&& !(urb->transfer_buffer_length % maxpacket)) {
717			one_more = 1;
718		}
719		if (one_more) {
720			qtd_prev = qtd;
721			qtd = ehci_qtd_alloc (ehci, flags);
722			if (unlikely (!qtd))
723				goto cleanup;
724			qtd->urb = urb;
725			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
726			list_add_tail (&qtd->qtd_list, head);
727
728			/* never any data in such packets */
729			qtd_fill(ehci, qtd, 0, 0, token, 0);
730		}
731	}
732
733	/* by default, enable interrupt on urb completion */
734	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
735		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
736	return head;
737
738cleanup:
739	qtd_list_free (ehci, urb, head);
740	return NULL;
741}
742
743/*-------------------------------------------------------------------------*/
744
745// Would be best to create all qh's from config descriptors,
746// when each interface/altsetting is established.  Unlink
747// any previous qh and cancel its urbs first; endpoints are
748// implicitly reset then (data toggle too).
749// That'd mean updating how usbcore talks to HCDs. (2.7?)
750
751
752/*
753 * Each QH holds a qtd list; a QH is used for everything except iso.
754 *
755 * For interrupt urbs, the scheduler must set the microframe scheduling
756 * mask(s) each time the QH gets scheduled.  For highspeed, that's
757 * just one microframe in the s-mask.  For split interrupt transactions
758 * there are additional complications: c-mask, maybe FSTNs.
759 */
760static struct ehci_qh *
761qh_make (
762	struct ehci_hcd		*ehci,
763	struct urb		*urb,
764	gfp_t			flags
765) {
766	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
767	struct usb_host_endpoint *ep;
768	u32			info1 = 0, info2 = 0;
769	int			is_input, type;
770	int			maxp = 0;
771	int			mult;
772	struct usb_tt		*tt = urb->dev->tt;
773	struct ehci_qh_hw	*hw;
774
775	if (!qh)
776		return qh;
777
778	/*
779	 * init endpoint/device data for this QH
780	 */
781	info1 |= usb_pipeendpoint (urb->pipe) << 8;
782	info1 |= usb_pipedevice (urb->pipe) << 0;
783
784	is_input = usb_pipein (urb->pipe);
785	type = usb_pipetype (urb->pipe);
786	ep = usb_pipe_endpoint (urb->dev, urb->pipe);
787	maxp = usb_endpoint_maxp (&ep->desc);
788	mult = usb_endpoint_maxp_mult (&ep->desc);
789
790	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
791	 * acts like up to 3KB, but is built from smaller packets.
792	 */
793	if (maxp > 1024) {
794		ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
795		goto done;
796	}
797
798	/* Compute interrupt scheduling parameters just once, and save.
799	 * - allowing for high bandwidth, how many nsec/uframe are used?
800	 * - split transactions need a second CSPLIT uframe; same question
801	 * - splits also need a schedule gap (for full/low speed I/O)
802	 * - qh has a polling interval
803	 *
804	 * For control/bulk requests, the HC or TT handles these.
805	 */
806	if (type == PIPE_INTERRUPT) {
807		unsigned	tmp;
808
809		qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
810				is_input, 0, mult * maxp));
811		qh->ps.phase = NO_FRAME;
812
813		if (urb->dev->speed == USB_SPEED_HIGH) {
814			qh->ps.c_usecs = 0;
815			qh->gap_uf = 0;
816
817			if (urb->interval > 1 && urb->interval < 8) {
818				/* NOTE interval 2 or 4 uframes could work.
819				 * But interval 1 scheduling is simpler, and
820				 * includes high bandwidth.
821				 */
822				urb->interval = 1;
823			} else if (urb->interval > ehci->periodic_size << 3) {
824				urb->interval = ehci->periodic_size << 3;
825			}
826			qh->ps.period = urb->interval >> 3;
827
828			/* period for bandwidth allocation */
829			tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
830					1 << (urb->ep->desc.bInterval - 1));
831
832			/* Allow urb->interval to override */
833			qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
834			qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
835		} else {
836			int		think_time;
837
838			/* gap is f(FS/LS transfer times) */
839			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
840					is_input, 0, maxp) / (125 * 1000);
841
842			/* FIXME this just approximates SPLIT/CSPLIT times */
843			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
844				qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
845				qh->ps.usecs = HS_USECS(1);
846			} else {		// SPLIT+DATA, gap, CSPLIT
847				qh->ps.usecs += HS_USECS(1);
848				qh->ps.c_usecs = HS_USECS(0);
849			}
850
851			think_time = tt ? tt->think_time : 0;
852			qh->ps.tt_usecs = NS_TO_US(think_time +
853					usb_calc_bus_time (urb->dev->speed,
854					is_input, 0, maxp));
855			if (urb->interval > ehci->periodic_size)
856				urb->interval = ehci->periodic_size;
857			qh->ps.period = urb->interval;
858
859			/* period for bandwidth allocation */
860			tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
861					urb->ep->desc.bInterval);
862			tmp = rounddown_pow_of_two(tmp);
863
864			/* Allow urb->interval to override */
865			qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
866			qh->ps.bw_uperiod = qh->ps.bw_period << 3;
867		}
868	}
869
870	/* support for tt scheduling, and access to toggles */
871	qh->ps.udev = urb->dev;
872	qh->ps.ep = urb->ep;
873
874	/* using TT? */
875	switch (urb->dev->speed) {
876	case USB_SPEED_LOW:
877		info1 |= QH_LOW_SPEED;
878		fallthrough;
879
880	case USB_SPEED_FULL:
881		/* EPS 0 means "full" */
882		if (type != PIPE_INTERRUPT)
883			info1 |= (EHCI_TUNE_RL_TT << 28);
884		if (type == PIPE_CONTROL) {
885			info1 |= QH_CONTROL_EP;		/* for TT */
886			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
887		}
888		info1 |= maxp << 16;
889
890		info2 |= (EHCI_TUNE_MULT_TT << 30);
891
892		/* Some Freescale processors have an erratum in which the
893		 * port number in the queue head was 0..N-1 instead of 1..N.
894		 */
895		if (ehci_has_fsl_portno_bug(ehci))
896			info2 |= (urb->dev->ttport-1) << 23;
897		else
898			info2 |= urb->dev->ttport << 23;
899
900		/* set the address of the TT; for TDI's integrated
901		 * root hub tt, leave it zeroed.
902		 */
903		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
904			info2 |= tt->hub->devnum << 16;
905
906		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
907
908		break;
909
910	case USB_SPEED_HIGH:		/* no TT involved */
911		info1 |= QH_HIGH_SPEED;
912		if (type == PIPE_CONTROL) {
913			info1 |= (EHCI_TUNE_RL_HS << 28);
914			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
915			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
916			info2 |= (EHCI_TUNE_MULT_HS << 30);
917		} else if (type == PIPE_BULK) {
918			info1 |= (EHCI_TUNE_RL_HS << 28);
919			/* The USB spec says that high speed bulk endpoints
920			 * always use 512 byte maxpacket.  But some device
921			 * vendors decided to ignore that, and MSFT is happy
922			 * to help them do so.  So now people expect to use
923			 * such nonconformant devices with Linux too; sigh.
924			 */
925			info1 |= maxp << 16;
926			info2 |= (EHCI_TUNE_MULT_HS << 30);
927		} else {		/* PIPE_INTERRUPT */
928			info1 |= maxp << 16;
929			info2 |= mult << 30;
930		}
931		break;
932	default:
933		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
934			urb->dev->speed);
935done:
936		qh_destroy(ehci, qh);
937		return NULL;
938	}
939
940	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
941
942	/* init as live, toggle clear */
943	qh->qh_state = QH_STATE_IDLE;
944	hw = qh->hw;
945	hw->hw_info1 = cpu_to_hc32(ehci, info1);
946	hw->hw_info2 = cpu_to_hc32(ehci, info2);
947	qh->is_out = !is_input;
948	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
949	return qh;
950}
951
952/*-------------------------------------------------------------------------*/
953
954static void enable_async(struct ehci_hcd *ehci)
955{
956	if (ehci->async_count++)
957		return;
958
959	/* Stop waiting to turn off the async schedule */
960	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
961
962	/* Don't start the schedule until ASS is 0 */
963	ehci_poll_ASS(ehci);
964	turn_on_io_watchdog(ehci);
965}
966
967static void disable_async(struct ehci_hcd *ehci)
968{
969	if (--ehci->async_count)
970		return;
971
972	/* The async schedule and unlink lists are supposed to be empty */
973	WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
974			!list_empty(&ehci->async_idle));
975
976	/* Don't turn off the schedule until ASS is 1 */
977	ehci_poll_ASS(ehci);
978}
979
980/* move qh (and its qtds) onto async queue; maybe enable queue.  */
981
982static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
983{
984	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
985	struct ehci_qh	*head;
986
987	/* Don't link a QH if there's a Clear-TT-Buffer pending */
988	if (unlikely(qh->clearing_tt))
989		return;
990
991	WARN_ON(qh->qh_state != QH_STATE_IDLE);
992
993	/* clear halt and/or toggle; and maybe recover from silicon quirk */
994	qh_refresh(ehci, qh);
995
996	/* splice right after start */
997	head = ehci->async;
998	qh->qh_next = head->qh_next;
999	qh->hw->hw_next = head->hw->hw_next;
1000	wmb ();
1001
1002	head->qh_next.qh = qh;
1003	head->hw->hw_next = dma;
1004
1005	qh->qh_state = QH_STATE_LINKED;
1006	qh->xacterrs = 0;
1007	qh->unlink_reason = 0;
1008	/* qtd completions reported later by interrupt */
1009
1010	enable_async(ehci);
1011}
1012
1013/*-------------------------------------------------------------------------*/
1014
1015/*
1016 * For control/bulk/interrupt, return QH with these TDs appended.
1017 * Allocates and initializes the QH if necessary.
1018 * Returns null if it can't allocate a QH it needs to.
1019 * If the QH has TDs (urbs) already, that's great.
1020 */
1021static struct ehci_qh *qh_append_tds (
1022	struct ehci_hcd		*ehci,
1023	struct urb		*urb,
1024	struct list_head	*qtd_list,
1025	int			epnum,
1026	void			**ptr
1027)
1028{
1029	struct ehci_qh		*qh = NULL;
1030	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1031
1032	qh = (struct ehci_qh *) *ptr;
1033	if (unlikely (qh == NULL)) {
1034		/* can't sleep here, we have ehci->lock... */
1035		qh = qh_make (ehci, urb, GFP_ATOMIC);
1036		*ptr = qh;
1037	}
1038	if (likely (qh != NULL)) {
1039		struct ehci_qtd	*qtd;
1040
1041		if (unlikely (list_empty (qtd_list)))
1042			qtd = NULL;
1043		else
1044			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1045					qtd_list);
1046
1047		/* control qh may need patching ... */
1048		if (unlikely (epnum == 0)) {
1049
1050                        /* usb_reset_device() briefly reverts to address 0 */
1051                        if (usb_pipedevice (urb->pipe) == 0)
1052				qh->hw->hw_info1 &= ~qh_addr_mask;
1053		}
1054
1055		/* just one way to queue requests: swap with the dummy qtd.
1056		 * only hc or qh_refresh() ever modify the overlay.
1057		 */
1058		if (likely (qtd != NULL)) {
1059			struct ehci_qtd		*dummy;
1060			dma_addr_t		dma;
1061			__hc32			token;
1062
1063			/* to avoid racing the HC, use the dummy td instead of
1064			 * the first td of our list (becomes new dummy).  both
1065			 * tds stay deactivated until we're done, when the
1066			 * HC is allowed to fetch the old dummy (4.10.2).
1067			 */
1068			token = qtd->hw_token;
1069			qtd->hw_token = HALT_BIT(ehci);
1070
1071			dummy = qh->dummy;
1072
1073			dma = dummy->qtd_dma;
1074			*dummy = *qtd;
1075			dummy->qtd_dma = dma;
1076
1077			list_del (&qtd->qtd_list);
1078			list_add (&dummy->qtd_list, qtd_list);
1079			list_splice_tail(qtd_list, &qh->qtd_list);
1080
1081			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1082			qh->dummy = qtd;
1083
1084			/* hc must see the new dummy at list end */
1085			dma = qtd->qtd_dma;
1086			qtd = list_entry (qh->qtd_list.prev,
1087					struct ehci_qtd, qtd_list);
1088			qtd->hw_next = QTD_NEXT(ehci, dma);
1089
1090			/* let the hc process these next qtds */
1091			wmb ();
1092			dummy->hw_token = token;
1093
1094			urb->hcpriv = qh;
1095		}
1096	}
1097	return qh;
1098}
1099
1100/*-------------------------------------------------------------------------*/
1101
1102static int
1103submit_async (
1104	struct ehci_hcd		*ehci,
1105	struct urb		*urb,
1106	struct list_head	*qtd_list,
1107	gfp_t			mem_flags
1108) {
1109	int			epnum;
1110	unsigned long		flags;
1111	struct ehci_qh		*qh = NULL;
1112	int			rc;
1113
1114	epnum = urb->ep->desc.bEndpointAddress;
1115
1116#ifdef EHCI_URB_TRACE
1117	{
1118		struct ehci_qtd *qtd;
1119		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1120		ehci_dbg(ehci,
1121			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1122			 __func__, urb->dev->devpath, urb,
1123			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1124			 urb->transfer_buffer_length,
1125			 qtd, urb->ep->hcpriv);
1126	}
1127#endif
1128
1129	spin_lock_irqsave (&ehci->lock, flags);
1130	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1131		rc = -ESHUTDOWN;
1132		goto done;
1133	}
1134	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1135	if (unlikely(rc))
1136		goto done;
1137
1138	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1139	if (unlikely(qh == NULL)) {
1140		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1141		rc = -ENOMEM;
1142		goto done;
1143	}
1144
1145	/* Control/bulk operations through TTs don't need scheduling,
1146	 * the HC and TT handle it when the TT has a buffer ready.
1147	 */
1148	if (likely (qh->qh_state == QH_STATE_IDLE))
1149		qh_link_async(ehci, qh);
1150 done:
1151	spin_unlock_irqrestore (&ehci->lock, flags);
1152	if (unlikely (qh == NULL))
1153		qtd_list_free (ehci, urb, qtd_list);
1154	return rc;
1155}
1156
1157/*-------------------------------------------------------------------------*/
1158#ifdef CONFIG_USB_HCD_TEST_MODE
1159/*
1160 * This function creates the qtds and submits them for the
1161 * SINGLE_STEP_SET_FEATURE Test.
1162 * This is done in two parts: first SETUP req for GetDesc is sent then
1163 * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1164 *
1165 * is_setup : i/p argument decides which of the two stage needs to be
1166 * performed; TRUE - SETUP and FALSE - IN+STATUS
1167 * Returns 0 if success
1168 */
1169static int ehci_submit_single_step_set_feature(
1170	struct usb_hcd  *hcd,
1171	struct urb      *urb,
1172	int             is_setup
1173) {
1174	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
1175	struct list_head	qtd_list;
1176	struct list_head	*head;
1177
1178	struct ehci_qtd		*qtd, *qtd_prev;
1179	dma_addr_t		buf;
1180	int			len, maxpacket;
1181	u32			token;
1182
1183	INIT_LIST_HEAD(&qtd_list);
1184	head = &qtd_list;
1185
1186	/* URBs map to sequences of QTDs:  one logical transaction */
1187	qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1188	if (unlikely(!qtd))
1189		return -1;
1190	list_add_tail(&qtd->qtd_list, head);
1191	qtd->urb = urb;
1192
1193	token = QTD_STS_ACTIVE;
1194	token |= (EHCI_TUNE_CERR << 10);
1195
1196	len = urb->transfer_buffer_length;
1197	/*
1198	 * Check if the request is to perform just the SETUP stage (getDesc)
1199	 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1200	 * 15 secs after the setup
1201	 */
1202	if (is_setup) {
1203		/* SETUP pid, and interrupt after SETUP completion */
1204		qtd_fill(ehci, qtd, urb->setup_dma,
1205				sizeof(struct usb_ctrlrequest),
1206				QTD_IOC | token | (2 /* "setup" */ << 8), 8);
1207
1208		submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1209		return 0; /*Return now; we shall come back after 15 seconds*/
1210	}
1211
1212	/*
1213	 * IN: data transfer stage:  buffer setup : start the IN txn phase for
1214	 * the get_Desc SETUP which was sent 15seconds back
1215	 */
1216	token ^= QTD_TOGGLE;   /*We need to start IN with DATA-1 Pid-sequence*/
1217	buf = urb->transfer_dma;
1218
1219	token |= (1 /* "in" */ << 8);  /*This is IN stage*/
1220
1221	maxpacket = usb_endpoint_maxp(&urb->ep->desc);
1222
1223	qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1224
1225	/*
1226	 * Our IN phase shall always be a short read; so keep the queue running
1227	 * and let it advance to the next qtd which zero length OUT status
1228	 */
1229	qtd->hw_alt_next = EHCI_LIST_END(ehci);
1230
1231	/* STATUS stage for GetDesc control request */
1232	token ^= 0x0100;        /* "in" <--> "out"  */
1233	token |= QTD_TOGGLE;    /* force DATA1 */
1234
1235	qtd_prev = qtd;
1236	qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1237	if (unlikely(!qtd))
1238		goto cleanup;
1239	qtd->urb = urb;
1240	qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1241	list_add_tail(&qtd->qtd_list, head);
1242
1243	/* Interrupt after STATUS completion */
1244	qtd_fill(ehci, qtd, 0, 0, token | QTD_IOC, 0);
1245
1246	submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1247
1248	return 0;
1249
1250cleanup:
1251	qtd_list_free(ehci, urb, head);
1252	return -1;
1253}
1254#endif /* CONFIG_USB_HCD_TEST_MODE */
1255
1256/*-------------------------------------------------------------------------*/
1257
1258static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1259{
1260	struct ehci_qh		*prev;
1261
1262	/* Add to the end of the list of QHs waiting for the next IAAD */
1263	qh->qh_state = QH_STATE_UNLINK_WAIT;
1264	list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1265
1266	/* Unlink it from the schedule */
1267	prev = ehci->async;
1268	while (prev->qh_next.qh != qh)
1269		prev = prev->qh_next.qh;
1270
1271	prev->hw->hw_next = qh->hw->hw_next;
1272	prev->qh_next = qh->qh_next;
1273	if (ehci->qh_scan_next == qh)
1274		ehci->qh_scan_next = qh->qh_next.qh;
1275}
1276
1277static void start_iaa_cycle(struct ehci_hcd *ehci)
1278{
1279	/* If the controller isn't running, we don't have to wait for it */
1280	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1281		end_unlink_async(ehci);
1282
1283	/* Otherwise start a new IAA cycle if one isn't already running */
1284	} else if (ehci->rh_state == EHCI_RH_RUNNING &&
1285			!ehci->iaa_in_progress) {
1286
1287		/* Make sure the unlinks are all visible to the hardware */
1288		wmb();
1289
1290		ehci_writel(ehci, ehci->command | CMD_IAAD,
1291				&ehci->regs->command);
1292		ehci_readl(ehci, &ehci->regs->command);
1293		ehci->iaa_in_progress = true;
1294		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1295	}
1296}
1297
1298static void end_iaa_cycle(struct ehci_hcd *ehci)
1299{
1300	if (ehci->has_synopsys_hc_bug)
1301		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1302			    &ehci->regs->async_next);
1303
1304	/* The current IAA cycle has ended */
1305	ehci->iaa_in_progress = false;
1306
1307	end_unlink_async(ehci);
1308}
1309
1310/* See if the async qh for the qtds being unlinked are now gone from the HC */
1311
1312static void end_unlink_async(struct ehci_hcd *ehci)
1313{
1314	struct ehci_qh		*qh;
1315	bool			early_exit;
1316
1317	if (list_empty(&ehci->async_unlink))
1318		return;
1319	qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1320			unlink_node);	/* QH whose IAA cycle just ended */
1321
1322	/*
1323	 * If async_unlinking is set then this routine is already running,
1324	 * either on the stack or on another CPU.
1325	 */
1326	early_exit = ehci->async_unlinking;
1327
1328	/* If the controller isn't running, process all the waiting QHs */
1329	if (ehci->rh_state < EHCI_RH_RUNNING)
1330		list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1331
1332	/*
1333	 * Intel (?) bug: The HC can write back the overlay region even
1334	 * after the IAA interrupt occurs.  In self-defense, always go
1335	 * through two IAA cycles for each QH.
1336	 */
1337	else if (qh->qh_state == QH_STATE_UNLINK) {
1338		/*
1339		 * Second IAA cycle has finished.  Process only the first
1340		 * waiting QH (NVIDIA (?) bug).
1341		 */
1342		list_move_tail(&qh->unlink_node, &ehci->async_idle);
1343	}
1344
1345	/*
1346	 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1347	 * after the IAA interrupt occurs.  To prevent problems, QHs that
1348	 * may still be active will wait until 2 ms have passed with no
1349	 * change to the hw_current and hw_token fields (this delay occurs
1350	 * between the two IAA cycles).
1351	 *
1352	 * The EHCI spec (4.8.2) says that active QHs must not be removed
1353	 * from the async schedule and recommends waiting until the QH
1354	 * goes inactive.  This is ridiculous because the QH will _never_
1355	 * become inactive if the endpoint NAKs indefinitely.
1356	 */
1357
1358	/* Some reasons for unlinking guarantee the QH can't be active */
1359	else if (qh->unlink_reason & (QH_UNLINK_HALTED |
1360			QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
1361		goto DelayDone;
1362
1363	/* The QH can't be active if the queue was and still is empty... */
1364	else if	((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
1365			list_empty(&qh->qtd_list))
1366		goto DelayDone;
1367
1368	/* ... or if the QH has halted */
1369	else if	(qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
1370		goto DelayDone;
1371
1372	/* Otherwise we have to wait until the QH stops changing */
1373	else {
1374		__hc32		qh_current, qh_token;
1375
1376		qh_current = qh->hw->hw_current;
1377		qh_token = qh->hw->hw_token;
1378		if (qh_current != ehci->old_current ||
1379				qh_token != ehci->old_token) {
1380			ehci->old_current = qh_current;
1381			ehci->old_token = qh_token;
1382			ehci_enable_event(ehci,
1383					EHCI_HRTIMER_ACTIVE_UNLINK, true);
1384			return;
1385		}
1386 DelayDone:
1387		qh->qh_state = QH_STATE_UNLINK;
1388		early_exit = true;
1389	}
1390	ehci->old_current = ~0;		/* Prepare for next QH */
1391
1392	/* Start a new IAA cycle if any QHs are waiting for it */
1393	if (!list_empty(&ehci->async_unlink))
1394		start_iaa_cycle(ehci);
1395
1396	/*
1397	 * Don't allow nesting or concurrent calls,
1398	 * or wait for the second IAA cycle for the next QH.
1399	 */
1400	if (early_exit)
1401		return;
1402
1403	/* Process the idle QHs */
1404	ehci->async_unlinking = true;
1405	while (!list_empty(&ehci->async_idle)) {
1406		qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1407				unlink_node);
1408		list_del(&qh->unlink_node);
1409
1410		qh->qh_state = QH_STATE_IDLE;
1411		qh->qh_next.qh = NULL;
1412
1413		if (!list_empty(&qh->qtd_list))
1414			qh_completions(ehci, qh);
1415		if (!list_empty(&qh->qtd_list) &&
1416				ehci->rh_state == EHCI_RH_RUNNING)
1417			qh_link_async(ehci, qh);
1418		disable_async(ehci);
1419	}
1420	ehci->async_unlinking = false;
1421}
1422
1423static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1424
1425static void unlink_empty_async(struct ehci_hcd *ehci)
1426{
1427	struct ehci_qh		*qh;
1428	struct ehci_qh		*qh_to_unlink = NULL;
1429	int			count = 0;
1430
1431	/* Find the last async QH which has been empty for a timer cycle */
1432	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1433		if (list_empty(&qh->qtd_list) &&
1434				qh->qh_state == QH_STATE_LINKED) {
1435			++count;
1436			if (qh->unlink_cycle != ehci->async_unlink_cycle)
1437				qh_to_unlink = qh;
1438		}
1439	}
1440
1441	/* If nothing else is being unlinked, unlink the last empty QH */
1442	if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1443		qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
1444		start_unlink_async(ehci, qh_to_unlink);
1445		--count;
1446	}
1447
1448	/* Other QHs will be handled later */
1449	if (count > 0) {
1450		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1451		++ehci->async_unlink_cycle;
1452	}
1453}
1454
1455#ifdef	CONFIG_PM
1456
1457/* The root hub is suspended; unlink all the async QHs */
1458static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
1459{
1460	struct ehci_qh		*qh;
1461
1462	while (ehci->async->qh_next.qh) {
1463		qh = ehci->async->qh_next.qh;
1464		WARN_ON(!list_empty(&qh->qtd_list));
1465		single_unlink_async(ehci, qh);
1466	}
1467}
1468
1469#endif
1470
1471/* makes sure the async qh will become idle */
1472/* caller must own ehci->lock */
1473
1474static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1475{
1476	/* If the QH isn't linked then there's nothing we can do. */
1477	if (qh->qh_state != QH_STATE_LINKED)
1478		return;
1479
1480	single_unlink_async(ehci, qh);
1481	start_iaa_cycle(ehci);
1482}
1483
1484/*-------------------------------------------------------------------------*/
1485
1486static void scan_async (struct ehci_hcd *ehci)
1487{
1488	struct ehci_qh		*qh;
1489	bool			check_unlinks_later = false;
1490
1491	ehci->qh_scan_next = ehci->async->qh_next.qh;
1492	while (ehci->qh_scan_next) {
1493		qh = ehci->qh_scan_next;
1494		ehci->qh_scan_next = qh->qh_next.qh;
1495
1496		/* clean any finished work for this qh */
1497		if (!list_empty(&qh->qtd_list)) {
1498			int temp;
1499
1500			/*
1501			 * Unlinks could happen here; completion reporting
1502			 * drops the lock.  That's why ehci->qh_scan_next
1503			 * always holds the next qh to scan; if the next qh
1504			 * gets unlinked then ehci->qh_scan_next is adjusted
1505			 * in single_unlink_async().
1506			 */
1507			temp = qh_completions(ehci, qh);
1508			if (unlikely(temp)) {
1509				start_unlink_async(ehci, qh);
1510			} else if (list_empty(&qh->qtd_list)
1511					&& qh->qh_state == QH_STATE_LINKED) {
1512				qh->unlink_cycle = ehci->async_unlink_cycle;
1513				check_unlinks_later = true;
1514			}
1515		}
1516	}
1517
1518	/*
1519	 * Unlink empty entries, reducing DMA usage as well
1520	 * as HCD schedule-scanning costs.  Delay for any qh
1521	 * we just scanned, there's a not-unusual case that it
1522	 * doesn't stay idle for long.
1523	 */
1524	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1525			!(ehci->enabled_hrtimer_events &
1526				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1527		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1528		++ehci->async_unlink_cycle;
1529	}
1530}
1531