1// SPDX-License-Identifier: GPL-2.0+
2/* Faraday FOTG210 EHCI-like driver
3 *
4 * Copyright (c) 2013 Faraday Technology Corporation
5 *
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 *	   Feng-Hsin Chiang <john453@faraday-tech.com>
8 *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
9 *
10 * Most of code borrowed from the Linux-3.7 EHCI driver
11 */
12#include <linux/module.h>
13#include <linux/of.h>
14#include <linux/device.h>
15#include <linux/dmapool.h>
16#include <linux/kernel.h>
17#include <linux/delay.h>
18#include <linux/ioport.h>
19#include <linux/sched.h>
20#include <linux/vmalloc.h>
21#include <linux/errno.h>
22#include <linux/init.h>
23#include <linux/hrtimer.h>
24#include <linux/list.h>
25#include <linux/interrupt.h>
26#include <linux/usb.h>
27#include <linux/usb/hcd.h>
28#include <linux/moduleparam.h>
29#include <linux/dma-mapping.h>
30#include <linux/debugfs.h>
31#include <linux/slab.h>
32#include <linux/uaccess.h>
33#include <linux/platform_device.h>
34#include <linux/io.h>
35#include <linux/iopoll.h>
36
37#include <asm/byteorder.h>
38#include <asm/irq.h>
39#include <asm/unaligned.h>
40
41#include "fotg210.h"
42
43static const char hcd_name[] = "fotg210_hcd";
44
45#undef FOTG210_URB_TRACE
46#define FOTG210_STATS
47
48/* magic numbers that can affect system performance */
49#define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
50#define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
51#define FOTG210_TUNE_RL_TT	0
52#define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
53#define FOTG210_TUNE_MULT_TT	1
54
55/* Some drivers think it's safe to schedule isochronous transfers more than 256
56 * ms into the future (partly as a result of an old bug in the scheduling
57 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
58 * length of 512 frames instead of 256.
59 */
60#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
61
62/* Initial IRQ latency:  faster than hw default */
63static int log2_irq_thresh; /* 0 to 6 */
64module_param(log2_irq_thresh, int, S_IRUGO);
65MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
66
67/* initial park setting:  slower than hw default */
68static unsigned park;
69module_param(park, uint, S_IRUGO);
70MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
71
72/* for link power management(LPM) feature */
73static unsigned int hird;
74module_param(hird, int, S_IRUGO);
75MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
76
77#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
78
79#include "fotg210-hcd.h"
80
81#define fotg210_dbg(fotg210, fmt, args...) \
82	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83#define fotg210_err(fotg210, fmt, args...) \
84	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85#define fotg210_info(fotg210, fmt, args...) \
86	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
87#define fotg210_warn(fotg210, fmt, args...) \
88	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
89
90/* check the values in the HCSPARAMS register (host controller _Structural_
91 * parameters) see EHCI spec, Table 2-4 for each value
92 */
93static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
94{
95	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
96
97	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
98			HCS_N_PORTS(params));
99}
100
101/* check the values in the HCCPARAMS register (host controller _Capability_
102 * parameters) see EHCI Spec, Table 2-5 for each value
103 */
104static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
105{
106	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
107
108	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
109			params,
110			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
111			HCC_CANPARK(params) ? " park" : "");
112}
113
114static void __maybe_unused
115dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
116{
117	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
118			hc32_to_cpup(fotg210, &qtd->hw_next),
119			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
120			hc32_to_cpup(fotg210, &qtd->hw_token),
121			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
122	if (qtd->hw_buf[1])
123		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
124				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
125				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
126				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
127				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
128}
129
130static void __maybe_unused
131dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
132{
133	struct fotg210_qh_hw *hw = qh->hw;
134
135	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
136			hw->hw_next, hw->hw_info1, hw->hw_info2,
137			hw->hw_current);
138
139	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
140}
141
142static void __maybe_unused
143dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
144{
145	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
146			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
147			itd->urb);
148
149	fotg210_dbg(fotg210,
150			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
151			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
152			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
153			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
154			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
155			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
156			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
157			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
158			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
159
160	fotg210_dbg(fotg210,
161			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
162			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
163			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
164			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
165			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
166			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
167			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
168			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
169
170	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
171			itd->index[0], itd->index[1], itd->index[2],
172			itd->index[3], itd->index[4], itd->index[5],
173			itd->index[6], itd->index[7]);
174}
175
176static int __maybe_unused
177dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
178{
179	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
180			label, label[0] ? " " : "", status,
181			(status & STS_ASS) ? " Async" : "",
182			(status & STS_PSS) ? " Periodic" : "",
183			(status & STS_RECL) ? " Recl" : "",
184			(status & STS_HALT) ? " Halt" : "",
185			(status & STS_IAA) ? " IAA" : "",
186			(status & STS_FATAL) ? " FATAL" : "",
187			(status & STS_FLR) ? " FLR" : "",
188			(status & STS_PCD) ? " PCD" : "",
189			(status & STS_ERR) ? " ERR" : "",
190			(status & STS_INT) ? " INT" : "");
191}
192
193static int __maybe_unused
194dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
195{
196	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
197			label, label[0] ? " " : "", enable,
198			(enable & STS_IAA) ? " IAA" : "",
199			(enable & STS_FATAL) ? " FATAL" : "",
200			(enable & STS_FLR) ? " FLR" : "",
201			(enable & STS_PCD) ? " PCD" : "",
202			(enable & STS_ERR) ? " ERR" : "",
203			(enable & STS_INT) ? " INT" : "");
204}
205
206static const char *const fls_strings[] = { "1024", "512", "256", "??" };
207
208static int dbg_command_buf(char *buf, unsigned len, const char *label,
209		u32 command)
210{
211	return scnprintf(buf, len,
212			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
213			label, label[0] ? " " : "", command,
214			(command & CMD_PARK) ? " park" : "(park)",
215			CMD_PARK_CNT(command),
216			(command >> 16) & 0x3f,
217			(command & CMD_IAAD) ? " IAAD" : "",
218			(command & CMD_ASE) ? " Async" : "",
219			(command & CMD_PSE) ? " Periodic" : "",
220			fls_strings[(command >> 2) & 0x3],
221			(command & CMD_RESET) ? " Reset" : "",
222			(command & CMD_RUN) ? "RUN" : "HALT");
223}
224
225static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
226		u32 status)
227{
228	char *sig;
229
230	/* signaling state */
231	switch (status & (3 << 10)) {
232	case 0 << 10:
233		sig = "se0";
234		break;
235	case 1 << 10:
236		sig = "k";
237		break; /* low speed */
238	case 2 << 10:
239		sig = "j";
240		break;
241	default:
242		sig = "?";
243		break;
244	}
245
246	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
247			label, label[0] ? " " : "", port, status,
248			status >> 25, /*device address */
249			sig,
250			(status & PORT_RESET) ? " RESET" : "",
251			(status & PORT_SUSPEND) ? " SUSPEND" : "",
252			(status & PORT_RESUME) ? " RESUME" : "",
253			(status & PORT_PEC) ? " PEC" : "",
254			(status & PORT_PE) ? " PE" : "",
255			(status & PORT_CSC) ? " CSC" : "",
256			(status & PORT_CONNECT) ? " CONNECT" : "");
257
258	return buf;
259}
260
261/* functions have the "wrong" filename when they're output... */
262#define dbg_status(fotg210, label, status) {			\
263	char _buf[80];						\
264	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
265	fotg210_dbg(fotg210, "%s\n", _buf);			\
266}
267
268#define dbg_cmd(fotg210, label, command) {			\
269	char _buf[80];						\
270	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
271	fotg210_dbg(fotg210, "%s\n", _buf);			\
272}
273
274#define dbg_port(fotg210, label, port, status) {			       \
275	char _buf[80];							       \
276	fotg210_dbg(fotg210, "%s\n",					       \
277			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278}
279
280/* troubleshooting help: expose state in debugfs */
281static int debug_async_open(struct inode *, struct file *);
282static int debug_periodic_open(struct inode *, struct file *);
283static int debug_registers_open(struct inode *, struct file *);
284static int debug_async_open(struct inode *, struct file *);
285
286static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
287static int debug_close(struct inode *, struct file *);
288
289static const struct file_operations debug_async_fops = {
290	.owner		= THIS_MODULE,
291	.open		= debug_async_open,
292	.read		= debug_output,
293	.release	= debug_close,
294	.llseek		= default_llseek,
295};
296static const struct file_operations debug_periodic_fops = {
297	.owner		= THIS_MODULE,
298	.open		= debug_periodic_open,
299	.read		= debug_output,
300	.release	= debug_close,
301	.llseek		= default_llseek,
302};
303static const struct file_operations debug_registers_fops = {
304	.owner		= THIS_MODULE,
305	.open		= debug_registers_open,
306	.read		= debug_output,
307	.release	= debug_close,
308	.llseek		= default_llseek,
309};
310
311static struct dentry *fotg210_debug_root;
312
313struct debug_buffer {
314	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
315	struct usb_bus *bus;
316	struct mutex mutex;	/* protect filling of buffer */
317	size_t count;		/* number of characters filled into buffer */
318	char *output_buf;
319	size_t alloc_size;
320};
321
322static inline char speed_char(u32 scratch)
323{
324	switch (scratch & (3 << 12)) {
325	case QH_FULL_SPEED:
326		return 'f';
327
328	case QH_LOW_SPEED:
329		return 'l';
330
331	case QH_HIGH_SPEED:
332		return 'h';
333
334	default:
335		return '?';
336	}
337}
338
339static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
340{
341	__u32 v = hc32_to_cpu(fotg210, token);
342
343	if (v & QTD_STS_ACTIVE)
344		return '*';
345	if (v & QTD_STS_HALT)
346		return '-';
347	if (!IS_SHORT_READ(v))
348		return ' ';
349	/* tries to advance through hw_alt_next */
350	return '/';
351}
352
353static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
354		char **nextp, unsigned *sizep)
355{
356	u32 scratch;
357	u32 hw_curr;
358	struct fotg210_qtd *td;
359	unsigned temp;
360	unsigned size = *sizep;
361	char *next = *nextp;
362	char mark;
363	__le32 list_end = FOTG210_LIST_END(fotg210);
364	struct fotg210_qh_hw *hw = qh->hw;
365
366	if (hw->hw_qtd_next == list_end) /* NEC does this */
367		mark = '@';
368	else
369		mark = token_mark(fotg210, hw->hw_token);
370	if (mark == '/') { /* qh_alt_next controls qh advance? */
371		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
372		    fotg210->async->hw->hw_alt_next)
373			mark = '#'; /* blocked */
374		else if (hw->hw_alt_next == list_end)
375			mark = '.'; /* use hw_qtd_next */
376		/* else alt_next points to some other qtd */
377	}
378	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
379	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
380	temp = scnprintf(next, size,
381			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
382			qh, scratch & 0x007f,
383			speed_char(scratch),
384			(scratch >> 8) & 0x000f,
385			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
386			hc32_to_cpup(fotg210, &hw->hw_token), mark,
387			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
388				? "data1" : "data0",
389			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
390	size -= temp;
391	next += temp;
392
393	/* hc may be modifying the list as we read it ... */
394	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
395		scratch = hc32_to_cpup(fotg210, &td->hw_token);
396		mark = ' ';
397		if (hw_curr == td->qtd_dma)
398			mark = '*';
399		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
400			mark = '+';
401		else if (QTD_LENGTH(scratch)) {
402			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
403				mark = '#';
404			else if (td->hw_alt_next != list_end)
405				mark = '/';
406		}
407		temp = snprintf(next, size,
408				"\n\t%p%c%s len=%d %08x urb %p",
409				td, mark, ({ char *tmp;
410				switch ((scratch>>8)&0x03) {
411				case 0:
412					tmp = "out";
413					break;
414				case 1:
415					tmp = "in";
416					break;
417				case 2:
418					tmp = "setup";
419					break;
420				default:
421					tmp = "?";
422					break;
423				 } tmp; }),
424				(scratch >> 16) & 0x7fff,
425				scratch,
426				td->urb);
427		if (size < temp)
428			temp = size;
429		size -= temp;
430		next += temp;
431	}
432
433	temp = snprintf(next, size, "\n");
434	if (size < temp)
435		temp = size;
436
437	size -= temp;
438	next += temp;
439
440	*sizep = size;
441	*nextp = next;
442}
443
444static ssize_t fill_async_buffer(struct debug_buffer *buf)
445{
446	struct usb_hcd *hcd;
447	struct fotg210_hcd *fotg210;
448	unsigned long flags;
449	unsigned temp, size;
450	char *next;
451	struct fotg210_qh *qh;
452
453	hcd = bus_to_hcd(buf->bus);
454	fotg210 = hcd_to_fotg210(hcd);
455	next = buf->output_buf;
456	size = buf->alloc_size;
457
458	*next = 0;
459
460	/* dumps a snapshot of the async schedule.
461	 * usually empty except for long-term bulk reads, or head.
462	 * one QH per line, and TDs we know about
463	 */
464	spin_lock_irqsave(&fotg210->lock, flags);
465	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
466			qh = qh->qh_next.qh)
467		qh_lines(fotg210, qh, &next, &size);
468	if (fotg210->async_unlink && size > 0) {
469		temp = scnprintf(next, size, "\nunlink =\n");
470		size -= temp;
471		next += temp;
472
473		for (qh = fotg210->async_unlink; size > 0 && qh;
474				qh = qh->unlink_next)
475			qh_lines(fotg210, qh, &next, &size);
476	}
477	spin_unlock_irqrestore(&fotg210->lock, flags);
478
479	return strlen(buf->output_buf);
480}
481
482/* count tds, get ep direction */
483static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
484		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
485{
486	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
487	struct fotg210_qtd *qtd;
488	char *type = "";
489	unsigned temp = 0;
490
491	/* count tds, get ep direction */
492	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
493		temp++;
494		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
495		case 0:
496			type = "out";
497			continue;
498		case 1:
499			type = "in";
500			continue;
501		}
502	}
503
504	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
505			speed_char(scratch), scratch & 0x007f,
506			(scratch >> 8) & 0x000f, type, qh->usecs,
507			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
508}
509
510#define DBG_SCHED_LIMIT 64
511static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
512{
513	struct usb_hcd *hcd;
514	struct fotg210_hcd *fotg210;
515	unsigned long flags;
516	union fotg210_shadow p, *seen;
517	unsigned temp, size, seen_count;
518	char *next;
519	unsigned i;
520	__hc32 tag;
521
522	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
523	if (!seen)
524		return 0;
525
526	seen_count = 0;
527
528	hcd = bus_to_hcd(buf->bus);
529	fotg210 = hcd_to_fotg210(hcd);
530	next = buf->output_buf;
531	size = buf->alloc_size;
532
533	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
534	size -= temp;
535	next += temp;
536
537	/* dump a snapshot of the periodic schedule.
538	 * iso changes, interrupt usually doesn't.
539	 */
540	spin_lock_irqsave(&fotg210->lock, flags);
541	for (i = 0; i < fotg210->periodic_size; i++) {
542		p = fotg210->pshadow[i];
543		if (likely(!p.ptr))
544			continue;
545
546		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
547
548		temp = scnprintf(next, size, "%4d: ", i);
549		size -= temp;
550		next += temp;
551
552		do {
553			struct fotg210_qh_hw *hw;
554
555			switch (hc32_to_cpu(fotg210, tag)) {
556			case Q_TYPE_QH:
557				hw = p.qh->hw;
558				temp = scnprintf(next, size, " qh%d-%04x/%p",
559						p.qh->period,
560						hc32_to_cpup(fotg210,
561							&hw->hw_info2)
562							/* uframe masks */
563							& (QH_CMASK | QH_SMASK),
564						p.qh);
565				size -= temp;
566				next += temp;
567				/* don't repeat what follows this qh */
568				for (temp = 0; temp < seen_count; temp++) {
569					if (seen[temp].ptr != p.ptr)
570						continue;
571					if (p.qh->qh_next.ptr) {
572						temp = scnprintf(next, size,
573								" ...");
574						size -= temp;
575						next += temp;
576					}
577					break;
578				}
579				/* show more info the first time around */
580				if (temp == seen_count) {
581					temp = output_buf_tds_dir(next,
582							fotg210, hw,
583							p.qh, size);
584
585					if (seen_count < DBG_SCHED_LIMIT)
586						seen[seen_count++].qh = p.qh;
587				} else
588					temp = 0;
589				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
590				p = p.qh->qh_next;
591				break;
592			case Q_TYPE_FSTN:
593				temp = scnprintf(next, size,
594						" fstn-%8x/%p",
595						p.fstn->hw_prev, p.fstn);
596				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
597				p = p.fstn->fstn_next;
598				break;
599			case Q_TYPE_ITD:
600				temp = scnprintf(next, size,
601						" itd/%p", p.itd);
602				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
603				p = p.itd->itd_next;
604				break;
605			}
606			size -= temp;
607			next += temp;
608		} while (p.ptr);
609
610		temp = scnprintf(next, size, "\n");
611		size -= temp;
612		next += temp;
613	}
614	spin_unlock_irqrestore(&fotg210->lock, flags);
615	kfree(seen);
616
617	return buf->alloc_size - size;
618}
619#undef DBG_SCHED_LIMIT
620
621static const char *rh_state_string(struct fotg210_hcd *fotg210)
622{
623	switch (fotg210->rh_state) {
624	case FOTG210_RH_HALTED:
625		return "halted";
626	case FOTG210_RH_SUSPENDED:
627		return "suspended";
628	case FOTG210_RH_RUNNING:
629		return "running";
630	case FOTG210_RH_STOPPING:
631		return "stopping";
632	}
633	return "?";
634}
635
636static ssize_t fill_registers_buffer(struct debug_buffer *buf)
637{
638	struct usb_hcd *hcd;
639	struct fotg210_hcd *fotg210;
640	unsigned long flags;
641	unsigned temp, size, i;
642	char *next, scratch[80];
643	static const char fmt[] = "%*s\n";
644	static const char label[] = "";
645
646	hcd = bus_to_hcd(buf->bus);
647	fotg210 = hcd_to_fotg210(hcd);
648	next = buf->output_buf;
649	size = buf->alloc_size;
650
651	spin_lock_irqsave(&fotg210->lock, flags);
652
653	if (!HCD_HW_ACCESSIBLE(hcd)) {
654		size = scnprintf(next, size,
655				"bus %s, device %s\n"
656				"%s\n"
657				"SUSPENDED(no register access)\n",
658				hcd->self.controller->bus->name,
659				dev_name(hcd->self.controller),
660				hcd->product_desc);
661		goto done;
662	}
663
664	/* Capability Registers */
665	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
666			&fotg210->caps->hc_capbase));
667	temp = scnprintf(next, size,
668			"bus %s, device %s\n"
669			"%s\n"
670			"EHCI %x.%02x, rh state %s\n",
671			hcd->self.controller->bus->name,
672			dev_name(hcd->self.controller),
673			hcd->product_desc,
674			i >> 8, i & 0x0ff, rh_state_string(fotg210));
675	size -= temp;
676	next += temp;
677
678	/* FIXME interpret both types of params */
679	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
680	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
681	size -= temp;
682	next += temp;
683
684	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
685	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
686	size -= temp;
687	next += temp;
688
689	/* Operational Registers */
690	temp = dbg_status_buf(scratch, sizeof(scratch), label,
691			fotg210_readl(fotg210, &fotg210->regs->status));
692	temp = scnprintf(next, size, fmt, temp, scratch);
693	size -= temp;
694	next += temp;
695
696	temp = dbg_command_buf(scratch, sizeof(scratch), label,
697			fotg210_readl(fotg210, &fotg210->regs->command));
698	temp = scnprintf(next, size, fmt, temp, scratch);
699	size -= temp;
700	next += temp;
701
702	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
703			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
704	temp = scnprintf(next, size, fmt, temp, scratch);
705	size -= temp;
706	next += temp;
707
708	temp = scnprintf(next, size, "uframe %04x\n",
709			fotg210_read_frame_index(fotg210));
710	size -= temp;
711	next += temp;
712
713	if (fotg210->async_unlink) {
714		temp = scnprintf(next, size, "async unlink qh %p\n",
715				fotg210->async_unlink);
716		size -= temp;
717		next += temp;
718	}
719
720#ifdef FOTG210_STATS
721	temp = scnprintf(next, size,
722			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
723			fotg210->stats.normal, fotg210->stats.error,
724			fotg210->stats.iaa, fotg210->stats.lost_iaa);
725	size -= temp;
726	next += temp;
727
728	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
729			fotg210->stats.complete, fotg210->stats.unlink);
730	size -= temp;
731	next += temp;
732#endif
733
734done:
735	spin_unlock_irqrestore(&fotg210->lock, flags);
736
737	return buf->alloc_size - size;
738}
739
740static struct debug_buffer
741*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
742{
743	struct debug_buffer *buf;
744
745	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
746
747	if (buf) {
748		buf->bus = bus;
749		buf->fill_func = fill_func;
750		mutex_init(&buf->mutex);
751		buf->alloc_size = PAGE_SIZE;
752	}
753
754	return buf;
755}
756
757static int fill_buffer(struct debug_buffer *buf)
758{
759	int ret = 0;
760
761	if (!buf->output_buf)
762		buf->output_buf = vmalloc(buf->alloc_size);
763
764	if (!buf->output_buf) {
765		ret = -ENOMEM;
766		goto out;
767	}
768
769	ret = buf->fill_func(buf);
770
771	if (ret >= 0) {
772		buf->count = ret;
773		ret = 0;
774	}
775
776out:
777	return ret;
778}
779
780static ssize_t debug_output(struct file *file, char __user *user_buf,
781		size_t len, loff_t *offset)
782{
783	struct debug_buffer *buf = file->private_data;
784	int ret = 0;
785
786	mutex_lock(&buf->mutex);
787	if (buf->count == 0) {
788		ret = fill_buffer(buf);
789		if (ret != 0) {
790			mutex_unlock(&buf->mutex);
791			goto out;
792		}
793	}
794	mutex_unlock(&buf->mutex);
795
796	ret = simple_read_from_buffer(user_buf, len, offset,
797			buf->output_buf, buf->count);
798
799out:
800	return ret;
801
802}
803
804static int debug_close(struct inode *inode, struct file *file)
805{
806	struct debug_buffer *buf = file->private_data;
807
808	if (buf) {
809		vfree(buf->output_buf);
810		kfree(buf);
811	}
812
813	return 0;
814}
815static int debug_async_open(struct inode *inode, struct file *file)
816{
817	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
818
819	return file->private_data ? 0 : -ENOMEM;
820}
821
822static int debug_periodic_open(struct inode *inode, struct file *file)
823{
824	struct debug_buffer *buf;
825
826	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
827	if (!buf)
828		return -ENOMEM;
829
830	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
831	file->private_data = buf;
832	return 0;
833}
834
835static int debug_registers_open(struct inode *inode, struct file *file)
836{
837	file->private_data = alloc_buffer(inode->i_private,
838			fill_registers_buffer);
839
840	return file->private_data ? 0 : -ENOMEM;
841}
842
843static inline void create_debug_files(struct fotg210_hcd *fotg210)
844{
845	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
846	struct dentry *root;
847
848	root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
849
850	debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
851	debugfs_create_file("periodic", S_IRUGO, root, bus,
852			    &debug_periodic_fops);
853	debugfs_create_file("registers", S_IRUGO, root, bus,
854			    &debug_registers_fops);
855}
856
857static inline void remove_debug_files(struct fotg210_hcd *fotg210)
858{
859	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
860
861	debugfs_lookup_and_remove(bus->bus_name, fotg210_debug_root);
862}
863
864/* handshake - spin reading hc until handshake completes or fails
865 * @ptr: address of hc register to be read
866 * @mask: bits to look at in result of read
867 * @done: value of those bits when handshake succeeds
868 * @usec: timeout in microseconds
869 *
870 * Returns negative errno, or zero on success
871 *
872 * Success happens when the "mask" bits have the specified value (hardware
873 * handshake done).  There are two failure modes:  "usec" have passed (major
874 * hardware flakeout), or the register reads as all-ones (hardware removed).
875 *
876 * That last failure should_only happen in cases like physical cardbus eject
877 * before driver shutdown. But it also seems to be caused by bugs in cardbus
878 * bridge shutdown:  shutting down the bridge before the devices using it.
879 */
880static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
881		u32 mask, u32 done, int usec)
882{
883	u32 result;
884	int ret;
885
886	ret = readl_poll_timeout_atomic(ptr, result,
887					((result & mask) == done ||
888					 result == U32_MAX), 1, usec);
889	if (result == U32_MAX)		/* card removed */
890		return -ENODEV;
891
892	return ret;
893}
894
895/* Force HC to halt state from unknown (EHCI spec section 2.3).
896 * Must be called with interrupts enabled and the lock not held.
897 */
898static int fotg210_halt(struct fotg210_hcd *fotg210)
899{
900	u32 temp;
901
902	spin_lock_irq(&fotg210->lock);
903
904	/* disable any irqs left enabled by previous code */
905	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
906
907	/*
908	 * This routine gets called during probe before fotg210->command
909	 * has been initialized, so we can't rely on its value.
910	 */
911	fotg210->command &= ~CMD_RUN;
912	temp = fotg210_readl(fotg210, &fotg210->regs->command);
913	temp &= ~(CMD_RUN | CMD_IAAD);
914	fotg210_writel(fotg210, temp, &fotg210->regs->command);
915
916	spin_unlock_irq(&fotg210->lock);
917	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
918
919	return handshake(fotg210, &fotg210->regs->status,
920			STS_HALT, STS_HALT, 16 * 125);
921}
922
923/* Reset a non-running (STS_HALT == 1) controller.
924 * Must be called with interrupts enabled and the lock not held.
925 */
926static int fotg210_reset(struct fotg210_hcd *fotg210)
927{
928	int retval;
929	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
930
931	/* If the EHCI debug controller is active, special care must be
932	 * taken before and after a host controller reset
933	 */
934	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
935		fotg210->debug = NULL;
936
937	command |= CMD_RESET;
938	dbg_cmd(fotg210, "reset", command);
939	fotg210_writel(fotg210, command, &fotg210->regs->command);
940	fotg210->rh_state = FOTG210_RH_HALTED;
941	fotg210->next_statechange = jiffies;
942	retval = handshake(fotg210, &fotg210->regs->command,
943			CMD_RESET, 0, 250 * 1000);
944
945	if (retval)
946		return retval;
947
948	if (fotg210->debug)
949		dbgp_external_startup(fotg210_to_hcd(fotg210));
950
951	fotg210->port_c_suspend = fotg210->suspended_ports =
952			fotg210->resuming_ports = 0;
953	return retval;
954}
955
956/* Idle the controller (turn off the schedules).
957 * Must be called with interrupts enabled and the lock not held.
958 */
959static void fotg210_quiesce(struct fotg210_hcd *fotg210)
960{
961	u32 temp;
962
963	if (fotg210->rh_state != FOTG210_RH_RUNNING)
964		return;
965
966	/* wait for any schedule enables/disables to take effect */
967	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
968	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
969			16 * 125);
970
971	/* then disable anything that's still active */
972	spin_lock_irq(&fotg210->lock);
973	fotg210->command &= ~(CMD_ASE | CMD_PSE);
974	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
975	spin_unlock_irq(&fotg210->lock);
976
977	/* hardware can take 16 microframes to turn off ... */
978	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
979			16 * 125);
980}
981
982static void end_unlink_async(struct fotg210_hcd *fotg210);
983static void unlink_empty_async(struct fotg210_hcd *fotg210);
984static void fotg210_work(struct fotg210_hcd *fotg210);
985static void start_unlink_intr(struct fotg210_hcd *fotg210,
986			      struct fotg210_qh *qh);
987static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
988
989/* Set a bit in the USBCMD register */
990static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
991{
992	fotg210->command |= bit;
993	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
994
995	/* unblock posted write */
996	fotg210_readl(fotg210, &fotg210->regs->command);
997}
998
999/* Clear a bit in the USBCMD register */
1000static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1001{
1002	fotg210->command &= ~bit;
1003	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1004
1005	/* unblock posted write */
1006	fotg210_readl(fotg210, &fotg210->regs->command);
1007}
1008
1009/* EHCI timer support...  Now using hrtimers.
1010 *
1011 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1012 * the timer routine runs, it checks each possible event; events that are
1013 * currently enabled and whose expiration time has passed get handled.
1014 * The set of enabled events is stored as a collection of bitflags in
1015 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1016 * increasing delay values (ranging between 1 ms and 100 ms).
1017 *
1018 * Rather than implementing a sorted list or tree of all pending events,
1019 * we keep track only of the lowest-numbered pending event, in
1020 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1021 * expiration time is set to the timeout value for this event.
1022 *
1023 * As a result, events might not get handled right away; the actual delay
1024 * could be anywhere up to twice the requested delay.  This doesn't
1025 * matter, because none of the events are especially time-critical.  The
1026 * ones that matter most all have a delay of 1 ms, so they will be
1027 * handled after 2 ms at most, which is okay.  In addition to this, we
1028 * allow for an expiration range of 1 ms.
1029 */
1030
1031/* Delay lengths for the hrtimer event types.
1032 * Keep this list sorted by delay length, in the same order as
1033 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1034 */
1035static unsigned event_delays_ns[] = {
1036	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1037	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1038	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1039	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1040	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1041	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1042	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1043	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1044	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1045	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1046};
1047
1048/* Enable a pending hrtimer event */
1049static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1050		bool resched)
1051{
1052	ktime_t *timeout = &fotg210->hr_timeouts[event];
1053
1054	if (resched)
1055		*timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1056	fotg210->enabled_hrtimer_events |= (1 << event);
1057
1058	/* Track only the lowest-numbered pending event */
1059	if (event < fotg210->next_hrtimer_event) {
1060		fotg210->next_hrtimer_event = event;
1061		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1062				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1063	}
1064}
1065
1066
1067/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1068static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1069{
1070	unsigned actual, want;
1071
1072	/* Don't enable anything if the controller isn't running (e.g., died) */
1073	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1074		return;
1075
1076	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1077	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1078
1079	if (want != actual) {
1080
1081		/* Poll again later, but give up after about 20 ms */
1082		if (fotg210->ASS_poll_count++ < 20) {
1083			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1084					true);
1085			return;
1086		}
1087		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1088				want, actual);
1089	}
1090	fotg210->ASS_poll_count = 0;
1091
1092	/* The status is up-to-date; restart or stop the schedule as needed */
1093	if (want == 0) {	/* Stopped */
1094		if (fotg210->async_count > 0)
1095			fotg210_set_command_bit(fotg210, CMD_ASE);
1096
1097	} else {		/* Running */
1098		if (fotg210->async_count == 0) {
1099
1100			/* Turn off the schedule after a while */
1101			fotg210_enable_event(fotg210,
1102					FOTG210_HRTIMER_DISABLE_ASYNC,
1103					true);
1104		}
1105	}
1106}
1107
1108/* Turn off the async schedule after a brief delay */
1109static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1110{
1111	fotg210_clear_command_bit(fotg210, CMD_ASE);
1112}
1113
1114
1115/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1116static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1117{
1118	unsigned actual, want;
1119
1120	/* Don't do anything if the controller isn't running (e.g., died) */
1121	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1122		return;
1123
1124	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1125	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1126
1127	if (want != actual) {
1128
1129		/* Poll again later, but give up after about 20 ms */
1130		if (fotg210->PSS_poll_count++ < 20) {
1131			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1132					true);
1133			return;
1134		}
1135		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1136				want, actual);
1137	}
1138	fotg210->PSS_poll_count = 0;
1139
1140	/* The status is up-to-date; restart or stop the schedule as needed */
1141	if (want == 0) {	/* Stopped */
1142		if (fotg210->periodic_count > 0)
1143			fotg210_set_command_bit(fotg210, CMD_PSE);
1144
1145	} else {		/* Running */
1146		if (fotg210->periodic_count == 0) {
1147
1148			/* Turn off the schedule after a while */
1149			fotg210_enable_event(fotg210,
1150					FOTG210_HRTIMER_DISABLE_PERIODIC,
1151					true);
1152		}
1153	}
1154}
1155
1156/* Turn off the periodic schedule after a brief delay */
1157static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1158{
1159	fotg210_clear_command_bit(fotg210, CMD_PSE);
1160}
1161
1162
1163/* Poll the STS_HALT status bit; see when a dead controller stops */
1164static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1165{
1166	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1167
1168		/* Give up after a few milliseconds */
1169		if (fotg210->died_poll_count++ < 5) {
1170			/* Try again later */
1171			fotg210_enable_event(fotg210,
1172					FOTG210_HRTIMER_POLL_DEAD, true);
1173			return;
1174		}
1175		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1176	}
1177
1178	/* Clean up the mess */
1179	fotg210->rh_state = FOTG210_RH_HALTED;
1180	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1181	fotg210_work(fotg210);
1182	end_unlink_async(fotg210);
1183
1184	/* Not in process context, so don't try to reset the controller */
1185}
1186
1187
1188/* Handle unlinked interrupt QHs once they are gone from the hardware */
1189static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1190{
1191	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1192
1193	/*
1194	 * Process all the QHs on the intr_unlink list that were added
1195	 * before the current unlink cycle began.  The list is in
1196	 * temporal order, so stop when we reach the first entry in the
1197	 * current cycle.  But if the root hub isn't running then
1198	 * process all the QHs on the list.
1199	 */
1200	fotg210->intr_unlinking = true;
1201	while (fotg210->intr_unlink) {
1202		struct fotg210_qh *qh = fotg210->intr_unlink;
1203
1204		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1205			break;
1206		fotg210->intr_unlink = qh->unlink_next;
1207		qh->unlink_next = NULL;
1208		end_unlink_intr(fotg210, qh);
1209	}
1210
1211	/* Handle remaining entries later */
1212	if (fotg210->intr_unlink) {
1213		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1214				true);
1215		++fotg210->intr_unlink_cycle;
1216	}
1217	fotg210->intr_unlinking = false;
1218}
1219
1220
1221/* Start another free-iTDs/siTDs cycle */
1222static void start_free_itds(struct fotg210_hcd *fotg210)
1223{
1224	if (!(fotg210->enabled_hrtimer_events &
1225			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1226		fotg210->last_itd_to_free = list_entry(
1227				fotg210->cached_itd_list.prev,
1228				struct fotg210_itd, itd_list);
1229		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1230	}
1231}
1232
1233/* Wait for controller to stop using old iTDs and siTDs */
1234static void end_free_itds(struct fotg210_hcd *fotg210)
1235{
1236	struct fotg210_itd *itd, *n;
1237
1238	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1239		fotg210->last_itd_to_free = NULL;
1240
1241	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1242		list_del(&itd->itd_list);
1243		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1244		if (itd == fotg210->last_itd_to_free)
1245			break;
1246	}
1247
1248	if (!list_empty(&fotg210->cached_itd_list))
1249		start_free_itds(fotg210);
1250}
1251
1252
1253/* Handle lost (or very late) IAA interrupts */
1254static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1255{
1256	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1257		return;
1258
1259	/*
1260	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1261	 * So we need this watchdog, but must protect it against both
1262	 * (a) SMP races against real IAA firing and retriggering, and
1263	 * (b) clean HC shutdown, when IAA watchdog was pending.
1264	 */
1265	if (fotg210->async_iaa) {
1266		u32 cmd, status;
1267
1268		/* If we get here, IAA is *REALLY* late.  It's barely
1269		 * conceivable that the system is so busy that CMD_IAAD
1270		 * is still legitimately set, so let's be sure it's
1271		 * clear before we read STS_IAA.  (The HC should clear
1272		 * CMD_IAAD when it sets STS_IAA.)
1273		 */
1274		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1275
1276		/*
1277		 * If IAA is set here it either legitimately triggered
1278		 * after the watchdog timer expired (_way_ late, so we'll
1279		 * still count it as lost) ... or a silicon erratum:
1280		 * - VIA seems to set IAA without triggering the IRQ;
1281		 * - IAAD potentially cleared without setting IAA.
1282		 */
1283		status = fotg210_readl(fotg210, &fotg210->regs->status);
1284		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1285			INCR(fotg210->stats.lost_iaa);
1286			fotg210_writel(fotg210, STS_IAA,
1287					&fotg210->regs->status);
1288		}
1289
1290		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1291				status, cmd);
1292		end_unlink_async(fotg210);
1293	}
1294}
1295
1296
1297/* Enable the I/O watchdog, if appropriate */
1298static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1299{
1300	/* Not needed if the controller isn't running or it's already enabled */
1301	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1302			(fotg210->enabled_hrtimer_events &
1303			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1304		return;
1305
1306	/*
1307	 * Isochronous transfers always need the watchdog.
1308	 * For other sorts we use it only if the flag is set.
1309	 */
1310	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1311			fotg210->async_count + fotg210->intr_count > 0))
1312		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1313				true);
1314}
1315
1316
1317/* Handler functions for the hrtimer event types.
1318 * Keep this array in the same order as the event types indexed by
1319 * enum fotg210_hrtimer_event in fotg210.h.
1320 */
1321static void (*event_handlers[])(struct fotg210_hcd *) = {
1322	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1323	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1324	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1325	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1326	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1327	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1328	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1329	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1330	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1331	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1332};
1333
1334static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1335{
1336	struct fotg210_hcd *fotg210 =
1337			container_of(t, struct fotg210_hcd, hrtimer);
1338	ktime_t now;
1339	unsigned long events;
1340	unsigned long flags;
1341	unsigned e;
1342
1343	spin_lock_irqsave(&fotg210->lock, flags);
1344
1345	events = fotg210->enabled_hrtimer_events;
1346	fotg210->enabled_hrtimer_events = 0;
1347	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1348
1349	/*
1350	 * Check each pending event.  If its time has expired, handle
1351	 * the event; otherwise re-enable it.
1352	 */
1353	now = ktime_get();
1354	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1355		if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1356			event_handlers[e](fotg210);
1357		else
1358			fotg210_enable_event(fotg210, e, false);
1359	}
1360
1361	spin_unlock_irqrestore(&fotg210->lock, flags);
1362	return HRTIMER_NORESTART;
1363}
1364
1365#define fotg210_bus_suspend NULL
1366#define fotg210_bus_resume NULL
1367
1368static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1369		u32 __iomem *status_reg, int port_status)
1370{
1371	if (!(port_status & PORT_CONNECT))
1372		return port_status;
1373
1374	/* if reset finished and it's still not enabled -- handoff */
1375	if (!(port_status & PORT_PE))
1376		/* with integrated TT, there's nobody to hand it to! */
1377		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1378				index + 1);
1379	else
1380		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1381				index + 1);
1382
1383	return port_status;
1384}
1385
1386
1387/* build "status change" packet (one or two bytes) from HC registers */
1388
1389static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1390{
1391	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1392	u32 temp, status;
1393	u32 mask;
1394	int retval = 1;
1395	unsigned long flags;
1396
1397	/* init status to no-changes */
1398	buf[0] = 0;
1399
1400	/* Inform the core about resumes-in-progress by returning
1401	 * a non-zero value even if there are no status changes.
1402	 */
1403	status = fotg210->resuming_ports;
1404
1405	mask = PORT_CSC | PORT_PEC;
1406	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1407
1408	/* no hub change reports (bit 0) for now (power, ...) */
1409
1410	/* port N changes (bit N)? */
1411	spin_lock_irqsave(&fotg210->lock, flags);
1412
1413	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1414
1415	/*
1416	 * Return status information even for ports with OWNER set.
1417	 * Otherwise hub_wq wouldn't see the disconnect event when a
1418	 * high-speed device is switched over to the companion
1419	 * controller by the user.
1420	 */
1421
1422	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1423			(fotg210->reset_done[0] &&
1424			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1425		buf[0] |= 1 << 1;
1426		status = STS_PCD;
1427	}
1428	/* FIXME autosuspend idle root hubs */
1429	spin_unlock_irqrestore(&fotg210->lock, flags);
1430	return status ? retval : 0;
1431}
1432
1433static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1434		struct usb_hub_descriptor *desc)
1435{
1436	int ports = HCS_N_PORTS(fotg210->hcs_params);
1437	u16 temp;
1438
1439	desc->bDescriptorType = USB_DT_HUB;
1440	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1441	desc->bHubContrCurrent = 0;
1442
1443	desc->bNbrPorts = ports;
1444	temp = 1 + (ports / 8);
1445	desc->bDescLength = 7 + 2 * temp;
1446
1447	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1448	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1449	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1450
1451	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1452	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1453	desc->wHubCharacteristics = cpu_to_le16(temp);
1454}
1455
1456static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1457		u16 wIndex, char *buf, u16 wLength)
1458{
1459	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1460	int ports = HCS_N_PORTS(fotg210->hcs_params);
1461	u32 __iomem *status_reg = &fotg210->regs->port_status;
1462	u32 temp, temp1, status;
1463	unsigned long flags;
1464	int retval = 0;
1465	unsigned selector;
1466
1467	/*
1468	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1469	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1470	 * (track current state ourselves) ... blink for diagnostics,
1471	 * power, "this is the one", etc.  EHCI spec supports this.
1472	 */
1473
1474	spin_lock_irqsave(&fotg210->lock, flags);
1475	switch (typeReq) {
1476	case ClearHubFeature:
1477		switch (wValue) {
1478		case C_HUB_LOCAL_POWER:
1479		case C_HUB_OVER_CURRENT:
1480			/* no hub-wide feature/status flags */
1481			break;
1482		default:
1483			goto error;
1484		}
1485		break;
1486	case ClearPortFeature:
1487		if (!wIndex || wIndex > ports)
1488			goto error;
1489		wIndex--;
1490		temp = fotg210_readl(fotg210, status_reg);
1491		temp &= ~PORT_RWC_BITS;
1492
1493		/*
1494		 * Even if OWNER is set, so the port is owned by the
1495		 * companion controller, hub_wq needs to be able to clear
1496		 * the port-change status bits (especially
1497		 * USB_PORT_STAT_C_CONNECTION).
1498		 */
1499
1500		switch (wValue) {
1501		case USB_PORT_FEAT_ENABLE:
1502			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1503			break;
1504		case USB_PORT_FEAT_C_ENABLE:
1505			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1506			break;
1507		case USB_PORT_FEAT_SUSPEND:
1508			if (temp & PORT_RESET)
1509				goto error;
1510			if (!(temp & PORT_SUSPEND))
1511				break;
1512			if ((temp & PORT_PE) == 0)
1513				goto error;
1514
1515			/* resume signaling for 20 msec */
1516			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1517			fotg210->reset_done[wIndex] = jiffies
1518					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1519			break;
1520		case USB_PORT_FEAT_C_SUSPEND:
1521			clear_bit(wIndex, &fotg210->port_c_suspend);
1522			break;
1523		case USB_PORT_FEAT_C_CONNECTION:
1524			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1525			break;
1526		case USB_PORT_FEAT_C_OVER_CURRENT:
1527			fotg210_writel(fotg210, temp | OTGISR_OVC,
1528					&fotg210->regs->otgisr);
1529			break;
1530		case USB_PORT_FEAT_C_RESET:
1531			/* GetPortStatus clears reset */
1532			break;
1533		default:
1534			goto error;
1535		}
1536		fotg210_readl(fotg210, &fotg210->regs->command);
1537		break;
1538	case GetHubDescriptor:
1539		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1540				buf);
1541		break;
1542	case GetHubStatus:
1543		/* no hub-wide feature/status flags */
1544		memset(buf, 0, 4);
1545		/*cpu_to_le32s ((u32 *) buf); */
1546		break;
1547	case GetPortStatus:
1548		if (!wIndex || wIndex > ports)
1549			goto error;
1550		wIndex--;
1551		status = 0;
1552		temp = fotg210_readl(fotg210, status_reg);
1553
1554		/* wPortChange bits */
1555		if (temp & PORT_CSC)
1556			status |= USB_PORT_STAT_C_CONNECTION << 16;
1557		if (temp & PORT_PEC)
1558			status |= USB_PORT_STAT_C_ENABLE << 16;
1559
1560		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1561		if (temp1 & OTGISR_OVC)
1562			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1563
1564		/* whoever resumes must GetPortStatus to complete it!! */
1565		if (temp & PORT_RESUME) {
1566
1567			/* Remote Wakeup received? */
1568			if (!fotg210->reset_done[wIndex]) {
1569				/* resume signaling for 20 msec */
1570				fotg210->reset_done[wIndex] = jiffies
1571						+ msecs_to_jiffies(20);
1572				/* check the port again */
1573				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1574						fotg210->reset_done[wIndex]);
1575			}
1576
1577			/* resume completed? */
1578			else if (time_after_eq(jiffies,
1579					fotg210->reset_done[wIndex])) {
1580				clear_bit(wIndex, &fotg210->suspended_ports);
1581				set_bit(wIndex, &fotg210->port_c_suspend);
1582				fotg210->reset_done[wIndex] = 0;
1583
1584				/* stop resume signaling */
1585				temp = fotg210_readl(fotg210, status_reg);
1586				fotg210_writel(fotg210, temp &
1587						~(PORT_RWC_BITS | PORT_RESUME),
1588						status_reg);
1589				clear_bit(wIndex, &fotg210->resuming_ports);
1590				retval = handshake(fotg210, status_reg,
1591						PORT_RESUME, 0, 2000);/* 2ms */
1592				if (retval != 0) {
1593					fotg210_err(fotg210,
1594							"port %d resume error %d\n",
1595							wIndex + 1, retval);
1596					goto error;
1597				}
1598				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1599			}
1600		}
1601
1602		/* whoever resets must GetPortStatus to complete it!! */
1603		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1604				fotg210->reset_done[wIndex])) {
1605			status |= USB_PORT_STAT_C_RESET << 16;
1606			fotg210->reset_done[wIndex] = 0;
1607			clear_bit(wIndex, &fotg210->resuming_ports);
1608
1609			/* force reset to complete */
1610			fotg210_writel(fotg210,
1611					temp & ~(PORT_RWC_BITS | PORT_RESET),
1612					status_reg);
1613			/* REVISIT:  some hardware needs 550+ usec to clear
1614			 * this bit; seems too long to spin routinely...
1615			 */
1616			retval = handshake(fotg210, status_reg,
1617					PORT_RESET, 0, 1000);
1618			if (retval != 0) {
1619				fotg210_err(fotg210, "port %d reset error %d\n",
1620						wIndex + 1, retval);
1621				goto error;
1622			}
1623
1624			/* see what we found out */
1625			temp = check_reset_complete(fotg210, wIndex, status_reg,
1626					fotg210_readl(fotg210, status_reg));
1627
1628			/* restart schedule */
1629			fotg210->command |= CMD_RUN;
1630			fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1631		}
1632
1633		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1634			fotg210->reset_done[wIndex] = 0;
1635			clear_bit(wIndex, &fotg210->resuming_ports);
1636		}
1637
1638		/* transfer dedicated ports to the companion hc */
1639		if ((temp & PORT_CONNECT) &&
1640				test_bit(wIndex, &fotg210->companion_ports)) {
1641			temp &= ~PORT_RWC_BITS;
1642			fotg210_writel(fotg210, temp, status_reg);
1643			fotg210_dbg(fotg210, "port %d --> companion\n",
1644					wIndex + 1);
1645			temp = fotg210_readl(fotg210, status_reg);
1646		}
1647
1648		/*
1649		 * Even if OWNER is set, there's no harm letting hub_wq
1650		 * see the wPortStatus values (they should all be 0 except
1651		 * for PORT_POWER anyway).
1652		 */
1653
1654		if (temp & PORT_CONNECT) {
1655			status |= USB_PORT_STAT_CONNECTION;
1656			status |= fotg210_port_speed(fotg210, temp);
1657		}
1658		if (temp & PORT_PE)
1659			status |= USB_PORT_STAT_ENABLE;
1660
1661		/* maybe the port was unsuspended without our knowledge */
1662		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1663			status |= USB_PORT_STAT_SUSPEND;
1664		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1665			clear_bit(wIndex, &fotg210->suspended_ports);
1666			clear_bit(wIndex, &fotg210->resuming_ports);
1667			fotg210->reset_done[wIndex] = 0;
1668			if (temp & PORT_PE)
1669				set_bit(wIndex, &fotg210->port_c_suspend);
1670		}
1671
1672		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1673		if (temp1 & OTGISR_OVC)
1674			status |= USB_PORT_STAT_OVERCURRENT;
1675		if (temp & PORT_RESET)
1676			status |= USB_PORT_STAT_RESET;
1677		if (test_bit(wIndex, &fotg210->port_c_suspend))
1678			status |= USB_PORT_STAT_C_SUSPEND << 16;
1679
1680		if (status & ~0xffff)	/* only if wPortChange is interesting */
1681			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1682		put_unaligned_le32(status, buf);
1683		break;
1684	case SetHubFeature:
1685		switch (wValue) {
1686		case C_HUB_LOCAL_POWER:
1687		case C_HUB_OVER_CURRENT:
1688			/* no hub-wide feature/status flags */
1689			break;
1690		default:
1691			goto error;
1692		}
1693		break;
1694	case SetPortFeature:
1695		selector = wIndex >> 8;
1696		wIndex &= 0xff;
1697
1698		if (!wIndex || wIndex > ports)
1699			goto error;
1700		wIndex--;
1701		temp = fotg210_readl(fotg210, status_reg);
1702		temp &= ~PORT_RWC_BITS;
1703		switch (wValue) {
1704		case USB_PORT_FEAT_SUSPEND:
1705			if ((temp & PORT_PE) == 0
1706					|| (temp & PORT_RESET) != 0)
1707				goto error;
1708
1709			/* After above check the port must be connected.
1710			 * Set appropriate bit thus could put phy into low power
1711			 * mode if we have hostpc feature
1712			 */
1713			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1714					status_reg);
1715			set_bit(wIndex, &fotg210->suspended_ports);
1716			break;
1717		case USB_PORT_FEAT_RESET:
1718			if (temp & PORT_RESUME)
1719				goto error;
1720			/* line status bits may report this as low speed,
1721			 * which can be fine if this root hub has a
1722			 * transaction translator built in.
1723			 */
1724			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1725			temp |= PORT_RESET;
1726			temp &= ~PORT_PE;
1727
1728			/*
1729			 * caller must wait, then call GetPortStatus
1730			 * usb 2.0 spec says 50 ms resets on root
1731			 */
1732			fotg210->reset_done[wIndex] = jiffies
1733					+ msecs_to_jiffies(50);
1734			fotg210_writel(fotg210, temp, status_reg);
1735			break;
1736
1737		/* For downstream facing ports (these):  one hub port is put
1738		 * into test mode according to USB2 11.24.2.13, then the hub
1739		 * must be reset (which for root hub now means rmmod+modprobe,
1740		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1741		 * about the EHCI-specific stuff.
1742		 */
1743		case USB_PORT_FEAT_TEST:
1744			if (!selector || selector > 5)
1745				goto error;
1746			spin_unlock_irqrestore(&fotg210->lock, flags);
1747			fotg210_quiesce(fotg210);
1748			spin_lock_irqsave(&fotg210->lock, flags);
1749
1750			/* Put all enabled ports into suspend */
1751			temp = fotg210_readl(fotg210, status_reg) &
1752				~PORT_RWC_BITS;
1753			if (temp & PORT_PE)
1754				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1755						status_reg);
1756
1757			spin_unlock_irqrestore(&fotg210->lock, flags);
1758			fotg210_halt(fotg210);
1759			spin_lock_irqsave(&fotg210->lock, flags);
1760
1761			temp = fotg210_readl(fotg210, status_reg);
1762			temp |= selector << 16;
1763			fotg210_writel(fotg210, temp, status_reg);
1764			break;
1765
1766		default:
1767			goto error;
1768		}
1769		fotg210_readl(fotg210, &fotg210->regs->command);
1770		break;
1771
1772	default:
1773error:
1774		/* "stall" on error */
1775		retval = -EPIPE;
1776	}
1777	spin_unlock_irqrestore(&fotg210->lock, flags);
1778	return retval;
1779}
1780
1781static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1782		int portnum)
1783{
1784	return;
1785}
1786
1787static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1788		int portnum)
1789{
1790	return 0;
1791}
1792
1793/* There's basically three types of memory:
1794 *	- data used only by the HCD ... kmalloc is fine
1795 *	- async and periodic schedules, shared by HC and HCD ... these
1796 *	  need to use dma_pool or dma_alloc_coherent
1797 *	- driver buffers, read/written by HC ... single shot DMA mapped
1798 *
1799 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1800 * No memory seen by this driver is pageable.
1801 */
1802
1803/* Allocate the key transfer structures from the previously allocated pool */
1804static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1805		struct fotg210_qtd *qtd, dma_addr_t dma)
1806{
1807	memset(qtd, 0, sizeof(*qtd));
1808	qtd->qtd_dma = dma;
1809	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1810	qtd->hw_next = FOTG210_LIST_END(fotg210);
1811	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1812	INIT_LIST_HEAD(&qtd->qtd_list);
1813}
1814
1815static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1816		gfp_t flags)
1817{
1818	struct fotg210_qtd *qtd;
1819	dma_addr_t dma;
1820
1821	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1822	if (qtd != NULL)
1823		fotg210_qtd_init(fotg210, qtd, dma);
1824
1825	return qtd;
1826}
1827
1828static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1829		struct fotg210_qtd *qtd)
1830{
1831	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1832}
1833
1834
1835static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1836{
1837	/* clean qtds first, and know this is not linked */
1838	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1839		fotg210_dbg(fotg210, "unused qh not empty!\n");
1840		BUG();
1841	}
1842	if (qh->dummy)
1843		fotg210_qtd_free(fotg210, qh->dummy);
1844	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1845	kfree(qh);
1846}
1847
1848static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1849		gfp_t flags)
1850{
1851	struct fotg210_qh *qh;
1852	dma_addr_t dma;
1853
1854	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1855	if (!qh)
1856		goto done;
1857	qh->hw = (struct fotg210_qh_hw *)
1858		dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1859	if (!qh->hw)
1860		goto fail;
1861	qh->qh_dma = dma;
1862	INIT_LIST_HEAD(&qh->qtd_list);
1863
1864	/* dummy td enables safe urb queuing */
1865	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1866	if (qh->dummy == NULL) {
1867		fotg210_dbg(fotg210, "no dummy td\n");
1868		goto fail1;
1869	}
1870done:
1871	return qh;
1872fail1:
1873	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1874fail:
1875	kfree(qh);
1876	return NULL;
1877}
1878
1879/* The queue heads and transfer descriptors are managed from pools tied
1880 * to each of the "per device" structures.
1881 * This is the initialisation and cleanup code.
1882 */
1883
1884static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1885{
1886	if (fotg210->async)
1887		qh_destroy(fotg210, fotg210->async);
1888	fotg210->async = NULL;
1889
1890	if (fotg210->dummy)
1891		qh_destroy(fotg210, fotg210->dummy);
1892	fotg210->dummy = NULL;
1893
1894	/* DMA consistent memory and pools */
1895	dma_pool_destroy(fotg210->qtd_pool);
1896	fotg210->qtd_pool = NULL;
1897
1898	dma_pool_destroy(fotg210->qh_pool);
1899	fotg210->qh_pool = NULL;
1900
1901	dma_pool_destroy(fotg210->itd_pool);
1902	fotg210->itd_pool = NULL;
1903
1904	if (fotg210->periodic)
1905		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1906				fotg210->periodic_size * sizeof(u32),
1907				fotg210->periodic, fotg210->periodic_dma);
1908	fotg210->periodic = NULL;
1909
1910	/* shadow periodic table */
1911	kfree(fotg210->pshadow);
1912	fotg210->pshadow = NULL;
1913}
1914
1915/* remember to add cleanup code (above) if you add anything here */
1916static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1917{
1918	int i;
1919
1920	/* QTDs for control/bulk/intr transfers */
1921	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1922			fotg210_to_hcd(fotg210)->self.controller,
1923			sizeof(struct fotg210_qtd),
1924			32 /* byte alignment (for hw parts) */,
1925			4096 /* can't cross 4K */);
1926	if (!fotg210->qtd_pool)
1927		goto fail;
1928
1929	/* QHs for control/bulk/intr transfers */
1930	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1931			fotg210_to_hcd(fotg210)->self.controller,
1932			sizeof(struct fotg210_qh_hw),
1933			32 /* byte alignment (for hw parts) */,
1934			4096 /* can't cross 4K */);
1935	if (!fotg210->qh_pool)
1936		goto fail;
1937
1938	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1939	if (!fotg210->async)
1940		goto fail;
1941
1942	/* ITD for high speed ISO transfers */
1943	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1944			fotg210_to_hcd(fotg210)->self.controller,
1945			sizeof(struct fotg210_itd),
1946			64 /* byte alignment (for hw parts) */,
1947			4096 /* can't cross 4K */);
1948	if (!fotg210->itd_pool)
1949		goto fail;
1950
1951	/* Hardware periodic table */
1952	fotg210->periodic =
1953		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1954				fotg210->periodic_size * sizeof(__le32),
1955				&fotg210->periodic_dma, 0);
1956	if (fotg210->periodic == NULL)
1957		goto fail;
1958
1959	for (i = 0; i < fotg210->periodic_size; i++)
1960		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1961
1962	/* software shadow of hardware table */
1963	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1964			flags);
1965	if (fotg210->pshadow != NULL)
1966		return 0;
1967
1968fail:
1969	fotg210_dbg(fotg210, "couldn't init memory\n");
1970	fotg210_mem_cleanup(fotg210);
1971	return -ENOMEM;
1972}
1973/* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1974 *
1975 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1976 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1977 * buffers needed for the larger number).  We use one QH per endpoint, queue
1978 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1979 *
1980 * ISO traffic uses "ISO TD" (itd) records, and (along with
1981 * interrupts) needs careful scheduling.  Performance improvements can be
1982 * an ongoing challenge.  That's in "ehci-sched.c".
1983 *
1984 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1985 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1986 * (b) special fields in qh entries or (c) split iso entries.  TTs will
1987 * buffer low/full speed data so the host collects it at high speed.
1988 */
1989
1990/* fill a qtd, returning how much of the buffer we were able to queue up */
1991static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1992		dma_addr_t buf, size_t len, int token, int maxpacket)
1993{
1994	int i, count;
1995	u64 addr = buf;
1996
1997	/* one buffer entry per 4K ... first might be short or unaligned */
1998	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1999	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2000	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2001	if (likely(len < count))		/* ... iff needed */
2002		count = len;
2003	else {
2004		buf +=  0x1000;
2005		buf &= ~0x0fff;
2006
2007		/* per-qtd limit: from 16K to 20K (best alignment) */
2008		for (i = 1; count < len && i < 5; i++) {
2009			addr = buf;
2010			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2011			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2012					(u32)(addr >> 32));
2013			buf += 0x1000;
2014			if ((count + 0x1000) < len)
2015				count += 0x1000;
2016			else
2017				count = len;
2018		}
2019
2020		/* short packets may only terminate transfers */
2021		if (count != len)
2022			count -= (count % maxpacket);
2023	}
2024	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2025	qtd->length = count;
2026
2027	return count;
2028}
2029
2030static inline void qh_update(struct fotg210_hcd *fotg210,
2031		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2032{
2033	struct fotg210_qh_hw *hw = qh->hw;
2034
2035	/* writes to an active overlay are unsafe */
2036	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2037
2038	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2039	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2040
2041	/* Except for control endpoints, we make hardware maintain data
2042	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2043	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2044	 * ever clear it.
2045	 */
2046	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2047		unsigned is_out, epnum;
2048
2049		is_out = qh->is_out;
2050		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2051		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2052			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2053			usb_settoggle(qh->dev, epnum, is_out, 1);
2054		}
2055	}
2056
2057	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2058}
2059
2060/* if it weren't for a common silicon quirk (writing the dummy into the qh
2061 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2062 * recovery (including urb dequeue) would need software changes to a QH...
2063 */
2064static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2065{
2066	struct fotg210_qtd *qtd;
2067
2068	if (list_empty(&qh->qtd_list))
2069		qtd = qh->dummy;
2070	else {
2071		qtd = list_entry(qh->qtd_list.next,
2072				struct fotg210_qtd, qtd_list);
2073		/*
2074		 * first qtd may already be partially processed.
2075		 * If we come here during unlink, the QH overlay region
2076		 * might have reference to the just unlinked qtd. The
2077		 * qtd is updated in qh_completions(). Update the QH
2078		 * overlay here.
2079		 */
2080		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2081			qh->hw->hw_qtd_next = qtd->hw_next;
2082			qtd = NULL;
2083		}
2084	}
2085
2086	if (qtd)
2087		qh_update(fotg210, qh, qtd);
2088}
2089
2090static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2091
2092static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2093		struct usb_host_endpoint *ep)
2094{
2095	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2096	struct fotg210_qh *qh = ep->hcpriv;
2097	unsigned long flags;
2098
2099	spin_lock_irqsave(&fotg210->lock, flags);
2100	qh->clearing_tt = 0;
2101	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2102			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2103		qh_link_async(fotg210, qh);
2104	spin_unlock_irqrestore(&fotg210->lock, flags);
2105}
2106
2107static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2108		struct fotg210_qh *qh, struct urb *urb, u32 token)
2109{
2110
2111	/* If an async split transaction gets an error or is unlinked,
2112	 * the TT buffer may be left in an indeterminate state.  We
2113	 * have to clear the TT buffer.
2114	 *
2115	 * Note: this routine is never called for Isochronous transfers.
2116	 */
2117	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2118		struct usb_device *tt = urb->dev->tt->hub;
2119
2120		dev_dbg(&tt->dev,
2121				"clear tt buffer port %d, a%d ep%d t%08x\n",
2122				urb->dev->ttport, urb->dev->devnum,
2123				usb_pipeendpoint(urb->pipe), token);
2124
2125		if (urb->dev->tt->hub !=
2126				fotg210_to_hcd(fotg210)->self.root_hub) {
2127			if (usb_hub_clear_tt_buffer(urb) == 0)
2128				qh->clearing_tt = 1;
2129		}
2130	}
2131}
2132
2133static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2134		size_t length, u32 token)
2135{
2136	int status = -EINPROGRESS;
2137
2138	/* count IN/OUT bytes, not SETUP (even short packets) */
2139	if (likely(QTD_PID(token) != 2))
2140		urb->actual_length += length - QTD_LENGTH(token);
2141
2142	/* don't modify error codes */
2143	if (unlikely(urb->unlinked))
2144		return status;
2145
2146	/* force cleanup after short read; not always an error */
2147	if (unlikely(IS_SHORT_READ(token)))
2148		status = -EREMOTEIO;
2149
2150	/* serious "can't proceed" faults reported by the hardware */
2151	if (token & QTD_STS_HALT) {
2152		if (token & QTD_STS_BABBLE) {
2153			/* FIXME "must" disable babbling device's port too */
2154			status = -EOVERFLOW;
2155		/* CERR nonzero + halt --> stall */
2156		} else if (QTD_CERR(token)) {
2157			status = -EPIPE;
2158
2159		/* In theory, more than one of the following bits can be set
2160		 * since they are sticky and the transaction is retried.
2161		 * Which to test first is rather arbitrary.
2162		 */
2163		} else if (token & QTD_STS_MMF) {
2164			/* fs/ls interrupt xfer missed the complete-split */
2165			status = -EPROTO;
2166		} else if (token & QTD_STS_DBE) {
2167			status = (QTD_PID(token) == 1) /* IN ? */
2168				? -ENOSR  /* hc couldn't read data */
2169				: -ECOMM; /* hc couldn't write data */
2170		} else if (token & QTD_STS_XACT) {
2171			/* timeout, bad CRC, wrong PID, etc */
2172			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2173					urb->dev->devpath,
2174					usb_pipeendpoint(urb->pipe),
2175					usb_pipein(urb->pipe) ? "in" : "out");
2176			status = -EPROTO;
2177		} else {	/* unknown */
2178			status = -EPROTO;
2179		}
2180
2181		fotg210_dbg(fotg210,
2182				"dev%d ep%d%s qtd token %08x --> status %d\n",
2183				usb_pipedevice(urb->pipe),
2184				usb_pipeendpoint(urb->pipe),
2185				usb_pipein(urb->pipe) ? "in" : "out",
2186				token, status);
2187	}
2188
2189	return status;
2190}
2191
2192static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2193		int status)
2194__releases(fotg210->lock)
2195__acquires(fotg210->lock)
2196{
2197	if (likely(urb->hcpriv != NULL)) {
2198		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2199
2200		/* S-mask in a QH means it's an interrupt urb */
2201		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2202
2203			/* ... update hc-wide periodic stats (for usbfs) */
2204			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2205		}
2206	}
2207
2208	if (unlikely(urb->unlinked)) {
2209		INCR(fotg210->stats.unlink);
2210	} else {
2211		/* report non-error and short read status as zero */
2212		if (status == -EINPROGRESS || status == -EREMOTEIO)
2213			status = 0;
2214		INCR(fotg210->stats.complete);
2215	}
2216
2217#ifdef FOTG210_URB_TRACE
2218	fotg210_dbg(fotg210,
2219			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2220			__func__, urb->dev->devpath, urb,
2221			usb_pipeendpoint(urb->pipe),
2222			usb_pipein(urb->pipe) ? "in" : "out",
2223			status,
2224			urb->actual_length, urb->transfer_buffer_length);
2225#endif
2226
2227	/* complete() can reenter this HCD */
2228	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2229	spin_unlock(&fotg210->lock);
2230	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2231	spin_lock(&fotg210->lock);
2232}
2233
2234static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2235
2236/* Process and free completed qtds for a qh, returning URBs to drivers.
2237 * Chases up to qh->hw_current.  Returns number of completions called,
2238 * indicating how much "real" work we did.
2239 */
2240static unsigned qh_completions(struct fotg210_hcd *fotg210,
2241		struct fotg210_qh *qh)
2242{
2243	struct fotg210_qtd *last, *end = qh->dummy;
2244	struct fotg210_qtd *qtd, *tmp;
2245	int last_status;
2246	int stopped;
2247	unsigned count = 0;
2248	u8 state;
2249	struct fotg210_qh_hw *hw = qh->hw;
2250
2251	if (unlikely(list_empty(&qh->qtd_list)))
2252		return count;
2253
2254	/* completions (or tasks on other cpus) must never clobber HALT
2255	 * till we've gone through and cleaned everything up, even when
2256	 * they add urbs to this qh's queue or mark them for unlinking.
2257	 *
2258	 * NOTE:  unlinking expects to be done in queue order.
2259	 *
2260	 * It's a bug for qh->qh_state to be anything other than
2261	 * QH_STATE_IDLE, unless our caller is scan_async() or
2262	 * scan_intr().
2263	 */
2264	state = qh->qh_state;
2265	qh->qh_state = QH_STATE_COMPLETING;
2266	stopped = (state == QH_STATE_IDLE);
2267
2268rescan:
2269	last = NULL;
2270	last_status = -EINPROGRESS;
2271	qh->needs_rescan = 0;
2272
2273	/* remove de-activated QTDs from front of queue.
2274	 * after faults (including short reads), cleanup this urb
2275	 * then let the queue advance.
2276	 * if queue is stopped, handles unlinks.
2277	 */
2278	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2279		struct urb *urb;
2280		u32 token = 0;
2281
2282		urb = qtd->urb;
2283
2284		/* clean up any state from previous QTD ...*/
2285		if (last) {
2286			if (likely(last->urb != urb)) {
2287				fotg210_urb_done(fotg210, last->urb,
2288						last_status);
2289				count++;
2290				last_status = -EINPROGRESS;
2291			}
2292			fotg210_qtd_free(fotg210, last);
2293			last = NULL;
2294		}
2295
2296		/* ignore urbs submitted during completions we reported */
2297		if (qtd == end)
2298			break;
2299
2300		/* hardware copies qtd out of qh overlay */
2301		rmb();
2302		token = hc32_to_cpu(fotg210, qtd->hw_token);
2303
2304		/* always clean up qtds the hc de-activated */
2305retry_xacterr:
2306		if ((token & QTD_STS_ACTIVE) == 0) {
2307
2308			/* Report Data Buffer Error: non-fatal but useful */
2309			if (token & QTD_STS_DBE)
2310				fotg210_dbg(fotg210,
2311					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2312					urb, usb_endpoint_num(&urb->ep->desc),
2313					usb_endpoint_dir_in(&urb->ep->desc)
2314						? "in" : "out",
2315					urb->transfer_buffer_length, qtd, qh);
2316
2317			/* on STALL, error, and short reads this urb must
2318			 * complete and all its qtds must be recycled.
2319			 */
2320			if ((token & QTD_STS_HALT) != 0) {
2321
2322				/* retry transaction errors until we
2323				 * reach the software xacterr limit
2324				 */
2325				if ((token & QTD_STS_XACT) &&
2326						QTD_CERR(token) == 0 &&
2327						++qh->xacterrs < QH_XACTERR_MAX &&
2328						!urb->unlinked) {
2329					fotg210_dbg(fotg210,
2330						"detected XactErr len %zu/%zu retry %d\n",
2331						qtd->length - QTD_LENGTH(token),
2332						qtd->length,
2333						qh->xacterrs);
2334
2335					/* reset the token in the qtd and the
2336					 * qh overlay (which still contains
2337					 * the qtd) so that we pick up from
2338					 * where we left off
2339					 */
2340					token &= ~QTD_STS_HALT;
2341					token |= QTD_STS_ACTIVE |
2342						 (FOTG210_TUNE_CERR << 10);
2343					qtd->hw_token = cpu_to_hc32(fotg210,
2344							token);
2345					wmb();
2346					hw->hw_token = cpu_to_hc32(fotg210,
2347							token);
2348					goto retry_xacterr;
2349				}
2350				stopped = 1;
2351
2352			/* magic dummy for some short reads; qh won't advance.
2353			 * that silicon quirk can kick in with this dummy too.
2354			 *
2355			 * other short reads won't stop the queue, including
2356			 * control transfers (status stage handles that) or
2357			 * most other single-qtd reads ... the queue stops if
2358			 * URB_SHORT_NOT_OK was set so the driver submitting
2359			 * the urbs could clean it up.
2360			 */
2361			} else if (IS_SHORT_READ(token) &&
2362					!(qtd->hw_alt_next &
2363					FOTG210_LIST_END(fotg210))) {
2364				stopped = 1;
2365			}
2366
2367		/* stop scanning when we reach qtds the hc is using */
2368		} else if (likely(!stopped
2369				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2370			break;
2371
2372		/* scan the whole queue for unlinks whenever it stops */
2373		} else {
2374			stopped = 1;
2375
2376			/* cancel everything if we halt, suspend, etc */
2377			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2378				last_status = -ESHUTDOWN;
2379
2380			/* this qtd is active; skip it unless a previous qtd
2381			 * for its urb faulted, or its urb was canceled.
2382			 */
2383			else if (last_status == -EINPROGRESS && !urb->unlinked)
2384				continue;
2385
2386			/* qh unlinked; token in overlay may be most current */
2387			if (state == QH_STATE_IDLE &&
2388					cpu_to_hc32(fotg210, qtd->qtd_dma)
2389					== hw->hw_current) {
2390				token = hc32_to_cpu(fotg210, hw->hw_token);
2391
2392				/* An unlink may leave an incomplete
2393				 * async transaction in the TT buffer.
2394				 * We have to clear it.
2395				 */
2396				fotg210_clear_tt_buffer(fotg210, qh, urb,
2397						token);
2398			}
2399		}
2400
2401		/* unless we already know the urb's status, collect qtd status
2402		 * and update count of bytes transferred.  in common short read
2403		 * cases with only one data qtd (including control transfers),
2404		 * queue processing won't halt.  but with two or more qtds (for
2405		 * example, with a 32 KB transfer), when the first qtd gets a
2406		 * short read the second must be removed by hand.
2407		 */
2408		if (last_status == -EINPROGRESS) {
2409			last_status = qtd_copy_status(fotg210, urb,
2410					qtd->length, token);
2411			if (last_status == -EREMOTEIO &&
2412					(qtd->hw_alt_next &
2413					FOTG210_LIST_END(fotg210)))
2414				last_status = -EINPROGRESS;
2415
2416			/* As part of low/full-speed endpoint-halt processing
2417			 * we must clear the TT buffer (11.17.5).
2418			 */
2419			if (unlikely(last_status != -EINPROGRESS &&
2420					last_status != -EREMOTEIO)) {
2421				/* The TT's in some hubs malfunction when they
2422				 * receive this request following a STALL (they
2423				 * stop sending isochronous packets).  Since a
2424				 * STALL can't leave the TT buffer in a busy
2425				 * state (if you believe Figures 11-48 - 11-51
2426				 * in the USB 2.0 spec), we won't clear the TT
2427				 * buffer in this case.  Strictly speaking this
2428				 * is a violation of the spec.
2429				 */
2430				if (last_status != -EPIPE)
2431					fotg210_clear_tt_buffer(fotg210, qh,
2432							urb, token);
2433			}
2434		}
2435
2436		/* if we're removing something not at the queue head,
2437		 * patch the hardware queue pointer.
2438		 */
2439		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2440			last = list_entry(qtd->qtd_list.prev,
2441					struct fotg210_qtd, qtd_list);
2442			last->hw_next = qtd->hw_next;
2443		}
2444
2445		/* remove qtd; it's recycled after possible urb completion */
2446		list_del(&qtd->qtd_list);
2447		last = qtd;
2448
2449		/* reinit the xacterr counter for the next qtd */
2450		qh->xacterrs = 0;
2451	}
2452
2453	/* last urb's completion might still need calling */
2454	if (likely(last != NULL)) {
2455		fotg210_urb_done(fotg210, last->urb, last_status);
2456		count++;
2457		fotg210_qtd_free(fotg210, last);
2458	}
2459
2460	/* Do we need to rescan for URBs dequeued during a giveback? */
2461	if (unlikely(qh->needs_rescan)) {
2462		/* If the QH is already unlinked, do the rescan now. */
2463		if (state == QH_STATE_IDLE)
2464			goto rescan;
2465
2466		/* Otherwise we have to wait until the QH is fully unlinked.
2467		 * Our caller will start an unlink if qh->needs_rescan is
2468		 * set.  But if an unlink has already started, nothing needs
2469		 * to be done.
2470		 */
2471		if (state != QH_STATE_LINKED)
2472			qh->needs_rescan = 0;
2473	}
2474
2475	/* restore original state; caller must unlink or relink */
2476	qh->qh_state = state;
2477
2478	/* be sure the hardware's done with the qh before refreshing
2479	 * it after fault cleanup, or recovering from silicon wrongly
2480	 * overlaying the dummy qtd (which reduces DMA chatter).
2481	 */
2482	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2483		switch (state) {
2484		case QH_STATE_IDLE:
2485			qh_refresh(fotg210, qh);
2486			break;
2487		case QH_STATE_LINKED:
2488			/* We won't refresh a QH that's linked (after the HC
2489			 * stopped the queue).  That avoids a race:
2490			 *  - HC reads first part of QH;
2491			 *  - CPU updates that first part and the token;
2492			 *  - HC reads rest of that QH, including token
2493			 * Result:  HC gets an inconsistent image, and then
2494			 * DMAs to/from the wrong memory (corrupting it).
2495			 *
2496			 * That should be rare for interrupt transfers,
2497			 * except maybe high bandwidth ...
2498			 */
2499
2500			/* Tell the caller to start an unlink */
2501			qh->needs_rescan = 1;
2502			break;
2503		/* otherwise, unlink already started */
2504		}
2505	}
2506
2507	return count;
2508}
2509
2510/* reverse of qh_urb_transaction:  free a list of TDs.
2511 * used for cleanup after errors, before HC sees an URB's TDs.
2512 */
2513static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2514		struct list_head *head)
2515{
2516	struct fotg210_qtd *qtd, *temp;
2517
2518	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2519		list_del(&qtd->qtd_list);
2520		fotg210_qtd_free(fotg210, qtd);
2521	}
2522}
2523
2524/* create a list of filled qtds for this URB; won't link into qh.
2525 */
2526static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2527		struct urb *urb, struct list_head *head, gfp_t flags)
2528{
2529	struct fotg210_qtd *qtd, *qtd_prev;
2530	dma_addr_t buf;
2531	int len, this_sg_len, maxpacket;
2532	int is_input;
2533	u32 token;
2534	int i;
2535	struct scatterlist *sg;
2536
2537	/*
2538	 * URBs map to sequences of QTDs:  one logical transaction
2539	 */
2540	qtd = fotg210_qtd_alloc(fotg210, flags);
2541	if (unlikely(!qtd))
2542		return NULL;
2543	list_add_tail(&qtd->qtd_list, head);
2544	qtd->urb = urb;
2545
2546	token = QTD_STS_ACTIVE;
2547	token |= (FOTG210_TUNE_CERR << 10);
2548	/* for split transactions, SplitXState initialized to zero */
2549
2550	len = urb->transfer_buffer_length;
2551	is_input = usb_pipein(urb->pipe);
2552	if (usb_pipecontrol(urb->pipe)) {
2553		/* SETUP pid */
2554		qtd_fill(fotg210, qtd, urb->setup_dma,
2555				sizeof(struct usb_ctrlrequest),
2556				token | (2 /* "setup" */ << 8), 8);
2557
2558		/* ... and always at least one more pid */
2559		token ^= QTD_TOGGLE;
2560		qtd_prev = qtd;
2561		qtd = fotg210_qtd_alloc(fotg210, flags);
2562		if (unlikely(!qtd))
2563			goto cleanup;
2564		qtd->urb = urb;
2565		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2566		list_add_tail(&qtd->qtd_list, head);
2567
2568		/* for zero length DATA stages, STATUS is always IN */
2569		if (len == 0)
2570			token |= (1 /* "in" */ << 8);
2571	}
2572
2573	/*
2574	 * data transfer stage:  buffer setup
2575	 */
2576	i = urb->num_mapped_sgs;
2577	if (len > 0 && i > 0) {
2578		sg = urb->sg;
2579		buf = sg_dma_address(sg);
2580
2581		/* urb->transfer_buffer_length may be smaller than the
2582		 * size of the scatterlist (or vice versa)
2583		 */
2584		this_sg_len = min_t(int, sg_dma_len(sg), len);
2585	} else {
2586		sg = NULL;
2587		buf = urb->transfer_dma;
2588		this_sg_len = len;
2589	}
2590
2591	if (is_input)
2592		token |= (1 /* "in" */ << 8);
2593	/* else it's already initted to "out" pid (0 << 8) */
2594
2595	maxpacket = usb_maxpacket(urb->dev, urb->pipe);
2596
2597	/*
2598	 * buffer gets wrapped in one or more qtds;
2599	 * last one may be "short" (including zero len)
2600	 * and may serve as a control status ack
2601	 */
2602	for (;;) {
2603		int this_qtd_len;
2604
2605		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2606				maxpacket);
2607		this_sg_len -= this_qtd_len;
2608		len -= this_qtd_len;
2609		buf += this_qtd_len;
2610
2611		/*
2612		 * short reads advance to a "magic" dummy instead of the next
2613		 * qtd ... that forces the queue to stop, for manual cleanup.
2614		 * (this will usually be overridden later.)
2615		 */
2616		if (is_input)
2617			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2618
2619		/* qh makes control packets use qtd toggle; maybe switch it */
2620		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2621			token ^= QTD_TOGGLE;
2622
2623		if (likely(this_sg_len <= 0)) {
2624			if (--i <= 0 || len <= 0)
2625				break;
2626			sg = sg_next(sg);
2627			buf = sg_dma_address(sg);
2628			this_sg_len = min_t(int, sg_dma_len(sg), len);
2629		}
2630
2631		qtd_prev = qtd;
2632		qtd = fotg210_qtd_alloc(fotg210, flags);
2633		if (unlikely(!qtd))
2634			goto cleanup;
2635		qtd->urb = urb;
2636		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2637		list_add_tail(&qtd->qtd_list, head);
2638	}
2639
2640	/*
2641	 * unless the caller requires manual cleanup after short reads,
2642	 * have the alt_next mechanism keep the queue running after the
2643	 * last data qtd (the only one, for control and most other cases).
2644	 */
2645	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2646			usb_pipecontrol(urb->pipe)))
2647		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2648
2649	/*
2650	 * control requests may need a terminating data "status" ack;
2651	 * other OUT ones may need a terminating short packet
2652	 * (zero length).
2653	 */
2654	if (likely(urb->transfer_buffer_length != 0)) {
2655		int one_more = 0;
2656
2657		if (usb_pipecontrol(urb->pipe)) {
2658			one_more = 1;
2659			token ^= 0x0100;	/* "in" <--> "out"  */
2660			token |= QTD_TOGGLE;	/* force DATA1 */
2661		} else if (usb_pipeout(urb->pipe)
2662				&& (urb->transfer_flags & URB_ZERO_PACKET)
2663				&& !(urb->transfer_buffer_length % maxpacket)) {
2664			one_more = 1;
2665		}
2666		if (one_more) {
2667			qtd_prev = qtd;
2668			qtd = fotg210_qtd_alloc(fotg210, flags);
2669			if (unlikely(!qtd))
2670				goto cleanup;
2671			qtd->urb = urb;
2672			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2673			list_add_tail(&qtd->qtd_list, head);
2674
2675			/* never any data in such packets */
2676			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2677		}
2678	}
2679
2680	/* by default, enable interrupt on urb completion */
2681	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2682		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2683	return head;
2684
2685cleanup:
2686	qtd_list_free(fotg210, urb, head);
2687	return NULL;
2688}
2689
2690/* Would be best to create all qh's from config descriptors,
2691 * when each interface/altsetting is established.  Unlink
2692 * any previous qh and cancel its urbs first; endpoints are
2693 * implicitly reset then (data toggle too).
2694 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2695 */
2696
2697
2698/* Each QH holds a qtd list; a QH is used for everything except iso.
2699 *
2700 * For interrupt urbs, the scheduler must set the microframe scheduling
2701 * mask(s) each time the QH gets scheduled.  For highspeed, that's
2702 * just one microframe in the s-mask.  For split interrupt transactions
2703 * there are additional complications: c-mask, maybe FSTNs.
2704 */
2705static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2706		gfp_t flags)
2707{
2708	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2709	struct usb_host_endpoint *ep;
2710	u32 info1 = 0, info2 = 0;
2711	int is_input, type;
2712	int maxp = 0;
2713	int mult;
2714	struct usb_tt *tt = urb->dev->tt;
2715	struct fotg210_qh_hw *hw;
2716
2717	if (!qh)
2718		return qh;
2719
2720	/*
2721	 * init endpoint/device data for this QH
2722	 */
2723	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2724	info1 |= usb_pipedevice(urb->pipe) << 0;
2725
2726	is_input = usb_pipein(urb->pipe);
2727	type = usb_pipetype(urb->pipe);
2728	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
2729	maxp = usb_endpoint_maxp(&ep->desc);
2730	mult = usb_endpoint_maxp_mult(&ep->desc);
2731
2732	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2733	 * acts like up to 3KB, but is built from smaller packets.
2734	 */
2735	if (maxp > 1024) {
2736		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
2737		goto done;
2738	}
2739
2740	/* Compute interrupt scheduling parameters just once, and save.
2741	 * - allowing for high bandwidth, how many nsec/uframe are used?
2742	 * - split transactions need a second CSPLIT uframe; same question
2743	 * - splits also need a schedule gap (for full/low speed I/O)
2744	 * - qh has a polling interval
2745	 *
2746	 * For control/bulk requests, the HC or TT handles these.
2747	 */
2748	if (type == PIPE_INTERRUPT) {
2749		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2750				is_input, 0, mult * maxp));
2751		qh->start = NO_FRAME;
2752
2753		if (urb->dev->speed == USB_SPEED_HIGH) {
2754			qh->c_usecs = 0;
2755			qh->gap_uf = 0;
2756
2757			qh->period = urb->interval >> 3;
2758			if (qh->period == 0 && urb->interval != 1) {
2759				/* NOTE interval 2 or 4 uframes could work.
2760				 * But interval 1 scheduling is simpler, and
2761				 * includes high bandwidth.
2762				 */
2763				urb->interval = 1;
2764			} else if (qh->period > fotg210->periodic_size) {
2765				qh->period = fotg210->periodic_size;
2766				urb->interval = qh->period << 3;
2767			}
2768		} else {
2769			int think_time;
2770
2771			/* gap is f(FS/LS transfer times) */
2772			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2773					is_input, 0, maxp) / (125 * 1000);
2774
2775			/* FIXME this just approximates SPLIT/CSPLIT times */
2776			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2777				qh->c_usecs = qh->usecs + HS_USECS(0);
2778				qh->usecs = HS_USECS(1);
2779			} else {		/* SPLIT+DATA, gap, CSPLIT */
2780				qh->usecs += HS_USECS(1);
2781				qh->c_usecs = HS_USECS(0);
2782			}
2783
2784			think_time = tt ? tt->think_time : 0;
2785			qh->tt_usecs = NS_TO_US(think_time +
2786					usb_calc_bus_time(urb->dev->speed,
2787					is_input, 0, maxp));
2788			qh->period = urb->interval;
2789			if (qh->period > fotg210->periodic_size) {
2790				qh->period = fotg210->periodic_size;
2791				urb->interval = qh->period;
2792			}
2793		}
2794	}
2795
2796	/* support for tt scheduling, and access to toggles */
2797	qh->dev = urb->dev;
2798
2799	/* using TT? */
2800	switch (urb->dev->speed) {
2801	case USB_SPEED_LOW:
2802		info1 |= QH_LOW_SPEED;
2803		fallthrough;
2804
2805	case USB_SPEED_FULL:
2806		/* EPS 0 means "full" */
2807		if (type != PIPE_INTERRUPT)
2808			info1 |= (FOTG210_TUNE_RL_TT << 28);
2809		if (type == PIPE_CONTROL) {
2810			info1 |= QH_CONTROL_EP;		/* for TT */
2811			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2812		}
2813		info1 |= maxp << 16;
2814
2815		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2816
2817		/* Some Freescale processors have an erratum in which the
2818		 * port number in the queue head was 0..N-1 instead of 1..N.
2819		 */
2820		if (fotg210_has_fsl_portno_bug(fotg210))
2821			info2 |= (urb->dev->ttport-1) << 23;
2822		else
2823			info2 |= urb->dev->ttport << 23;
2824
2825		/* set the address of the TT; for TDI's integrated
2826		 * root hub tt, leave it zeroed.
2827		 */
2828		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2829			info2 |= tt->hub->devnum << 16;
2830
2831		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2832
2833		break;
2834
2835	case USB_SPEED_HIGH:		/* no TT involved */
2836		info1 |= QH_HIGH_SPEED;
2837		if (type == PIPE_CONTROL) {
2838			info1 |= (FOTG210_TUNE_RL_HS << 28);
2839			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2840			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2841			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2842		} else if (type == PIPE_BULK) {
2843			info1 |= (FOTG210_TUNE_RL_HS << 28);
2844			/* The USB spec says that high speed bulk endpoints
2845			 * always use 512 byte maxpacket.  But some device
2846			 * vendors decided to ignore that, and MSFT is happy
2847			 * to help them do so.  So now people expect to use
2848			 * such nonconformant devices with Linux too; sigh.
2849			 */
2850			info1 |= maxp << 16;
2851			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2852		} else {		/* PIPE_INTERRUPT */
2853			info1 |= maxp << 16;
2854			info2 |= mult << 30;
2855		}
2856		break;
2857	default:
2858		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2859				urb->dev->speed);
2860done:
2861		qh_destroy(fotg210, qh);
2862		return NULL;
2863	}
2864
2865	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2866
2867	/* init as live, toggle clear, advance to dummy */
2868	qh->qh_state = QH_STATE_IDLE;
2869	hw = qh->hw;
2870	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2871	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2872	qh->is_out = !is_input;
2873	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2874	qh_refresh(fotg210, qh);
2875	return qh;
2876}
2877
2878static void enable_async(struct fotg210_hcd *fotg210)
2879{
2880	if (fotg210->async_count++)
2881		return;
2882
2883	/* Stop waiting to turn off the async schedule */
2884	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2885
2886	/* Don't start the schedule until ASS is 0 */
2887	fotg210_poll_ASS(fotg210);
2888	turn_on_io_watchdog(fotg210);
2889}
2890
2891static void disable_async(struct fotg210_hcd *fotg210)
2892{
2893	if (--fotg210->async_count)
2894		return;
2895
2896	/* The async schedule and async_unlink list are supposed to be empty */
2897	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2898
2899	/* Don't turn off the schedule until ASS is 1 */
2900	fotg210_poll_ASS(fotg210);
2901}
2902
2903/* move qh (and its qtds) onto async queue; maybe enable queue.  */
2904
2905static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2906{
2907	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2908	struct fotg210_qh *head;
2909
2910	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2911	if (unlikely(qh->clearing_tt))
2912		return;
2913
2914	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2915
2916	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2917	qh_refresh(fotg210, qh);
2918
2919	/* splice right after start */
2920	head = fotg210->async;
2921	qh->qh_next = head->qh_next;
2922	qh->hw->hw_next = head->hw->hw_next;
2923	wmb();
2924
2925	head->qh_next.qh = qh;
2926	head->hw->hw_next = dma;
2927
2928	qh->xacterrs = 0;
2929	qh->qh_state = QH_STATE_LINKED;
2930	/* qtd completions reported later by interrupt */
2931
2932	enable_async(fotg210);
2933}
2934
2935/* For control/bulk/interrupt, return QH with these TDs appended.
2936 * Allocates and initializes the QH if necessary.
2937 * Returns null if it can't allocate a QH it needs to.
2938 * If the QH has TDs (urbs) already, that's great.
2939 */
2940static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2941		struct urb *urb, struct list_head *qtd_list,
2942		int epnum, void **ptr)
2943{
2944	struct fotg210_qh *qh = NULL;
2945	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2946
2947	qh = (struct fotg210_qh *) *ptr;
2948	if (unlikely(qh == NULL)) {
2949		/* can't sleep here, we have fotg210->lock... */
2950		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2951		*ptr = qh;
2952	}
2953	if (likely(qh != NULL)) {
2954		struct fotg210_qtd *qtd;
2955
2956		if (unlikely(list_empty(qtd_list)))
2957			qtd = NULL;
2958		else
2959			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2960					qtd_list);
2961
2962		/* control qh may need patching ... */
2963		if (unlikely(epnum == 0)) {
2964			/* usb_reset_device() briefly reverts to address 0 */
2965			if (usb_pipedevice(urb->pipe) == 0)
2966				qh->hw->hw_info1 &= ~qh_addr_mask;
2967		}
2968
2969		/* just one way to queue requests: swap with the dummy qtd.
2970		 * only hc or qh_refresh() ever modify the overlay.
2971		 */
2972		if (likely(qtd != NULL)) {
2973			struct fotg210_qtd *dummy;
2974			dma_addr_t dma;
2975			__hc32 token;
2976
2977			/* to avoid racing the HC, use the dummy td instead of
2978			 * the first td of our list (becomes new dummy).  both
2979			 * tds stay deactivated until we're done, when the
2980			 * HC is allowed to fetch the old dummy (4.10.2).
2981			 */
2982			token = qtd->hw_token;
2983			qtd->hw_token = HALT_BIT(fotg210);
2984
2985			dummy = qh->dummy;
2986
2987			dma = dummy->qtd_dma;
2988			*dummy = *qtd;
2989			dummy->qtd_dma = dma;
2990
2991			list_del(&qtd->qtd_list);
2992			list_add(&dummy->qtd_list, qtd_list);
2993			list_splice_tail(qtd_list, &qh->qtd_list);
2994
2995			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2996			qh->dummy = qtd;
2997
2998			/* hc must see the new dummy at list end */
2999			dma = qtd->qtd_dma;
3000			qtd = list_entry(qh->qtd_list.prev,
3001					struct fotg210_qtd, qtd_list);
3002			qtd->hw_next = QTD_NEXT(fotg210, dma);
3003
3004			/* let the hc process these next qtds */
3005			wmb();
3006			dummy->hw_token = token;
3007
3008			urb->hcpriv = qh;
3009		}
3010	}
3011	return qh;
3012}
3013
3014static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3015		struct list_head *qtd_list, gfp_t mem_flags)
3016{
3017	int epnum;
3018	unsigned long flags;
3019	struct fotg210_qh *qh = NULL;
3020	int rc;
3021
3022	epnum = urb->ep->desc.bEndpointAddress;
3023
3024#ifdef FOTG210_URB_TRACE
3025	{
3026		struct fotg210_qtd *qtd;
3027
3028		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3029		fotg210_dbg(fotg210,
3030				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3031				__func__, urb->dev->devpath, urb,
3032				epnum & 0x0f, (epnum & USB_DIR_IN)
3033					? "in" : "out",
3034				urb->transfer_buffer_length,
3035				qtd, urb->ep->hcpriv);
3036	}
3037#endif
3038
3039	spin_lock_irqsave(&fotg210->lock, flags);
3040	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3041		rc = -ESHUTDOWN;
3042		goto done;
3043	}
3044	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3045	if (unlikely(rc))
3046		goto done;
3047
3048	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3049	if (unlikely(qh == NULL)) {
3050		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3051		rc = -ENOMEM;
3052		goto done;
3053	}
3054
3055	/* Control/bulk operations through TTs don't need scheduling,
3056	 * the HC and TT handle it when the TT has a buffer ready.
3057	 */
3058	if (likely(qh->qh_state == QH_STATE_IDLE))
3059		qh_link_async(fotg210, qh);
3060done:
3061	spin_unlock_irqrestore(&fotg210->lock, flags);
3062	if (unlikely(qh == NULL))
3063		qtd_list_free(fotg210, urb, qtd_list);
3064	return rc;
3065}
3066
3067static void single_unlink_async(struct fotg210_hcd *fotg210,
3068		struct fotg210_qh *qh)
3069{
3070	struct fotg210_qh *prev;
3071
3072	/* Add to the end of the list of QHs waiting for the next IAAD */
3073	qh->qh_state = QH_STATE_UNLINK;
3074	if (fotg210->async_unlink)
3075		fotg210->async_unlink_last->unlink_next = qh;
3076	else
3077		fotg210->async_unlink = qh;
3078	fotg210->async_unlink_last = qh;
3079
3080	/* Unlink it from the schedule */
3081	prev = fotg210->async;
3082	while (prev->qh_next.qh != qh)
3083		prev = prev->qh_next.qh;
3084
3085	prev->hw->hw_next = qh->hw->hw_next;
3086	prev->qh_next = qh->qh_next;
3087	if (fotg210->qh_scan_next == qh)
3088		fotg210->qh_scan_next = qh->qh_next.qh;
3089}
3090
3091static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3092{
3093	/*
3094	 * Do nothing if an IAA cycle is already running or
3095	 * if one will be started shortly.
3096	 */
3097	if (fotg210->async_iaa || fotg210->async_unlinking)
3098		return;
3099
3100	/* Do all the waiting QHs at once */
3101	fotg210->async_iaa = fotg210->async_unlink;
3102	fotg210->async_unlink = NULL;
3103
3104	/* If the controller isn't running, we don't have to wait for it */
3105	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3106		if (!nested)		/* Avoid recursion */
3107			end_unlink_async(fotg210);
3108
3109	/* Otherwise start a new IAA cycle */
3110	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3111		/* Make sure the unlinks are all visible to the hardware */
3112		wmb();
3113
3114		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3115				&fotg210->regs->command);
3116		fotg210_readl(fotg210, &fotg210->regs->command);
3117		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3118				true);
3119	}
3120}
3121
3122/* the async qh for the qtds being unlinked are now gone from the HC */
3123
3124static void end_unlink_async(struct fotg210_hcd *fotg210)
3125{
3126	struct fotg210_qh *qh;
3127
3128	/* Process the idle QHs */
3129restart:
3130	fotg210->async_unlinking = true;
3131	while (fotg210->async_iaa) {
3132		qh = fotg210->async_iaa;
3133		fotg210->async_iaa = qh->unlink_next;
3134		qh->unlink_next = NULL;
3135
3136		qh->qh_state = QH_STATE_IDLE;
3137		qh->qh_next.qh = NULL;
3138
3139		qh_completions(fotg210, qh);
3140		if (!list_empty(&qh->qtd_list) &&
3141				fotg210->rh_state == FOTG210_RH_RUNNING)
3142			qh_link_async(fotg210, qh);
3143		disable_async(fotg210);
3144	}
3145	fotg210->async_unlinking = false;
3146
3147	/* Start a new IAA cycle if any QHs are waiting for it */
3148	if (fotg210->async_unlink) {
3149		start_iaa_cycle(fotg210, true);
3150		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3151			goto restart;
3152	}
3153}
3154
3155static void unlink_empty_async(struct fotg210_hcd *fotg210)
3156{
3157	struct fotg210_qh *qh, *next;
3158	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3159	bool check_unlinks_later = false;
3160
3161	/* Unlink all the async QHs that have been empty for a timer cycle */
3162	next = fotg210->async->qh_next.qh;
3163	while (next) {
3164		qh = next;
3165		next = qh->qh_next.qh;
3166
3167		if (list_empty(&qh->qtd_list) &&
3168				qh->qh_state == QH_STATE_LINKED) {
3169			if (!stopped && qh->unlink_cycle ==
3170					fotg210->async_unlink_cycle)
3171				check_unlinks_later = true;
3172			else
3173				single_unlink_async(fotg210, qh);
3174		}
3175	}
3176
3177	/* Start a new IAA cycle if any QHs are waiting for it */
3178	if (fotg210->async_unlink)
3179		start_iaa_cycle(fotg210, false);
3180
3181	/* QHs that haven't been empty for long enough will be handled later */
3182	if (check_unlinks_later) {
3183		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3184				true);
3185		++fotg210->async_unlink_cycle;
3186	}
3187}
3188
3189/* makes sure the async qh will become idle */
3190/* caller must own fotg210->lock */
3191
3192static void start_unlink_async(struct fotg210_hcd *fotg210,
3193		struct fotg210_qh *qh)
3194{
3195	/*
3196	 * If the QH isn't linked then there's nothing we can do
3197	 * unless we were called during a giveback, in which case
3198	 * qh_completions() has to deal with it.
3199	 */
3200	if (qh->qh_state != QH_STATE_LINKED) {
3201		if (qh->qh_state == QH_STATE_COMPLETING)
3202			qh->needs_rescan = 1;
3203		return;
3204	}
3205
3206	single_unlink_async(fotg210, qh);
3207	start_iaa_cycle(fotg210, false);
3208}
3209
3210static void scan_async(struct fotg210_hcd *fotg210)
3211{
3212	struct fotg210_qh *qh;
3213	bool check_unlinks_later = false;
3214
3215	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3216	while (fotg210->qh_scan_next) {
3217		qh = fotg210->qh_scan_next;
3218		fotg210->qh_scan_next = qh->qh_next.qh;
3219rescan:
3220		/* clean any finished work for this qh */
3221		if (!list_empty(&qh->qtd_list)) {
3222			int temp;
3223
3224			/*
3225			 * Unlinks could happen here; completion reporting
3226			 * drops the lock.  That's why fotg210->qh_scan_next
3227			 * always holds the next qh to scan; if the next qh
3228			 * gets unlinked then fotg210->qh_scan_next is adjusted
3229			 * in single_unlink_async().
3230			 */
3231			temp = qh_completions(fotg210, qh);
3232			if (qh->needs_rescan) {
3233				start_unlink_async(fotg210, qh);
3234			} else if (list_empty(&qh->qtd_list)
3235					&& qh->qh_state == QH_STATE_LINKED) {
3236				qh->unlink_cycle = fotg210->async_unlink_cycle;
3237				check_unlinks_later = true;
3238			} else if (temp != 0)
3239				goto rescan;
3240		}
3241	}
3242
3243	/*
3244	 * Unlink empty entries, reducing DMA usage as well
3245	 * as HCD schedule-scanning costs.  Delay for any qh
3246	 * we just scanned, there's a not-unusual case that it
3247	 * doesn't stay idle for long.
3248	 */
3249	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3250			!(fotg210->enabled_hrtimer_events &
3251			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3252		fotg210_enable_event(fotg210,
3253				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3254		++fotg210->async_unlink_cycle;
3255	}
3256}
3257/* EHCI scheduled transaction support:  interrupt, iso, split iso
3258 * These are called "periodic" transactions in the EHCI spec.
3259 *
3260 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3261 * with the "asynchronous" transaction support (control/bulk transfers).
3262 * The only real difference is in how interrupt transfers are scheduled.
3263 *
3264 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3265 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3266 * pre-calculated schedule data to make appending to the queue be quick.
3267 */
3268static int fotg210_get_frame(struct usb_hcd *hcd);
3269
3270/* periodic_next_shadow - return "next" pointer on shadow list
3271 * @periodic: host pointer to qh/itd
3272 * @tag: hardware tag for type of this record
3273 */
3274static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3275		union fotg210_shadow *periodic, __hc32 tag)
3276{
3277	switch (hc32_to_cpu(fotg210, tag)) {
3278	case Q_TYPE_QH:
3279		return &periodic->qh->qh_next;
3280	case Q_TYPE_FSTN:
3281		return &periodic->fstn->fstn_next;
3282	default:
3283		return &periodic->itd->itd_next;
3284	}
3285}
3286
3287static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3288		union fotg210_shadow *periodic, __hc32 tag)
3289{
3290	switch (hc32_to_cpu(fotg210, tag)) {
3291	/* our fotg210_shadow.qh is actually software part */
3292	case Q_TYPE_QH:
3293		return &periodic->qh->hw->hw_next;
3294	/* others are hw parts */
3295	default:
3296		return periodic->hw_next;
3297	}
3298}
3299
3300/* caller must hold fotg210->lock */
3301static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3302		void *ptr)
3303{
3304	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3305	__hc32 *hw_p = &fotg210->periodic[frame];
3306	union fotg210_shadow here = *prev_p;
3307
3308	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3309	while (here.ptr && here.ptr != ptr) {
3310		prev_p = periodic_next_shadow(fotg210, prev_p,
3311				Q_NEXT_TYPE(fotg210, *hw_p));
3312		hw_p = shadow_next_periodic(fotg210, &here,
3313				Q_NEXT_TYPE(fotg210, *hw_p));
3314		here = *prev_p;
3315	}
3316	/* an interrupt entry (at list end) could have been shared */
3317	if (!here.ptr)
3318		return;
3319
3320	/* update shadow and hardware lists ... the old "next" pointers
3321	 * from ptr may still be in use, the caller updates them.
3322	 */
3323	*prev_p = *periodic_next_shadow(fotg210, &here,
3324			Q_NEXT_TYPE(fotg210, *hw_p));
3325
3326	*hw_p = *shadow_next_periodic(fotg210, &here,
3327			Q_NEXT_TYPE(fotg210, *hw_p));
3328}
3329
3330/* how many of the uframe's 125 usecs are allocated? */
3331static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3332		unsigned frame, unsigned uframe)
3333{
3334	__hc32 *hw_p = &fotg210->periodic[frame];
3335	union fotg210_shadow *q = &fotg210->pshadow[frame];
3336	unsigned usecs = 0;
3337	struct fotg210_qh_hw *hw;
3338
3339	while (q->ptr) {
3340		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3341		case Q_TYPE_QH:
3342			hw = q->qh->hw;
3343			/* is it in the S-mask? */
3344			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3345				usecs += q->qh->usecs;
3346			/* ... or C-mask? */
3347			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3348					1 << (8 + uframe)))
3349				usecs += q->qh->c_usecs;
3350			hw_p = &hw->hw_next;
3351			q = &q->qh->qh_next;
3352			break;
3353		/* case Q_TYPE_FSTN: */
3354		default:
3355			/* for "save place" FSTNs, count the relevant INTR
3356			 * bandwidth from the previous frame
3357			 */
3358			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3359				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3360
3361			hw_p = &q->fstn->hw_next;
3362			q = &q->fstn->fstn_next;
3363			break;
3364		case Q_TYPE_ITD:
3365			if (q->itd->hw_transaction[uframe])
3366				usecs += q->itd->stream->usecs;
3367			hw_p = &q->itd->hw_next;
3368			q = &q->itd->itd_next;
3369			break;
3370		}
3371	}
3372	if (usecs > fotg210->uframe_periodic_max)
3373		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3374				frame * 8 + uframe, usecs);
3375	return usecs;
3376}
3377
3378static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3379{
3380	if (!dev1->tt || !dev2->tt)
3381		return 0;
3382	if (dev1->tt != dev2->tt)
3383		return 0;
3384	if (dev1->tt->multi)
3385		return dev1->ttport == dev2->ttport;
3386	else
3387		return 1;
3388}
3389
3390/* return true iff the device's transaction translator is available
3391 * for a periodic transfer starting at the specified frame, using
3392 * all the uframes in the mask.
3393 */
3394static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3395		struct usb_device *dev, unsigned frame, u32 uf_mask)
3396{
3397	if (period == 0)	/* error */
3398		return 0;
3399
3400	/* note bandwidth wastage:  split never follows csplit
3401	 * (different dev or endpoint) until the next uframe.
3402	 * calling convention doesn't make that distinction.
3403	 */
3404	for (; frame < fotg210->periodic_size; frame += period) {
3405		union fotg210_shadow here;
3406		__hc32 type;
3407		struct fotg210_qh_hw *hw;
3408
3409		here = fotg210->pshadow[frame];
3410		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3411		while (here.ptr) {
3412			switch (hc32_to_cpu(fotg210, type)) {
3413			case Q_TYPE_ITD:
3414				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3415				here = here.itd->itd_next;
3416				continue;
3417			case Q_TYPE_QH:
3418				hw = here.qh->hw;
3419				if (same_tt(dev, here.qh->dev)) {
3420					u32 mask;
3421
3422					mask = hc32_to_cpu(fotg210,
3423							hw->hw_info2);
3424					/* "knows" no gap is needed */
3425					mask |= mask >> 8;
3426					if (mask & uf_mask)
3427						break;
3428				}
3429				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3430				here = here.qh->qh_next;
3431				continue;
3432			/* case Q_TYPE_FSTN: */
3433			default:
3434				fotg210_dbg(fotg210,
3435						"periodic frame %d bogus type %d\n",
3436						frame, type);
3437			}
3438
3439			/* collision or error */
3440			return 0;
3441		}
3442	}
3443
3444	/* no collision */
3445	return 1;
3446}
3447
3448static void enable_periodic(struct fotg210_hcd *fotg210)
3449{
3450	if (fotg210->periodic_count++)
3451		return;
3452
3453	/* Stop waiting to turn off the periodic schedule */
3454	fotg210->enabled_hrtimer_events &=
3455		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3456
3457	/* Don't start the schedule until PSS is 0 */
3458	fotg210_poll_PSS(fotg210);
3459	turn_on_io_watchdog(fotg210);
3460}
3461
3462static void disable_periodic(struct fotg210_hcd *fotg210)
3463{
3464	if (--fotg210->periodic_count)
3465		return;
3466
3467	/* Don't turn off the schedule until PSS is 1 */
3468	fotg210_poll_PSS(fotg210);
3469}
3470
3471/* periodic schedule slots have iso tds (normal or split) first, then a
3472 * sparse tree for active interrupt transfers.
3473 *
3474 * this just links in a qh; caller guarantees uframe masks are set right.
3475 * no FSTN support (yet; fotg210 0.96+)
3476 */
3477static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3478{
3479	unsigned i;
3480	unsigned period = qh->period;
3481
3482	dev_dbg(&qh->dev->dev,
3483			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3484			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3485			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3486			qh->c_usecs);
3487
3488	/* high bandwidth, or otherwise every microframe */
3489	if (period == 0)
3490		period = 1;
3491
3492	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3493		union fotg210_shadow *prev = &fotg210->pshadow[i];
3494		__hc32 *hw_p = &fotg210->periodic[i];
3495		union fotg210_shadow here = *prev;
3496		__hc32 type = 0;
3497
3498		/* skip the iso nodes at list head */
3499		while (here.ptr) {
3500			type = Q_NEXT_TYPE(fotg210, *hw_p);
3501			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3502				break;
3503			prev = periodic_next_shadow(fotg210, prev, type);
3504			hw_p = shadow_next_periodic(fotg210, &here, type);
3505			here = *prev;
3506		}
3507
3508		/* sorting each branch by period (slow-->fast)
3509		 * enables sharing interior tree nodes
3510		 */
3511		while (here.ptr && qh != here.qh) {
3512			if (qh->period > here.qh->period)
3513				break;
3514			prev = &here.qh->qh_next;
3515			hw_p = &here.qh->hw->hw_next;
3516			here = *prev;
3517		}
3518		/* link in this qh, unless some earlier pass did that */
3519		if (qh != here.qh) {
3520			qh->qh_next = here;
3521			if (here.qh)
3522				qh->hw->hw_next = *hw_p;
3523			wmb();
3524			prev->qh = qh;
3525			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3526		}
3527	}
3528	qh->qh_state = QH_STATE_LINKED;
3529	qh->xacterrs = 0;
3530
3531	/* update per-qh bandwidth for usbfs */
3532	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3533		? ((qh->usecs + qh->c_usecs) / qh->period)
3534		: (qh->usecs * 8);
3535
3536	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3537
3538	/* maybe enable periodic schedule processing */
3539	++fotg210->intr_count;
3540	enable_periodic(fotg210);
3541}
3542
3543static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3544		struct fotg210_qh *qh)
3545{
3546	unsigned i;
3547	unsigned period;
3548
3549	/*
3550	 * If qh is for a low/full-speed device, simply unlinking it
3551	 * could interfere with an ongoing split transaction.  To unlink
3552	 * it safely would require setting the QH_INACTIVATE bit and
3553	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3554	 *
3555	 * We won't bother with any of this.  Instead, we assume that the
3556	 * only reason for unlinking an interrupt QH while the current URB
3557	 * is still active is to dequeue all the URBs (flush the whole
3558	 * endpoint queue).
3559	 *
3560	 * If rebalancing the periodic schedule is ever implemented, this
3561	 * approach will no longer be valid.
3562	 */
3563
3564	/* high bandwidth, or otherwise part of every microframe */
3565	period = qh->period;
3566	if (!period)
3567		period = 1;
3568
3569	for (i = qh->start; i < fotg210->periodic_size; i += period)
3570		periodic_unlink(fotg210, i, qh);
3571
3572	/* update per-qh bandwidth for usbfs */
3573	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3574		? ((qh->usecs + qh->c_usecs) / qh->period)
3575		: (qh->usecs * 8);
3576
3577	dev_dbg(&qh->dev->dev,
3578			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3579			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3580			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3581			qh->c_usecs);
3582
3583	/* qh->qh_next still "live" to HC */
3584	qh->qh_state = QH_STATE_UNLINK;
3585	qh->qh_next.ptr = NULL;
3586
3587	if (fotg210->qh_scan_next == qh)
3588		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3589				struct fotg210_qh, intr_node);
3590	list_del(&qh->intr_node);
3591}
3592
3593static void start_unlink_intr(struct fotg210_hcd *fotg210,
3594		struct fotg210_qh *qh)
3595{
3596	/* If the QH isn't linked then there's nothing we can do
3597	 * unless we were called during a giveback, in which case
3598	 * qh_completions() has to deal with it.
3599	 */
3600	if (qh->qh_state != QH_STATE_LINKED) {
3601		if (qh->qh_state == QH_STATE_COMPLETING)
3602			qh->needs_rescan = 1;
3603		return;
3604	}
3605
3606	qh_unlink_periodic(fotg210, qh);
3607
3608	/* Make sure the unlinks are visible before starting the timer */
3609	wmb();
3610
3611	/*
3612	 * The EHCI spec doesn't say how long it takes the controller to
3613	 * stop accessing an unlinked interrupt QH.  The timer delay is
3614	 * 9 uframes; presumably that will be long enough.
3615	 */
3616	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3617
3618	/* New entries go at the end of the intr_unlink list */
3619	if (fotg210->intr_unlink)
3620		fotg210->intr_unlink_last->unlink_next = qh;
3621	else
3622		fotg210->intr_unlink = qh;
3623	fotg210->intr_unlink_last = qh;
3624
3625	if (fotg210->intr_unlinking)
3626		;	/* Avoid recursive calls */
3627	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3628		fotg210_handle_intr_unlinks(fotg210);
3629	else if (fotg210->intr_unlink == qh) {
3630		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3631				true);
3632		++fotg210->intr_unlink_cycle;
3633	}
3634}
3635
3636static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3637{
3638	struct fotg210_qh_hw *hw = qh->hw;
3639	int rc;
3640
3641	qh->qh_state = QH_STATE_IDLE;
3642	hw->hw_next = FOTG210_LIST_END(fotg210);
3643
3644	qh_completions(fotg210, qh);
3645
3646	/* reschedule QH iff another request is queued */
3647	if (!list_empty(&qh->qtd_list) &&
3648			fotg210->rh_state == FOTG210_RH_RUNNING) {
3649		rc = qh_schedule(fotg210, qh);
3650
3651		/* An error here likely indicates handshake failure
3652		 * or no space left in the schedule.  Neither fault
3653		 * should happen often ...
3654		 *
3655		 * FIXME kill the now-dysfunctional queued urbs
3656		 */
3657		if (rc != 0)
3658			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3659					qh, rc);
3660	}
3661
3662	/* maybe turn off periodic schedule */
3663	--fotg210->intr_count;
3664	disable_periodic(fotg210);
3665}
3666
3667static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3668		unsigned uframe, unsigned period, unsigned usecs)
3669{
3670	int claimed;
3671
3672	/* complete split running into next frame?
3673	 * given FSTN support, we could sometimes check...
3674	 */
3675	if (uframe >= 8)
3676		return 0;
3677
3678	/* convert "usecs we need" to "max already claimed" */
3679	usecs = fotg210->uframe_periodic_max - usecs;
3680
3681	/* we "know" 2 and 4 uframe intervals were rejected; so
3682	 * for period 0, check _every_ microframe in the schedule.
3683	 */
3684	if (unlikely(period == 0)) {
3685		do {
3686			for (uframe = 0; uframe < 7; uframe++) {
3687				claimed = periodic_usecs(fotg210, frame,
3688						uframe);
3689				if (claimed > usecs)
3690					return 0;
3691			}
3692		} while ((frame += 1) < fotg210->periodic_size);
3693
3694	/* just check the specified uframe, at that period */
3695	} else {
3696		do {
3697			claimed = periodic_usecs(fotg210, frame, uframe);
3698			if (claimed > usecs)
3699				return 0;
3700		} while ((frame += period) < fotg210->periodic_size);
3701	}
3702
3703	/* success! */
3704	return 1;
3705}
3706
3707static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3708		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3709{
3710	int retval = -ENOSPC;
3711	u8 mask = 0;
3712
3713	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3714		goto done;
3715
3716	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3717		goto done;
3718	if (!qh->c_usecs) {
3719		retval = 0;
3720		*c_maskp = 0;
3721		goto done;
3722	}
3723
3724	/* Make sure this tt's buffer is also available for CSPLITs.
3725	 * We pessimize a bit; probably the typical full speed case
3726	 * doesn't need the second CSPLIT.
3727	 *
3728	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3729	 * one smart pass...
3730	 */
3731	mask = 0x03 << (uframe + qh->gap_uf);
3732	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3733
3734	mask |= 1 << uframe;
3735	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3736		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3737				qh->period, qh->c_usecs))
3738			goto done;
3739		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3740				qh->period, qh->c_usecs))
3741			goto done;
3742		retval = 0;
3743	}
3744done:
3745	return retval;
3746}
3747
3748/* "first fit" scheduling policy used the first time through,
3749 * or when the previous schedule slot can't be re-used.
3750 */
3751static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3752{
3753	int status;
3754	unsigned uframe;
3755	__hc32 c_mask;
3756	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3757	struct fotg210_qh_hw *hw = qh->hw;
3758
3759	qh_refresh(fotg210, qh);
3760	hw->hw_next = FOTG210_LIST_END(fotg210);
3761	frame = qh->start;
3762
3763	/* reuse the previous schedule slots, if we can */
3764	if (frame < qh->period) {
3765		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3766		status = check_intr_schedule(fotg210, frame, --uframe,
3767				qh, &c_mask);
3768	} else {
3769		uframe = 0;
3770		c_mask = 0;
3771		status = -ENOSPC;
3772	}
3773
3774	/* else scan the schedule to find a group of slots such that all
3775	 * uframes have enough periodic bandwidth available.
3776	 */
3777	if (status) {
3778		/* "normal" case, uframing flexible except with splits */
3779		if (qh->period) {
3780			int i;
3781
3782			for (i = qh->period; status && i > 0; --i) {
3783				frame = ++fotg210->random_frame % qh->period;
3784				for (uframe = 0; uframe < 8; uframe++) {
3785					status = check_intr_schedule(fotg210,
3786							frame, uframe, qh,
3787							&c_mask);
3788					if (status == 0)
3789						break;
3790				}
3791			}
3792
3793		/* qh->period == 0 means every uframe */
3794		} else {
3795			frame = 0;
3796			status = check_intr_schedule(fotg210, 0, 0, qh,
3797					&c_mask);
3798		}
3799		if (status)
3800			goto done;
3801		qh->start = frame;
3802
3803		/* reset S-frame and (maybe) C-frame masks */
3804		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3805		hw->hw_info2 |= qh->period
3806			? cpu_to_hc32(fotg210, 1 << uframe)
3807			: cpu_to_hc32(fotg210, QH_SMASK);
3808		hw->hw_info2 |= c_mask;
3809	} else
3810		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3811
3812	/* stuff into the periodic schedule */
3813	qh_link_periodic(fotg210, qh);
3814done:
3815	return status;
3816}
3817
3818static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3819		struct list_head *qtd_list, gfp_t mem_flags)
3820{
3821	unsigned epnum;
3822	unsigned long flags;
3823	struct fotg210_qh *qh;
3824	int status;
3825	struct list_head empty;
3826
3827	/* get endpoint and transfer/schedule data */
3828	epnum = urb->ep->desc.bEndpointAddress;
3829
3830	spin_lock_irqsave(&fotg210->lock, flags);
3831
3832	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3833		status = -ESHUTDOWN;
3834		goto done_not_linked;
3835	}
3836	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3837	if (unlikely(status))
3838		goto done_not_linked;
3839
3840	/* get qh and force any scheduling errors */
3841	INIT_LIST_HEAD(&empty);
3842	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3843	if (qh == NULL) {
3844		status = -ENOMEM;
3845		goto done;
3846	}
3847	if (qh->qh_state == QH_STATE_IDLE) {
3848		status = qh_schedule(fotg210, qh);
3849		if (status)
3850			goto done;
3851	}
3852
3853	/* then queue the urb's tds to the qh */
3854	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3855	BUG_ON(qh == NULL);
3856
3857	/* ... update usbfs periodic stats */
3858	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3859
3860done:
3861	if (unlikely(status))
3862		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3863done_not_linked:
3864	spin_unlock_irqrestore(&fotg210->lock, flags);
3865	if (status)
3866		qtd_list_free(fotg210, urb, qtd_list);
3867
3868	return status;
3869}
3870
3871static void scan_intr(struct fotg210_hcd *fotg210)
3872{
3873	struct fotg210_qh *qh;
3874
3875	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3876			&fotg210->intr_qh_list, intr_node) {
3877rescan:
3878		/* clean any finished work for this qh */
3879		if (!list_empty(&qh->qtd_list)) {
3880			int temp;
3881
3882			/*
3883			 * Unlinks could happen here; completion reporting
3884			 * drops the lock.  That's why fotg210->qh_scan_next
3885			 * always holds the next qh to scan; if the next qh
3886			 * gets unlinked then fotg210->qh_scan_next is adjusted
3887			 * in qh_unlink_periodic().
3888			 */
3889			temp = qh_completions(fotg210, qh);
3890			if (unlikely(qh->needs_rescan ||
3891					(list_empty(&qh->qtd_list) &&
3892					qh->qh_state == QH_STATE_LINKED)))
3893				start_unlink_intr(fotg210, qh);
3894			else if (temp != 0)
3895				goto rescan;
3896		}
3897	}
3898}
3899
3900/* fotg210_iso_stream ops work with both ITD and SITD */
3901
3902static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3903{
3904	struct fotg210_iso_stream *stream;
3905
3906	stream = kzalloc(sizeof(*stream), mem_flags);
3907	if (likely(stream != NULL)) {
3908		INIT_LIST_HEAD(&stream->td_list);
3909		INIT_LIST_HEAD(&stream->free_list);
3910		stream->next_uframe = -1;
3911	}
3912	return stream;
3913}
3914
3915static void iso_stream_init(struct fotg210_hcd *fotg210,
3916		struct fotg210_iso_stream *stream, struct usb_device *dev,
3917		int pipe, unsigned interval)
3918{
3919	u32 buf1;
3920	unsigned epnum, maxp;
3921	int is_input;
3922	long bandwidth;
3923	unsigned multi;
3924	struct usb_host_endpoint *ep;
3925
3926	/*
3927	 * this might be a "high bandwidth" highspeed endpoint,
3928	 * as encoded in the ep descriptor's wMaxPacket field
3929	 */
3930	epnum = usb_pipeendpoint(pipe);
3931	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3932	ep = usb_pipe_endpoint(dev, pipe);
3933	maxp = usb_endpoint_maxp(&ep->desc);
3934	if (is_input)
3935		buf1 = (1 << 11);
3936	else
3937		buf1 = 0;
3938
3939	multi = usb_endpoint_maxp_mult(&ep->desc);
3940	buf1 |= maxp;
3941	maxp *= multi;
3942
3943	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3944	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3945	stream->buf2 = cpu_to_hc32(fotg210, multi);
3946
3947	/* usbfs wants to report the average usecs per frame tied up
3948	 * when transfers on this endpoint are scheduled ...
3949	 */
3950	if (dev->speed == USB_SPEED_FULL) {
3951		interval <<= 3;
3952		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3953				is_input, 1, maxp));
3954		stream->usecs /= 8;
3955	} else {
3956		stream->highspeed = 1;
3957		stream->usecs = HS_USECS_ISO(maxp);
3958	}
3959	bandwidth = stream->usecs * 8;
3960	bandwidth /= interval;
3961
3962	stream->bandwidth = bandwidth;
3963	stream->udev = dev;
3964	stream->bEndpointAddress = is_input | epnum;
3965	stream->interval = interval;
3966	stream->maxp = maxp;
3967}
3968
3969static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3970		struct urb *urb)
3971{
3972	unsigned epnum;
3973	struct fotg210_iso_stream *stream;
3974	struct usb_host_endpoint *ep;
3975	unsigned long flags;
3976
3977	epnum = usb_pipeendpoint(urb->pipe);
3978	if (usb_pipein(urb->pipe))
3979		ep = urb->dev->ep_in[epnum];
3980	else
3981		ep = urb->dev->ep_out[epnum];
3982
3983	spin_lock_irqsave(&fotg210->lock, flags);
3984	stream = ep->hcpriv;
3985
3986	if (unlikely(stream == NULL)) {
3987		stream = iso_stream_alloc(GFP_ATOMIC);
3988		if (likely(stream != NULL)) {
3989			ep->hcpriv = stream;
3990			stream->ep = ep;
3991			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3992					urb->interval);
3993		}
3994
3995	/* if dev->ep[epnum] is a QH, hw is set */
3996	} else if (unlikely(stream->hw != NULL)) {
3997		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
3998				urb->dev->devpath, epnum,
3999				usb_pipein(urb->pipe) ? "in" : "out");
4000		stream = NULL;
4001	}
4002
4003	spin_unlock_irqrestore(&fotg210->lock, flags);
4004	return stream;
4005}
4006
4007/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4008
4009static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4010		gfp_t mem_flags)
4011{
4012	struct fotg210_iso_sched *iso_sched;
4013
4014	iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
4015	if (likely(iso_sched != NULL))
4016		INIT_LIST_HEAD(&iso_sched->td_list);
4017
4018	return iso_sched;
4019}
4020
4021static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4022		struct fotg210_iso_sched *iso_sched,
4023		struct fotg210_iso_stream *stream, struct urb *urb)
4024{
4025	unsigned i;
4026	dma_addr_t dma = urb->transfer_dma;
4027
4028	/* how many uframes are needed for these transfers */
4029	iso_sched->span = urb->number_of_packets * stream->interval;
4030
4031	/* figure out per-uframe itd fields that we'll need later
4032	 * when we fit new itds into the schedule.
4033	 */
4034	for (i = 0; i < urb->number_of_packets; i++) {
4035		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4036		unsigned length;
4037		dma_addr_t buf;
4038		u32 trans;
4039
4040		length = urb->iso_frame_desc[i].length;
4041		buf = dma + urb->iso_frame_desc[i].offset;
4042
4043		trans = FOTG210_ISOC_ACTIVE;
4044		trans |= buf & 0x0fff;
4045		if (unlikely(((i + 1) == urb->number_of_packets))
4046				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4047			trans |= FOTG210_ITD_IOC;
4048		trans |= length << 16;
4049		uframe->transaction = cpu_to_hc32(fotg210, trans);
4050
4051		/* might need to cross a buffer page within a uframe */
4052		uframe->bufp = (buf & ~(u64)0x0fff);
4053		buf += length;
4054		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4055			uframe->cross = 1;
4056	}
4057}
4058
4059static void iso_sched_free(struct fotg210_iso_stream *stream,
4060		struct fotg210_iso_sched *iso_sched)
4061{
4062	if (!iso_sched)
4063		return;
4064	/* caller must hold fotg210->lock!*/
4065	list_splice(&iso_sched->td_list, &stream->free_list);
4066	kfree(iso_sched);
4067}
4068
4069static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4070		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4071{
4072	struct fotg210_itd *itd;
4073	dma_addr_t itd_dma;
4074	int i;
4075	unsigned num_itds;
4076	struct fotg210_iso_sched *sched;
4077	unsigned long flags;
4078
4079	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4080	if (unlikely(sched == NULL))
4081		return -ENOMEM;
4082
4083	itd_sched_init(fotg210, sched, stream, urb);
4084
4085	if (urb->interval < 8)
4086		num_itds = 1 + (sched->span + 7) / 8;
4087	else
4088		num_itds = urb->number_of_packets;
4089
4090	/* allocate/init ITDs */
4091	spin_lock_irqsave(&fotg210->lock, flags);
4092	for (i = 0; i < num_itds; i++) {
4093
4094		/*
4095		 * Use iTDs from the free list, but not iTDs that may
4096		 * still be in use by the hardware.
4097		 */
4098		if (likely(!list_empty(&stream->free_list))) {
4099			itd = list_first_entry(&stream->free_list,
4100					struct fotg210_itd, itd_list);
4101			if (itd->frame == fotg210->now_frame)
4102				goto alloc_itd;
4103			list_del(&itd->itd_list);
4104			itd_dma = itd->itd_dma;
4105		} else {
4106alloc_itd:
4107			spin_unlock_irqrestore(&fotg210->lock, flags);
4108			itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4109					&itd_dma);
4110			spin_lock_irqsave(&fotg210->lock, flags);
4111			if (!itd) {
4112				iso_sched_free(stream, sched);
4113				spin_unlock_irqrestore(&fotg210->lock, flags);
4114				return -ENOMEM;
4115			}
4116		}
4117
4118		memset(itd, 0, sizeof(*itd));
4119		itd->itd_dma = itd_dma;
4120		list_add(&itd->itd_list, &sched->td_list);
4121	}
4122	spin_unlock_irqrestore(&fotg210->lock, flags);
4123
4124	/* temporarily store schedule info in hcpriv */
4125	urb->hcpriv = sched;
4126	urb->error_count = 0;
4127	return 0;
4128}
4129
4130static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4131		u8 usecs, u32 period)
4132{
4133	uframe %= period;
4134	do {
4135		/* can't commit more than uframe_periodic_max usec */
4136		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4137				> (fotg210->uframe_periodic_max - usecs))
4138			return 0;
4139
4140		/* we know urb->interval is 2^N uframes */
4141		uframe += period;
4142	} while (uframe < mod);
4143	return 1;
4144}
4145
4146/* This scheduler plans almost as far into the future as it has actual
4147 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4148 * "as small as possible" to be cache-friendlier.)  That limits the size
4149 * transfers you can stream reliably; avoid more than 64 msec per urb.
4150 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4151 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4152 * and other factors); or more than about 230 msec total (for portability,
4153 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4154 */
4155
4156#define SCHEDULE_SLOP 80 /* microframes */
4157
4158static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4159		struct fotg210_iso_stream *stream)
4160{
4161	u32 now, next, start, period, span;
4162	int status;
4163	unsigned mod = fotg210->periodic_size << 3;
4164	struct fotg210_iso_sched *sched = urb->hcpriv;
4165
4166	period = urb->interval;
4167	span = sched->span;
4168
4169	if (span > mod - SCHEDULE_SLOP) {
4170		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4171		status = -EFBIG;
4172		goto fail;
4173	}
4174
4175	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4176
4177	/* Typical case: reuse current schedule, stream is still active.
4178	 * Hopefully there are no gaps from the host falling behind
4179	 * (irq delays etc), but if there are we'll take the next
4180	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4181	 */
4182	if (likely(!list_empty(&stream->td_list))) {
4183		u32 excess;
4184
4185		/* For high speed devices, allow scheduling within the
4186		 * isochronous scheduling threshold.  For full speed devices
4187		 * and Intel PCI-based controllers, don't (work around for
4188		 * Intel ICH9 bug).
4189		 */
4190		if (!stream->highspeed && fotg210->fs_i_thresh)
4191			next = now + fotg210->i_thresh;
4192		else
4193			next = now;
4194
4195		/* Fell behind (by up to twice the slop amount)?
4196		 * We decide based on the time of the last currently-scheduled
4197		 * slot, not the time of the next available slot.
4198		 */
4199		excess = (stream->next_uframe - period - next) & (mod - 1);
4200		if (excess >= mod - 2 * SCHEDULE_SLOP)
4201			start = next + excess - mod + period *
4202					DIV_ROUND_UP(mod - excess, period);
4203		else
4204			start = next + excess + period;
4205		if (start - now >= mod) {
4206			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4207					urb, start - now - period, period,
4208					mod);
4209			status = -EFBIG;
4210			goto fail;
4211		}
4212	}
4213
4214	/* need to schedule; when's the next (u)frame we could start?
4215	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4216	 * isn't free, the slop should handle reasonably slow cpus.  it
4217	 * can also help high bandwidth if the dma and irq loads don't
4218	 * jump until after the queue is primed.
4219	 */
4220	else {
4221		int done = 0;
4222
4223		start = SCHEDULE_SLOP + (now & ~0x07);
4224
4225		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4226
4227		/* find a uframe slot with enough bandwidth.
4228		 * Early uframes are more precious because full-speed
4229		 * iso IN transfers can't use late uframes,
4230		 * and therefore they should be allocated last.
4231		 */
4232		next = start;
4233		start += period;
4234		do {
4235			start--;
4236			/* check schedule: enough space? */
4237			if (itd_slot_ok(fotg210, mod, start,
4238					stream->usecs, period))
4239				done = 1;
4240		} while (start > next && !done);
4241
4242		/* no room in the schedule */
4243		if (!done) {
4244			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4245					urb, now, now + mod);
4246			status = -ENOSPC;
4247			goto fail;
4248		}
4249	}
4250
4251	/* Tried to schedule too far into the future? */
4252	if (unlikely(start - now + span - period >=
4253			mod - 2 * SCHEDULE_SLOP)) {
4254		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4255				urb, start - now, span - period,
4256				mod - 2 * SCHEDULE_SLOP);
4257		status = -EFBIG;
4258		goto fail;
4259	}
4260
4261	stream->next_uframe = start & (mod - 1);
4262
4263	/* report high speed start in uframes; full speed, in frames */
4264	urb->start_frame = stream->next_uframe;
4265	if (!stream->highspeed)
4266		urb->start_frame >>= 3;
4267
4268	/* Make sure scan_isoc() sees these */
4269	if (fotg210->isoc_count == 0)
4270		fotg210->next_frame = now >> 3;
4271	return 0;
4272
4273fail:
4274	iso_sched_free(stream, sched);
4275	urb->hcpriv = NULL;
4276	return status;
4277}
4278
4279static inline void itd_init(struct fotg210_hcd *fotg210,
4280		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4281{
4282	int i;
4283
4284	/* it's been recently zeroed */
4285	itd->hw_next = FOTG210_LIST_END(fotg210);
4286	itd->hw_bufp[0] = stream->buf0;
4287	itd->hw_bufp[1] = stream->buf1;
4288	itd->hw_bufp[2] = stream->buf2;
4289
4290	for (i = 0; i < 8; i++)
4291		itd->index[i] = -1;
4292
4293	/* All other fields are filled when scheduling */
4294}
4295
4296static inline void itd_patch(struct fotg210_hcd *fotg210,
4297		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4298		unsigned index, u16 uframe)
4299{
4300	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4301	unsigned pg = itd->pg;
4302
4303	uframe &= 0x07;
4304	itd->index[uframe] = index;
4305
4306	itd->hw_transaction[uframe] = uf->transaction;
4307	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4308	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4309	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4310
4311	/* iso_frame_desc[].offset must be strictly increasing */
4312	if (unlikely(uf->cross)) {
4313		u64 bufp = uf->bufp + 4096;
4314
4315		itd->pg = ++pg;
4316		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4317		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4318	}
4319}
4320
4321static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4322		struct fotg210_itd *itd)
4323{
4324	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4325	__hc32 *hw_p = &fotg210->periodic[frame];
4326	union fotg210_shadow here = *prev;
4327	__hc32 type = 0;
4328
4329	/* skip any iso nodes which might belong to previous microframes */
4330	while (here.ptr) {
4331		type = Q_NEXT_TYPE(fotg210, *hw_p);
4332		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4333			break;
4334		prev = periodic_next_shadow(fotg210, prev, type);
4335		hw_p = shadow_next_periodic(fotg210, &here, type);
4336		here = *prev;
4337	}
4338
4339	itd->itd_next = here;
4340	itd->hw_next = *hw_p;
4341	prev->itd = itd;
4342	itd->frame = frame;
4343	wmb();
4344	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4345}
4346
4347/* fit urb's itds into the selected schedule slot; activate as needed */
4348static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4349		unsigned mod, struct fotg210_iso_stream *stream)
4350{
4351	int packet;
4352	unsigned next_uframe, uframe, frame;
4353	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4354	struct fotg210_itd *itd;
4355
4356	next_uframe = stream->next_uframe & (mod - 1);
4357
4358	if (unlikely(list_empty(&stream->td_list))) {
4359		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4360				+= stream->bandwidth;
4361		fotg210_dbg(fotg210,
4362			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4363			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4364			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4365			urb->interval,
4366			next_uframe >> 3, next_uframe & 0x7);
4367	}
4368
4369	/* fill iTDs uframe by uframe */
4370	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4371		if (itd == NULL) {
4372			/* ASSERT:  we have all necessary itds */
4373
4374			/* ASSERT:  no itds for this endpoint in this uframe */
4375
4376			itd = list_entry(iso_sched->td_list.next,
4377					struct fotg210_itd, itd_list);
4378			list_move_tail(&itd->itd_list, &stream->td_list);
4379			itd->stream = stream;
4380			itd->urb = urb;
4381			itd_init(fotg210, stream, itd);
4382		}
4383
4384		uframe = next_uframe & 0x07;
4385		frame = next_uframe >> 3;
4386
4387		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4388
4389		next_uframe += stream->interval;
4390		next_uframe &= mod - 1;
4391		packet++;
4392
4393		/* link completed itds into the schedule */
4394		if (((next_uframe >> 3) != frame)
4395				|| packet == urb->number_of_packets) {
4396			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4397					itd);
4398			itd = NULL;
4399		}
4400	}
4401	stream->next_uframe = next_uframe;
4402
4403	/* don't need that schedule data any more */
4404	iso_sched_free(stream, iso_sched);
4405	urb->hcpriv = NULL;
4406
4407	++fotg210->isoc_count;
4408	enable_periodic(fotg210);
4409}
4410
4411#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4412		FOTG210_ISOC_XACTERR)
4413
4414/* Process and recycle a completed ITD.  Return true iff its urb completed,
4415 * and hence its completion callback probably added things to the hardware
4416 * schedule.
4417 *
4418 * Note that we carefully avoid recycling this descriptor until after any
4419 * completion callback runs, so that it won't be reused quickly.  That is,
4420 * assuming (a) no more than two urbs per frame on this endpoint, and also
4421 * (b) only this endpoint's completions submit URBs.  It seems some silicon
4422 * corrupts things if you reuse completed descriptors very quickly...
4423 */
4424static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4425{
4426	struct urb *urb = itd->urb;
4427	struct usb_iso_packet_descriptor *desc;
4428	u32 t;
4429	unsigned uframe;
4430	int urb_index = -1;
4431	struct fotg210_iso_stream *stream = itd->stream;
4432	struct usb_device *dev;
4433	bool retval = false;
4434
4435	/* for each uframe with a packet */
4436	for (uframe = 0; uframe < 8; uframe++) {
4437		if (likely(itd->index[uframe] == -1))
4438			continue;
4439		urb_index = itd->index[uframe];
4440		desc = &urb->iso_frame_desc[urb_index];
4441
4442		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4443		itd->hw_transaction[uframe] = 0;
4444
4445		/* report transfer status */
4446		if (unlikely(t & ISO_ERRS)) {
4447			urb->error_count++;
4448			if (t & FOTG210_ISOC_BUF_ERR)
4449				desc->status = usb_pipein(urb->pipe)
4450					? -ENOSR  /* hc couldn't read */
4451					: -ECOMM; /* hc couldn't write */
4452			else if (t & FOTG210_ISOC_BABBLE)
4453				desc->status = -EOVERFLOW;
4454			else /* (t & FOTG210_ISOC_XACTERR) */
4455				desc->status = -EPROTO;
4456
4457			/* HC need not update length with this error */
4458			if (!(t & FOTG210_ISOC_BABBLE)) {
4459				desc->actual_length = FOTG210_ITD_LENGTH(t);
4460				urb->actual_length += desc->actual_length;
4461			}
4462		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4463			desc->status = 0;
4464			desc->actual_length = FOTG210_ITD_LENGTH(t);
4465			urb->actual_length += desc->actual_length;
4466		} else {
4467			/* URB was too late */
4468			desc->status = -EXDEV;
4469		}
4470	}
4471
4472	/* handle completion now? */
4473	if (likely((urb_index + 1) != urb->number_of_packets))
4474		goto done;
4475
4476	/* ASSERT: it's really the last itd for this urb
4477	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4478	 *	BUG_ON (itd->urb == urb);
4479	 */
4480
4481	/* give urb back to the driver; completion often (re)submits */
4482	dev = urb->dev;
4483	fotg210_urb_done(fotg210, urb, 0);
4484	retval = true;
4485	urb = NULL;
4486
4487	--fotg210->isoc_count;
4488	disable_periodic(fotg210);
4489
4490	if (unlikely(list_is_singular(&stream->td_list))) {
4491		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4492				-= stream->bandwidth;
4493		fotg210_dbg(fotg210,
4494			"deschedule devp %s ep%d%s-iso\n",
4495			dev->devpath, stream->bEndpointAddress & 0x0f,
4496			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4497	}
4498
4499done:
4500	itd->urb = NULL;
4501
4502	/* Add to the end of the free list for later reuse */
4503	list_move_tail(&itd->itd_list, &stream->free_list);
4504
4505	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4506	if (list_empty(&stream->td_list)) {
4507		list_splice_tail_init(&stream->free_list,
4508				&fotg210->cached_itd_list);
4509		start_free_itds(fotg210);
4510	}
4511
4512	return retval;
4513}
4514
4515static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4516		gfp_t mem_flags)
4517{
4518	int status = -EINVAL;
4519	unsigned long flags;
4520	struct fotg210_iso_stream *stream;
4521
4522	/* Get iso_stream head */
4523	stream = iso_stream_find(fotg210, urb);
4524	if (unlikely(stream == NULL)) {
4525		fotg210_dbg(fotg210, "can't get iso stream\n");
4526		return -ENOMEM;
4527	}
4528	if (unlikely(urb->interval != stream->interval &&
4529			fotg210_port_speed(fotg210, 0) ==
4530			USB_PORT_STAT_HIGH_SPEED)) {
4531		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4532				stream->interval, urb->interval);
4533		goto done;
4534	}
4535
4536#ifdef FOTG210_URB_TRACE
4537	fotg210_dbg(fotg210,
4538			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4539			__func__, urb->dev->devpath, urb,
4540			usb_pipeendpoint(urb->pipe),
4541			usb_pipein(urb->pipe) ? "in" : "out",
4542			urb->transfer_buffer_length,
4543			urb->number_of_packets, urb->interval,
4544			stream);
4545#endif
4546
4547	/* allocate ITDs w/o locking anything */
4548	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4549	if (unlikely(status < 0)) {
4550		fotg210_dbg(fotg210, "can't init itds\n");
4551		goto done;
4552	}
4553
4554	/* schedule ... need to lock */
4555	spin_lock_irqsave(&fotg210->lock, flags);
4556	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4557		status = -ESHUTDOWN;
4558		goto done_not_linked;
4559	}
4560	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4561	if (unlikely(status))
4562		goto done_not_linked;
4563	status = iso_stream_schedule(fotg210, urb, stream);
4564	if (likely(status == 0))
4565		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4566	else
4567		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4568done_not_linked:
4569	spin_unlock_irqrestore(&fotg210->lock, flags);
4570done:
4571	return status;
4572}
4573
4574static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4575		unsigned now_frame, bool live)
4576{
4577	unsigned uf;
4578	bool modified;
4579	union fotg210_shadow q, *q_p;
4580	__hc32 type, *hw_p;
4581
4582	/* scan each element in frame's queue for completions */
4583	q_p = &fotg210->pshadow[frame];
4584	hw_p = &fotg210->periodic[frame];
4585	q.ptr = q_p->ptr;
4586	type = Q_NEXT_TYPE(fotg210, *hw_p);
4587	modified = false;
4588
4589	while (q.ptr) {
4590		switch (hc32_to_cpu(fotg210, type)) {
4591		case Q_TYPE_ITD:
4592			/* If this ITD is still active, leave it for
4593			 * later processing ... check the next entry.
4594			 * No need to check for activity unless the
4595			 * frame is current.
4596			 */
4597			if (frame == now_frame && live) {
4598				rmb();
4599				for (uf = 0; uf < 8; uf++) {
4600					if (q.itd->hw_transaction[uf] &
4601							ITD_ACTIVE(fotg210))
4602						break;
4603				}
4604				if (uf < 8) {
4605					q_p = &q.itd->itd_next;
4606					hw_p = &q.itd->hw_next;
4607					type = Q_NEXT_TYPE(fotg210,
4608							q.itd->hw_next);
4609					q = *q_p;
4610					break;
4611				}
4612			}
4613
4614			/* Take finished ITDs out of the schedule
4615			 * and process them:  recycle, maybe report
4616			 * URB completion.  HC won't cache the
4617			 * pointer for much longer, if at all.
4618			 */
4619			*q_p = q.itd->itd_next;
4620			*hw_p = q.itd->hw_next;
4621			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4622			wmb();
4623			modified = itd_complete(fotg210, q.itd);
4624			q = *q_p;
4625			break;
4626		default:
4627			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4628					type, frame, q.ptr);
4629			fallthrough;
4630		case Q_TYPE_QH:
4631		case Q_TYPE_FSTN:
4632			/* End of the iTDs and siTDs */
4633			q.ptr = NULL;
4634			break;
4635		}
4636
4637		/* assume completion callbacks modify the queue */
4638		if (unlikely(modified && fotg210->isoc_count > 0))
4639			return -EINVAL;
4640	}
4641	return 0;
4642}
4643
4644static void scan_isoc(struct fotg210_hcd *fotg210)
4645{
4646	unsigned uf, now_frame, frame, ret;
4647	unsigned fmask = fotg210->periodic_size - 1;
4648	bool live;
4649
4650	/*
4651	 * When running, scan from last scan point up to "now"
4652	 * else clean up by scanning everything that's left.
4653	 * Touches as few pages as possible:  cache-friendly.
4654	 */
4655	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4656		uf = fotg210_read_frame_index(fotg210);
4657		now_frame = (uf >> 3) & fmask;
4658		live = true;
4659	} else  {
4660		now_frame = (fotg210->next_frame - 1) & fmask;
4661		live = false;
4662	}
4663	fotg210->now_frame = now_frame;
4664
4665	frame = fotg210->next_frame;
4666	for (;;) {
4667		ret = 1;
4668		while (ret != 0)
4669			ret = scan_frame_queue(fotg210, frame,
4670					now_frame, live);
4671
4672		/* Stop when we have reached the current frame */
4673		if (frame == now_frame)
4674			break;
4675		frame = (frame + 1) & fmask;
4676	}
4677	fotg210->next_frame = now_frame;
4678}
4679
4680/* Display / Set uframe_periodic_max
4681 */
4682static ssize_t uframe_periodic_max_show(struct device *dev,
4683		struct device_attribute *attr, char *buf)
4684{
4685	struct fotg210_hcd *fotg210;
4686
4687	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4688	return sysfs_emit(buf, "%d\n", fotg210->uframe_periodic_max);
4689}
4690
4691static ssize_t uframe_periodic_max_store(struct device *dev,
4692		struct device_attribute *attr, const char *buf, size_t count)
4693{
4694	struct fotg210_hcd *fotg210;
4695	unsigned uframe_periodic_max;
4696	unsigned frame, uframe;
4697	unsigned short allocated_max;
4698	unsigned long flags;
4699	ssize_t ret;
4700
4701	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4702
4703	ret = kstrtouint(buf, 0, &uframe_periodic_max);
4704	if (ret)
4705		return ret;
4706
4707	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4708		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4709				uframe_periodic_max);
4710		return -EINVAL;
4711	}
4712
4713	ret = -EINVAL;
4714
4715	/*
4716	 * lock, so that our checking does not race with possible periodic
4717	 * bandwidth allocation through submitting new urbs.
4718	 */
4719	spin_lock_irqsave(&fotg210->lock, flags);
4720
4721	/*
4722	 * for request to decrease max periodic bandwidth, we have to check
4723	 * every microframe in the schedule to see whether the decrease is
4724	 * possible.
4725	 */
4726	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4727		allocated_max = 0;
4728
4729		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4730			for (uframe = 0; uframe < 7; ++uframe)
4731				allocated_max = max(allocated_max,
4732						periodic_usecs(fotg210, frame,
4733						uframe));
4734
4735		if (allocated_max > uframe_periodic_max) {
4736			fotg210_info(fotg210,
4737					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4738					allocated_max, uframe_periodic_max);
4739			goto out_unlock;
4740		}
4741	}
4742
4743	/* increasing is always ok */
4744
4745	fotg210_info(fotg210,
4746			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4747			100 * uframe_periodic_max/125, uframe_periodic_max);
4748
4749	if (uframe_periodic_max != 100)
4750		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4751
4752	fotg210->uframe_periodic_max = uframe_periodic_max;
4753	ret = count;
4754
4755out_unlock:
4756	spin_unlock_irqrestore(&fotg210->lock, flags);
4757	return ret;
4758}
4759
4760static DEVICE_ATTR_RW(uframe_periodic_max);
4761
4762static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4763{
4764	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4765
4766	return device_create_file(controller, &dev_attr_uframe_periodic_max);
4767}
4768
4769static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4770{
4771	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4772
4773	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4774}
4775/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4776 * The firmware seems to think that powering off is a wakeup event!
4777 * This routine turns off remote wakeup and everything else, on all ports.
4778 */
4779static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4780{
4781	u32 __iomem *status_reg = &fotg210->regs->port_status;
4782
4783	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4784}
4785
4786/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4787 * Must be called with interrupts enabled and the lock not held.
4788 */
4789static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4790{
4791	fotg210_halt(fotg210);
4792
4793	spin_lock_irq(&fotg210->lock);
4794	fotg210->rh_state = FOTG210_RH_HALTED;
4795	fotg210_turn_off_all_ports(fotg210);
4796	spin_unlock_irq(&fotg210->lock);
4797}
4798
4799/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4800 * This forcibly disables dma and IRQs, helping kexec and other cases
4801 * where the next system software may expect clean state.
4802 */
4803static void fotg210_shutdown(struct usb_hcd *hcd)
4804{
4805	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4806
4807	spin_lock_irq(&fotg210->lock);
4808	fotg210->shutdown = true;
4809	fotg210->rh_state = FOTG210_RH_STOPPING;
4810	fotg210->enabled_hrtimer_events = 0;
4811	spin_unlock_irq(&fotg210->lock);
4812
4813	fotg210_silence_controller(fotg210);
4814
4815	hrtimer_cancel(&fotg210->hrtimer);
4816}
4817
4818/* fotg210_work is called from some interrupts, timers, and so on.
4819 * it calls driver completion functions, after dropping fotg210->lock.
4820 */
4821static void fotg210_work(struct fotg210_hcd *fotg210)
4822{
4823	/* another CPU may drop fotg210->lock during a schedule scan while
4824	 * it reports urb completions.  this flag guards against bogus
4825	 * attempts at re-entrant schedule scanning.
4826	 */
4827	if (fotg210->scanning) {
4828		fotg210->need_rescan = true;
4829		return;
4830	}
4831	fotg210->scanning = true;
4832
4833rescan:
4834	fotg210->need_rescan = false;
4835	if (fotg210->async_count)
4836		scan_async(fotg210);
4837	if (fotg210->intr_count > 0)
4838		scan_intr(fotg210);
4839	if (fotg210->isoc_count > 0)
4840		scan_isoc(fotg210);
4841	if (fotg210->need_rescan)
4842		goto rescan;
4843	fotg210->scanning = false;
4844
4845	/* the IO watchdog guards against hardware or driver bugs that
4846	 * misplace IRQs, and should let us run completely without IRQs.
4847	 * such lossage has been observed on both VT6202 and VT8235.
4848	 */
4849	turn_on_io_watchdog(fotg210);
4850}
4851
4852/* Called when the fotg210_hcd module is removed.
4853 */
4854static void fotg210_stop(struct usb_hcd *hcd)
4855{
4856	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4857
4858	fotg210_dbg(fotg210, "stop\n");
4859
4860	/* no more interrupts ... */
4861
4862	spin_lock_irq(&fotg210->lock);
4863	fotg210->enabled_hrtimer_events = 0;
4864	spin_unlock_irq(&fotg210->lock);
4865
4866	fotg210_quiesce(fotg210);
4867	fotg210_silence_controller(fotg210);
4868	fotg210_reset(fotg210);
4869
4870	hrtimer_cancel(&fotg210->hrtimer);
4871	remove_sysfs_files(fotg210);
4872	remove_debug_files(fotg210);
4873
4874	/* root hub is shut down separately (first, when possible) */
4875	spin_lock_irq(&fotg210->lock);
4876	end_free_itds(fotg210);
4877	spin_unlock_irq(&fotg210->lock);
4878	fotg210_mem_cleanup(fotg210);
4879
4880#ifdef FOTG210_STATS
4881	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4882			fotg210->stats.normal, fotg210->stats.error,
4883			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4884	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4885			fotg210->stats.complete, fotg210->stats.unlink);
4886#endif
4887
4888	dbg_status(fotg210, "fotg210_stop completed",
4889			fotg210_readl(fotg210, &fotg210->regs->status));
4890}
4891
4892/* one-time init, only for memory state */
4893static int hcd_fotg210_init(struct usb_hcd *hcd)
4894{
4895	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4896	u32 temp;
4897	int retval;
4898	u32 hcc_params;
4899	struct fotg210_qh_hw *hw;
4900
4901	spin_lock_init(&fotg210->lock);
4902
4903	/*
4904	 * keep io watchdog by default, those good HCDs could turn off it later
4905	 */
4906	fotg210->need_io_watchdog = 1;
4907
4908	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4909	fotg210->hrtimer.function = fotg210_hrtimer_func;
4910	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4911
4912	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4913
4914	/*
4915	 * by default set standard 80% (== 100 usec/uframe) max periodic
4916	 * bandwidth as required by USB 2.0
4917	 */
4918	fotg210->uframe_periodic_max = 100;
4919
4920	/*
4921	 * hw default: 1K periodic list heads, one per frame.
4922	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4923	 */
4924	fotg210->periodic_size = DEFAULT_I_TDPS;
4925	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4926	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4927
4928	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4929		/* periodic schedule size can be smaller than default */
4930		switch (FOTG210_TUNE_FLS) {
4931		case 0:
4932			fotg210->periodic_size = 1024;
4933			break;
4934		case 1:
4935			fotg210->periodic_size = 512;
4936			break;
4937		case 2:
4938			fotg210->periodic_size = 256;
4939			break;
4940		default:
4941			BUG();
4942		}
4943	}
4944	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4945	if (retval < 0)
4946		return retval;
4947
4948	/* controllers may cache some of the periodic schedule ... */
4949	fotg210->i_thresh = 2;
4950
4951	/*
4952	 * dedicate a qh for the async ring head, since we couldn't unlink
4953	 * a 'real' qh without stopping the async schedule [4.8].  use it
4954	 * as the 'reclamation list head' too.
4955	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4956	 * from automatically advancing to the next td after short reads.
4957	 */
4958	fotg210->async->qh_next.qh = NULL;
4959	hw = fotg210->async->hw;
4960	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4961	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4962	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4963	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4964	fotg210->async->qh_state = QH_STATE_LINKED;
4965	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4966
4967	/* clear interrupt enables, set irq latency */
4968	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4969		log2_irq_thresh = 0;
4970	temp = 1 << (16 + log2_irq_thresh);
4971	if (HCC_CANPARK(hcc_params)) {
4972		/* HW default park == 3, on hardware that supports it (like
4973		 * NVidia and ALI silicon), maximizes throughput on the async
4974		 * schedule by avoiding QH fetches between transfers.
4975		 *
4976		 * With fast usb storage devices and NForce2, "park" seems to
4977		 * make problems:  throughput reduction (!), data errors...
4978		 */
4979		if (park) {
4980			park = min_t(unsigned, park, 3);
4981			temp |= CMD_PARK;
4982			temp |= park << 8;
4983		}
4984		fotg210_dbg(fotg210, "park %d\n", park);
4985	}
4986	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4987		/* periodic schedule size can be smaller than default */
4988		temp &= ~(3 << 2);
4989		temp |= (FOTG210_TUNE_FLS << 2);
4990	}
4991	fotg210->command = temp;
4992
4993	/* Accept arbitrarily long scatter-gather lists */
4994	if (!hcd->localmem_pool)
4995		hcd->self.sg_tablesize = ~0;
4996	return 0;
4997}
4998
4999/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5000static int fotg210_run(struct usb_hcd *hcd)
5001{
5002	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5003	u32 temp;
5004
5005	hcd->uses_new_polling = 1;
5006
5007	/* EHCI spec section 4.1 */
5008
5009	fotg210_writel(fotg210, fotg210->periodic_dma,
5010			&fotg210->regs->frame_list);
5011	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5012			&fotg210->regs->async_next);
5013
5014	/*
5015	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5016	 * be used; it constrains QH/ITD/SITD and QTD locations.
5017	 * dma_pool consistent memory always uses segment zero.
5018	 * streaming mappings for I/O buffers, like dma_map_single(),
5019	 * can return segments above 4GB, if the device allows.
5020	 *
5021	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5022	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5023	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5024	 * host side drivers though.
5025	 */
5026	fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5027
5028	/*
5029	 * Philips, Intel, and maybe others need CMD_RUN before the
5030	 * root hub will detect new devices (why?); NEC doesn't
5031	 */
5032	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5033	fotg210->command |= CMD_RUN;
5034	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5035	dbg_cmd(fotg210, "init", fotg210->command);
5036
5037	/*
5038	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5039	 * are explicitly handed to companion controller(s), so no TT is
5040	 * involved with the root hub.  (Except where one is integrated,
5041	 * and there's no companion controller unless maybe for USB OTG.)
5042	 *
5043	 * Turning on the CF flag will transfer ownership of all ports
5044	 * from the companions to the EHCI controller.  If any of the
5045	 * companions are in the middle of a port reset at the time, it
5046	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5047	 * guarantees that no resets are in progress.  After we set CF,
5048	 * a short delay lets the hardware catch up; new resets shouldn't
5049	 * be started before the port switching actions could complete.
5050	 */
5051	down_write(&ehci_cf_port_reset_rwsem);
5052	fotg210->rh_state = FOTG210_RH_RUNNING;
5053	/* unblock posted writes */
5054	fotg210_readl(fotg210, &fotg210->regs->command);
5055	usleep_range(5000, 10000);
5056	up_write(&ehci_cf_port_reset_rwsem);
5057	fotg210->last_periodic_enable = ktime_get_real();
5058
5059	temp = HC_VERSION(fotg210,
5060			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5061	fotg210_info(fotg210,
5062			"USB %x.%x started, EHCI %x.%02x\n",
5063			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5064			temp >> 8, temp & 0xff);
5065
5066	fotg210_writel(fotg210, INTR_MASK,
5067			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5068
5069	/* GRR this is run-once init(), being done every time the HC starts.
5070	 * So long as they're part of class devices, we can't do it init()
5071	 * since the class device isn't created that early.
5072	 */
5073	create_debug_files(fotg210);
5074	create_sysfs_files(fotg210);
5075
5076	return 0;
5077}
5078
5079static int fotg210_setup(struct usb_hcd *hcd)
5080{
5081	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5082	int retval;
5083
5084	fotg210->regs = (void __iomem *)fotg210->caps +
5085			HC_LENGTH(fotg210,
5086			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5087	dbg_hcs_params(fotg210, "reset");
5088	dbg_hcc_params(fotg210, "reset");
5089
5090	/* cache this readonly data; minimize chip reads */
5091	fotg210->hcs_params = fotg210_readl(fotg210,
5092			&fotg210->caps->hcs_params);
5093
5094	fotg210->sbrn = HCD_USB2;
5095
5096	/* data structure init */
5097	retval = hcd_fotg210_init(hcd);
5098	if (retval)
5099		return retval;
5100
5101	retval = fotg210_halt(fotg210);
5102	if (retval)
5103		return retval;
5104
5105	fotg210_reset(fotg210);
5106
5107	return 0;
5108}
5109
5110static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5111{
5112	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5113	u32 status, masked_status, pcd_status = 0, cmd;
5114	int bh;
5115
5116	spin_lock(&fotg210->lock);
5117
5118	status = fotg210_readl(fotg210, &fotg210->regs->status);
5119
5120	/* e.g. cardbus physical eject */
5121	if (status == ~(u32) 0) {
5122		fotg210_dbg(fotg210, "device removed\n");
5123		goto dead;
5124	}
5125
5126	/*
5127	 * We don't use STS_FLR, but some controllers don't like it to
5128	 * remain on, so mask it out along with the other status bits.
5129	 */
5130	masked_status = status & (INTR_MASK | STS_FLR);
5131
5132	/* Shared IRQ? */
5133	if (!masked_status ||
5134			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5135		spin_unlock(&fotg210->lock);
5136		return IRQ_NONE;
5137	}
5138
5139	/* clear (just) interrupts */
5140	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5141	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5142	bh = 0;
5143
5144	/* unrequested/ignored: Frame List Rollover */
5145	dbg_status(fotg210, "irq", status);
5146
5147	/* INT, ERR, and IAA interrupt rates can be throttled */
5148
5149	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5150	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5151		if (likely((status & STS_ERR) == 0))
5152			INCR(fotg210->stats.normal);
5153		else
5154			INCR(fotg210->stats.error);
5155		bh = 1;
5156	}
5157
5158	/* complete the unlinking of some qh [4.15.2.3] */
5159	if (status & STS_IAA) {
5160
5161		/* Turn off the IAA watchdog */
5162		fotg210->enabled_hrtimer_events &=
5163			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5164
5165		/*
5166		 * Mild optimization: Allow another IAAD to reset the
5167		 * hrtimer, if one occurs before the next expiration.
5168		 * In theory we could always cancel the hrtimer, but
5169		 * tests show that about half the time it will be reset
5170		 * for some other event anyway.
5171		 */
5172		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5173			++fotg210->next_hrtimer_event;
5174
5175		/* guard against (alleged) silicon errata */
5176		if (cmd & CMD_IAAD)
5177			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5178		if (fotg210->async_iaa) {
5179			INCR(fotg210->stats.iaa);
5180			end_unlink_async(fotg210);
5181		} else
5182			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5183	}
5184
5185	/* remote wakeup [4.3.1] */
5186	if (status & STS_PCD) {
5187		int pstatus;
5188		u32 __iomem *status_reg = &fotg210->regs->port_status;
5189
5190		/* kick root hub later */
5191		pcd_status = status;
5192
5193		/* resume root hub? */
5194		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5195			usb_hcd_resume_root_hub(hcd);
5196
5197		pstatus = fotg210_readl(fotg210, status_reg);
5198
5199		if (test_bit(0, &fotg210->suspended_ports) &&
5200				((pstatus & PORT_RESUME) ||
5201				!(pstatus & PORT_SUSPEND)) &&
5202				(pstatus & PORT_PE) &&
5203				fotg210->reset_done[0] == 0) {
5204
5205			/* start 20 msec resume signaling from this port,
5206			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5207			 * stop that signaling.  Use 5 ms extra for safety,
5208			 * like usb_port_resume() does.
5209			 */
5210			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5211			set_bit(0, &fotg210->resuming_ports);
5212			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5213			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5214		}
5215	}
5216
5217	/* PCI errors [4.15.2.4] */
5218	if (unlikely((status & STS_FATAL) != 0)) {
5219		fotg210_err(fotg210, "fatal error\n");
5220		dbg_cmd(fotg210, "fatal", cmd);
5221		dbg_status(fotg210, "fatal", status);
5222dead:
5223		usb_hc_died(hcd);
5224
5225		/* Don't let the controller do anything more */
5226		fotg210->shutdown = true;
5227		fotg210->rh_state = FOTG210_RH_STOPPING;
5228		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5229		fotg210_writel(fotg210, fotg210->command,
5230				&fotg210->regs->command);
5231		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5232		fotg210_handle_controller_death(fotg210);
5233
5234		/* Handle completions when the controller stops */
5235		bh = 0;
5236	}
5237
5238	if (bh)
5239		fotg210_work(fotg210);
5240	spin_unlock(&fotg210->lock);
5241	if (pcd_status)
5242		usb_hcd_poll_rh_status(hcd);
5243	return IRQ_HANDLED;
5244}
5245
5246/* non-error returns are a promise to giveback() the urb later
5247 * we drop ownership so next owner (or urb unlink) can get it
5248 *
5249 * urb + dev is in hcd.self.controller.urb_list
5250 * we're queueing TDs onto software and hardware lists
5251 *
5252 * hcd-specific init for hcpriv hasn't been done yet
5253 *
5254 * NOTE:  control, bulk, and interrupt share the same code to append TDs
5255 * to a (possibly active) QH, and the same QH scanning code.
5256 */
5257static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5258		gfp_t mem_flags)
5259{
5260	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5261	struct list_head qtd_list;
5262
5263	INIT_LIST_HEAD(&qtd_list);
5264
5265	switch (usb_pipetype(urb->pipe)) {
5266	case PIPE_CONTROL:
5267		/* qh_completions() code doesn't handle all the fault cases
5268		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5269		 */
5270		if (urb->transfer_buffer_length > (16 * 1024))
5271			return -EMSGSIZE;
5272		fallthrough;
5273	/* case PIPE_BULK: */
5274	default:
5275		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5276			return -ENOMEM;
5277		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5278
5279	case PIPE_INTERRUPT:
5280		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5281			return -ENOMEM;
5282		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5283
5284	case PIPE_ISOCHRONOUS:
5285		return itd_submit(fotg210, urb, mem_flags);
5286	}
5287}
5288
5289/* remove from hardware lists
5290 * completions normally happen asynchronously
5291 */
5292
5293static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5294{
5295	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5296	struct fotg210_qh *qh;
5297	unsigned long flags;
5298	int rc;
5299
5300	spin_lock_irqsave(&fotg210->lock, flags);
5301	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5302	if (rc)
5303		goto done;
5304
5305	switch (usb_pipetype(urb->pipe)) {
5306	/* case PIPE_CONTROL: */
5307	/* case PIPE_BULK:*/
5308	default:
5309		qh = (struct fotg210_qh *) urb->hcpriv;
5310		if (!qh)
5311			break;
5312		switch (qh->qh_state) {
5313		case QH_STATE_LINKED:
5314		case QH_STATE_COMPLETING:
5315			start_unlink_async(fotg210, qh);
5316			break;
5317		case QH_STATE_UNLINK:
5318		case QH_STATE_UNLINK_WAIT:
5319			/* already started */
5320			break;
5321		case QH_STATE_IDLE:
5322			/* QH might be waiting for a Clear-TT-Buffer */
5323			qh_completions(fotg210, qh);
5324			break;
5325		}
5326		break;
5327
5328	case PIPE_INTERRUPT:
5329		qh = (struct fotg210_qh *) urb->hcpriv;
5330		if (!qh)
5331			break;
5332		switch (qh->qh_state) {
5333		case QH_STATE_LINKED:
5334		case QH_STATE_COMPLETING:
5335			start_unlink_intr(fotg210, qh);
5336			break;
5337		case QH_STATE_IDLE:
5338			qh_completions(fotg210, qh);
5339			break;
5340		default:
5341			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5342					qh, qh->qh_state);
5343			goto done;
5344		}
5345		break;
5346
5347	case PIPE_ISOCHRONOUS:
5348		/* itd... */
5349
5350		/* wait till next completion, do it then. */
5351		/* completion irqs can wait up to 1024 msec, */
5352		break;
5353	}
5354done:
5355	spin_unlock_irqrestore(&fotg210->lock, flags);
5356	return rc;
5357}
5358
5359/* bulk qh holds the data toggle */
5360
5361static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5362		struct usb_host_endpoint *ep)
5363{
5364	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5365	unsigned long flags;
5366	struct fotg210_qh *qh, *tmp;
5367
5368	/* ASSERT:  any requests/urbs are being unlinked */
5369	/* ASSERT:  nobody can be submitting urbs for this any more */
5370
5371rescan:
5372	spin_lock_irqsave(&fotg210->lock, flags);
5373	qh = ep->hcpriv;
5374	if (!qh)
5375		goto done;
5376
5377	/* endpoints can be iso streams.  for now, we don't
5378	 * accelerate iso completions ... so spin a while.
5379	 */
5380	if (qh->hw == NULL) {
5381		struct fotg210_iso_stream *stream = ep->hcpriv;
5382
5383		if (!list_empty(&stream->td_list))
5384			goto idle_timeout;
5385
5386		/* BUG_ON(!list_empty(&stream->free_list)); */
5387		kfree(stream);
5388		goto done;
5389	}
5390
5391	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5392		qh->qh_state = QH_STATE_IDLE;
5393	switch (qh->qh_state) {
5394	case QH_STATE_LINKED:
5395	case QH_STATE_COMPLETING:
5396		for (tmp = fotg210->async->qh_next.qh;
5397				tmp && tmp != qh;
5398				tmp = tmp->qh_next.qh)
5399			continue;
5400		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5401		 * may already be unlinked.
5402		 */
5403		if (tmp)
5404			start_unlink_async(fotg210, qh);
5405		fallthrough;
5406	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5407	case QH_STATE_UNLINK_WAIT:
5408idle_timeout:
5409		spin_unlock_irqrestore(&fotg210->lock, flags);
5410		schedule_timeout_uninterruptible(1);
5411		goto rescan;
5412	case QH_STATE_IDLE:		/* fully unlinked */
5413		if (qh->clearing_tt)
5414			goto idle_timeout;
5415		if (list_empty(&qh->qtd_list)) {
5416			qh_destroy(fotg210, qh);
5417			break;
5418		}
5419		fallthrough;
5420	default:
5421		/* caller was supposed to have unlinked any requests;
5422		 * that's not our job.  just leak this memory.
5423		 */
5424		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5425				qh, ep->desc.bEndpointAddress, qh->qh_state,
5426				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5427		break;
5428	}
5429done:
5430	ep->hcpriv = NULL;
5431	spin_unlock_irqrestore(&fotg210->lock, flags);
5432}
5433
5434static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5435		struct usb_host_endpoint *ep)
5436{
5437	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5438	struct fotg210_qh *qh;
5439	int eptype = usb_endpoint_type(&ep->desc);
5440	int epnum = usb_endpoint_num(&ep->desc);
5441	int is_out = usb_endpoint_dir_out(&ep->desc);
5442	unsigned long flags;
5443
5444	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5445		return;
5446
5447	spin_lock_irqsave(&fotg210->lock, flags);
5448	qh = ep->hcpriv;
5449
5450	/* For Bulk and Interrupt endpoints we maintain the toggle state
5451	 * in the hardware; the toggle bits in udev aren't used at all.
5452	 * When an endpoint is reset by usb_clear_halt() we must reset
5453	 * the toggle bit in the QH.
5454	 */
5455	if (qh) {
5456		usb_settoggle(qh->dev, epnum, is_out, 0);
5457		if (!list_empty(&qh->qtd_list)) {
5458			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5459		} else if (qh->qh_state == QH_STATE_LINKED ||
5460				qh->qh_state == QH_STATE_COMPLETING) {
5461
5462			/* The toggle value in the QH can't be updated
5463			 * while the QH is active.  Unlink it now;
5464			 * re-linking will call qh_refresh().
5465			 */
5466			if (eptype == USB_ENDPOINT_XFER_BULK)
5467				start_unlink_async(fotg210, qh);
5468			else
5469				start_unlink_intr(fotg210, qh);
5470		}
5471	}
5472	spin_unlock_irqrestore(&fotg210->lock, flags);
5473}
5474
5475static int fotg210_get_frame(struct usb_hcd *hcd)
5476{
5477	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5478
5479	return (fotg210_read_frame_index(fotg210) >> 3) %
5480		fotg210->periodic_size;
5481}
5482
5483/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5484 * because its registers (and irq) are shared between host/gadget/otg
5485 * functions  and in order to facilitate role switching we cannot
5486 * give the fotg210 driver exclusive access to those.
5487 */
5488
5489static const struct hc_driver fotg210_fotg210_hc_driver = {
5490	.description		= hcd_name,
5491	.product_desc		= "Faraday USB2.0 Host Controller",
5492	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5493
5494	/*
5495	 * generic hardware linkage
5496	 */
5497	.irq			= fotg210_irq,
5498	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
5499
5500	/*
5501	 * basic lifecycle operations
5502	 */
5503	.reset			= hcd_fotg210_init,
5504	.start			= fotg210_run,
5505	.stop			= fotg210_stop,
5506	.shutdown		= fotg210_shutdown,
5507
5508	/*
5509	 * managing i/o requests and associated device resources
5510	 */
5511	.urb_enqueue		= fotg210_urb_enqueue,
5512	.urb_dequeue		= fotg210_urb_dequeue,
5513	.endpoint_disable	= fotg210_endpoint_disable,
5514	.endpoint_reset		= fotg210_endpoint_reset,
5515
5516	/*
5517	 * scheduling support
5518	 */
5519	.get_frame_number	= fotg210_get_frame,
5520
5521	/*
5522	 * root hub support
5523	 */
5524	.hub_status_data	= fotg210_hub_status_data,
5525	.hub_control		= fotg210_hub_control,
5526	.bus_suspend		= fotg210_bus_suspend,
5527	.bus_resume		= fotg210_bus_resume,
5528
5529	.relinquish_port	= fotg210_relinquish_port,
5530	.port_handed_over	= fotg210_port_handed_over,
5531
5532	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5533};
5534
5535static void fotg210_init(struct fotg210_hcd *fotg210)
5536{
5537	u32 value;
5538
5539	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5540			&fotg210->regs->gmir);
5541
5542	value = ioread32(&fotg210->regs->otgcsr);
5543	value &= ~OTGCSR_A_BUS_DROP;
5544	value |= OTGCSR_A_BUS_REQ;
5545	iowrite32(value, &fotg210->regs->otgcsr);
5546}
5547
5548/*
5549 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5550 *
5551 * Allocates basic resources for this USB host controller, and
5552 * then invokes the start() method for the HCD associated with it
5553 * through the hotplug entry's driver_data.
5554 */
5555int fotg210_hcd_probe(struct platform_device *pdev, struct fotg210 *fotg)
5556{
5557	struct device *dev = &pdev->dev;
5558	struct usb_hcd *hcd;
5559	int irq;
5560	int retval;
5561	struct fotg210_hcd *fotg210;
5562
5563	if (usb_disabled())
5564		return -ENODEV;
5565
5566	pdev->dev.power.power_state = PMSG_ON;
5567
5568	irq = platform_get_irq(pdev, 0);
5569	if (irq < 0)
5570		return irq;
5571
5572	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5573			dev_name(dev));
5574	if (!hcd) {
5575		retval = dev_err_probe(dev, -ENOMEM, "failed to create hcd\n");
5576		goto fail_create_hcd;
5577	}
5578
5579	hcd->has_tt = 1;
5580
5581	hcd->regs = fotg->base;
5582
5583	hcd->rsrc_start = fotg->res->start;
5584	hcd->rsrc_len = resource_size(fotg->res);
5585
5586	fotg210 = hcd_to_fotg210(hcd);
5587
5588	fotg210->fotg = fotg;
5589	fotg210->caps = hcd->regs;
5590
5591	retval = fotg210_setup(hcd);
5592	if (retval)
5593		goto failed_put_hcd;
5594
5595	fotg210_init(fotg210);
5596
5597	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5598	if (retval) {
5599		dev_err_probe(dev, retval, "failed to add hcd\n");
5600		goto failed_put_hcd;
5601	}
5602	device_wakeup_enable(hcd->self.controller);
5603	platform_set_drvdata(pdev, hcd);
5604
5605	return retval;
5606
5607failed_put_hcd:
5608	usb_put_hcd(hcd);
5609fail_create_hcd:
5610	return dev_err_probe(dev, retval, "init %s fail\n", dev_name(dev));
5611}
5612
5613/*
5614 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5615 * @dev: USB Host Controller being removed
5616 *
5617 */
5618int fotg210_hcd_remove(struct platform_device *pdev)
5619{
5620	struct usb_hcd *hcd = platform_get_drvdata(pdev);
5621
5622	usb_remove_hcd(hcd);
5623	usb_put_hcd(hcd);
5624
5625	return 0;
5626}
5627
5628int __init fotg210_hcd_init(void)
5629{
5630	if (usb_disabled())
5631		return -ENODEV;
5632
5633	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5634	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5635			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5636		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5637
5638	pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5639			hcd_name, sizeof(struct fotg210_qh),
5640			sizeof(struct fotg210_qtd),
5641			sizeof(struct fotg210_itd));
5642
5643	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5644
5645	return 0;
5646}
5647
5648void __exit fotg210_hcd_cleanup(void)
5649{
5650	debugfs_remove(fotg210_debug_root);
5651	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5652}
5653