1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Xilinx USB peripheral controller driver
4 *
5 * Copyright (C) 2004 by Thomas Rathbone
6 * Copyright (C) 2005 by HP Labs
7 * Copyright (C) 2005 by David Brownell
8 * Copyright (C) 2010 - 2014 Xilinx, Inc.
9 *
10 * Some parts of this driver code is based on the driver for at91-series
11 * USB peripheral controller (at91_udc.c).
12 */
13
14#include <linux/clk.h>
15#include <linux/delay.h>
16#include <linux/device.h>
17#include <linux/dma-mapping.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/platform_device.h>
23#include <linux/prefetch.h>
24#include <linux/usb/ch9.h>
25#include <linux/usb/gadget.h>
26
27/* Register offsets for the USB device.*/
28#define XUSB_EP0_CONFIG_OFFSET		0x0000  /* EP0 Config Reg Offset */
29#define XUSB_SETUP_PKT_ADDR_OFFSET	0x0080  /* Setup Packet Address */
30#define XUSB_ADDRESS_OFFSET		0x0100  /* Address Register */
31#define XUSB_CONTROL_OFFSET		0x0104  /* Control Register */
32#define XUSB_STATUS_OFFSET		0x0108  /* Status Register */
33#define XUSB_FRAMENUM_OFFSET		0x010C	/* Frame Number Register */
34#define XUSB_IER_OFFSET			0x0110	/* Interrupt Enable Register */
35#define XUSB_BUFFREADY_OFFSET		0x0114	/* Buffer Ready Register */
36#define XUSB_TESTMODE_OFFSET		0x0118	/* Test Mode Register */
37#define XUSB_DMA_RESET_OFFSET		0x0200  /* DMA Soft Reset Register */
38#define XUSB_DMA_CONTROL_OFFSET		0x0204	/* DMA Control Register */
39#define XUSB_DMA_DSAR_ADDR_OFFSET	0x0208	/* DMA source Address Reg */
40#define XUSB_DMA_DDAR_ADDR_OFFSET	0x020C	/* DMA destination Addr Reg */
41#define XUSB_DMA_LENGTH_OFFSET		0x0210	/* DMA Length Register */
42#define XUSB_DMA_STATUS_OFFSET		0x0214	/* DMA Status Register */
43
44/* Endpoint Configuration Space offsets */
45#define XUSB_EP_CFGSTATUS_OFFSET	0x00	/* Endpoint Config Status  */
46#define XUSB_EP_BUF0COUNT_OFFSET	0x08	/* Buffer 0 Count */
47#define XUSB_EP_BUF1COUNT_OFFSET	0x0C	/* Buffer 1 Count */
48
49#define XUSB_CONTROL_USB_READY_MASK	0x80000000 /* USB ready Mask */
50#define XUSB_CONTROL_USB_RMTWAKE_MASK	0x40000000 /* Remote wake up mask */
51
52/* Interrupt register related masks.*/
53#define XUSB_STATUS_GLOBAL_INTR_MASK	0x80000000 /* Global Intr Enable */
54#define XUSB_STATUS_DMADONE_MASK	0x04000000 /* DMA done Mask */
55#define XUSB_STATUS_DMAERR_MASK		0x02000000 /* DMA Error Mask */
56#define XUSB_STATUS_DMABUSY_MASK	0x80000000 /* DMA Error Mask */
57#define XUSB_STATUS_RESUME_MASK		0x01000000 /* USB Resume Mask */
58#define XUSB_STATUS_RESET_MASK		0x00800000 /* USB Reset Mask */
59#define XUSB_STATUS_SUSPEND_MASK	0x00400000 /* USB Suspend Mask */
60#define XUSB_STATUS_DISCONNECT_MASK	0x00200000 /* USB Disconnect Mask */
61#define XUSB_STATUS_FIFO_BUFF_RDY_MASK	0x00100000 /* FIFO Buff Ready Mask */
62#define XUSB_STATUS_FIFO_BUFF_FREE_MASK	0x00080000 /* FIFO Buff Free Mask */
63#define XUSB_STATUS_SETUP_PACKET_MASK	0x00040000 /* Setup packet received */
64#define XUSB_STATUS_EP1_BUFF2_COMP_MASK	0x00000200 /* EP 1 Buff 2 Processed */
65#define XUSB_STATUS_EP1_BUFF1_COMP_MASK	0x00000002 /* EP 1 Buff 1 Processed */
66#define XUSB_STATUS_EP0_BUFF2_COMP_MASK	0x00000100 /* EP 0 Buff 2 Processed */
67#define XUSB_STATUS_EP0_BUFF1_COMP_MASK	0x00000001 /* EP 0 Buff 1 Processed */
68#define XUSB_STATUS_HIGH_SPEED_MASK	0x00010000 /* USB Speed Mask */
69/* Suspend,Reset,Suspend and Disconnect Mask */
70#define XUSB_STATUS_INTR_EVENT_MASK	0x01E00000
71/* Buffers  completion Mask */
72#define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK	0x0000FEFF
73/* Mask for buffer 0 and buffer 1 completion for all Endpoints */
74#define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK	0x00000101
75#define XUSB_STATUS_EP_BUFF2_SHIFT	8	   /* EP buffer offset */
76
77/* Endpoint Configuration Status Register */
78#define XUSB_EP_CFG_VALID_MASK		0x80000000 /* Endpoint Valid bit */
79#define XUSB_EP_CFG_STALL_MASK		0x40000000 /* Endpoint Stall bit */
80#define XUSB_EP_CFG_DATA_TOGGLE_MASK	0x08000000 /* Endpoint Data toggle */
81
82/* USB device specific global configuration constants.*/
83#define XUSB_MAX_ENDPOINTS		8	/* Maximum End Points */
84#define XUSB_EP_NUMBER_ZERO		0	/* End point Zero */
85/* DPRAM is the source address for DMA transfer */
86#define XUSB_DMA_READ_FROM_DPRAM	0x80000000
87#define XUSB_DMA_DMASR_BUSY		0x80000000 /* DMA busy */
88#define XUSB_DMA_DMASR_ERROR		0x40000000 /* DMA Error */
89/*
90 * When this bit is set, the DMA buffer ready bit is set by hardware upon
91 * DMA transfer completion.
92 */
93#define XUSB_DMA_BRR_CTRL		0x40000000 /* DMA bufready ctrl bit */
94/* Phase States */
95#define SETUP_PHASE			0x0000	/* Setup Phase */
96#define DATA_PHASE			0x0001  /* Data Phase */
97#define STATUS_PHASE			0x0002  /* Status Phase */
98
99#define EP0_MAX_PACKET		64 /* Endpoint 0 maximum packet length */
100#define STATUSBUFF_SIZE		2  /* Buffer size for GET_STATUS command */
101#define EPNAME_SIZE		4  /* Buffer size for endpoint name */
102
103/* container_of helper macros */
104#define to_udc(g)	 container_of((g), struct xusb_udc, gadget)
105#define to_xusb_ep(ep)	 container_of((ep), struct xusb_ep, ep_usb)
106#define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
107
108/**
109 * struct xusb_req - Xilinx USB device request structure
110 * @usb_req: Linux usb request structure
111 * @queue: usb device request queue
112 * @ep: pointer to xusb_endpoint structure
113 */
114struct xusb_req {
115	struct usb_request usb_req;
116	struct list_head queue;
117	struct xusb_ep *ep;
118};
119
120/**
121 * struct xusb_ep - USB end point structure.
122 * @ep_usb: usb endpoint instance
123 * @queue: endpoint message queue
124 * @udc: xilinx usb peripheral driver instance pointer
125 * @desc: pointer to the usb endpoint descriptor
126 * @rambase: the endpoint buffer address
127 * @offset: the endpoint register offset value
128 * @name: name of the endpoint
129 * @epnumber: endpoint number
130 * @maxpacket: maximum packet size the endpoint can store
131 * @buffer0count: the size of the packet recieved in the first buffer
132 * @buffer1count: the size of the packet received in the second buffer
133 * @curbufnum: current buffer of endpoint that will be processed next
134 * @buffer0ready: the busy state of first buffer
135 * @buffer1ready: the busy state of second buffer
136 * @is_in: endpoint direction (IN or OUT)
137 * @is_iso: endpoint type(isochronous or non isochronous)
138 */
139struct xusb_ep {
140	struct usb_ep ep_usb;
141	struct list_head queue;
142	struct xusb_udc *udc;
143	const struct usb_endpoint_descriptor *desc;
144	u32  rambase;
145	u32  offset;
146	char name[4];
147	u16  epnumber;
148	u16  maxpacket;
149	u16  buffer0count;
150	u16  buffer1count;
151	u8   curbufnum;
152	bool buffer0ready;
153	bool buffer1ready;
154	bool is_in;
155	bool is_iso;
156};
157
158/**
159 * struct xusb_udc -  USB peripheral driver structure
160 * @gadget: USB gadget driver instance
161 * @ep: an array of endpoint structures
162 * @driver: pointer to the usb gadget driver instance
163 * @setup: usb_ctrlrequest structure for control requests
164 * @req: pointer to dummy request for get status command
165 * @dev: pointer to device structure in gadget
166 * @usb_state: device in suspended state or not
167 * @remote_wkp: remote wakeup enabled by host
168 * @setupseqtx: tx status
169 * @setupseqrx: rx status
170 * @addr: the usb device base address
171 * @lock: instance of spinlock
172 * @dma_enabled: flag indicating whether the dma is included in the system
173 * @clk: pointer to struct clk
174 * @read_fn: function pointer to read device registers
175 * @write_fn: function pointer to write to device registers
176 */
177struct xusb_udc {
178	struct usb_gadget gadget;
179	struct xusb_ep ep[8];
180	struct usb_gadget_driver *driver;
181	struct usb_ctrlrequest setup;
182	struct xusb_req *req;
183	struct device *dev;
184	u32 usb_state;
185	u32 remote_wkp;
186	u32 setupseqtx;
187	u32 setupseqrx;
188	void __iomem *addr;
189	spinlock_t lock;
190	bool dma_enabled;
191	struct clk *clk;
192
193	unsigned int (*read_fn)(void __iomem *reg);
194	void (*write_fn)(void __iomem *, u32, u32);
195};
196
197/* Endpoint buffer start addresses in the core */
198static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
199			  0x1600 };
200
201static const char driver_name[] = "xilinx-udc";
202static const char ep0name[] = "ep0";
203
204/* Control endpoint configuration.*/
205static const struct usb_endpoint_descriptor config_bulk_out_desc = {
206	.bLength		= USB_DT_ENDPOINT_SIZE,
207	.bDescriptorType	= USB_DT_ENDPOINT,
208	.bEndpointAddress	= USB_DIR_OUT,
209	.bmAttributes		= USB_ENDPOINT_XFER_BULK,
210	.wMaxPacketSize		= cpu_to_le16(EP0_MAX_PACKET),
211};
212
213/**
214 * xudc_write32 - little endian write to device registers
215 * @addr: base addr of device registers
216 * @offset: register offset
217 * @val: data to be written
218 */
219static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
220{
221	iowrite32(val, addr + offset);
222}
223
224/**
225 * xudc_read32 - little endian read from device registers
226 * @addr: addr of device register
227 * Return: value at addr
228 */
229static unsigned int xudc_read32(void __iomem *addr)
230{
231	return ioread32(addr);
232}
233
234/**
235 * xudc_write32_be - big endian write to device registers
236 * @addr: base addr of device registers
237 * @offset: register offset
238 * @val: data to be written
239 */
240static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
241{
242	iowrite32be(val, addr + offset);
243}
244
245/**
246 * xudc_read32_be - big endian read from device registers
247 * @addr: addr of device register
248 * Return: value at addr
249 */
250static unsigned int xudc_read32_be(void __iomem *addr)
251{
252	return ioread32be(addr);
253}
254
255/**
256 * xudc_wrstatus - Sets up the usb device status stages.
257 * @udc: pointer to the usb device controller structure.
258 */
259static void xudc_wrstatus(struct xusb_udc *udc)
260{
261	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
262	u32 epcfgreg;
263
264	epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
265				XUSB_EP_CFG_DATA_TOGGLE_MASK;
266	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
267	udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
268	udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
269}
270
271/**
272 * xudc_epconfig - Configures the given endpoint.
273 * @ep: pointer to the usb device endpoint structure.
274 * @udc: pointer to the usb peripheral controller structure.
275 *
276 * This function configures a specific endpoint with the given configuration
277 * data.
278 */
279static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
280{
281	u32 epcfgreg;
282
283	/*
284	 * Configure the end point direction, type, Max Packet Size and the
285	 * EP buffer location.
286	 */
287	epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
288		   (ep->ep_usb.maxpacket << 15) | (ep->rambase));
289	udc->write_fn(udc->addr, ep->offset, epcfgreg);
290
291	/* Set the Buffer count and the Buffer ready bits.*/
292	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
293		      ep->buffer0count);
294	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
295		      ep->buffer1count);
296	if (ep->buffer0ready)
297		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
298			      1 << ep->epnumber);
299	if (ep->buffer1ready)
300		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
301			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
302}
303
304/**
305 * xudc_start_dma - Starts DMA transfer.
306 * @ep: pointer to the usb device endpoint structure.
307 * @src: DMA source address.
308 * @dst: DMA destination address.
309 * @length: number of bytes to transfer.
310 *
311 * Return: 0 on success, error code on failure
312 *
313 * This function starts DMA transfer by writing to DMA source,
314 * destination and lenth registers.
315 */
316static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
317			  dma_addr_t dst, u32 length)
318{
319	struct xusb_udc *udc = ep->udc;
320	int rc = 0;
321	u32 timeout = 500;
322	u32 reg;
323
324	/*
325	 * Set the addresses in the DMA source and
326	 * destination registers and then set the length
327	 * into the DMA length register.
328	 */
329	udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
330	udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
331	udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
332
333	/*
334	 * Wait till DMA transaction is complete and
335	 * check whether the DMA transaction was
336	 * successful.
337	 */
338	do {
339		reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
340		if (!(reg &  XUSB_DMA_DMASR_BUSY))
341			break;
342
343		/*
344		 * We can't sleep here, because it's also called from
345		 * interrupt context.
346		 */
347		timeout--;
348		if (!timeout) {
349			dev_err(udc->dev, "DMA timeout\n");
350			return -ETIMEDOUT;
351		}
352		udelay(1);
353	} while (1);
354
355	if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
356			  XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
357		dev_err(udc->dev, "DMA Error\n");
358		rc = -EINVAL;
359	}
360
361	return rc;
362}
363
364/**
365 * xudc_dma_send - Sends IN data using DMA.
366 * @ep: pointer to the usb device endpoint structure.
367 * @req: pointer to the usb request structure.
368 * @buffer: pointer to data to be sent.
369 * @length: number of bytes to send.
370 *
371 * Return: 0 on success, -EAGAIN if no buffer is free and error
372 *	   code on failure.
373 *
374 * This function sends data using DMA.
375 */
376static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
377			 u8 *buffer, u32 length)
378{
379	u32 *eprambase;
380	dma_addr_t src;
381	dma_addr_t dst;
382	struct xusb_udc *udc = ep->udc;
383
384	src = req->usb_req.dma + req->usb_req.actual;
385	if (req->usb_req.length)
386		dma_sync_single_for_device(udc->dev, src,
387					   length, DMA_TO_DEVICE);
388	if (!ep->curbufnum && !ep->buffer0ready) {
389		/* Get the Buffer address and copy the transmit data.*/
390		eprambase = (u32 __force *)(udc->addr + ep->rambase);
391		dst = virt_to_phys(eprambase);
392		udc->write_fn(udc->addr, ep->offset +
393			      XUSB_EP_BUF0COUNT_OFFSET, length);
394		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
395			      XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
396		ep->buffer0ready = 1;
397		ep->curbufnum = 1;
398	} else if (ep->curbufnum && !ep->buffer1ready) {
399		/* Get the Buffer address and copy the transmit data.*/
400		eprambase = (u32 __force *)(udc->addr + ep->rambase +
401			     ep->ep_usb.maxpacket);
402		dst = virt_to_phys(eprambase);
403		udc->write_fn(udc->addr, ep->offset +
404			      XUSB_EP_BUF1COUNT_OFFSET, length);
405		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
406			      XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
407			      XUSB_STATUS_EP_BUFF2_SHIFT)));
408		ep->buffer1ready = 1;
409		ep->curbufnum = 0;
410	} else {
411		/* None of ping pong buffers are ready currently .*/
412		return -EAGAIN;
413	}
414
415	return xudc_start_dma(ep, src, dst, length);
416}
417
418/**
419 * xudc_dma_receive - Receives OUT data using DMA.
420 * @ep: pointer to the usb device endpoint structure.
421 * @req: pointer to the usb request structure.
422 * @buffer: pointer to storage buffer of received data.
423 * @length: number of bytes to receive.
424 *
425 * Return: 0 on success, -EAGAIN if no buffer is free and error
426 *	   code on failure.
427 *
428 * This function receives data using DMA.
429 */
430static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
431			    u8 *buffer, u32 length)
432{
433	u32 *eprambase;
434	dma_addr_t src;
435	dma_addr_t dst;
436	struct xusb_udc *udc = ep->udc;
437
438	dst = req->usb_req.dma + req->usb_req.actual;
439	if (!ep->curbufnum && !ep->buffer0ready) {
440		/* Get the Buffer address and copy the transmit data */
441		eprambase = (u32 __force *)(udc->addr + ep->rambase);
442		src = virt_to_phys(eprambase);
443		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
444			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
445			      (1 << ep->epnumber));
446		ep->buffer0ready = 1;
447		ep->curbufnum = 1;
448	} else if (ep->curbufnum && !ep->buffer1ready) {
449		/* Get the Buffer address and copy the transmit data */
450		eprambase = (u32 __force *)(udc->addr +
451			     ep->rambase + ep->ep_usb.maxpacket);
452		src = virt_to_phys(eprambase);
453		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
454			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
455			      (1 << (ep->epnumber +
456			      XUSB_STATUS_EP_BUFF2_SHIFT)));
457		ep->buffer1ready = 1;
458		ep->curbufnum = 0;
459	} else {
460		/* None of the ping-pong buffers are ready currently */
461		return -EAGAIN;
462	}
463
464	return xudc_start_dma(ep, src, dst, length);
465}
466
467/**
468 * xudc_eptxrx - Transmits or receives data to or from an endpoint.
469 * @ep: pointer to the usb endpoint configuration structure.
470 * @req: pointer to the usb request structure.
471 * @bufferptr: pointer to buffer containing the data to be sent.
472 * @bufferlen: The number of data bytes to be sent.
473 *
474 * Return: 0 on success, -EAGAIN if no buffer is free.
475 *
476 * This function copies the transmit/receive data to/from the end point buffer
477 * and enables the buffer for transmission/reception.
478 */
479static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
480		       u8 *bufferptr, u32 bufferlen)
481{
482	u32 *eprambase;
483	u32 bytestosend;
484	int rc = 0;
485	struct xusb_udc *udc = ep->udc;
486
487	bytestosend = bufferlen;
488	if (udc->dma_enabled) {
489		if (ep->is_in)
490			rc = xudc_dma_send(ep, req, bufferptr, bufferlen);
491		else
492			rc = xudc_dma_receive(ep, req, bufferptr, bufferlen);
493		return rc;
494	}
495	/* Put the transmit buffer into the correct ping-pong buffer.*/
496	if (!ep->curbufnum && !ep->buffer0ready) {
497		/* Get the Buffer address and copy the transmit data.*/
498		eprambase = (u32 __force *)(udc->addr + ep->rambase);
499		if (ep->is_in) {
500			memcpy_toio((void __iomem *)eprambase, bufferptr,
501				    bytestosend);
502			udc->write_fn(udc->addr, ep->offset +
503				      XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
504		} else {
505			memcpy_toio((void __iomem *)bufferptr, eprambase,
506				    bytestosend);
507		}
508		/*
509		 * Enable the buffer for transmission.
510		 */
511		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
512			      1 << ep->epnumber);
513		ep->buffer0ready = 1;
514		ep->curbufnum = 1;
515	} else if (ep->curbufnum && !ep->buffer1ready) {
516		/* Get the Buffer address and copy the transmit data.*/
517		eprambase = (u32 __force *)(udc->addr + ep->rambase +
518			     ep->ep_usb.maxpacket);
519		if (ep->is_in) {
520			memcpy_toio((void __iomem *)eprambase, bufferptr,
521				    bytestosend);
522			udc->write_fn(udc->addr, ep->offset +
523				      XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
524		} else {
525			memcpy_toio((void __iomem *)bufferptr, eprambase,
526				    bytestosend);
527		}
528		/*
529		 * Enable the buffer for transmission.
530		 */
531		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
532			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
533		ep->buffer1ready = 1;
534		ep->curbufnum = 0;
535	} else {
536		/* None of the ping-pong buffers are ready currently */
537		return -EAGAIN;
538	}
539	return rc;
540}
541
542/**
543 * xudc_done - Exeutes the endpoint data transfer completion tasks.
544 * @ep: pointer to the usb device endpoint structure.
545 * @req: pointer to the usb request structure.
546 * @status: Status of the data transfer.
547 *
548 * Deletes the message from the queue and updates data transfer completion
549 * status.
550 */
551static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
552{
553	struct xusb_udc *udc = ep->udc;
554
555	list_del_init(&req->queue);
556
557	if (req->usb_req.status == -EINPROGRESS)
558		req->usb_req.status = status;
559	else
560		status = req->usb_req.status;
561
562	if (status && status != -ESHUTDOWN)
563		dev_dbg(udc->dev, "%s done %p, status %d\n",
564			ep->ep_usb.name, req, status);
565	/* unmap request if DMA is present*/
566	if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
567		usb_gadget_unmap_request(&udc->gadget, &req->usb_req,
568					 ep->is_in);
569
570	if (req->usb_req.complete) {
571		spin_unlock(&udc->lock);
572		req->usb_req.complete(&ep->ep_usb, &req->usb_req);
573		spin_lock(&udc->lock);
574	}
575}
576
577/**
578 * xudc_read_fifo - Reads the data from the given endpoint buffer.
579 * @ep: pointer to the usb device endpoint structure.
580 * @req: pointer to the usb request structure.
581 *
582 * Return: 0 if request is completed and -EAGAIN if not completed.
583 *
584 * Pulls OUT packet data from the endpoint buffer.
585 */
586static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
587{
588	u8 *buf;
589	u32 is_short, count, bufferspace;
590	u8 bufoffset;
591	u8 two_pkts = 0;
592	int ret;
593	int retval = -EAGAIN;
594	struct xusb_udc *udc = ep->udc;
595
596	if (ep->buffer0ready && ep->buffer1ready) {
597		dev_dbg(udc->dev, "Packet NOT ready!\n");
598		return retval;
599	}
600top:
601	if (ep->curbufnum)
602		bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
603	else
604		bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
605
606	count = udc->read_fn(udc->addr + ep->offset + bufoffset);
607
608	if (!ep->buffer0ready && !ep->buffer1ready)
609		two_pkts = 1;
610
611	buf = req->usb_req.buf + req->usb_req.actual;
612	prefetchw(buf);
613	bufferspace = req->usb_req.length - req->usb_req.actual;
614	is_short = count < ep->ep_usb.maxpacket;
615
616	if (unlikely(!bufferspace)) {
617		/*
618		 * This happens when the driver's buffer
619		 * is smaller than what the host sent.
620		 * discard the extra data.
621		 */
622		if (req->usb_req.status != -EOVERFLOW)
623			dev_dbg(udc->dev, "%s overflow %d\n",
624				ep->ep_usb.name, count);
625		req->usb_req.status = -EOVERFLOW;
626		xudc_done(ep, req, -EOVERFLOW);
627		return 0;
628	}
629
630	ret = xudc_eptxrx(ep, req, buf, count);
631	switch (ret) {
632	case 0:
633		req->usb_req.actual += min(count, bufferspace);
634		dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
635			ep->ep_usb.name, count, is_short ? "/S" : "", req,
636			req->usb_req.actual, req->usb_req.length);
637
638		/* Completion */
639		if ((req->usb_req.actual == req->usb_req.length) || is_short) {
640			if (udc->dma_enabled && req->usb_req.length)
641				dma_sync_single_for_cpu(udc->dev,
642							req->usb_req.dma,
643							req->usb_req.actual,
644							DMA_FROM_DEVICE);
645			xudc_done(ep, req, 0);
646			return 0;
647		}
648		if (two_pkts) {
649			two_pkts = 0;
650			goto top;
651		}
652		break;
653	case -EAGAIN:
654		dev_dbg(udc->dev, "receive busy\n");
655		break;
656	case -EINVAL:
657	case -ETIMEDOUT:
658		/* DMA error, dequeue the request */
659		xudc_done(ep, req, -ECONNRESET);
660		retval = 0;
661		break;
662	}
663
664	return retval;
665}
666
667/**
668 * xudc_write_fifo - Writes data into the given endpoint buffer.
669 * @ep: pointer to the usb device endpoint structure.
670 * @req: pointer to the usb request structure.
671 *
672 * Return: 0 if request is completed and -EAGAIN if not completed.
673 *
674 * Loads endpoint buffer for an IN packet.
675 */
676static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
677{
678	u32 max;
679	u32 length;
680	int ret;
681	int retval = -EAGAIN;
682	struct xusb_udc *udc = ep->udc;
683	int is_last, is_short = 0;
684	u8 *buf;
685
686	max = le16_to_cpu(ep->desc->wMaxPacketSize);
687	buf = req->usb_req.buf + req->usb_req.actual;
688	prefetch(buf);
689	length = req->usb_req.length - req->usb_req.actual;
690	length = min(length, max);
691
692	ret = xudc_eptxrx(ep, req, buf, length);
693	switch (ret) {
694	case 0:
695		req->usb_req.actual += length;
696		if (unlikely(length != max)) {
697			is_last = is_short = 1;
698		} else {
699			if (likely(req->usb_req.length !=
700				   req->usb_req.actual) || req->usb_req.zero)
701				is_last = 0;
702			else
703				is_last = 1;
704		}
705		dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
706			__func__, ep->ep_usb.name, length, is_last ? "/L" : "",
707			is_short ? "/S" : "",
708			req->usb_req.length - req->usb_req.actual, req);
709		/* completion */
710		if (is_last) {
711			xudc_done(ep, req, 0);
712			retval = 0;
713		}
714		break;
715	case -EAGAIN:
716		dev_dbg(udc->dev, "Send busy\n");
717		break;
718	case -EINVAL:
719	case -ETIMEDOUT:
720		/* DMA error, dequeue the request */
721		xudc_done(ep, req, -ECONNRESET);
722		retval = 0;
723		break;
724	}
725
726	return retval;
727}
728
729/**
730 * xudc_nuke - Cleans up the data transfer message list.
731 * @ep: pointer to the usb device endpoint structure.
732 * @status: Status of the data transfer.
733 */
734static void xudc_nuke(struct xusb_ep *ep, int status)
735{
736	struct xusb_req *req;
737
738	while (!list_empty(&ep->queue)) {
739		req = list_first_entry(&ep->queue, struct xusb_req, queue);
740		xudc_done(ep, req, status);
741	}
742}
743
744/**
745 * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
746 * @_ep: pointer to the usb device endpoint structure.
747 * @value: value to indicate stall/unstall.
748 *
749 * Return: 0 for success and error value on failure
750 */
751static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
752{
753	struct xusb_ep *ep = to_xusb_ep(_ep);
754	struct xusb_udc *udc;
755	unsigned long flags;
756	u32 epcfgreg;
757
758	if (!_ep || (!ep->desc && ep->epnumber)) {
759		pr_debug("%s: bad ep or descriptor\n", __func__);
760		return -EINVAL;
761	}
762	udc = ep->udc;
763
764	if (ep->is_in && (!list_empty(&ep->queue)) && value) {
765		dev_dbg(udc->dev, "requests pending can't halt\n");
766		return -EAGAIN;
767	}
768
769	if (ep->buffer0ready || ep->buffer1ready) {
770		dev_dbg(udc->dev, "HW buffers busy can't halt\n");
771		return -EAGAIN;
772	}
773
774	spin_lock_irqsave(&udc->lock, flags);
775
776	if (value) {
777		/* Stall the device.*/
778		epcfgreg = udc->read_fn(udc->addr + ep->offset);
779		epcfgreg |= XUSB_EP_CFG_STALL_MASK;
780		udc->write_fn(udc->addr, ep->offset, epcfgreg);
781	} else {
782		/* Unstall the device.*/
783		epcfgreg = udc->read_fn(udc->addr + ep->offset);
784		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
785		udc->write_fn(udc->addr, ep->offset, epcfgreg);
786		if (ep->epnumber) {
787			/* Reset the toggle bit.*/
788			epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
789			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
790			udc->write_fn(udc->addr, ep->offset, epcfgreg);
791		}
792	}
793
794	spin_unlock_irqrestore(&udc->lock, flags);
795	return 0;
796}
797
798/**
799 * __xudc_ep_enable - Enables the given endpoint.
800 * @ep: pointer to the xusb endpoint structure.
801 * @desc: pointer to usb endpoint descriptor.
802 *
803 * Return: 0 for success and error value on failure
804 */
805static int __xudc_ep_enable(struct xusb_ep *ep,
806			    const struct usb_endpoint_descriptor *desc)
807{
808	struct xusb_udc *udc = ep->udc;
809	u32 tmp;
810	u32 epcfg;
811	u32 ier;
812	u16 maxpacket;
813
814	ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
815	/* Bit 3...0:endpoint number */
816	ep->epnumber = (desc->bEndpointAddress & 0x0f);
817	ep->desc = desc;
818	ep->ep_usb.desc = desc;
819	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
820	ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
821
822	switch (tmp) {
823	case USB_ENDPOINT_XFER_CONTROL:
824		dev_dbg(udc->dev, "only one control endpoint\n");
825		/* NON- ISO */
826		ep->is_iso = 0;
827		return -EINVAL;
828	case USB_ENDPOINT_XFER_INT:
829		/* NON- ISO */
830		ep->is_iso = 0;
831		if (maxpacket > 64) {
832			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
833			return -EINVAL;
834		}
835		break;
836	case USB_ENDPOINT_XFER_BULK:
837		/* NON- ISO */
838		ep->is_iso = 0;
839		if (!(is_power_of_2(maxpacket) && maxpacket >= 8 &&
840				maxpacket <= 512)) {
841			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
842			return -EINVAL;
843		}
844		break;
845	case USB_ENDPOINT_XFER_ISOC:
846		/* ISO */
847		ep->is_iso = 1;
848		break;
849	}
850
851	ep->buffer0ready = false;
852	ep->buffer1ready = false;
853	ep->curbufnum = 0;
854	ep->rambase = rambase[ep->epnumber];
855	xudc_epconfig(ep, udc);
856
857	dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
858		ep->epnumber, maxpacket);
859
860	/* Enable the End point.*/
861	epcfg = udc->read_fn(udc->addr + ep->offset);
862	epcfg |= XUSB_EP_CFG_VALID_MASK;
863	udc->write_fn(udc->addr, ep->offset, epcfg);
864	if (ep->epnumber)
865		ep->rambase <<= 2;
866
867	/* Enable buffer completion interrupts for endpoint */
868	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
869	ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
870	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
871
872	/* for OUT endpoint set buffers ready to receive */
873	if (ep->epnumber && !ep->is_in) {
874		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
875			      1 << ep->epnumber);
876		ep->buffer0ready = true;
877		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
878			     (1 << (ep->epnumber +
879			      XUSB_STATUS_EP_BUFF2_SHIFT)));
880		ep->buffer1ready = true;
881	}
882
883	return 0;
884}
885
886/**
887 * xudc_ep_enable - Enables the given endpoint.
888 * @_ep: pointer to the usb endpoint structure.
889 * @desc: pointer to usb endpoint descriptor.
890 *
891 * Return: 0 for success and error value on failure
892 */
893static int xudc_ep_enable(struct usb_ep *_ep,
894			  const struct usb_endpoint_descriptor *desc)
895{
896	struct xusb_ep *ep;
897	struct xusb_udc *udc;
898	unsigned long flags;
899	int ret;
900
901	if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
902		pr_debug("%s: bad ep or descriptor\n", __func__);
903		return -EINVAL;
904	}
905
906	ep = to_xusb_ep(_ep);
907	udc = ep->udc;
908
909	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
910		dev_dbg(udc->dev, "bogus device state\n");
911		return -ESHUTDOWN;
912	}
913
914	spin_lock_irqsave(&udc->lock, flags);
915	ret = __xudc_ep_enable(ep, desc);
916	spin_unlock_irqrestore(&udc->lock, flags);
917
918	return ret;
919}
920
921/**
922 * xudc_ep_disable - Disables the given endpoint.
923 * @_ep: pointer to the usb endpoint structure.
924 *
925 * Return: 0 for success and error value on failure
926 */
927static int xudc_ep_disable(struct usb_ep *_ep)
928{
929	struct xusb_ep *ep;
930	unsigned long flags;
931	u32 epcfg;
932	struct xusb_udc *udc;
933
934	if (!_ep) {
935		pr_debug("%s: invalid ep\n", __func__);
936		return -EINVAL;
937	}
938
939	ep = to_xusb_ep(_ep);
940	udc = ep->udc;
941
942	spin_lock_irqsave(&udc->lock, flags);
943
944	xudc_nuke(ep, -ESHUTDOWN);
945
946	/* Restore the endpoint's pristine config */
947	ep->desc = NULL;
948	ep->ep_usb.desc = NULL;
949
950	dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
951	/* Disable the endpoint.*/
952	epcfg = udc->read_fn(udc->addr + ep->offset);
953	epcfg &= ~XUSB_EP_CFG_VALID_MASK;
954	udc->write_fn(udc->addr, ep->offset, epcfg);
955
956	spin_unlock_irqrestore(&udc->lock, flags);
957	return 0;
958}
959
960/**
961 * xudc_ep_alloc_request - Initializes the request queue.
962 * @_ep: pointer to the usb endpoint structure.
963 * @gfp_flags: Flags related to the request call.
964 *
965 * Return: pointer to request structure on success and a NULL on failure.
966 */
967static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
968						 gfp_t gfp_flags)
969{
970	struct xusb_ep *ep = to_xusb_ep(_ep);
971	struct xusb_req *req;
972
973	req = kzalloc(sizeof(*req), gfp_flags);
974	if (!req)
975		return NULL;
976
977	req->ep = ep;
978	INIT_LIST_HEAD(&req->queue);
979	return &req->usb_req;
980}
981
982/**
983 * xudc_free_request - Releases the request from queue.
984 * @_ep: pointer to the usb device endpoint structure.
985 * @_req: pointer to the usb request structure.
986 */
987static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
988{
989	struct xusb_req *req = to_xusb_req(_req);
990
991	kfree(req);
992}
993
994/**
995 * __xudc_ep0_queue - Adds the request to endpoint 0 queue.
996 * @ep0: pointer to the xusb endpoint 0 structure.
997 * @req: pointer to the xusb request structure.
998 *
999 * Return: 0 for success and error value on failure
1000 */
1001static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
1002{
1003	struct xusb_udc *udc = ep0->udc;
1004	u32 length;
1005	u8 *corebuf;
1006
1007	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1008		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1009		return -EINVAL;
1010	}
1011	if (!list_empty(&ep0->queue)) {
1012		dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1013		return -EBUSY;
1014	}
1015
1016	req->usb_req.status = -EINPROGRESS;
1017	req->usb_req.actual = 0;
1018
1019	list_add_tail(&req->queue, &ep0->queue);
1020
1021	if (udc->setup.bRequestType & USB_DIR_IN) {
1022		prefetch(req->usb_req.buf);
1023		length = req->usb_req.length;
1024		corebuf = (void __force *) ((ep0->rambase << 2) +
1025			   udc->addr);
1026		length = req->usb_req.actual = min_t(u32, length,
1027						     EP0_MAX_PACKET);
1028		memcpy_toio((void __iomem *)corebuf, req->usb_req.buf, length);
1029		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1030		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1031	} else {
1032		if (udc->setup.wLength) {
1033			/* Enable EP0 buffer to receive data */
1034			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1035			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1036		} else {
1037			xudc_wrstatus(udc);
1038		}
1039	}
1040
1041	return 0;
1042}
1043
1044/**
1045 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1046 * @_ep: pointer to the usb endpoint 0 structure.
1047 * @_req: pointer to the usb request structure.
1048 * @gfp_flags: Flags related to the request call.
1049 *
1050 * Return: 0 for success and error value on failure
1051 */
1052static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1053			  gfp_t gfp_flags)
1054{
1055	struct xusb_req *req	= to_xusb_req(_req);
1056	struct xusb_ep	*ep0	= to_xusb_ep(_ep);
1057	struct xusb_udc *udc	= ep0->udc;
1058	unsigned long flags;
1059	int ret;
1060
1061	spin_lock_irqsave(&udc->lock, flags);
1062	ret = __xudc_ep0_queue(ep0, req);
1063	spin_unlock_irqrestore(&udc->lock, flags);
1064
1065	return ret;
1066}
1067
1068/**
1069 * xudc_ep_queue - Adds the request to endpoint queue.
1070 * @_ep: pointer to the usb endpoint structure.
1071 * @_req: pointer to the usb request structure.
1072 * @gfp_flags: Flags related to the request call.
1073 *
1074 * Return: 0 for success and error value on failure
1075 */
1076static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1077			 gfp_t gfp_flags)
1078{
1079	struct xusb_req *req = to_xusb_req(_req);
1080	struct xusb_ep	*ep  = to_xusb_ep(_ep);
1081	struct xusb_udc *udc = ep->udc;
1082	int  ret;
1083	unsigned long flags;
1084
1085	if (!ep->desc) {
1086		dev_dbg(udc->dev, "%s: queuing request to disabled %s\n",
1087			__func__, ep->name);
1088		return -ESHUTDOWN;
1089	}
1090
1091	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1092		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1093		return -EINVAL;
1094	}
1095
1096	spin_lock_irqsave(&udc->lock, flags);
1097
1098	_req->status = -EINPROGRESS;
1099	_req->actual = 0;
1100
1101	if (udc->dma_enabled) {
1102		ret = usb_gadget_map_request(&udc->gadget, &req->usb_req,
1103					     ep->is_in);
1104		if (ret) {
1105			dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1106				ep->epnumber);
1107			spin_unlock_irqrestore(&udc->lock, flags);
1108			return -EAGAIN;
1109		}
1110	}
1111
1112	if (list_empty(&ep->queue)) {
1113		if (ep->is_in) {
1114			dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1115			if (!xudc_write_fifo(ep, req))
1116				req = NULL;
1117		} else {
1118			dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1119			if (!xudc_read_fifo(ep, req))
1120				req = NULL;
1121		}
1122	}
1123
1124	if (req != NULL)
1125		list_add_tail(&req->queue, &ep->queue);
1126
1127	spin_unlock_irqrestore(&udc->lock, flags);
1128	return 0;
1129}
1130
1131/**
1132 * xudc_ep_dequeue - Removes the request from the queue.
1133 * @_ep: pointer to the usb device endpoint structure.
1134 * @_req: pointer to the usb request structure.
1135 *
1136 * Return: 0 for success and error value on failure
1137 */
1138static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1139{
1140	struct xusb_ep *ep	= to_xusb_ep(_ep);
1141	struct xusb_req *req	= NULL;
1142	struct xusb_req *iter;
1143	struct xusb_udc *udc	= ep->udc;
1144	unsigned long flags;
1145
1146	spin_lock_irqsave(&udc->lock, flags);
1147	/* Make sure it's actually queued on this endpoint */
1148	list_for_each_entry(iter, &ep->queue, queue) {
1149		if (&iter->usb_req != _req)
1150			continue;
1151		req = iter;
1152		break;
1153	}
1154	if (!req) {
1155		spin_unlock_irqrestore(&udc->lock, flags);
1156		return -EINVAL;
1157	}
1158	xudc_done(ep, req, -ECONNRESET);
1159	spin_unlock_irqrestore(&udc->lock, flags);
1160
1161	return 0;
1162}
1163
1164/**
1165 * xudc_ep0_enable - Enables the given endpoint.
1166 * @ep: pointer to the usb endpoint structure.
1167 * @desc: pointer to usb endpoint descriptor.
1168 *
1169 * Return: error always.
1170 *
1171 * endpoint 0 enable should not be called by gadget layer.
1172 */
1173static int xudc_ep0_enable(struct usb_ep *ep,
1174			   const struct usb_endpoint_descriptor *desc)
1175{
1176	return -EINVAL;
1177}
1178
1179/**
1180 * xudc_ep0_disable - Disables the given endpoint.
1181 * @ep: pointer to the usb endpoint structure.
1182 *
1183 * Return: error always.
1184 *
1185 * endpoint 0 disable should not be called by gadget layer.
1186 */
1187static int xudc_ep0_disable(struct usb_ep *ep)
1188{
1189	return -EINVAL;
1190}
1191
1192static const struct usb_ep_ops xusb_ep0_ops = {
1193	.enable		= xudc_ep0_enable,
1194	.disable	= xudc_ep0_disable,
1195	.alloc_request	= xudc_ep_alloc_request,
1196	.free_request	= xudc_free_request,
1197	.queue		= xudc_ep0_queue,
1198	.dequeue	= xudc_ep_dequeue,
1199	.set_halt	= xudc_ep_set_halt,
1200};
1201
1202static const struct usb_ep_ops xusb_ep_ops = {
1203	.enable		= xudc_ep_enable,
1204	.disable	= xudc_ep_disable,
1205	.alloc_request	= xudc_ep_alloc_request,
1206	.free_request	= xudc_free_request,
1207	.queue		= xudc_ep_queue,
1208	.dequeue	= xudc_ep_dequeue,
1209	.set_halt	= xudc_ep_set_halt,
1210};
1211
1212/**
1213 * xudc_get_frame - Reads the current usb frame number.
1214 * @gadget: pointer to the usb gadget structure.
1215 *
1216 * Return: current frame number for success and error value on failure.
1217 */
1218static int xudc_get_frame(struct usb_gadget *gadget)
1219{
1220	struct xusb_udc *udc;
1221	int frame;
1222
1223	if (!gadget)
1224		return -ENODEV;
1225
1226	udc = to_udc(gadget);
1227	frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1228	return frame;
1229}
1230
1231/**
1232 * xudc_wakeup - Send remote wakeup signal to host
1233 * @gadget: pointer to the usb gadget structure.
1234 *
1235 * Return: 0 on success and error on failure
1236 */
1237static int xudc_wakeup(struct usb_gadget *gadget)
1238{
1239	struct xusb_udc *udc = to_udc(gadget);
1240	u32 crtlreg;
1241	int status = -EINVAL;
1242	unsigned long flags;
1243
1244	spin_lock_irqsave(&udc->lock, flags);
1245
1246	/* Remote wake up not enabled by host */
1247	if (!udc->remote_wkp)
1248		goto done;
1249
1250	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1251	crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1252	/* set remote wake up bit */
1253	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1254	/*
1255	 * wait for a while and reset remote wake up bit since this bit
1256	 * is not cleared by HW after sending remote wakeup to host.
1257	 */
1258	mdelay(2);
1259
1260	crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1261	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1262	status = 0;
1263done:
1264	spin_unlock_irqrestore(&udc->lock, flags);
1265	return status;
1266}
1267
1268/**
1269 * xudc_pullup - start/stop USB traffic
1270 * @gadget: pointer to the usb gadget structure.
1271 * @is_on: flag to start or stop
1272 *
1273 * Return: 0 always
1274 *
1275 * This function starts/stops SIE engine of IP based on is_on.
1276 */
1277static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1278{
1279	struct xusb_udc *udc = to_udc(gadget);
1280	unsigned long flags;
1281	u32 crtlreg;
1282
1283	spin_lock_irqsave(&udc->lock, flags);
1284
1285	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1286	if (is_on)
1287		crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1288	else
1289		crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1290
1291	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1292
1293	spin_unlock_irqrestore(&udc->lock, flags);
1294
1295	return 0;
1296}
1297
1298/**
1299 * xudc_eps_init - initialize endpoints.
1300 * @udc: pointer to the usb device controller structure.
1301 */
1302static void xudc_eps_init(struct xusb_udc *udc)
1303{
1304	u32 ep_number;
1305
1306	INIT_LIST_HEAD(&udc->gadget.ep_list);
1307
1308	for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1309		struct xusb_ep *ep = &udc->ep[ep_number];
1310
1311		if (ep_number) {
1312			list_add_tail(&ep->ep_usb.ep_list,
1313				      &udc->gadget.ep_list);
1314			usb_ep_set_maxpacket_limit(&ep->ep_usb,
1315						  (unsigned short) ~0);
1316			snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number);
1317			ep->ep_usb.name = ep->name;
1318			ep->ep_usb.ops = &xusb_ep_ops;
1319
1320			ep->ep_usb.caps.type_iso = true;
1321			ep->ep_usb.caps.type_bulk = true;
1322			ep->ep_usb.caps.type_int = true;
1323		} else {
1324			ep->ep_usb.name = ep0name;
1325			usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET);
1326			ep->ep_usb.ops = &xusb_ep0_ops;
1327
1328			ep->ep_usb.caps.type_control = true;
1329		}
1330
1331		ep->ep_usb.caps.dir_in = true;
1332		ep->ep_usb.caps.dir_out = true;
1333
1334		ep->udc = udc;
1335		ep->epnumber = ep_number;
1336		ep->desc = NULL;
1337		/*
1338		 * The configuration register address offset between
1339		 * each endpoint is 0x10.
1340		 */
1341		ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1342		ep->is_in = 0;
1343		ep->is_iso = 0;
1344		ep->maxpacket = 0;
1345		xudc_epconfig(ep, udc);
1346
1347		/* Initialize one queue per endpoint */
1348		INIT_LIST_HEAD(&ep->queue);
1349	}
1350}
1351
1352/**
1353 * xudc_stop_activity - Stops any further activity on the device.
1354 * @udc: pointer to the usb device controller structure.
1355 */
1356static void xudc_stop_activity(struct xusb_udc *udc)
1357{
1358	int i;
1359	struct xusb_ep *ep;
1360
1361	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1362		ep = &udc->ep[i];
1363		xudc_nuke(ep, -ESHUTDOWN);
1364	}
1365}
1366
1367/**
1368 * xudc_start - Starts the device.
1369 * @gadget: pointer to the usb gadget structure
1370 * @driver: pointer to gadget driver structure
1371 *
1372 * Return: zero on success and error on failure
1373 */
1374static int xudc_start(struct usb_gadget *gadget,
1375		      struct usb_gadget_driver *driver)
1376{
1377	struct xusb_udc *udc	= to_udc(gadget);
1378	struct xusb_ep *ep0	= &udc->ep[XUSB_EP_NUMBER_ZERO];
1379	const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1380	unsigned long flags;
1381	int ret = 0;
1382
1383	spin_lock_irqsave(&udc->lock, flags);
1384
1385	if (udc->driver) {
1386		dev_err(udc->dev, "%s is already bound to %s\n",
1387			udc->gadget.name, udc->driver->driver.name);
1388		ret = -EBUSY;
1389		goto err;
1390	}
1391
1392	/* hook up the driver */
1393	udc->driver = driver;
1394	udc->gadget.speed = driver->max_speed;
1395
1396	/* Enable the control endpoint. */
1397	ret = __xudc_ep_enable(ep0, desc);
1398
1399	/* Set device address and remote wakeup to 0 */
1400	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1401	udc->remote_wkp = 0;
1402err:
1403	spin_unlock_irqrestore(&udc->lock, flags);
1404	return ret;
1405}
1406
1407/**
1408 * xudc_stop - stops the device.
1409 * @gadget: pointer to the usb gadget structure
1410 *
1411 * Return: zero always
1412 */
1413static int xudc_stop(struct usb_gadget *gadget)
1414{
1415	struct xusb_udc *udc = to_udc(gadget);
1416	unsigned long flags;
1417
1418	spin_lock_irqsave(&udc->lock, flags);
1419
1420	udc->gadget.speed = USB_SPEED_UNKNOWN;
1421	udc->driver = NULL;
1422
1423	/* Set device address and remote wakeup to 0 */
1424	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1425	udc->remote_wkp = 0;
1426
1427	xudc_stop_activity(udc);
1428
1429	spin_unlock_irqrestore(&udc->lock, flags);
1430
1431	return 0;
1432}
1433
1434static const struct usb_gadget_ops xusb_udc_ops = {
1435	.get_frame	= xudc_get_frame,
1436	.wakeup		= xudc_wakeup,
1437	.pullup		= xudc_pullup,
1438	.udc_start	= xudc_start,
1439	.udc_stop	= xudc_stop,
1440};
1441
1442/**
1443 * xudc_clear_stall_all_ep - clears stall of every endpoint.
1444 * @udc: pointer to the udc structure.
1445 */
1446static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1447{
1448	struct xusb_ep *ep;
1449	u32 epcfgreg;
1450	int i;
1451
1452	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1453		ep = &udc->ep[i];
1454		epcfgreg = udc->read_fn(udc->addr + ep->offset);
1455		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1456		udc->write_fn(udc->addr, ep->offset, epcfgreg);
1457		if (ep->epnumber) {
1458			/* Reset the toggle bit.*/
1459			epcfgreg = udc->read_fn(udc->addr + ep->offset);
1460			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1461			udc->write_fn(udc->addr, ep->offset, epcfgreg);
1462		}
1463	}
1464}
1465
1466/**
1467 * xudc_startup_handler - The usb device controller interrupt handler.
1468 * @udc: pointer to the udc structure.
1469 * @intrstatus: The mask value containing the interrupt sources.
1470 *
1471 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1472 */
1473static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1474{
1475	u32 intrreg;
1476
1477	if (intrstatus & XUSB_STATUS_RESET_MASK) {
1478
1479		dev_dbg(udc->dev, "Reset\n");
1480
1481		if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1482			udc->gadget.speed = USB_SPEED_HIGH;
1483		else
1484			udc->gadget.speed = USB_SPEED_FULL;
1485
1486		xudc_stop_activity(udc);
1487		xudc_clear_stall_all_ep(udc);
1488		udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1489
1490		/* Set device address and remote wakeup to 0 */
1491		udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1492		udc->remote_wkp = 0;
1493
1494		/* Enable the suspend, resume and disconnect */
1495		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1496		intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1497			   XUSB_STATUS_DISCONNECT_MASK;
1498		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1499	}
1500	if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1501
1502		dev_dbg(udc->dev, "Suspend\n");
1503
1504		/* Enable the reset, resume and disconnect */
1505		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1506		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1507			   XUSB_STATUS_DISCONNECT_MASK;
1508		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1509
1510		udc->usb_state = USB_STATE_SUSPENDED;
1511
1512		if (udc->driver->suspend) {
1513			spin_unlock(&udc->lock);
1514			udc->driver->suspend(&udc->gadget);
1515			spin_lock(&udc->lock);
1516		}
1517	}
1518	if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1519		bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1520
1521		dev_WARN_ONCE(udc->dev, condition,
1522				"Resume IRQ while not suspended\n");
1523
1524		dev_dbg(udc->dev, "Resume\n");
1525
1526		/* Enable the reset, suspend and disconnect */
1527		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1528		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1529			   XUSB_STATUS_DISCONNECT_MASK;
1530		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1531
1532		udc->usb_state = 0;
1533
1534		if (udc->driver->resume) {
1535			spin_unlock(&udc->lock);
1536			udc->driver->resume(&udc->gadget);
1537			spin_lock(&udc->lock);
1538		}
1539	}
1540	if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1541
1542		dev_dbg(udc->dev, "Disconnect\n");
1543
1544		/* Enable the reset, resume and suspend */
1545		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1546		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1547			   XUSB_STATUS_SUSPEND_MASK;
1548		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1549
1550		if (udc->driver && udc->driver->disconnect) {
1551			spin_unlock(&udc->lock);
1552			udc->driver->disconnect(&udc->gadget);
1553			spin_lock(&udc->lock);
1554		}
1555	}
1556}
1557
1558/**
1559 * xudc_ep0_stall - Stall endpoint zero.
1560 * @udc: pointer to the udc structure.
1561 *
1562 * This function stalls endpoint zero.
1563 */
1564static void xudc_ep0_stall(struct xusb_udc *udc)
1565{
1566	u32 epcfgreg;
1567	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1568
1569	epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1570	epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1571	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1572}
1573
1574/**
1575 * xudc_setaddress - executes SET_ADDRESS command
1576 * @udc: pointer to the udc structure.
1577 *
1578 * This function executes USB SET_ADDRESS command
1579 */
1580static void xudc_setaddress(struct xusb_udc *udc)
1581{
1582	struct xusb_ep *ep0	= &udc->ep[0];
1583	struct xusb_req *req	= udc->req;
1584	int ret;
1585
1586	req->usb_req.length = 0;
1587	ret = __xudc_ep0_queue(ep0, req);
1588	if (ret == 0)
1589		return;
1590
1591	dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1592	xudc_ep0_stall(udc);
1593}
1594
1595/**
1596 * xudc_getstatus - executes GET_STATUS command
1597 * @udc: pointer to the udc structure.
1598 *
1599 * This function executes USB GET_STATUS command
1600 */
1601static void xudc_getstatus(struct xusb_udc *udc)
1602{
1603	struct xusb_ep *ep0	= &udc->ep[0];
1604	struct xusb_req *req	= udc->req;
1605	struct xusb_ep *target_ep;
1606	u16 status = 0;
1607	u32 epcfgreg;
1608	int epnum;
1609	u32 halt;
1610	int ret;
1611
1612	switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1613	case USB_RECIP_DEVICE:
1614		/* Get device status */
1615		status = 1 << USB_DEVICE_SELF_POWERED;
1616		if (udc->remote_wkp)
1617			status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1618		break;
1619	case USB_RECIP_INTERFACE:
1620		break;
1621	case USB_RECIP_ENDPOINT:
1622		epnum = le16_to_cpu(udc->setup.wIndex) & USB_ENDPOINT_NUMBER_MASK;
1623		if (epnum >= XUSB_MAX_ENDPOINTS)
1624			goto stall;
1625		target_ep = &udc->ep[epnum];
1626		epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1627		halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1628		if (le16_to_cpu(udc->setup.wIndex) & USB_DIR_IN) {
1629			if (!target_ep->is_in)
1630				goto stall;
1631		} else {
1632			if (target_ep->is_in)
1633				goto stall;
1634		}
1635		if (halt)
1636			status = 1 << USB_ENDPOINT_HALT;
1637		break;
1638	default:
1639		goto stall;
1640	}
1641
1642	req->usb_req.length = 2;
1643	*(__le16 *)req->usb_req.buf = cpu_to_le16(status);
1644	ret = __xudc_ep0_queue(ep0, req);
1645	if (ret == 0)
1646		return;
1647stall:
1648	dev_err(udc->dev, "Can't respond to getstatus request\n");
1649	xudc_ep0_stall(udc);
1650}
1651
1652/**
1653 * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1654 * @udc: pointer to the usb device controller structure.
1655 *
1656 * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1657 */
1658static void xudc_set_clear_feature(struct xusb_udc *udc)
1659{
1660	struct xusb_ep *ep0	= &udc->ep[0];
1661	struct xusb_req *req	= udc->req;
1662	struct xusb_ep *target_ep;
1663	u8 endpoint;
1664	u8 outinbit;
1665	u32 epcfgreg;
1666	int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1667	int ret;
1668
1669	switch (udc->setup.bRequestType) {
1670	case USB_RECIP_DEVICE:
1671		switch (le16_to_cpu(udc->setup.wValue)) {
1672		case USB_DEVICE_TEST_MODE:
1673			/*
1674			 * The Test Mode will be executed
1675			 * after the status phase.
1676			 */
1677			break;
1678		case USB_DEVICE_REMOTE_WAKEUP:
1679			if (flag)
1680				udc->remote_wkp = 1;
1681			else
1682				udc->remote_wkp = 0;
1683			break;
1684		default:
1685			xudc_ep0_stall(udc);
1686			break;
1687		}
1688		break;
1689	case USB_RECIP_ENDPOINT:
1690		if (!udc->setup.wValue) {
1691			endpoint = le16_to_cpu(udc->setup.wIndex) &
1692					       USB_ENDPOINT_NUMBER_MASK;
1693			if (endpoint >= XUSB_MAX_ENDPOINTS) {
1694				xudc_ep0_stall(udc);
1695				return;
1696			}
1697			target_ep = &udc->ep[endpoint];
1698			outinbit = le16_to_cpu(udc->setup.wIndex) &
1699					       USB_ENDPOINT_DIR_MASK;
1700			outinbit = outinbit >> 7;
1701
1702			/* Make sure direction matches.*/
1703			if (outinbit != target_ep->is_in) {
1704				xudc_ep0_stall(udc);
1705				return;
1706			}
1707			epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1708			if (!endpoint) {
1709				/* Clear the stall.*/
1710				epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1711				udc->write_fn(udc->addr,
1712					      target_ep->offset, epcfgreg);
1713			} else {
1714				if (flag) {
1715					epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1716					udc->write_fn(udc->addr,
1717						      target_ep->offset,
1718						      epcfgreg);
1719				} else {
1720					/* Unstall the endpoint.*/
1721					epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1722						XUSB_EP_CFG_DATA_TOGGLE_MASK);
1723					udc->write_fn(udc->addr,
1724						      target_ep->offset,
1725						      epcfgreg);
1726				}
1727			}
1728		}
1729		break;
1730	default:
1731		xudc_ep0_stall(udc);
1732		return;
1733	}
1734
1735	req->usb_req.length = 0;
1736	ret = __xudc_ep0_queue(ep0, req);
1737	if (ret == 0)
1738		return;
1739
1740	dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1741	xudc_ep0_stall(udc);
1742}
1743
1744/**
1745 * xudc_handle_setup - Processes the setup packet.
1746 * @udc: pointer to the usb device controller structure.
1747 *
1748 * Process setup packet and delegate to gadget layer.
1749 */
1750static void xudc_handle_setup(struct xusb_udc *udc)
1751	__must_hold(&udc->lock)
1752{
1753	struct xusb_ep *ep0 = &udc->ep[0];
1754	struct usb_ctrlrequest setup;
1755	u32 *ep0rambase;
1756
1757	/* Load up the chapter 9 command buffer.*/
1758	ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1759	memcpy_toio((void __iomem *)&setup, ep0rambase, 8);
1760
1761	udc->setup = setup;
1762	udc->setup.wValue = cpu_to_le16((u16 __force)setup.wValue);
1763	udc->setup.wIndex = cpu_to_le16((u16 __force)setup.wIndex);
1764	udc->setup.wLength = cpu_to_le16((u16 __force)setup.wLength);
1765
1766	/* Clear previous requests */
1767	xudc_nuke(ep0, -ECONNRESET);
1768
1769	if (udc->setup.bRequestType & USB_DIR_IN) {
1770		/* Execute the get command.*/
1771		udc->setupseqrx = STATUS_PHASE;
1772		udc->setupseqtx = DATA_PHASE;
1773	} else {
1774		/* Execute the put command.*/
1775		udc->setupseqrx = DATA_PHASE;
1776		udc->setupseqtx = STATUS_PHASE;
1777	}
1778
1779	switch (udc->setup.bRequest) {
1780	case USB_REQ_GET_STATUS:
1781		/* Data+Status phase form udc */
1782		if ((udc->setup.bRequestType &
1783				(USB_DIR_IN | USB_TYPE_MASK)) !=
1784				(USB_DIR_IN | USB_TYPE_STANDARD))
1785			break;
1786		xudc_getstatus(udc);
1787		return;
1788	case USB_REQ_SET_ADDRESS:
1789		/* Status phase from udc */
1790		if (udc->setup.bRequestType != (USB_DIR_OUT |
1791				USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1792			break;
1793		xudc_setaddress(udc);
1794		return;
1795	case USB_REQ_CLEAR_FEATURE:
1796	case USB_REQ_SET_FEATURE:
1797		/* Requests with no data phase, status phase from udc */
1798		if ((udc->setup.bRequestType & USB_TYPE_MASK)
1799				!= USB_TYPE_STANDARD)
1800			break;
1801		xudc_set_clear_feature(udc);
1802		return;
1803	default:
1804		break;
1805	}
1806
1807	spin_unlock(&udc->lock);
1808	if (udc->driver->setup(&udc->gadget, &setup) < 0)
1809		xudc_ep0_stall(udc);
1810	spin_lock(&udc->lock);
1811}
1812
1813/**
1814 * xudc_ep0_out - Processes the endpoint 0 OUT token.
1815 * @udc: pointer to the usb device controller structure.
1816 */
1817static void xudc_ep0_out(struct xusb_udc *udc)
1818{
1819	struct xusb_ep *ep0 = &udc->ep[0];
1820	struct xusb_req *req;
1821	u8 *ep0rambase;
1822	unsigned int bytes_to_rx;
1823	void *buffer;
1824
1825	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1826
1827	switch (udc->setupseqrx) {
1828	case STATUS_PHASE:
1829		/*
1830		 * This resets both state machines for the next
1831		 * Setup packet.
1832		 */
1833		udc->setupseqrx = SETUP_PHASE;
1834		udc->setupseqtx = SETUP_PHASE;
1835		req->usb_req.actual = req->usb_req.length;
1836		xudc_done(ep0, req, 0);
1837		break;
1838	case DATA_PHASE:
1839		bytes_to_rx = udc->read_fn(udc->addr +
1840					   XUSB_EP_BUF0COUNT_OFFSET);
1841		/* Copy the data to be received from the DPRAM. */
1842		ep0rambase = (u8 __force *) (udc->addr +
1843			     (ep0->rambase << 2));
1844		buffer = req->usb_req.buf + req->usb_req.actual;
1845		req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1846		memcpy_toio((void __iomem *)buffer, ep0rambase, bytes_to_rx);
1847
1848		if (req->usb_req.length == req->usb_req.actual) {
1849			/* Data transfer completed get ready for Status stage */
1850			xudc_wrstatus(udc);
1851		} else {
1852			/* Enable EP0 buffer to receive data */
1853			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1854			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1855		}
1856		break;
1857	default:
1858		break;
1859	}
1860}
1861
1862/**
1863 * xudc_ep0_in - Processes the endpoint 0 IN token.
1864 * @udc: pointer to the usb device controller structure.
1865 */
1866static void xudc_ep0_in(struct xusb_udc *udc)
1867{
1868	struct xusb_ep *ep0 = &udc->ep[0];
1869	struct xusb_req *req;
1870	unsigned int bytes_to_tx;
1871	void *buffer;
1872	u32 epcfgreg;
1873	u16 count = 0;
1874	u16 length;
1875	u8 *ep0rambase;
1876	u8 test_mode = le16_to_cpu(udc->setup.wIndex) >> 8;
1877
1878	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1879	bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1880
1881	switch (udc->setupseqtx) {
1882	case STATUS_PHASE:
1883		switch (udc->setup.bRequest) {
1884		case USB_REQ_SET_ADDRESS:
1885			/* Set the address of the device.*/
1886			udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1887				      le16_to_cpu(udc->setup.wValue));
1888			break;
1889		case USB_REQ_SET_FEATURE:
1890			if (udc->setup.bRequestType ==
1891					USB_RECIP_DEVICE) {
1892				if (le16_to_cpu(udc->setup.wValue) ==
1893						USB_DEVICE_TEST_MODE)
1894					udc->write_fn(udc->addr,
1895						      XUSB_TESTMODE_OFFSET,
1896						      test_mode);
1897			}
1898			break;
1899		}
1900		req->usb_req.actual = req->usb_req.length;
1901		xudc_done(ep0, req, 0);
1902		break;
1903	case DATA_PHASE:
1904		if (!bytes_to_tx) {
1905			/*
1906			 * We're done with data transfer, next
1907			 * will be zero length OUT with data toggle of
1908			 * 1. Setup data_toggle.
1909			 */
1910			epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1911			epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1912			udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1913			udc->setupseqtx = STATUS_PHASE;
1914		} else {
1915			length = count = min_t(u32, bytes_to_tx,
1916					       EP0_MAX_PACKET);
1917			/* Copy the data to be transmitted into the DPRAM. */
1918			ep0rambase = (u8 __force *) (udc->addr +
1919				     (ep0->rambase << 2));
1920			buffer = req->usb_req.buf + req->usb_req.actual;
1921			req->usb_req.actual = req->usb_req.actual + length;
1922			memcpy_toio((void __iomem *)ep0rambase, buffer, length);
1923		}
1924		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1925		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1926		break;
1927	default:
1928		break;
1929	}
1930}
1931
1932/**
1933 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1934 * @udc: pointer to the udc structure.
1935 * @intrstatus:	It's the mask value for the interrupt sources on endpoint 0.
1936 *
1937 * Processes the commands received during enumeration phase.
1938 */
1939static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1940{
1941
1942	if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1943		xudc_handle_setup(udc);
1944	} else {
1945		if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1946			xudc_ep0_out(udc);
1947		else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1948			xudc_ep0_in(udc);
1949	}
1950}
1951
1952/**
1953 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1954 * @udc: pointer to the udc structure.
1955 * @epnum: End point number for which the interrupt is to be processed
1956 * @intrstatus:	mask value for interrupt sources of endpoints other
1957 *		than endpoint 0.
1958 *
1959 * Processes the buffer completion interrupts.
1960 */
1961static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1962				    u32 intrstatus)
1963{
1964
1965	struct xusb_req *req;
1966	struct xusb_ep *ep;
1967
1968	ep = &udc->ep[epnum];
1969	/* Process the End point interrupts.*/
1970	if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1971		ep->buffer0ready = 0;
1972	if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1973		ep->buffer1ready = false;
1974
1975	if (list_empty(&ep->queue))
1976		return;
1977
1978	req = list_first_entry(&ep->queue, struct xusb_req, queue);
1979
1980	if (ep->is_in)
1981		xudc_write_fifo(ep, req);
1982	else
1983		xudc_read_fifo(ep, req);
1984}
1985
1986/**
1987 * xudc_irq - The main interrupt handler.
1988 * @irq: The interrupt number.
1989 * @_udc: pointer to the usb device controller structure.
1990 *
1991 * Return: IRQ_HANDLED after the interrupt is handled.
1992 */
1993static irqreturn_t xudc_irq(int irq, void *_udc)
1994{
1995	struct xusb_udc *udc = _udc;
1996	u32 intrstatus;
1997	u32 ier;
1998	u8 index;
1999	u32 bufintr;
2000	unsigned long flags;
2001
2002	spin_lock_irqsave(&udc->lock, flags);
2003
2004	/*
2005	 * Event interrupts are level sensitive hence first disable
2006	 * IER, read ISR and figure out active interrupts.
2007	 */
2008	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2009	ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
2010	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2011
2012	/* Read the Interrupt Status Register.*/
2013	intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
2014
2015	/* Call the handler for the event interrupt.*/
2016	if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2017		/*
2018		 * Check if there is any action to be done for :
2019		 * - USB Reset received {XUSB_STATUS_RESET_MASK}
2020		 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2021		 * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2022		 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2023		 */
2024		xudc_startup_handler(udc, intrstatus);
2025	}
2026
2027	/* Check the buffer completion interrupts */
2028	if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2029		/* Enable Reset, Suspend, Resume and Disconnect  */
2030		ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2031		ier |= XUSB_STATUS_INTR_EVENT_MASK;
2032		udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2033
2034		if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2035			xudc_ctrl_ep_handler(udc, intrstatus);
2036
2037		for (index = 1; index < 8; index++) {
2038			bufintr = ((intrstatus &
2039				  (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2040				  (index - 1))) || (intrstatus &
2041				  (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2042				  (index - 1))));
2043			if (bufintr) {
2044				xudc_nonctrl_ep_handler(udc, index,
2045							intrstatus);
2046			}
2047		}
2048	}
2049
2050	spin_unlock_irqrestore(&udc->lock, flags);
2051	return IRQ_HANDLED;
2052}
2053
2054/**
2055 * xudc_probe - The device probe function for driver initialization.
2056 * @pdev: pointer to the platform device structure.
2057 *
2058 * Return: 0 for success and error value on failure
2059 */
2060static int xudc_probe(struct platform_device *pdev)
2061{
2062	struct device_node *np = pdev->dev.of_node;
2063	struct resource *res;
2064	struct xusb_udc *udc;
2065	int irq;
2066	int ret;
2067	u32 ier;
2068	u8 *buff;
2069
2070	udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2071	if (!udc)
2072		return -ENOMEM;
2073
2074	/* Create a dummy request for GET_STATUS, SET_ADDRESS */
2075	udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req),
2076				GFP_KERNEL);
2077	if (!udc->req)
2078		return -ENOMEM;
2079
2080	buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2081	if (!buff)
2082		return -ENOMEM;
2083
2084	udc->req->usb_req.buf = buff;
2085
2086	/* Map the registers */
2087	udc->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2088	if (IS_ERR(udc->addr))
2089		return PTR_ERR(udc->addr);
2090
2091	irq = platform_get_irq(pdev, 0);
2092	if (irq < 0)
2093		return irq;
2094	ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0,
2095			       dev_name(&pdev->dev), udc);
2096	if (ret < 0) {
2097		dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2098		goto fail;
2099	}
2100
2101	udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma");
2102
2103	/* Setup gadget structure */
2104	udc->gadget.ops = &xusb_udc_ops;
2105	udc->gadget.max_speed = USB_SPEED_HIGH;
2106	udc->gadget.speed = USB_SPEED_UNKNOWN;
2107	udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2108	udc->gadget.name = driver_name;
2109
2110	udc->clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
2111	if (IS_ERR(udc->clk)) {
2112		if (PTR_ERR(udc->clk) != -ENOENT) {
2113			ret = PTR_ERR(udc->clk);
2114			goto fail;
2115		}
2116
2117		/*
2118		 * Clock framework support is optional, continue on,
2119		 * anyways if we don't find a matching clock
2120		 */
2121		dev_warn(&pdev->dev, "s_axi_aclk clock property is not found\n");
2122		udc->clk = NULL;
2123	}
2124
2125	ret = clk_prepare_enable(udc->clk);
2126	if (ret) {
2127		dev_err(&pdev->dev, "Unable to enable clock.\n");
2128		return ret;
2129	}
2130
2131	spin_lock_init(&udc->lock);
2132
2133	/* Check for IP endianness */
2134	udc->write_fn = xudc_write32_be;
2135	udc->read_fn = xudc_read32_be;
2136	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, USB_TEST_J);
2137	if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2138			!= USB_TEST_J) {
2139		udc->write_fn = xudc_write32;
2140		udc->read_fn = xudc_read32;
2141	}
2142	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2143
2144	xudc_eps_init(udc);
2145
2146	/* Set device address to 0.*/
2147	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2148
2149	ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2150	if (ret)
2151		goto err_disable_unprepare_clk;
2152
2153	udc->dev = &udc->gadget.dev;
2154
2155	/* Enable the interrupts.*/
2156	ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2157	      XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2158	      XUSB_STATUS_SETUP_PACKET_MASK |
2159	      XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2160
2161	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2162
2163	platform_set_drvdata(pdev, udc);
2164
2165	dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2166		 driver_name, (u32)res->start, udc->addr,
2167		 udc->dma_enabled ? "with DMA" : "without DMA");
2168
2169	return 0;
2170
2171err_disable_unprepare_clk:
2172	clk_disable_unprepare(udc->clk);
2173fail:
2174	dev_err(&pdev->dev, "probe failed, %d\n", ret);
2175	return ret;
2176}
2177
2178/**
2179 * xudc_remove - Releases the resources allocated during the initialization.
2180 * @pdev: pointer to the platform device structure.
2181 *
2182 * Return: 0 always
2183 */
2184static void xudc_remove(struct platform_device *pdev)
2185{
2186	struct xusb_udc *udc = platform_get_drvdata(pdev);
2187
2188	usb_del_gadget_udc(&udc->gadget);
2189	clk_disable_unprepare(udc->clk);
2190}
2191
2192#ifdef CONFIG_PM_SLEEP
2193static int xudc_suspend(struct device *dev)
2194{
2195	struct xusb_udc *udc;
2196	u32 crtlreg;
2197	unsigned long flags;
2198
2199	udc = dev_get_drvdata(dev);
2200
2201	spin_lock_irqsave(&udc->lock, flags);
2202
2203	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
2204	crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
2205
2206	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
2207
2208	spin_unlock_irqrestore(&udc->lock, flags);
2209	if (udc->driver && udc->driver->suspend)
2210		udc->driver->suspend(&udc->gadget);
2211
2212	clk_disable(udc->clk);
2213
2214	return 0;
2215}
2216
2217static int xudc_resume(struct device *dev)
2218{
2219	struct xusb_udc *udc;
2220	u32 crtlreg;
2221	unsigned long flags;
2222	int ret;
2223
2224	udc = dev_get_drvdata(dev);
2225
2226	ret = clk_enable(udc->clk);
2227	if (ret < 0)
2228		return ret;
2229
2230	spin_lock_irqsave(&udc->lock, flags);
2231
2232	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
2233	crtlreg |= XUSB_CONTROL_USB_READY_MASK;
2234
2235	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
2236
2237	spin_unlock_irqrestore(&udc->lock, flags);
2238
2239	return 0;
2240}
2241#endif /* CONFIG_PM_SLEEP */
2242
2243static const struct dev_pm_ops xudc_pm_ops = {
2244	SET_SYSTEM_SLEEP_PM_OPS(xudc_suspend, xudc_resume)
2245};
2246
2247/* Match table for of_platform binding */
2248static const struct of_device_id usb_of_match[] = {
2249	{ .compatible = "xlnx,usb2-device-4.00.a", },
2250	{ /* end of list */ },
2251};
2252MODULE_DEVICE_TABLE(of, usb_of_match);
2253
2254static struct platform_driver xudc_driver = {
2255	.driver = {
2256		.name = driver_name,
2257		.of_match_table = usb_of_match,
2258		.pm	= &xudc_pm_ops,
2259	},
2260	.probe = xudc_probe,
2261	.remove_new = xudc_remove,
2262};
2263
2264module_platform_driver(xudc_driver);
2265
2266MODULE_DESCRIPTION("Xilinx udc driver");
2267MODULE_AUTHOR("Xilinx, Inc");
2268MODULE_LICENSE("GPL");
2269