162306a36Sopenharmony_ci// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
462306a36Sopenharmony_ci *
562306a36Sopenharmony_ci * Copyright (C) 2004-2013 Synopsys, Inc.
662306a36Sopenharmony_ci */
762306a36Sopenharmony_ci
862306a36Sopenharmony_ci/*
962306a36Sopenharmony_ci * This file contains the functions to manage Queue Heads and Queue
1062306a36Sopenharmony_ci * Transfer Descriptors for Host mode
1162306a36Sopenharmony_ci */
1262306a36Sopenharmony_ci#include <linux/gcd.h>
1362306a36Sopenharmony_ci#include <linux/kernel.h>
1462306a36Sopenharmony_ci#include <linux/module.h>
1562306a36Sopenharmony_ci#include <linux/spinlock.h>
1662306a36Sopenharmony_ci#include <linux/interrupt.h>
1762306a36Sopenharmony_ci#include <linux/dma-mapping.h>
1862306a36Sopenharmony_ci#include <linux/io.h>
1962306a36Sopenharmony_ci#include <linux/slab.h>
2062306a36Sopenharmony_ci#include <linux/usb.h>
2162306a36Sopenharmony_ci
2262306a36Sopenharmony_ci#include <linux/usb/hcd.h>
2362306a36Sopenharmony_ci#include <linux/usb/ch11.h>
2462306a36Sopenharmony_ci
2562306a36Sopenharmony_ci#include "core.h"
2662306a36Sopenharmony_ci#include "hcd.h"
2762306a36Sopenharmony_ci
2862306a36Sopenharmony_ci/* Wait this long before releasing periodic reservation */
2962306a36Sopenharmony_ci#define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
3062306a36Sopenharmony_ci
3162306a36Sopenharmony_ci/* If we get a NAK, wait this long before retrying */
3262306a36Sopenharmony_ci#define DWC2_RETRY_WAIT_DELAY (1 * NSEC_PER_MSEC)
3362306a36Sopenharmony_ci
3462306a36Sopenharmony_ci/**
3562306a36Sopenharmony_ci * dwc2_periodic_channel_available() - Checks that a channel is available for a
3662306a36Sopenharmony_ci * periodic transfer
3762306a36Sopenharmony_ci *
3862306a36Sopenharmony_ci * @hsotg: The HCD state structure for the DWC OTG controller
3962306a36Sopenharmony_ci *
4062306a36Sopenharmony_ci * Return: 0 if successful, negative error code otherwise
4162306a36Sopenharmony_ci */
4262306a36Sopenharmony_cistatic int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
4362306a36Sopenharmony_ci{
4462306a36Sopenharmony_ci	/*
4562306a36Sopenharmony_ci	 * Currently assuming that there is a dedicated host channel for
4662306a36Sopenharmony_ci	 * each periodic transaction plus at least one host channel for
4762306a36Sopenharmony_ci	 * non-periodic transactions
4862306a36Sopenharmony_ci	 */
4962306a36Sopenharmony_ci	int status;
5062306a36Sopenharmony_ci	int num_channels;
5162306a36Sopenharmony_ci
5262306a36Sopenharmony_ci	num_channels = hsotg->params.host_channels;
5362306a36Sopenharmony_ci	if ((hsotg->periodic_channels + hsotg->non_periodic_channels <
5462306a36Sopenharmony_ci	     num_channels) && (hsotg->periodic_channels < num_channels - 1)) {
5562306a36Sopenharmony_ci		status = 0;
5662306a36Sopenharmony_ci	} else {
5762306a36Sopenharmony_ci		dev_dbg(hsotg->dev,
5862306a36Sopenharmony_ci			"%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
5962306a36Sopenharmony_ci			__func__, num_channels,
6062306a36Sopenharmony_ci			hsotg->periodic_channels, hsotg->non_periodic_channels);
6162306a36Sopenharmony_ci		status = -ENOSPC;
6262306a36Sopenharmony_ci	}
6362306a36Sopenharmony_ci
6462306a36Sopenharmony_ci	return status;
6562306a36Sopenharmony_ci}
6662306a36Sopenharmony_ci
6762306a36Sopenharmony_ci/**
6862306a36Sopenharmony_ci * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
6962306a36Sopenharmony_ci * for the specified QH in the periodic schedule
7062306a36Sopenharmony_ci *
7162306a36Sopenharmony_ci * @hsotg: The HCD state structure for the DWC OTG controller
7262306a36Sopenharmony_ci * @qh:    QH containing periodic bandwidth required
7362306a36Sopenharmony_ci *
7462306a36Sopenharmony_ci * Return: 0 if successful, negative error code otherwise
7562306a36Sopenharmony_ci *
7662306a36Sopenharmony_ci * For simplicity, this calculation assumes that all the transfers in the
7762306a36Sopenharmony_ci * periodic schedule may occur in the same (micro)frame
7862306a36Sopenharmony_ci */
7962306a36Sopenharmony_cistatic int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
8062306a36Sopenharmony_ci					 struct dwc2_qh *qh)
8162306a36Sopenharmony_ci{
8262306a36Sopenharmony_ci	int status;
8362306a36Sopenharmony_ci	s16 max_claimed_usecs;
8462306a36Sopenharmony_ci
8562306a36Sopenharmony_ci	status = 0;
8662306a36Sopenharmony_ci
8762306a36Sopenharmony_ci	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
8862306a36Sopenharmony_ci		/*
8962306a36Sopenharmony_ci		 * High speed mode
9062306a36Sopenharmony_ci		 * Max periodic usecs is 80% x 125 usec = 100 usec
9162306a36Sopenharmony_ci		 */
9262306a36Sopenharmony_ci		max_claimed_usecs = 100 - qh->host_us;
9362306a36Sopenharmony_ci	} else {
9462306a36Sopenharmony_ci		/*
9562306a36Sopenharmony_ci		 * Full speed mode
9662306a36Sopenharmony_ci		 * Max periodic usecs is 90% x 1000 usec = 900 usec
9762306a36Sopenharmony_ci		 */
9862306a36Sopenharmony_ci		max_claimed_usecs = 900 - qh->host_us;
9962306a36Sopenharmony_ci	}
10062306a36Sopenharmony_ci
10162306a36Sopenharmony_ci	if (hsotg->periodic_usecs > max_claimed_usecs) {
10262306a36Sopenharmony_ci		dev_err(hsotg->dev,
10362306a36Sopenharmony_ci			"%s: already claimed usecs %d, required usecs %d\n",
10462306a36Sopenharmony_ci			__func__, hsotg->periodic_usecs, qh->host_us);
10562306a36Sopenharmony_ci		status = -ENOSPC;
10662306a36Sopenharmony_ci	}
10762306a36Sopenharmony_ci
10862306a36Sopenharmony_ci	return status;
10962306a36Sopenharmony_ci}
11062306a36Sopenharmony_ci
11162306a36Sopenharmony_ci/**
11262306a36Sopenharmony_ci * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
11362306a36Sopenharmony_ci *
11462306a36Sopenharmony_ci * @map:             The bitmap representing the schedule; will be updated
11562306a36Sopenharmony_ci *                   upon success.
11662306a36Sopenharmony_ci * @bits_per_period: The schedule represents several periods.  This is how many
11762306a36Sopenharmony_ci *                   bits are in each period.  It's assumed that the beginning
11862306a36Sopenharmony_ci *                   of the schedule will repeat after its end.
11962306a36Sopenharmony_ci * @periods_in_map:  The number of periods in the schedule.
12062306a36Sopenharmony_ci * @num_bits:        The number of bits we need per period we want to reserve
12162306a36Sopenharmony_ci *                   in this function call.
12262306a36Sopenharmony_ci * @interval:        How often we need to be scheduled for the reservation this
12362306a36Sopenharmony_ci *                   time.  1 means every period.  2 means every other period.
12462306a36Sopenharmony_ci *                   ...you get the picture?
12562306a36Sopenharmony_ci * @start:           The bit number to start at.  Normally 0.  Must be within
12662306a36Sopenharmony_ci *                   the interval or we return failure right away.
12762306a36Sopenharmony_ci * @only_one_period: Normally we'll allow picking a start anywhere within the
12862306a36Sopenharmony_ci *                   first interval, since we can still make all repetition
12962306a36Sopenharmony_ci *                   requirements by doing that.  However, if you pass true
13062306a36Sopenharmony_ci *                   here then we'll return failure if we can't fit within
13162306a36Sopenharmony_ci *                   the period that "start" is in.
13262306a36Sopenharmony_ci *
13362306a36Sopenharmony_ci * The idea here is that we want to schedule time for repeating events that all
13462306a36Sopenharmony_ci * want the same resource.  The resource is divided into fixed-sized periods
13562306a36Sopenharmony_ci * and the events want to repeat every "interval" periods.  The schedule
13662306a36Sopenharmony_ci * granularity is one bit.
13762306a36Sopenharmony_ci *
13862306a36Sopenharmony_ci * To keep things "simple", we'll represent our schedule with a bitmap that
13962306a36Sopenharmony_ci * contains a fixed number of periods.  This gets rid of a lot of complexity
14062306a36Sopenharmony_ci * but does mean that we need to handle things specially (and non-ideally) if
14162306a36Sopenharmony_ci * the number of the periods in the schedule doesn't match well with the
14262306a36Sopenharmony_ci * intervals that we're trying to schedule.
14362306a36Sopenharmony_ci *
14462306a36Sopenharmony_ci * Here's an explanation of the scheme we'll implement, assuming 8 periods.
14562306a36Sopenharmony_ci * - If interval is 1, we need to take up space in each of the 8
14662306a36Sopenharmony_ci *   periods we're scheduling.  Easy.
14762306a36Sopenharmony_ci * - If interval is 2, we need to take up space in half of the
14862306a36Sopenharmony_ci *   periods.  Again, easy.
14962306a36Sopenharmony_ci * - If interval is 3, we actually need to fall back to interval 1.
15062306a36Sopenharmony_ci *   Why?  Because we might need time in any period.  AKA for the
15162306a36Sopenharmony_ci *   first 8 periods, we'll be in slot 0, 3, 6.  Then we'll be
15262306a36Sopenharmony_ci *   in slot 1, 4, 7.  Then we'll be in 2, 5.  Then we'll be back to
15362306a36Sopenharmony_ci *   0, 3, and 6.  Since we could be in any frame we need to reserve
15462306a36Sopenharmony_ci *   for all of them.  Sucks, but that's what you gotta do.  Note that
15562306a36Sopenharmony_ci *   if we were instead scheduling 8 * 3 = 24 we'd do much better, but
15662306a36Sopenharmony_ci *   then we need more memory and time to do scheduling.
15762306a36Sopenharmony_ci * - If interval is 4, easy.
15862306a36Sopenharmony_ci * - If interval is 5, we again need interval 1.  The schedule will be
15962306a36Sopenharmony_ci *   0, 5, 2, 7, 4, 1, 6, 3, 0
16062306a36Sopenharmony_ci * - If interval is 6, we need interval 2.  0, 6, 4, 2.
16162306a36Sopenharmony_ci * - If interval is 7, we need interval 1.
16262306a36Sopenharmony_ci * - If interval is 8, we need interval 8.
16362306a36Sopenharmony_ci *
16462306a36Sopenharmony_ci * If you do the math, you'll see that we need to pretend that interval is
16562306a36Sopenharmony_ci * equal to the greatest_common_divisor(interval, periods_in_map).
16662306a36Sopenharmony_ci *
16762306a36Sopenharmony_ci * Note that at the moment this function tends to front-pack the schedule.
16862306a36Sopenharmony_ci * In some cases that's really non-ideal (it's hard to schedule things that
16962306a36Sopenharmony_ci * need to repeat every period).  In other cases it's perfect (you can easily
17062306a36Sopenharmony_ci * schedule bigger, less often repeating things).
17162306a36Sopenharmony_ci *
17262306a36Sopenharmony_ci * Here's the algorithm in action (8 periods, 5 bits per period):
17362306a36Sopenharmony_ci *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
17462306a36Sopenharmony_ci *  |*****|  ***|*****|  ***|*****|  ***|*****|  ***|   OK 3 bits, intv 3 at 2
17562306a36Sopenharmony_ci *  |*****|* ***|*****|  ***|*****|* ***|*****|  ***|   OK 1 bits, intv 4 at 5
17662306a36Sopenharmony_ci *  |**   |*    |**   |     |**   |*    |**   |     | Remv 3 bits, intv 3 at 2
17762306a36Sopenharmony_ci *  |***  |*    |***  |     |***  |*    |***  |     |   OK 1 bits, intv 6 at 2
17862306a36Sopenharmony_ci *  |**** |*  * |**** |   * |**** |*  * |**** |   * |   OK 1 bits, intv 1 at 3
17962306a36Sopenharmony_ci *  |**** |**** |**** | *** |**** |**** |**** | *** |   OK 2 bits, intv 2 at 6
18062306a36Sopenharmony_ci *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 1 at 4
18162306a36Sopenharmony_ci *  |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
18262306a36Sopenharmony_ci *  |  ***|*****|  ***| ****|  ***|*****|  ***| ****| Remv 2 bits, intv 2 at 0
18362306a36Sopenharmony_ci *  |  ***| ****|  ***| ****|  ***| ****|  ***| ****| Remv 1 bits, intv 4 at 5
18462306a36Sopenharmony_ci *  |   **| ****|   **| ****|   **| ****|   **| ****| Remv 1 bits, intv 6 at 2
18562306a36Sopenharmony_ci *  |    *| ** *|    *| ** *|    *| ** *|    *| ** *| Remv 1 bits, intv 1 at 3
18662306a36Sopenharmony_ci *  |    *|    *|    *|    *|    *|    *|    *|    *| Remv 2 bits, intv 2 at 6
18762306a36Sopenharmony_ci *  |     |     |     |     |     |     |     |     | Remv 1 bits, intv 1 at 4
18862306a36Sopenharmony_ci *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
18962306a36Sopenharmony_ci *  |***  |     |**   |     |***  |     |**   |     |   OK 1 bits, intv 4 at 2
19062306a36Sopenharmony_ci *  |*****|     |** **|     |*****|     |** **|     |   OK 2 bits, intv 2 at 3
19162306a36Sopenharmony_ci *  |*****|*    |** **|     |*****|*    |** **|     |   OK 1 bits, intv 4 at 5
19262306a36Sopenharmony_ci *  |*****|***  |** **| **  |*****|***  |** **| **  |   OK 2 bits, intv 2 at 6
19362306a36Sopenharmony_ci *  |*****|*****|** **| ****|*****|*****|** **| ****|   OK 2 bits, intv 2 at 8
19462306a36Sopenharmony_ci *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 4 at 12
19562306a36Sopenharmony_ci *
19662306a36Sopenharmony_ci * This function is pretty generic and could be easily abstracted if anything
19762306a36Sopenharmony_ci * needed similar scheduling.
19862306a36Sopenharmony_ci *
19962306a36Sopenharmony_ci * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
20062306a36Sopenharmony_ci * unschedule routine.  The map bitmap will be updated on a non-error result.
20162306a36Sopenharmony_ci */
20262306a36Sopenharmony_cistatic int pmap_schedule(unsigned long *map, int bits_per_period,
20362306a36Sopenharmony_ci			 int periods_in_map, int num_bits,
20462306a36Sopenharmony_ci			 int interval, int start, bool only_one_period)
20562306a36Sopenharmony_ci{
20662306a36Sopenharmony_ci	int interval_bits;
20762306a36Sopenharmony_ci	int to_reserve;
20862306a36Sopenharmony_ci	int first_end;
20962306a36Sopenharmony_ci	int i;
21062306a36Sopenharmony_ci
21162306a36Sopenharmony_ci	if (num_bits > bits_per_period)
21262306a36Sopenharmony_ci		return -ENOSPC;
21362306a36Sopenharmony_ci
21462306a36Sopenharmony_ci	/* Adjust interval as per description */
21562306a36Sopenharmony_ci	interval = gcd(interval, periods_in_map);
21662306a36Sopenharmony_ci
21762306a36Sopenharmony_ci	interval_bits = bits_per_period * interval;
21862306a36Sopenharmony_ci	to_reserve = periods_in_map / interval;
21962306a36Sopenharmony_ci
22062306a36Sopenharmony_ci	/* If start has gotten us past interval then we can't schedule */
22162306a36Sopenharmony_ci	if (start >= interval_bits)
22262306a36Sopenharmony_ci		return -ENOSPC;
22362306a36Sopenharmony_ci
22462306a36Sopenharmony_ci	if (only_one_period)
22562306a36Sopenharmony_ci		/* Must fit within same period as start; end at begin of next */
22662306a36Sopenharmony_ci		first_end = (start / bits_per_period + 1) * bits_per_period;
22762306a36Sopenharmony_ci	else
22862306a36Sopenharmony_ci		/* Can fit anywhere in the first interval */
22962306a36Sopenharmony_ci		first_end = interval_bits;
23062306a36Sopenharmony_ci
23162306a36Sopenharmony_ci	/*
23262306a36Sopenharmony_ci	 * We'll try to pick the first repetition, then see if that time
23362306a36Sopenharmony_ci	 * is free for each of the subsequent repetitions.  If it's not
23462306a36Sopenharmony_ci	 * we'll adjust the start time for the next search of the first
23562306a36Sopenharmony_ci	 * repetition.
23662306a36Sopenharmony_ci	 */
23762306a36Sopenharmony_ci	while (start + num_bits <= first_end) {
23862306a36Sopenharmony_ci		int end;
23962306a36Sopenharmony_ci
24062306a36Sopenharmony_ci		/* Need to stay within this period */
24162306a36Sopenharmony_ci		end = (start / bits_per_period + 1) * bits_per_period;
24262306a36Sopenharmony_ci
24362306a36Sopenharmony_ci		/* Look for num_bits us in this microframe starting at start */
24462306a36Sopenharmony_ci		start = bitmap_find_next_zero_area(map, end, start, num_bits,
24562306a36Sopenharmony_ci						   0);
24662306a36Sopenharmony_ci
24762306a36Sopenharmony_ci		/*
24862306a36Sopenharmony_ci		 * We should get start >= end if we fail.  We might be
24962306a36Sopenharmony_ci		 * able to check the next microframe depending on the
25062306a36Sopenharmony_ci		 * interval, so continue on (start already updated).
25162306a36Sopenharmony_ci		 */
25262306a36Sopenharmony_ci		if (start >= end) {
25362306a36Sopenharmony_ci			start = end;
25462306a36Sopenharmony_ci			continue;
25562306a36Sopenharmony_ci		}
25662306a36Sopenharmony_ci
25762306a36Sopenharmony_ci		/* At this point we have a valid point for first one */
25862306a36Sopenharmony_ci		for (i = 1; i < to_reserve; i++) {
25962306a36Sopenharmony_ci			int ith_start = start + interval_bits * i;
26062306a36Sopenharmony_ci			int ith_end = end + interval_bits * i;
26162306a36Sopenharmony_ci			int ret;
26262306a36Sopenharmony_ci
26362306a36Sopenharmony_ci			/* Use this as a dumb "check if bits are 0" */
26462306a36Sopenharmony_ci			ret = bitmap_find_next_zero_area(
26562306a36Sopenharmony_ci				map, ith_start + num_bits, ith_start, num_bits,
26662306a36Sopenharmony_ci				0);
26762306a36Sopenharmony_ci
26862306a36Sopenharmony_ci			/* We got the right place, continue checking */
26962306a36Sopenharmony_ci			if (ret == ith_start)
27062306a36Sopenharmony_ci				continue;
27162306a36Sopenharmony_ci
27262306a36Sopenharmony_ci			/* Move start up for next time and exit for loop */
27362306a36Sopenharmony_ci			ith_start = bitmap_find_next_zero_area(
27462306a36Sopenharmony_ci				map, ith_end, ith_start, num_bits, 0);
27562306a36Sopenharmony_ci			if (ith_start >= ith_end)
27662306a36Sopenharmony_ci				/* Need a while new period next time */
27762306a36Sopenharmony_ci				start = end;
27862306a36Sopenharmony_ci			else
27962306a36Sopenharmony_ci				start = ith_start - interval_bits * i;
28062306a36Sopenharmony_ci			break;
28162306a36Sopenharmony_ci		}
28262306a36Sopenharmony_ci
28362306a36Sopenharmony_ci		/* If didn't exit the for loop with a break, we have success */
28462306a36Sopenharmony_ci		if (i == to_reserve)
28562306a36Sopenharmony_ci			break;
28662306a36Sopenharmony_ci	}
28762306a36Sopenharmony_ci
28862306a36Sopenharmony_ci	if (start + num_bits > first_end)
28962306a36Sopenharmony_ci		return -ENOSPC;
29062306a36Sopenharmony_ci
29162306a36Sopenharmony_ci	for (i = 0; i < to_reserve; i++) {
29262306a36Sopenharmony_ci		int ith_start = start + interval_bits * i;
29362306a36Sopenharmony_ci
29462306a36Sopenharmony_ci		bitmap_set(map, ith_start, num_bits);
29562306a36Sopenharmony_ci	}
29662306a36Sopenharmony_ci
29762306a36Sopenharmony_ci	return start;
29862306a36Sopenharmony_ci}
29962306a36Sopenharmony_ci
30062306a36Sopenharmony_ci/**
30162306a36Sopenharmony_ci * pmap_unschedule() - Undo work done by pmap_schedule()
30262306a36Sopenharmony_ci *
30362306a36Sopenharmony_ci * @map:             See pmap_schedule().
30462306a36Sopenharmony_ci * @bits_per_period: See pmap_schedule().
30562306a36Sopenharmony_ci * @periods_in_map:  See pmap_schedule().
30662306a36Sopenharmony_ci * @num_bits:        The number of bits that was passed to schedule.
30762306a36Sopenharmony_ci * @interval:        The interval that was passed to schedule.
30862306a36Sopenharmony_ci * @start:           The return value from pmap_schedule().
30962306a36Sopenharmony_ci */
31062306a36Sopenharmony_cistatic void pmap_unschedule(unsigned long *map, int bits_per_period,
31162306a36Sopenharmony_ci			    int periods_in_map, int num_bits,
31262306a36Sopenharmony_ci			    int interval, int start)
31362306a36Sopenharmony_ci{
31462306a36Sopenharmony_ci	int interval_bits;
31562306a36Sopenharmony_ci	int to_release;
31662306a36Sopenharmony_ci	int i;
31762306a36Sopenharmony_ci
31862306a36Sopenharmony_ci	/* Adjust interval as per description in pmap_schedule() */
31962306a36Sopenharmony_ci	interval = gcd(interval, periods_in_map);
32062306a36Sopenharmony_ci
32162306a36Sopenharmony_ci	interval_bits = bits_per_period * interval;
32262306a36Sopenharmony_ci	to_release = periods_in_map / interval;
32362306a36Sopenharmony_ci
32462306a36Sopenharmony_ci	for (i = 0; i < to_release; i++) {
32562306a36Sopenharmony_ci		int ith_start = start + interval_bits * i;
32662306a36Sopenharmony_ci
32762306a36Sopenharmony_ci		bitmap_clear(map, ith_start, num_bits);
32862306a36Sopenharmony_ci	}
32962306a36Sopenharmony_ci}
33062306a36Sopenharmony_ci
33162306a36Sopenharmony_ci/**
33262306a36Sopenharmony_ci * dwc2_get_ls_map() - Get the map used for the given qh
33362306a36Sopenharmony_ci *
33462306a36Sopenharmony_ci * @hsotg: The HCD state structure for the DWC OTG controller.
33562306a36Sopenharmony_ci * @qh:    QH for the periodic transfer.
33662306a36Sopenharmony_ci *
33762306a36Sopenharmony_ci * We'll always get the periodic map out of our TT.  Note that even if we're
33862306a36Sopenharmony_ci * running the host straight in low speed / full speed mode it appears as if
33962306a36Sopenharmony_ci * a TT is allocated for us, so we'll use it.  If that ever changes we can
34062306a36Sopenharmony_ci * add logic here to get a map out of "hsotg" if !qh->do_split.
34162306a36Sopenharmony_ci *
34262306a36Sopenharmony_ci * Returns: the map or NULL if a map couldn't be found.
34362306a36Sopenharmony_ci */
34462306a36Sopenharmony_cistatic unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
34562306a36Sopenharmony_ci				      struct dwc2_qh *qh)
34662306a36Sopenharmony_ci{
34762306a36Sopenharmony_ci	unsigned long *map;
34862306a36Sopenharmony_ci
34962306a36Sopenharmony_ci	/* Don't expect to be missing a TT and be doing low speed scheduling */
35062306a36Sopenharmony_ci	if (WARN_ON(!qh->dwc_tt))
35162306a36Sopenharmony_ci		return NULL;
35262306a36Sopenharmony_ci
35362306a36Sopenharmony_ci	/* Get the map and adjust if this is a multi_tt hub */
35462306a36Sopenharmony_ci	map = qh->dwc_tt->periodic_bitmaps;
35562306a36Sopenharmony_ci	if (qh->dwc_tt->usb_tt->multi)
35662306a36Sopenharmony_ci		map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1);
35762306a36Sopenharmony_ci
35862306a36Sopenharmony_ci	return map;
35962306a36Sopenharmony_ci}
36062306a36Sopenharmony_ci
36162306a36Sopenharmony_ci#ifdef DWC2_PRINT_SCHEDULE
36262306a36Sopenharmony_ci/*
36362306a36Sopenharmony_ci * cat_printf() - A printf() + strcat() helper
36462306a36Sopenharmony_ci *
36562306a36Sopenharmony_ci * This is useful for concatenating a bunch of strings where each string is
36662306a36Sopenharmony_ci * constructed using printf.
36762306a36Sopenharmony_ci *
36862306a36Sopenharmony_ci * @buf:   The destination buffer; will be updated to point after the printed
36962306a36Sopenharmony_ci *         data.
37062306a36Sopenharmony_ci * @size:  The number of bytes in the buffer (includes space for '\0').
37162306a36Sopenharmony_ci * @fmt:   The format for printf.
37262306a36Sopenharmony_ci * @...:   The args for printf.
37362306a36Sopenharmony_ci */
37462306a36Sopenharmony_cistatic __printf(3, 4)
37562306a36Sopenharmony_civoid cat_printf(char **buf, size_t *size, const char *fmt, ...)
37662306a36Sopenharmony_ci{
37762306a36Sopenharmony_ci	va_list args;
37862306a36Sopenharmony_ci	int i;
37962306a36Sopenharmony_ci
38062306a36Sopenharmony_ci	if (*size == 0)
38162306a36Sopenharmony_ci		return;
38262306a36Sopenharmony_ci
38362306a36Sopenharmony_ci	va_start(args, fmt);
38462306a36Sopenharmony_ci	i = vsnprintf(*buf, *size, fmt, args);
38562306a36Sopenharmony_ci	va_end(args);
38662306a36Sopenharmony_ci
38762306a36Sopenharmony_ci	if (i >= *size) {
38862306a36Sopenharmony_ci		(*buf)[*size - 1] = '\0';
38962306a36Sopenharmony_ci		*buf += *size;
39062306a36Sopenharmony_ci		*size = 0;
39162306a36Sopenharmony_ci	} else {
39262306a36Sopenharmony_ci		*buf += i;
39362306a36Sopenharmony_ci		*size -= i;
39462306a36Sopenharmony_ci	}
39562306a36Sopenharmony_ci}
39662306a36Sopenharmony_ci
39762306a36Sopenharmony_ci/*
39862306a36Sopenharmony_ci * pmap_print() - Print the given periodic map
39962306a36Sopenharmony_ci *
40062306a36Sopenharmony_ci * Will attempt to print out the periodic schedule.
40162306a36Sopenharmony_ci *
40262306a36Sopenharmony_ci * @map:             See pmap_schedule().
40362306a36Sopenharmony_ci * @bits_per_period: See pmap_schedule().
40462306a36Sopenharmony_ci * @periods_in_map:  See pmap_schedule().
40562306a36Sopenharmony_ci * @period_name:     The name of 1 period, like "uFrame"
40662306a36Sopenharmony_ci * @units:           The name of the units, like "us".
40762306a36Sopenharmony_ci * @print_fn:        The function to call for printing.
40862306a36Sopenharmony_ci * @print_data:      Opaque data to pass to the print function.
40962306a36Sopenharmony_ci */
41062306a36Sopenharmony_cistatic void pmap_print(unsigned long *map, int bits_per_period,
41162306a36Sopenharmony_ci		       int periods_in_map, const char *period_name,
41262306a36Sopenharmony_ci		       const char *units,
41362306a36Sopenharmony_ci		       void (*print_fn)(const char *str, void *data),
41462306a36Sopenharmony_ci		       void *print_data)
41562306a36Sopenharmony_ci{
41662306a36Sopenharmony_ci	int period;
41762306a36Sopenharmony_ci
41862306a36Sopenharmony_ci	for (period = 0; period < periods_in_map; period++) {
41962306a36Sopenharmony_ci		char tmp[64];
42062306a36Sopenharmony_ci		char *buf = tmp;
42162306a36Sopenharmony_ci		size_t buf_size = sizeof(tmp);
42262306a36Sopenharmony_ci		int period_start = period * bits_per_period;
42362306a36Sopenharmony_ci		int period_end = period_start + bits_per_period;
42462306a36Sopenharmony_ci		int start = 0;
42562306a36Sopenharmony_ci		int count = 0;
42662306a36Sopenharmony_ci		bool printed = false;
42762306a36Sopenharmony_ci		int i;
42862306a36Sopenharmony_ci
42962306a36Sopenharmony_ci		for (i = period_start; i < period_end + 1; i++) {
43062306a36Sopenharmony_ci			/* Handle case when ith bit is set */
43162306a36Sopenharmony_ci			if (i < period_end &&
43262306a36Sopenharmony_ci			    bitmap_find_next_zero_area(map, i + 1,
43362306a36Sopenharmony_ci						       i, 1, 0) != i) {
43462306a36Sopenharmony_ci				if (count == 0)
43562306a36Sopenharmony_ci					start = i - period_start;
43662306a36Sopenharmony_ci				count++;
43762306a36Sopenharmony_ci				continue;
43862306a36Sopenharmony_ci			}
43962306a36Sopenharmony_ci
44062306a36Sopenharmony_ci			/* ith bit isn't set; don't care if count == 0 */
44162306a36Sopenharmony_ci			if (count == 0)
44262306a36Sopenharmony_ci				continue;
44362306a36Sopenharmony_ci
44462306a36Sopenharmony_ci			if (!printed)
44562306a36Sopenharmony_ci				cat_printf(&buf, &buf_size, "%s %d: ",
44662306a36Sopenharmony_ci					   period_name, period);
44762306a36Sopenharmony_ci			else
44862306a36Sopenharmony_ci				cat_printf(&buf, &buf_size, ", ");
44962306a36Sopenharmony_ci			printed = true;
45062306a36Sopenharmony_ci
45162306a36Sopenharmony_ci			cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
45262306a36Sopenharmony_ci				   units, start + count - 1, units);
45362306a36Sopenharmony_ci			count = 0;
45462306a36Sopenharmony_ci		}
45562306a36Sopenharmony_ci
45662306a36Sopenharmony_ci		if (printed)
45762306a36Sopenharmony_ci			print_fn(tmp, print_data);
45862306a36Sopenharmony_ci	}
45962306a36Sopenharmony_ci}
46062306a36Sopenharmony_ci
46162306a36Sopenharmony_cistruct dwc2_qh_print_data {
46262306a36Sopenharmony_ci	struct dwc2_hsotg *hsotg;
46362306a36Sopenharmony_ci	struct dwc2_qh *qh;
46462306a36Sopenharmony_ci};
46562306a36Sopenharmony_ci
46662306a36Sopenharmony_ci/**
46762306a36Sopenharmony_ci * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
46862306a36Sopenharmony_ci *
46962306a36Sopenharmony_ci * @str:  The string to print
47062306a36Sopenharmony_ci * @data: A pointer to a struct dwc2_qh_print_data
47162306a36Sopenharmony_ci */
47262306a36Sopenharmony_cistatic void dwc2_qh_print(const char *str, void *data)
47362306a36Sopenharmony_ci{
47462306a36Sopenharmony_ci	struct dwc2_qh_print_data *print_data = data;
47562306a36Sopenharmony_ci
47662306a36Sopenharmony_ci	dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
47762306a36Sopenharmony_ci}
47862306a36Sopenharmony_ci
47962306a36Sopenharmony_ci/**
48062306a36Sopenharmony_ci * dwc2_qh_schedule_print() - Print the periodic schedule
48162306a36Sopenharmony_ci *
48262306a36Sopenharmony_ci * @hsotg: The HCD state structure for the DWC OTG controller.
48362306a36Sopenharmony_ci * @qh:    QH to print.
48462306a36Sopenharmony_ci */
48562306a36Sopenharmony_cistatic void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
48662306a36Sopenharmony_ci				   struct dwc2_qh *qh)
48762306a36Sopenharmony_ci{
48862306a36Sopenharmony_ci	struct dwc2_qh_print_data print_data = { hsotg, qh };
48962306a36Sopenharmony_ci	int i;
49062306a36Sopenharmony_ci
49162306a36Sopenharmony_ci	/*
49262306a36Sopenharmony_ci	 * The printing functions are quite slow and inefficient.
49362306a36Sopenharmony_ci	 * If we don't have tracing turned on, don't run unless the special
49462306a36Sopenharmony_ci	 * define is turned on.
49562306a36Sopenharmony_ci	 */
49662306a36Sopenharmony_ci
49762306a36Sopenharmony_ci	if (qh->schedule_low_speed) {
49862306a36Sopenharmony_ci		unsigned long *map = dwc2_get_ls_map(hsotg, qh);
49962306a36Sopenharmony_ci
50062306a36Sopenharmony_ci		dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
50162306a36Sopenharmony_ci			     qh, qh->device_us,
50262306a36Sopenharmony_ci			     DWC2_ROUND_US_TO_SLICE(qh->device_us),
50362306a36Sopenharmony_ci			     DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
50462306a36Sopenharmony_ci
50562306a36Sopenharmony_ci		if (map) {
50662306a36Sopenharmony_ci			dwc2_sch_dbg(hsotg,
50762306a36Sopenharmony_ci				     "QH=%p Whole low/full speed map %p now:\n",
50862306a36Sopenharmony_ci				     qh, map);
50962306a36Sopenharmony_ci			pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
51062306a36Sopenharmony_ci				   DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
51162306a36Sopenharmony_ci				   dwc2_qh_print, &print_data);
51262306a36Sopenharmony_ci		}
51362306a36Sopenharmony_ci	}
51462306a36Sopenharmony_ci
51562306a36Sopenharmony_ci	for (i = 0; i < qh->num_hs_transfers; i++) {
51662306a36Sopenharmony_ci		struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
51762306a36Sopenharmony_ci		int uframe = trans_time->start_schedule_us /
51862306a36Sopenharmony_ci			     DWC2_HS_PERIODIC_US_PER_UFRAME;
51962306a36Sopenharmony_ci		int rel_us = trans_time->start_schedule_us %
52062306a36Sopenharmony_ci			     DWC2_HS_PERIODIC_US_PER_UFRAME;
52162306a36Sopenharmony_ci
52262306a36Sopenharmony_ci		dwc2_sch_dbg(hsotg,
52362306a36Sopenharmony_ci			     "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
52462306a36Sopenharmony_ci			     qh, i, trans_time->duration_us, uframe, rel_us);
52562306a36Sopenharmony_ci	}
52662306a36Sopenharmony_ci	if (qh->num_hs_transfers) {
52762306a36Sopenharmony_ci		dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
52862306a36Sopenharmony_ci		pmap_print(hsotg->hs_periodic_bitmap,
52962306a36Sopenharmony_ci			   DWC2_HS_PERIODIC_US_PER_UFRAME,
53062306a36Sopenharmony_ci			   DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
53162306a36Sopenharmony_ci			   dwc2_qh_print, &print_data);
53262306a36Sopenharmony_ci	}
53362306a36Sopenharmony_ci}
53462306a36Sopenharmony_ci#else
53562306a36Sopenharmony_cistatic inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
53662306a36Sopenharmony_ci					  struct dwc2_qh *qh) {};
53762306a36Sopenharmony_ci#endif
53862306a36Sopenharmony_ci
53962306a36Sopenharmony_ci/**
54062306a36Sopenharmony_ci * dwc2_ls_pmap_schedule() - Schedule a low speed QH
54162306a36Sopenharmony_ci *
54262306a36Sopenharmony_ci * @hsotg:        The HCD state structure for the DWC OTG controller.
54362306a36Sopenharmony_ci * @qh:           QH for the periodic transfer.
54462306a36Sopenharmony_ci * @search_slice: We'll start trying to schedule at the passed slice.
54562306a36Sopenharmony_ci *                Remember that slices are the units of the low speed
54662306a36Sopenharmony_ci *                schedule (think 25us or so).
54762306a36Sopenharmony_ci *
54862306a36Sopenharmony_ci * Wraps pmap_schedule() with the right parameters for low speed scheduling.
54962306a36Sopenharmony_ci *
55062306a36Sopenharmony_ci * Normally we schedule low speed devices on the map associated with the TT.
55162306a36Sopenharmony_ci *
55262306a36Sopenharmony_ci * Returns: 0 for success or an error code.
55362306a36Sopenharmony_ci */
55462306a36Sopenharmony_cistatic int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
55562306a36Sopenharmony_ci				 int search_slice)
55662306a36Sopenharmony_ci{
55762306a36Sopenharmony_ci	int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
55862306a36Sopenharmony_ci	unsigned long *map = dwc2_get_ls_map(hsotg, qh);
55962306a36Sopenharmony_ci	int slice;
56062306a36Sopenharmony_ci
56162306a36Sopenharmony_ci	if (!map)
56262306a36Sopenharmony_ci		return -EINVAL;
56362306a36Sopenharmony_ci
56462306a36Sopenharmony_ci	/*
56562306a36Sopenharmony_ci	 * Schedule on the proper low speed map with our low speed scheduling
56662306a36Sopenharmony_ci	 * parameters.  Note that we use the "device_interval" here since
56762306a36Sopenharmony_ci	 * we want the low speed interval and the only way we'd be in this
56862306a36Sopenharmony_ci	 * function is if the device is low speed.
56962306a36Sopenharmony_ci	 *
57062306a36Sopenharmony_ci	 * If we happen to be doing low speed and high speed scheduling for the
57162306a36Sopenharmony_ci	 * same transaction (AKA we have a split) we always do low speed first.
57262306a36Sopenharmony_ci	 * That means we can always pass "false" for only_one_period (that
57362306a36Sopenharmony_ci	 * parameters is only useful when we're trying to get one schedule to
57462306a36Sopenharmony_ci	 * match what we already planned in the other schedule).
57562306a36Sopenharmony_ci	 */
57662306a36Sopenharmony_ci	slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
57762306a36Sopenharmony_ci			      DWC2_LS_SCHEDULE_FRAMES, slices,
57862306a36Sopenharmony_ci			      qh->device_interval, search_slice, false);
57962306a36Sopenharmony_ci
58062306a36Sopenharmony_ci	if (slice < 0)
58162306a36Sopenharmony_ci		return slice;
58262306a36Sopenharmony_ci
58362306a36Sopenharmony_ci	qh->ls_start_schedule_slice = slice;
58462306a36Sopenharmony_ci	return 0;
58562306a36Sopenharmony_ci}
58662306a36Sopenharmony_ci
58762306a36Sopenharmony_ci/**
58862306a36Sopenharmony_ci * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
58962306a36Sopenharmony_ci *
59062306a36Sopenharmony_ci * @hsotg:       The HCD state structure for the DWC OTG controller.
59162306a36Sopenharmony_ci * @qh:          QH for the periodic transfer.
59262306a36Sopenharmony_ci */
59362306a36Sopenharmony_cistatic void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
59462306a36Sopenharmony_ci				    struct dwc2_qh *qh)
59562306a36Sopenharmony_ci{
59662306a36Sopenharmony_ci	int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
59762306a36Sopenharmony_ci	unsigned long *map = dwc2_get_ls_map(hsotg, qh);
59862306a36Sopenharmony_ci
59962306a36Sopenharmony_ci	/* Schedule should have failed, so no worries about no error code */
60062306a36Sopenharmony_ci	if (!map)
60162306a36Sopenharmony_ci		return;
60262306a36Sopenharmony_ci
60362306a36Sopenharmony_ci	pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
60462306a36Sopenharmony_ci			DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
60562306a36Sopenharmony_ci			qh->ls_start_schedule_slice);
60662306a36Sopenharmony_ci}
60762306a36Sopenharmony_ci
60862306a36Sopenharmony_ci/**
60962306a36Sopenharmony_ci * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
61062306a36Sopenharmony_ci *
61162306a36Sopenharmony_ci * This will schedule something on the main dwc2 schedule.
61262306a36Sopenharmony_ci *
61362306a36Sopenharmony_ci * We'll start looking in qh->hs_transfers[index].start_schedule_us.  We'll
61462306a36Sopenharmony_ci * update this with the result upon success.  We also use the duration from
61562306a36Sopenharmony_ci * the same structure.
61662306a36Sopenharmony_ci *
61762306a36Sopenharmony_ci * @hsotg:           The HCD state structure for the DWC OTG controller.
61862306a36Sopenharmony_ci * @qh:              QH for the periodic transfer.
61962306a36Sopenharmony_ci * @only_one_period: If true we will limit ourselves to just looking at
62062306a36Sopenharmony_ci *                   one period (aka one 100us chunk).  This is used if we have
62162306a36Sopenharmony_ci *                   already scheduled something on the low speed schedule and
62262306a36Sopenharmony_ci *                   need to find something that matches on the high speed one.
62362306a36Sopenharmony_ci * @index:           The index into qh->hs_transfers that we're working with.
62462306a36Sopenharmony_ci *
62562306a36Sopenharmony_ci * Returns: 0 for success or an error code.  Upon success the
62662306a36Sopenharmony_ci *          dwc2_hs_transfer_time specified by "index" will be updated.
62762306a36Sopenharmony_ci */
62862306a36Sopenharmony_cistatic int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
62962306a36Sopenharmony_ci				 bool only_one_period, int index)
63062306a36Sopenharmony_ci{
63162306a36Sopenharmony_ci	struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
63262306a36Sopenharmony_ci	int us;
63362306a36Sopenharmony_ci
63462306a36Sopenharmony_ci	us = pmap_schedule(hsotg->hs_periodic_bitmap,
63562306a36Sopenharmony_ci			   DWC2_HS_PERIODIC_US_PER_UFRAME,
63662306a36Sopenharmony_ci			   DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
63762306a36Sopenharmony_ci			   qh->host_interval, trans_time->start_schedule_us,
63862306a36Sopenharmony_ci			   only_one_period);
63962306a36Sopenharmony_ci
64062306a36Sopenharmony_ci	if (us < 0)
64162306a36Sopenharmony_ci		return us;
64262306a36Sopenharmony_ci
64362306a36Sopenharmony_ci	trans_time->start_schedule_us = us;
64462306a36Sopenharmony_ci	return 0;
64562306a36Sopenharmony_ci}
64662306a36Sopenharmony_ci
64762306a36Sopenharmony_ci/**
64862306a36Sopenharmony_ci * dwc2_hs_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
64962306a36Sopenharmony_ci *
65062306a36Sopenharmony_ci * @hsotg:       The HCD state structure for the DWC OTG controller.
65162306a36Sopenharmony_ci * @qh:          QH for the periodic transfer.
65262306a36Sopenharmony_ci * @index:       Transfer index
65362306a36Sopenharmony_ci */
65462306a36Sopenharmony_cistatic void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
65562306a36Sopenharmony_ci				    struct dwc2_qh *qh, int index)
65662306a36Sopenharmony_ci{
65762306a36Sopenharmony_ci	struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
65862306a36Sopenharmony_ci
65962306a36Sopenharmony_ci	pmap_unschedule(hsotg->hs_periodic_bitmap,
66062306a36Sopenharmony_ci			DWC2_HS_PERIODIC_US_PER_UFRAME,
66162306a36Sopenharmony_ci			DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
66262306a36Sopenharmony_ci			qh->host_interval, trans_time->start_schedule_us);
66362306a36Sopenharmony_ci}
66462306a36Sopenharmony_ci
66562306a36Sopenharmony_ci/**
66662306a36Sopenharmony_ci * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
66762306a36Sopenharmony_ci *
66862306a36Sopenharmony_ci * This is the most complicated thing in USB.  We have to find matching time
66962306a36Sopenharmony_ci * in both the global high speed schedule for the port and the low speed
67062306a36Sopenharmony_ci * schedule for the TT associated with the given device.
67162306a36Sopenharmony_ci *
67262306a36Sopenharmony_ci * Being here means that the host must be running in high speed mode and the
67362306a36Sopenharmony_ci * device is in low or full speed mode (and behind a hub).
67462306a36Sopenharmony_ci *
67562306a36Sopenharmony_ci * @hsotg:       The HCD state structure for the DWC OTG controller.
67662306a36Sopenharmony_ci * @qh:          QH for the periodic transfer.
67762306a36Sopenharmony_ci */
67862306a36Sopenharmony_cistatic int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
67962306a36Sopenharmony_ci				      struct dwc2_qh *qh)
68062306a36Sopenharmony_ci{
68162306a36Sopenharmony_ci	int bytecount = qh->maxp_mult * qh->maxp;
68262306a36Sopenharmony_ci	int ls_search_slice;
68362306a36Sopenharmony_ci	int err = 0;
68462306a36Sopenharmony_ci	int host_interval_in_sched;
68562306a36Sopenharmony_ci
68662306a36Sopenharmony_ci	/*
68762306a36Sopenharmony_ci	 * The interval (how often to repeat) in the actual host schedule.
68862306a36Sopenharmony_ci	 * See pmap_schedule() for gcd() explanation.
68962306a36Sopenharmony_ci	 */
69062306a36Sopenharmony_ci	host_interval_in_sched = gcd(qh->host_interval,
69162306a36Sopenharmony_ci				     DWC2_HS_SCHEDULE_UFRAMES);
69262306a36Sopenharmony_ci
69362306a36Sopenharmony_ci	/*
69462306a36Sopenharmony_ci	 * We always try to find space in the low speed schedule first, then
69562306a36Sopenharmony_ci	 * try to find high speed time that matches.  If we don't, we'll bump
69662306a36Sopenharmony_ci	 * up the place we start searching in the low speed schedule and try
69762306a36Sopenharmony_ci	 * again.  To start we'll look right at the beginning of the low speed
69862306a36Sopenharmony_ci	 * schedule.
69962306a36Sopenharmony_ci	 *
70062306a36Sopenharmony_ci	 * Note that this will tend to front-load the high speed schedule.
70162306a36Sopenharmony_ci	 * We may eventually want to try to avoid this by either considering
70262306a36Sopenharmony_ci	 * both schedules together or doing some sort of round robin.
70362306a36Sopenharmony_ci	 */
70462306a36Sopenharmony_ci	ls_search_slice = 0;
70562306a36Sopenharmony_ci
70662306a36Sopenharmony_ci	while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
70762306a36Sopenharmony_ci		int start_s_uframe;
70862306a36Sopenharmony_ci		int ssplit_s_uframe;
70962306a36Sopenharmony_ci		int second_s_uframe;
71062306a36Sopenharmony_ci		int rel_uframe;
71162306a36Sopenharmony_ci		int first_count;
71262306a36Sopenharmony_ci		int middle_count;
71362306a36Sopenharmony_ci		int end_count;
71462306a36Sopenharmony_ci		int first_data_bytes;
71562306a36Sopenharmony_ci		int other_data_bytes;
71662306a36Sopenharmony_ci		int i;
71762306a36Sopenharmony_ci
71862306a36Sopenharmony_ci		if (qh->schedule_low_speed) {
71962306a36Sopenharmony_ci			err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
72062306a36Sopenharmony_ci
72162306a36Sopenharmony_ci			/*
72262306a36Sopenharmony_ci			 * If we got an error here there's no other magic we
72362306a36Sopenharmony_ci			 * can do, so bail.  All the looping above is only
72462306a36Sopenharmony_ci			 * helpful to redo things if we got a low speed slot
72562306a36Sopenharmony_ci			 * and then couldn't find a matching high speed slot.
72662306a36Sopenharmony_ci			 */
72762306a36Sopenharmony_ci			if (err)
72862306a36Sopenharmony_ci				return err;
72962306a36Sopenharmony_ci		} else {
73062306a36Sopenharmony_ci			/* Must be missing the tt structure?  Why? */
73162306a36Sopenharmony_ci			WARN_ON_ONCE(1);
73262306a36Sopenharmony_ci		}
73362306a36Sopenharmony_ci
73462306a36Sopenharmony_ci		/*
73562306a36Sopenharmony_ci		 * This will give us a number 0 - 7 if
73662306a36Sopenharmony_ci		 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
73762306a36Sopenharmony_ci		 */
73862306a36Sopenharmony_ci		start_s_uframe = qh->ls_start_schedule_slice /
73962306a36Sopenharmony_ci				 DWC2_SLICES_PER_UFRAME;
74062306a36Sopenharmony_ci
74162306a36Sopenharmony_ci		/* Get a number that's always 0 - 7 */
74262306a36Sopenharmony_ci		rel_uframe = (start_s_uframe % 8);
74362306a36Sopenharmony_ci
74462306a36Sopenharmony_ci		/*
74562306a36Sopenharmony_ci		 * If we were going to start in uframe 7 then we would need to
74662306a36Sopenharmony_ci		 * issue a start split in uframe 6, which spec says is not OK.
74762306a36Sopenharmony_ci		 * Move on to the next full frame (assuming there is one).
74862306a36Sopenharmony_ci		 *
74962306a36Sopenharmony_ci		 * See 11.18.4 Host Split Transaction Scheduling Requirements
75062306a36Sopenharmony_ci		 * bullet 1.
75162306a36Sopenharmony_ci		 */
75262306a36Sopenharmony_ci		if (rel_uframe == 7) {
75362306a36Sopenharmony_ci			if (qh->schedule_low_speed)
75462306a36Sopenharmony_ci				dwc2_ls_pmap_unschedule(hsotg, qh);
75562306a36Sopenharmony_ci			ls_search_slice =
75662306a36Sopenharmony_ci				(qh->ls_start_schedule_slice /
75762306a36Sopenharmony_ci				 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
75862306a36Sopenharmony_ci				DWC2_LS_PERIODIC_SLICES_PER_FRAME;
75962306a36Sopenharmony_ci			continue;
76062306a36Sopenharmony_ci		}
76162306a36Sopenharmony_ci
76262306a36Sopenharmony_ci		/*
76362306a36Sopenharmony_ci		 * For ISOC in:
76462306a36Sopenharmony_ci		 * - start split            (frame -1)
76562306a36Sopenharmony_ci		 * - complete split w/ data (frame +1)
76662306a36Sopenharmony_ci		 * - complete split w/ data (frame +2)
76762306a36Sopenharmony_ci		 * - ...
76862306a36Sopenharmony_ci		 * - complete split w/ data (frame +num_data_packets)
76962306a36Sopenharmony_ci		 * - complete split w/ data (frame +num_data_packets+1)
77062306a36Sopenharmony_ci		 * - complete split w/ data (frame +num_data_packets+2, max 8)
77162306a36Sopenharmony_ci		 *   ...though if frame was "0" then max is 7...
77262306a36Sopenharmony_ci		 *
77362306a36Sopenharmony_ci		 * For ISOC out we might need to do:
77462306a36Sopenharmony_ci		 * - start split w/ data    (frame -1)
77562306a36Sopenharmony_ci		 * - start split w/ data    (frame +0)
77662306a36Sopenharmony_ci		 * - ...
77762306a36Sopenharmony_ci		 * - start split w/ data    (frame +num_data_packets-2)
77862306a36Sopenharmony_ci		 *
77962306a36Sopenharmony_ci		 * For INTERRUPT in we might need to do:
78062306a36Sopenharmony_ci		 * - start split            (frame -1)
78162306a36Sopenharmony_ci		 * - complete split w/ data (frame +1)
78262306a36Sopenharmony_ci		 * - complete split w/ data (frame +2)
78362306a36Sopenharmony_ci		 * - complete split w/ data (frame +3, max 8)
78462306a36Sopenharmony_ci		 *
78562306a36Sopenharmony_ci		 * For INTERRUPT out we might need to do:
78662306a36Sopenharmony_ci		 * - start split w/ data    (frame -1)
78762306a36Sopenharmony_ci		 * - complete split         (frame +1)
78862306a36Sopenharmony_ci		 * - complete split         (frame +2)
78962306a36Sopenharmony_ci		 * - complete split         (frame +3, max 8)
79062306a36Sopenharmony_ci		 *
79162306a36Sopenharmony_ci		 * Start adjusting!
79262306a36Sopenharmony_ci		 */
79362306a36Sopenharmony_ci		ssplit_s_uframe = (start_s_uframe +
79462306a36Sopenharmony_ci				   host_interval_in_sched - 1) %
79562306a36Sopenharmony_ci				  host_interval_in_sched;
79662306a36Sopenharmony_ci		if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
79762306a36Sopenharmony_ci			second_s_uframe = start_s_uframe;
79862306a36Sopenharmony_ci		else
79962306a36Sopenharmony_ci			second_s_uframe = start_s_uframe + 1;
80062306a36Sopenharmony_ci
80162306a36Sopenharmony_ci		/* First data transfer might not be all 188 bytes. */
80262306a36Sopenharmony_ci		first_data_bytes = 188 -
80362306a36Sopenharmony_ci			DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
80462306a36Sopenharmony_ci					    DWC2_SLICES_PER_UFRAME),
80562306a36Sopenharmony_ci				     DWC2_SLICES_PER_UFRAME);
80662306a36Sopenharmony_ci		if (first_data_bytes > bytecount)
80762306a36Sopenharmony_ci			first_data_bytes = bytecount;
80862306a36Sopenharmony_ci		other_data_bytes = bytecount - first_data_bytes;
80962306a36Sopenharmony_ci
81062306a36Sopenharmony_ci		/*
81162306a36Sopenharmony_ci		 * For now, skip OUT xfers where first xfer is partial
81262306a36Sopenharmony_ci		 *
81362306a36Sopenharmony_ci		 * Main dwc2 code assumes:
81462306a36Sopenharmony_ci		 * - INT transfers never get split in two.
81562306a36Sopenharmony_ci		 * - ISOC transfers can always transfer 188 bytes the first
81662306a36Sopenharmony_ci		 *   time.
81762306a36Sopenharmony_ci		 *
81862306a36Sopenharmony_ci		 * Until that code is fixed, try again if the first transfer
81962306a36Sopenharmony_ci		 * couldn't transfer everything.
82062306a36Sopenharmony_ci		 *
82162306a36Sopenharmony_ci		 * This code can be removed if/when the rest of dwc2 handles
82262306a36Sopenharmony_ci		 * the above cases.  Until it's fixed we just won't be able
82362306a36Sopenharmony_ci		 * to schedule quite as tightly.
82462306a36Sopenharmony_ci		 */
82562306a36Sopenharmony_ci		if (!qh->ep_is_in &&
82662306a36Sopenharmony_ci		    (first_data_bytes != min_t(int, 188, bytecount))) {
82762306a36Sopenharmony_ci			dwc2_sch_dbg(hsotg,
82862306a36Sopenharmony_ci				     "QH=%p avoiding broken 1st xfer (%d, %d)\n",
82962306a36Sopenharmony_ci				     qh, first_data_bytes, bytecount);
83062306a36Sopenharmony_ci			if (qh->schedule_low_speed)
83162306a36Sopenharmony_ci				dwc2_ls_pmap_unschedule(hsotg, qh);
83262306a36Sopenharmony_ci			ls_search_slice = (start_s_uframe + 1) *
83362306a36Sopenharmony_ci				DWC2_SLICES_PER_UFRAME;
83462306a36Sopenharmony_ci			continue;
83562306a36Sopenharmony_ci		}
83662306a36Sopenharmony_ci
83762306a36Sopenharmony_ci		/* Start by assuming transfers for the bytes */
83862306a36Sopenharmony_ci		qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
83962306a36Sopenharmony_ci
84062306a36Sopenharmony_ci		/*
84162306a36Sopenharmony_ci		 * Everything except ISOC OUT has extra transfers.  Rules are
84262306a36Sopenharmony_ci		 * complicated.  See 11.18.4 Host Split Transaction Scheduling
84362306a36Sopenharmony_ci		 * Requirements bullet 3.
84462306a36Sopenharmony_ci		 */
84562306a36Sopenharmony_ci		if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
84662306a36Sopenharmony_ci			if (rel_uframe == 6)
84762306a36Sopenharmony_ci				qh->num_hs_transfers += 2;
84862306a36Sopenharmony_ci			else
84962306a36Sopenharmony_ci				qh->num_hs_transfers += 3;
85062306a36Sopenharmony_ci
85162306a36Sopenharmony_ci			if (qh->ep_is_in) {
85262306a36Sopenharmony_ci				/*
85362306a36Sopenharmony_ci				 * First is start split, middle/end is data.
85462306a36Sopenharmony_ci				 * Allocate full data bytes for all data.
85562306a36Sopenharmony_ci				 */
85662306a36Sopenharmony_ci				first_count = 4;
85762306a36Sopenharmony_ci				middle_count = bytecount;
85862306a36Sopenharmony_ci				end_count = bytecount;
85962306a36Sopenharmony_ci			} else {
86062306a36Sopenharmony_ci				/*
86162306a36Sopenharmony_ci				 * First is data, middle/end is complete.
86262306a36Sopenharmony_ci				 * First transfer and second can have data.
86362306a36Sopenharmony_ci				 * Rest should just have complete split.
86462306a36Sopenharmony_ci				 */
86562306a36Sopenharmony_ci				first_count = first_data_bytes;
86662306a36Sopenharmony_ci				middle_count = max_t(int, 4, other_data_bytes);
86762306a36Sopenharmony_ci				end_count = 4;
86862306a36Sopenharmony_ci			}
86962306a36Sopenharmony_ci		} else {
87062306a36Sopenharmony_ci			if (qh->ep_is_in) {
87162306a36Sopenharmony_ci				int last;
87262306a36Sopenharmony_ci
87362306a36Sopenharmony_ci				/* Account for the start split */
87462306a36Sopenharmony_ci				qh->num_hs_transfers++;
87562306a36Sopenharmony_ci
87662306a36Sopenharmony_ci				/* Calculate "L" value from spec */
87762306a36Sopenharmony_ci				last = rel_uframe + qh->num_hs_transfers + 1;
87862306a36Sopenharmony_ci
87962306a36Sopenharmony_ci				/* Start with basic case */
88062306a36Sopenharmony_ci				if (last <= 6)
88162306a36Sopenharmony_ci					qh->num_hs_transfers += 2;
88262306a36Sopenharmony_ci				else
88362306a36Sopenharmony_ci					qh->num_hs_transfers += 1;
88462306a36Sopenharmony_ci
88562306a36Sopenharmony_ci				/* Adjust downwards */
88662306a36Sopenharmony_ci				if (last >= 6 && rel_uframe == 0)
88762306a36Sopenharmony_ci					qh->num_hs_transfers--;
88862306a36Sopenharmony_ci
88962306a36Sopenharmony_ci				/* 1st = start; rest can contain data */
89062306a36Sopenharmony_ci				first_count = 4;
89162306a36Sopenharmony_ci				middle_count = min_t(int, 188, bytecount);
89262306a36Sopenharmony_ci				end_count = middle_count;
89362306a36Sopenharmony_ci			} else {
89462306a36Sopenharmony_ci				/* All contain data, last might be smaller */
89562306a36Sopenharmony_ci				first_count = first_data_bytes;
89662306a36Sopenharmony_ci				middle_count = min_t(int, 188,
89762306a36Sopenharmony_ci						     other_data_bytes);
89862306a36Sopenharmony_ci				end_count = other_data_bytes % 188;
89962306a36Sopenharmony_ci			}
90062306a36Sopenharmony_ci		}
90162306a36Sopenharmony_ci
90262306a36Sopenharmony_ci		/* Assign durations per uFrame */
90362306a36Sopenharmony_ci		qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
90462306a36Sopenharmony_ci		for (i = 1; i < qh->num_hs_transfers - 1; i++)
90562306a36Sopenharmony_ci			qh->hs_transfers[i].duration_us =
90662306a36Sopenharmony_ci				HS_USECS_ISO(middle_count);
90762306a36Sopenharmony_ci		if (qh->num_hs_transfers > 1)
90862306a36Sopenharmony_ci			qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
90962306a36Sopenharmony_ci				HS_USECS_ISO(end_count);
91062306a36Sopenharmony_ci
91162306a36Sopenharmony_ci		/*
91262306a36Sopenharmony_ci		 * Assign start us.  The call below to dwc2_hs_pmap_schedule()
91362306a36Sopenharmony_ci		 * will start with these numbers but may adjust within the same
91462306a36Sopenharmony_ci		 * microframe.
91562306a36Sopenharmony_ci		 */
91662306a36Sopenharmony_ci		qh->hs_transfers[0].start_schedule_us =
91762306a36Sopenharmony_ci			ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
91862306a36Sopenharmony_ci		for (i = 1; i < qh->num_hs_transfers; i++)
91962306a36Sopenharmony_ci			qh->hs_transfers[i].start_schedule_us =
92062306a36Sopenharmony_ci				((second_s_uframe + i - 1) %
92162306a36Sopenharmony_ci				 DWC2_HS_SCHEDULE_UFRAMES) *
92262306a36Sopenharmony_ci				DWC2_HS_PERIODIC_US_PER_UFRAME;
92362306a36Sopenharmony_ci
92462306a36Sopenharmony_ci		/* Try to schedule with filled in hs_transfers above */
92562306a36Sopenharmony_ci		for (i = 0; i < qh->num_hs_transfers; i++) {
92662306a36Sopenharmony_ci			err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
92762306a36Sopenharmony_ci			if (err)
92862306a36Sopenharmony_ci				break;
92962306a36Sopenharmony_ci		}
93062306a36Sopenharmony_ci
93162306a36Sopenharmony_ci		/* If we scheduled all w/out breaking out then we're all good */
93262306a36Sopenharmony_ci		if (i == qh->num_hs_transfers)
93362306a36Sopenharmony_ci			break;
93462306a36Sopenharmony_ci
93562306a36Sopenharmony_ci		for (; i >= 0; i--)
93662306a36Sopenharmony_ci			dwc2_hs_pmap_unschedule(hsotg, qh, i);
93762306a36Sopenharmony_ci
93862306a36Sopenharmony_ci		if (qh->schedule_low_speed)
93962306a36Sopenharmony_ci			dwc2_ls_pmap_unschedule(hsotg, qh);
94062306a36Sopenharmony_ci
94162306a36Sopenharmony_ci		/* Try again starting in the next microframe */
94262306a36Sopenharmony_ci		ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
94362306a36Sopenharmony_ci	}
94462306a36Sopenharmony_ci
94562306a36Sopenharmony_ci	if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
94662306a36Sopenharmony_ci		return -ENOSPC;
94762306a36Sopenharmony_ci
94862306a36Sopenharmony_ci	return 0;
94962306a36Sopenharmony_ci}
95062306a36Sopenharmony_ci
95162306a36Sopenharmony_ci/**
95262306a36Sopenharmony_ci * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
95362306a36Sopenharmony_ci *
95462306a36Sopenharmony_ci * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
95562306a36Sopenharmony_ci * interface.
95662306a36Sopenharmony_ci *
95762306a36Sopenharmony_ci * @hsotg:       The HCD state structure for the DWC OTG controller.
95862306a36Sopenharmony_ci * @qh:          QH for the periodic transfer.
95962306a36Sopenharmony_ci */
96062306a36Sopenharmony_cistatic int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
96162306a36Sopenharmony_ci{
96262306a36Sopenharmony_ci	/* In non-split host and device time are the same */
96362306a36Sopenharmony_ci	WARN_ON(qh->host_us != qh->device_us);
96462306a36Sopenharmony_ci	WARN_ON(qh->host_interval != qh->device_interval);
96562306a36Sopenharmony_ci	WARN_ON(qh->num_hs_transfers != 1);
96662306a36Sopenharmony_ci
96762306a36Sopenharmony_ci	/* We'll have one transfer; init start to 0 before calling scheduler */
96862306a36Sopenharmony_ci	qh->hs_transfers[0].start_schedule_us = 0;
96962306a36Sopenharmony_ci	qh->hs_transfers[0].duration_us = qh->host_us;
97062306a36Sopenharmony_ci
97162306a36Sopenharmony_ci	return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
97262306a36Sopenharmony_ci}
97362306a36Sopenharmony_ci
97462306a36Sopenharmony_ci/**
97562306a36Sopenharmony_ci * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
97662306a36Sopenharmony_ci *
97762306a36Sopenharmony_ci * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
97862306a36Sopenharmony_ci * interface.
97962306a36Sopenharmony_ci *
98062306a36Sopenharmony_ci * @hsotg:       The HCD state structure for the DWC OTG controller.
98162306a36Sopenharmony_ci * @qh:          QH for the periodic transfer.
98262306a36Sopenharmony_ci */
98362306a36Sopenharmony_cistatic int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
98462306a36Sopenharmony_ci{
98562306a36Sopenharmony_ci	/* In non-split host and device time are the same */
98662306a36Sopenharmony_ci	WARN_ON(qh->host_us != qh->device_us);
98762306a36Sopenharmony_ci	WARN_ON(qh->host_interval != qh->device_interval);
98862306a36Sopenharmony_ci	WARN_ON(!qh->schedule_low_speed);
98962306a36Sopenharmony_ci
99062306a36Sopenharmony_ci	/* Run on the main low speed schedule (no split = no hub = no TT) */
99162306a36Sopenharmony_ci	return dwc2_ls_pmap_schedule(hsotg, qh, 0);
99262306a36Sopenharmony_ci}
99362306a36Sopenharmony_ci
99462306a36Sopenharmony_ci/**
99562306a36Sopenharmony_ci * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
99662306a36Sopenharmony_ci *
99762306a36Sopenharmony_ci * Calls one of the 3 sub-function depending on what type of transfer this QH
99862306a36Sopenharmony_ci * is for.  Also adds some printing.
99962306a36Sopenharmony_ci *
100062306a36Sopenharmony_ci * @hsotg:       The HCD state structure for the DWC OTG controller.
100162306a36Sopenharmony_ci * @qh:          QH for the periodic transfer.
100262306a36Sopenharmony_ci */
100362306a36Sopenharmony_cistatic int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
100462306a36Sopenharmony_ci{
100562306a36Sopenharmony_ci	int ret;
100662306a36Sopenharmony_ci
100762306a36Sopenharmony_ci	if (qh->dev_speed == USB_SPEED_HIGH)
100862306a36Sopenharmony_ci		ret = dwc2_uframe_schedule_hs(hsotg, qh);
100962306a36Sopenharmony_ci	else if (!qh->do_split)
101062306a36Sopenharmony_ci		ret = dwc2_uframe_schedule_ls(hsotg, qh);
101162306a36Sopenharmony_ci	else
101262306a36Sopenharmony_ci		ret = dwc2_uframe_schedule_split(hsotg, qh);
101362306a36Sopenharmony_ci
101462306a36Sopenharmony_ci	if (ret)
101562306a36Sopenharmony_ci		dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
101662306a36Sopenharmony_ci	else
101762306a36Sopenharmony_ci		dwc2_qh_schedule_print(hsotg, qh);
101862306a36Sopenharmony_ci
101962306a36Sopenharmony_ci	return ret;
102062306a36Sopenharmony_ci}
102162306a36Sopenharmony_ci
102262306a36Sopenharmony_ci/**
102362306a36Sopenharmony_ci * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
102462306a36Sopenharmony_ci *
102562306a36Sopenharmony_ci * @hsotg:       The HCD state structure for the DWC OTG controller.
102662306a36Sopenharmony_ci * @qh:          QH for the periodic transfer.
102762306a36Sopenharmony_ci */
102862306a36Sopenharmony_cistatic void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
102962306a36Sopenharmony_ci{
103062306a36Sopenharmony_ci	int i;
103162306a36Sopenharmony_ci
103262306a36Sopenharmony_ci	for (i = 0; i < qh->num_hs_transfers; i++)
103362306a36Sopenharmony_ci		dwc2_hs_pmap_unschedule(hsotg, qh, i);
103462306a36Sopenharmony_ci
103562306a36Sopenharmony_ci	if (qh->schedule_low_speed)
103662306a36Sopenharmony_ci		dwc2_ls_pmap_unschedule(hsotg, qh);
103762306a36Sopenharmony_ci
103862306a36Sopenharmony_ci	dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
103962306a36Sopenharmony_ci}
104062306a36Sopenharmony_ci
104162306a36Sopenharmony_ci/**
104262306a36Sopenharmony_ci * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
104362306a36Sopenharmony_ci *
104462306a36Sopenharmony_ci * Takes a qh that has already been scheduled (which means we know we have the
104562306a36Sopenharmony_ci * bandwdith reserved for us) and set the next_active_frame and the
104662306a36Sopenharmony_ci * start_active_frame.
104762306a36Sopenharmony_ci *
104862306a36Sopenharmony_ci * This is expected to be called on qh's that weren't previously actively
104962306a36Sopenharmony_ci * running.  It just picks the next frame that we can fit into without any
105062306a36Sopenharmony_ci * thought about the past.
105162306a36Sopenharmony_ci *
105262306a36Sopenharmony_ci * @hsotg: The HCD state structure for the DWC OTG controller
105362306a36Sopenharmony_ci * @qh:    QH for a periodic endpoint
105462306a36Sopenharmony_ci *
105562306a36Sopenharmony_ci */
105662306a36Sopenharmony_cistatic void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
105762306a36Sopenharmony_ci{
105862306a36Sopenharmony_ci	u16 frame_number;
105962306a36Sopenharmony_ci	u16 earliest_frame;
106062306a36Sopenharmony_ci	u16 next_active_frame;
106162306a36Sopenharmony_ci	u16 relative_frame;
106262306a36Sopenharmony_ci	u16 interval;
106362306a36Sopenharmony_ci
106462306a36Sopenharmony_ci	/*
106562306a36Sopenharmony_ci	 * Use the real frame number rather than the cached value as of the
106662306a36Sopenharmony_ci	 * last SOF to give us a little extra slop.
106762306a36Sopenharmony_ci	 */
106862306a36Sopenharmony_ci	frame_number = dwc2_hcd_get_frame_number(hsotg);
106962306a36Sopenharmony_ci
107062306a36Sopenharmony_ci	/*
107162306a36Sopenharmony_ci	 * We wouldn't want to start any earlier than the next frame just in
107262306a36Sopenharmony_ci	 * case the frame number ticks as we're doing this calculation.
107362306a36Sopenharmony_ci	 *
107462306a36Sopenharmony_ci	 * NOTE: if we could quantify how long till we actually get scheduled
107562306a36Sopenharmony_ci	 * we might be able to avoid the "+ 1" by looking at the upper part of
107662306a36Sopenharmony_ci	 * HFNUM (the FRREM field).  For now we'll just use the + 1 though.
107762306a36Sopenharmony_ci	 */
107862306a36Sopenharmony_ci	earliest_frame = dwc2_frame_num_inc(frame_number, 1);
107962306a36Sopenharmony_ci	next_active_frame = earliest_frame;
108062306a36Sopenharmony_ci
108162306a36Sopenharmony_ci	/* Get the "no microframe scheduler" out of the way... */
108262306a36Sopenharmony_ci	if (!hsotg->params.uframe_sched) {
108362306a36Sopenharmony_ci		if (qh->do_split)
108462306a36Sopenharmony_ci			/* Splits are active at microframe 0 minus 1 */
108562306a36Sopenharmony_ci			next_active_frame |= 0x7;
108662306a36Sopenharmony_ci		goto exit;
108762306a36Sopenharmony_ci	}
108862306a36Sopenharmony_ci
108962306a36Sopenharmony_ci	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
109062306a36Sopenharmony_ci		/*
109162306a36Sopenharmony_ci		 * We're either at high speed or we're doing a split (which
109262306a36Sopenharmony_ci		 * means we're talking high speed to a hub).  In any case
109362306a36Sopenharmony_ci		 * the first frame should be based on when the first scheduled
109462306a36Sopenharmony_ci		 * event is.
109562306a36Sopenharmony_ci		 */
109662306a36Sopenharmony_ci		WARN_ON(qh->num_hs_transfers < 1);
109762306a36Sopenharmony_ci
109862306a36Sopenharmony_ci		relative_frame = qh->hs_transfers[0].start_schedule_us /
109962306a36Sopenharmony_ci				 DWC2_HS_PERIODIC_US_PER_UFRAME;
110062306a36Sopenharmony_ci
110162306a36Sopenharmony_ci		/* Adjust interval as per high speed schedule */
110262306a36Sopenharmony_ci		interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
110362306a36Sopenharmony_ci
110462306a36Sopenharmony_ci	} else {
110562306a36Sopenharmony_ci		/*
110662306a36Sopenharmony_ci		 * Low or full speed directly on dwc2.  Just about the same
110762306a36Sopenharmony_ci		 * as high speed but on a different schedule and with slightly
110862306a36Sopenharmony_ci		 * different adjustments.  Note that this works because when
110962306a36Sopenharmony_ci		 * the host and device are both low speed then frames in the
111062306a36Sopenharmony_ci		 * controller tick at low speed.
111162306a36Sopenharmony_ci		 */
111262306a36Sopenharmony_ci		relative_frame = qh->ls_start_schedule_slice /
111362306a36Sopenharmony_ci				 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
111462306a36Sopenharmony_ci		interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
111562306a36Sopenharmony_ci	}
111662306a36Sopenharmony_ci
111762306a36Sopenharmony_ci	/* Scheduler messed up if frame is past interval */
111862306a36Sopenharmony_ci	WARN_ON(relative_frame >= interval);
111962306a36Sopenharmony_ci
112062306a36Sopenharmony_ci	/*
112162306a36Sopenharmony_ci	 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
112262306a36Sopenharmony_ci	 * done the gcd(), so it's safe to move to the beginning of the current
112362306a36Sopenharmony_ci	 * interval like this.
112462306a36Sopenharmony_ci	 *
112562306a36Sopenharmony_ci	 * After this we might be before earliest_frame, but don't worry,
112662306a36Sopenharmony_ci	 * we'll fix it...
112762306a36Sopenharmony_ci	 */
112862306a36Sopenharmony_ci	next_active_frame = (next_active_frame / interval) * interval;
112962306a36Sopenharmony_ci
113062306a36Sopenharmony_ci	/*
113162306a36Sopenharmony_ci	 * Actually choose to start at the frame number we've been
113262306a36Sopenharmony_ci	 * scheduled for.
113362306a36Sopenharmony_ci	 */
113462306a36Sopenharmony_ci	next_active_frame = dwc2_frame_num_inc(next_active_frame,
113562306a36Sopenharmony_ci					       relative_frame);
113662306a36Sopenharmony_ci
113762306a36Sopenharmony_ci	/*
113862306a36Sopenharmony_ci	 * We actually need 1 frame before since the next_active_frame is
113962306a36Sopenharmony_ci	 * the frame number we'll be put on the ready list and we won't be on
114062306a36Sopenharmony_ci	 * the bus until 1 frame later.
114162306a36Sopenharmony_ci	 */
114262306a36Sopenharmony_ci	next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
114362306a36Sopenharmony_ci
114462306a36Sopenharmony_ci	/*
114562306a36Sopenharmony_ci	 * By now we might actually be before the earliest_frame.  Let's move
114662306a36Sopenharmony_ci	 * up intervals until we're not.
114762306a36Sopenharmony_ci	 */
114862306a36Sopenharmony_ci	while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
114962306a36Sopenharmony_ci		next_active_frame = dwc2_frame_num_inc(next_active_frame,
115062306a36Sopenharmony_ci						       interval);
115162306a36Sopenharmony_ci
115262306a36Sopenharmony_ciexit:
115362306a36Sopenharmony_ci	qh->next_active_frame = next_active_frame;
115462306a36Sopenharmony_ci	qh->start_active_frame = next_active_frame;
115562306a36Sopenharmony_ci
115662306a36Sopenharmony_ci	dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
115762306a36Sopenharmony_ci		      qh, frame_number, qh->next_active_frame);
115862306a36Sopenharmony_ci}
115962306a36Sopenharmony_ci
116062306a36Sopenharmony_ci/**
116162306a36Sopenharmony_ci * dwc2_do_reserve() - Make a periodic reservation
116262306a36Sopenharmony_ci *
116362306a36Sopenharmony_ci * Try to allocate space in the periodic schedule.  Depending on parameters
116462306a36Sopenharmony_ci * this might use the microframe scheduler or the dumb scheduler.
116562306a36Sopenharmony_ci *
116662306a36Sopenharmony_ci * @hsotg: The HCD state structure for the DWC OTG controller
116762306a36Sopenharmony_ci * @qh:    QH for the periodic transfer.
116862306a36Sopenharmony_ci *
116962306a36Sopenharmony_ci * Returns: 0 upon success; error upon failure.
117062306a36Sopenharmony_ci */
117162306a36Sopenharmony_cistatic int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
117262306a36Sopenharmony_ci{
117362306a36Sopenharmony_ci	int status;
117462306a36Sopenharmony_ci
117562306a36Sopenharmony_ci	if (hsotg->params.uframe_sched) {
117662306a36Sopenharmony_ci		status = dwc2_uframe_schedule(hsotg, qh);
117762306a36Sopenharmony_ci	} else {
117862306a36Sopenharmony_ci		status = dwc2_periodic_channel_available(hsotg);
117962306a36Sopenharmony_ci		if (status) {
118062306a36Sopenharmony_ci			dev_info(hsotg->dev,
118162306a36Sopenharmony_ci				 "%s: No host channel available for periodic transfer\n",
118262306a36Sopenharmony_ci				 __func__);
118362306a36Sopenharmony_ci			return status;
118462306a36Sopenharmony_ci		}
118562306a36Sopenharmony_ci
118662306a36Sopenharmony_ci		status = dwc2_check_periodic_bandwidth(hsotg, qh);
118762306a36Sopenharmony_ci	}
118862306a36Sopenharmony_ci
118962306a36Sopenharmony_ci	if (status) {
119062306a36Sopenharmony_ci		dev_dbg(hsotg->dev,
119162306a36Sopenharmony_ci			"%s: Insufficient periodic bandwidth for periodic transfer\n",
119262306a36Sopenharmony_ci			__func__);
119362306a36Sopenharmony_ci		return status;
119462306a36Sopenharmony_ci	}
119562306a36Sopenharmony_ci
119662306a36Sopenharmony_ci	if (!hsotg->params.uframe_sched)
119762306a36Sopenharmony_ci		/* Reserve periodic channel */
119862306a36Sopenharmony_ci		hsotg->periodic_channels++;
119962306a36Sopenharmony_ci
120062306a36Sopenharmony_ci	/* Update claimed usecs per (micro)frame */
120162306a36Sopenharmony_ci	hsotg->periodic_usecs += qh->host_us;
120262306a36Sopenharmony_ci
120362306a36Sopenharmony_ci	dwc2_pick_first_frame(hsotg, qh);
120462306a36Sopenharmony_ci
120562306a36Sopenharmony_ci	return 0;
120662306a36Sopenharmony_ci}
120762306a36Sopenharmony_ci
120862306a36Sopenharmony_ci/**
120962306a36Sopenharmony_ci * dwc2_do_unreserve() - Actually release the periodic reservation
121062306a36Sopenharmony_ci *
121162306a36Sopenharmony_ci * This function actually releases the periodic bandwidth that was reserved
121262306a36Sopenharmony_ci * by the given qh.
121362306a36Sopenharmony_ci *
121462306a36Sopenharmony_ci * @hsotg: The HCD state structure for the DWC OTG controller
121562306a36Sopenharmony_ci * @qh:    QH for the periodic transfer.
121662306a36Sopenharmony_ci */
121762306a36Sopenharmony_cistatic void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
121862306a36Sopenharmony_ci{
121962306a36Sopenharmony_ci	assert_spin_locked(&hsotg->lock);
122062306a36Sopenharmony_ci
122162306a36Sopenharmony_ci	WARN_ON(!qh->unreserve_pending);
122262306a36Sopenharmony_ci
122362306a36Sopenharmony_ci	/* No more unreserve pending--we're doing it */
122462306a36Sopenharmony_ci	qh->unreserve_pending = false;
122562306a36Sopenharmony_ci
122662306a36Sopenharmony_ci	if (WARN_ON(!list_empty(&qh->qh_list_entry)))
122762306a36Sopenharmony_ci		list_del_init(&qh->qh_list_entry);
122862306a36Sopenharmony_ci
122962306a36Sopenharmony_ci	/* Update claimed usecs per (micro)frame */
123062306a36Sopenharmony_ci	hsotg->periodic_usecs -= qh->host_us;
123162306a36Sopenharmony_ci
123262306a36Sopenharmony_ci	if (hsotg->params.uframe_sched) {
123362306a36Sopenharmony_ci		dwc2_uframe_unschedule(hsotg, qh);
123462306a36Sopenharmony_ci	} else {
123562306a36Sopenharmony_ci		/* Release periodic channel reservation */
123662306a36Sopenharmony_ci		hsotg->periodic_channels--;
123762306a36Sopenharmony_ci	}
123862306a36Sopenharmony_ci}
123962306a36Sopenharmony_ci
124062306a36Sopenharmony_ci/**
124162306a36Sopenharmony_ci * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
124262306a36Sopenharmony_ci *
124362306a36Sopenharmony_ci * According to the kernel doc for usb_submit_urb() (specifically the part about
124462306a36Sopenharmony_ci * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
124562306a36Sopenharmony_ci * long as a device driver keeps submitting.  Since we're using HCD_BH to give
124662306a36Sopenharmony_ci * back the URB we need to give the driver a little bit of time before we
124762306a36Sopenharmony_ci * release the reservation.  This worker is called after the appropriate
124862306a36Sopenharmony_ci * delay.
124962306a36Sopenharmony_ci *
125062306a36Sopenharmony_ci * @t: Address to a qh unreserve_work.
125162306a36Sopenharmony_ci */
125262306a36Sopenharmony_cistatic void dwc2_unreserve_timer_fn(struct timer_list *t)
125362306a36Sopenharmony_ci{
125462306a36Sopenharmony_ci	struct dwc2_qh *qh = from_timer(qh, t, unreserve_timer);
125562306a36Sopenharmony_ci	struct dwc2_hsotg *hsotg = qh->hsotg;
125662306a36Sopenharmony_ci	unsigned long flags;
125762306a36Sopenharmony_ci
125862306a36Sopenharmony_ci	/*
125962306a36Sopenharmony_ci	 * Wait for the lock, or for us to be scheduled again.  We
126062306a36Sopenharmony_ci	 * could be scheduled again if:
126162306a36Sopenharmony_ci	 * - We started executing but didn't get the lock yet.
126262306a36Sopenharmony_ci	 * - A new reservation came in, but cancel didn't take effect
126362306a36Sopenharmony_ci	 *   because we already started executing.
126462306a36Sopenharmony_ci	 * - The timer has been kicked again.
126562306a36Sopenharmony_ci	 * In that case cancel and wait for the next call.
126662306a36Sopenharmony_ci	 */
126762306a36Sopenharmony_ci	while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
126862306a36Sopenharmony_ci		if (timer_pending(&qh->unreserve_timer))
126962306a36Sopenharmony_ci			return;
127062306a36Sopenharmony_ci	}
127162306a36Sopenharmony_ci
127262306a36Sopenharmony_ci	/*
127362306a36Sopenharmony_ci	 * Might be no more unreserve pending if:
127462306a36Sopenharmony_ci	 * - We started executing but didn't get the lock yet.
127562306a36Sopenharmony_ci	 * - A new reservation came in, but cancel didn't take effect
127662306a36Sopenharmony_ci	 *   because we already started executing.
127762306a36Sopenharmony_ci	 *
127862306a36Sopenharmony_ci	 * We can't put this in the loop above because unreserve_pending needs
127962306a36Sopenharmony_ci	 * to be accessed under lock, so we can only check it once we got the
128062306a36Sopenharmony_ci	 * lock.
128162306a36Sopenharmony_ci	 */
128262306a36Sopenharmony_ci	if (qh->unreserve_pending)
128362306a36Sopenharmony_ci		dwc2_do_unreserve(hsotg, qh);
128462306a36Sopenharmony_ci
128562306a36Sopenharmony_ci	spin_unlock_irqrestore(&hsotg->lock, flags);
128662306a36Sopenharmony_ci}
128762306a36Sopenharmony_ci
128862306a36Sopenharmony_ci/**
128962306a36Sopenharmony_ci * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
129062306a36Sopenharmony_ci * host channel is large enough to handle the maximum data transfer in a single
129162306a36Sopenharmony_ci * (micro)frame for a periodic transfer
129262306a36Sopenharmony_ci *
129362306a36Sopenharmony_ci * @hsotg: The HCD state structure for the DWC OTG controller
129462306a36Sopenharmony_ci * @qh:    QH for a periodic endpoint
129562306a36Sopenharmony_ci *
129662306a36Sopenharmony_ci * Return: 0 if successful, negative error code otherwise
129762306a36Sopenharmony_ci */
129862306a36Sopenharmony_cistatic int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
129962306a36Sopenharmony_ci				    struct dwc2_qh *qh)
130062306a36Sopenharmony_ci{
130162306a36Sopenharmony_ci	u32 max_xfer_size;
130262306a36Sopenharmony_ci	u32 max_channel_xfer_size;
130362306a36Sopenharmony_ci	int status = 0;
130462306a36Sopenharmony_ci
130562306a36Sopenharmony_ci	max_xfer_size = qh->maxp * qh->maxp_mult;
130662306a36Sopenharmony_ci	max_channel_xfer_size = hsotg->params.max_transfer_size;
130762306a36Sopenharmony_ci
130862306a36Sopenharmony_ci	if (max_xfer_size > max_channel_xfer_size) {
130962306a36Sopenharmony_ci		dev_err(hsotg->dev,
131062306a36Sopenharmony_ci			"%s: Periodic xfer length %d > max xfer length for channel %d\n",
131162306a36Sopenharmony_ci			__func__, max_xfer_size, max_channel_xfer_size);
131262306a36Sopenharmony_ci		status = -ENOSPC;
131362306a36Sopenharmony_ci	}
131462306a36Sopenharmony_ci
131562306a36Sopenharmony_ci	return status;
131662306a36Sopenharmony_ci}
131762306a36Sopenharmony_ci
131862306a36Sopenharmony_ci/**
131962306a36Sopenharmony_ci * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
132062306a36Sopenharmony_ci * the periodic schedule
132162306a36Sopenharmony_ci *
132262306a36Sopenharmony_ci * @hsotg: The HCD state structure for the DWC OTG controller
132362306a36Sopenharmony_ci * @qh:    QH for the periodic transfer. The QH should already contain the
132462306a36Sopenharmony_ci *         scheduling information.
132562306a36Sopenharmony_ci *
132662306a36Sopenharmony_ci * Return: 0 if successful, negative error code otherwise
132762306a36Sopenharmony_ci */
132862306a36Sopenharmony_cistatic int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
132962306a36Sopenharmony_ci{
133062306a36Sopenharmony_ci	int status;
133162306a36Sopenharmony_ci
133262306a36Sopenharmony_ci	status = dwc2_check_max_xfer_size(hsotg, qh);
133362306a36Sopenharmony_ci	if (status) {
133462306a36Sopenharmony_ci		dev_dbg(hsotg->dev,
133562306a36Sopenharmony_ci			"%s: Channel max transfer size too small for periodic transfer\n",
133662306a36Sopenharmony_ci			__func__);
133762306a36Sopenharmony_ci		return status;
133862306a36Sopenharmony_ci	}
133962306a36Sopenharmony_ci
134062306a36Sopenharmony_ci	/* Cancel pending unreserve; if canceled OK, unreserve was pending */
134162306a36Sopenharmony_ci	if (del_timer(&qh->unreserve_timer))
134262306a36Sopenharmony_ci		WARN_ON(!qh->unreserve_pending);
134362306a36Sopenharmony_ci
134462306a36Sopenharmony_ci	/*
134562306a36Sopenharmony_ci	 * Only need to reserve if there's not an unreserve pending, since if an
134662306a36Sopenharmony_ci	 * unreserve is pending then by definition our old reservation is still
134762306a36Sopenharmony_ci	 * valid.  Unreserve might still be pending even if we didn't cancel if
134862306a36Sopenharmony_ci	 * dwc2_unreserve_timer_fn() already started.  Code in the timer handles
134962306a36Sopenharmony_ci	 * that case.
135062306a36Sopenharmony_ci	 */
135162306a36Sopenharmony_ci	if (!qh->unreserve_pending) {
135262306a36Sopenharmony_ci		status = dwc2_do_reserve(hsotg, qh);
135362306a36Sopenharmony_ci		if (status)
135462306a36Sopenharmony_ci			return status;
135562306a36Sopenharmony_ci	} else {
135662306a36Sopenharmony_ci		/*
135762306a36Sopenharmony_ci		 * It might have been a while, so make sure that frame_number
135862306a36Sopenharmony_ci		 * is still good.  Note: we could also try to use the similar
135962306a36Sopenharmony_ci		 * dwc2_next_periodic_start() but that schedules much more
136062306a36Sopenharmony_ci		 * tightly and we might need to hurry and queue things up.
136162306a36Sopenharmony_ci		 */
136262306a36Sopenharmony_ci		if (dwc2_frame_num_le(qh->next_active_frame,
136362306a36Sopenharmony_ci				      hsotg->frame_number))
136462306a36Sopenharmony_ci			dwc2_pick_first_frame(hsotg, qh);
136562306a36Sopenharmony_ci	}
136662306a36Sopenharmony_ci
136762306a36Sopenharmony_ci	qh->unreserve_pending = 0;
136862306a36Sopenharmony_ci
136962306a36Sopenharmony_ci	if (hsotg->params.dma_desc_enable)
137062306a36Sopenharmony_ci		/* Don't rely on SOF and start in ready schedule */
137162306a36Sopenharmony_ci		list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
137262306a36Sopenharmony_ci	else
137362306a36Sopenharmony_ci		/* Always start in inactive schedule */
137462306a36Sopenharmony_ci		list_add_tail(&qh->qh_list_entry,
137562306a36Sopenharmony_ci			      &hsotg->periodic_sched_inactive);
137662306a36Sopenharmony_ci
137762306a36Sopenharmony_ci	return 0;
137862306a36Sopenharmony_ci}
137962306a36Sopenharmony_ci
138062306a36Sopenharmony_ci/**
138162306a36Sopenharmony_ci * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
138262306a36Sopenharmony_ci * from the periodic schedule
138362306a36Sopenharmony_ci *
138462306a36Sopenharmony_ci * @hsotg: The HCD state structure for the DWC OTG controller
138562306a36Sopenharmony_ci * @qh:	   QH for the periodic transfer
138662306a36Sopenharmony_ci */
138762306a36Sopenharmony_cistatic void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
138862306a36Sopenharmony_ci				     struct dwc2_qh *qh)
138962306a36Sopenharmony_ci{
139062306a36Sopenharmony_ci	bool did_modify;
139162306a36Sopenharmony_ci
139262306a36Sopenharmony_ci	assert_spin_locked(&hsotg->lock);
139362306a36Sopenharmony_ci
139462306a36Sopenharmony_ci	/*
139562306a36Sopenharmony_ci	 * Schedule the unreserve to happen in a little bit.  Cases here:
139662306a36Sopenharmony_ci	 * - Unreserve worker might be sitting there waiting to grab the lock.
139762306a36Sopenharmony_ci	 *   In this case it will notice it's been schedule again and will
139862306a36Sopenharmony_ci	 *   quit.
139962306a36Sopenharmony_ci	 * - Unreserve worker might not be scheduled.
140062306a36Sopenharmony_ci	 *
140162306a36Sopenharmony_ci	 * We should never already be scheduled since dwc2_schedule_periodic()
140262306a36Sopenharmony_ci	 * should have canceled the scheduled unreserve timer (hence the
140362306a36Sopenharmony_ci	 * warning on did_modify).
140462306a36Sopenharmony_ci	 *
140562306a36Sopenharmony_ci	 * We add + 1 to the timer to guarantee that at least 1 jiffy has
140662306a36Sopenharmony_ci	 * passed (otherwise if the jiffy counter might tick right after we
140762306a36Sopenharmony_ci	 * read it and we'll get no delay).
140862306a36Sopenharmony_ci	 */
140962306a36Sopenharmony_ci	did_modify = mod_timer(&qh->unreserve_timer,
141062306a36Sopenharmony_ci			       jiffies + DWC2_UNRESERVE_DELAY + 1);
141162306a36Sopenharmony_ci	WARN_ON(did_modify);
141262306a36Sopenharmony_ci	qh->unreserve_pending = 1;
141362306a36Sopenharmony_ci
141462306a36Sopenharmony_ci	list_del_init(&qh->qh_list_entry);
141562306a36Sopenharmony_ci}
141662306a36Sopenharmony_ci
141762306a36Sopenharmony_ci/**
141862306a36Sopenharmony_ci * dwc2_wait_timer_fn() - Timer function to re-queue after waiting
141962306a36Sopenharmony_ci *
142062306a36Sopenharmony_ci * As per the spec, a NAK indicates that "a function is temporarily unable to
142162306a36Sopenharmony_ci * transmit or receive data, but will eventually be able to do so without need
142262306a36Sopenharmony_ci * of host intervention".
142362306a36Sopenharmony_ci *
142462306a36Sopenharmony_ci * That means that when we encounter a NAK we're supposed to retry.
142562306a36Sopenharmony_ci *
142662306a36Sopenharmony_ci * ...but if we retry right away (from the interrupt handler that saw the NAK)
142762306a36Sopenharmony_ci * then we can end up with an interrupt storm (if the other side keeps NAKing
142862306a36Sopenharmony_ci * us) because on slow enough CPUs it could take us longer to get out of the
142962306a36Sopenharmony_ci * interrupt routine than it takes for the device to send another NAK.  That
143062306a36Sopenharmony_ci * leads to a constant stream of NAK interrupts and the CPU locks.
143162306a36Sopenharmony_ci *
143262306a36Sopenharmony_ci * ...so instead of retrying right away in the case of a NAK we'll set a timer
143362306a36Sopenharmony_ci * to retry some time later.  This function handles that timer and moves the
143462306a36Sopenharmony_ci * qh back to the "inactive" list, then queues transactions.
143562306a36Sopenharmony_ci *
143662306a36Sopenharmony_ci * @t: Pointer to wait_timer in a qh.
143762306a36Sopenharmony_ci *
143862306a36Sopenharmony_ci * Return: HRTIMER_NORESTART to not automatically restart this timer.
143962306a36Sopenharmony_ci */
144062306a36Sopenharmony_cistatic enum hrtimer_restart dwc2_wait_timer_fn(struct hrtimer *t)
144162306a36Sopenharmony_ci{
144262306a36Sopenharmony_ci	struct dwc2_qh *qh = container_of(t, struct dwc2_qh, wait_timer);
144362306a36Sopenharmony_ci	struct dwc2_hsotg *hsotg = qh->hsotg;
144462306a36Sopenharmony_ci	unsigned long flags;
144562306a36Sopenharmony_ci
144662306a36Sopenharmony_ci	spin_lock_irqsave(&hsotg->lock, flags);
144762306a36Sopenharmony_ci
144862306a36Sopenharmony_ci	/*
144962306a36Sopenharmony_ci	 * We'll set wait_timer_cancel to true if we want to cancel this
145062306a36Sopenharmony_ci	 * operation in dwc2_hcd_qh_unlink().
145162306a36Sopenharmony_ci	 */
145262306a36Sopenharmony_ci	if (!qh->wait_timer_cancel) {
145362306a36Sopenharmony_ci		enum dwc2_transaction_type tr_type;
145462306a36Sopenharmony_ci
145562306a36Sopenharmony_ci		qh->want_wait = false;
145662306a36Sopenharmony_ci
145762306a36Sopenharmony_ci		list_move(&qh->qh_list_entry,
145862306a36Sopenharmony_ci			  &hsotg->non_periodic_sched_inactive);
145962306a36Sopenharmony_ci
146062306a36Sopenharmony_ci		tr_type = dwc2_hcd_select_transactions(hsotg);
146162306a36Sopenharmony_ci		if (tr_type != DWC2_TRANSACTION_NONE)
146262306a36Sopenharmony_ci			dwc2_hcd_queue_transactions(hsotg, tr_type);
146362306a36Sopenharmony_ci	}
146462306a36Sopenharmony_ci
146562306a36Sopenharmony_ci	spin_unlock_irqrestore(&hsotg->lock, flags);
146662306a36Sopenharmony_ci	return HRTIMER_NORESTART;
146762306a36Sopenharmony_ci}
146862306a36Sopenharmony_ci
146962306a36Sopenharmony_ci/**
147062306a36Sopenharmony_ci * dwc2_qh_init() - Initializes a QH structure
147162306a36Sopenharmony_ci *
147262306a36Sopenharmony_ci * @hsotg: The HCD state structure for the DWC OTG controller
147362306a36Sopenharmony_ci * @qh:    The QH to init
147462306a36Sopenharmony_ci * @urb:   Holds the information about the device/endpoint needed to initialize
147562306a36Sopenharmony_ci *         the QH
147662306a36Sopenharmony_ci * @mem_flags: Flags for allocating memory.
147762306a36Sopenharmony_ci */
147862306a36Sopenharmony_cistatic void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
147962306a36Sopenharmony_ci			 struct dwc2_hcd_urb *urb, gfp_t mem_flags)
148062306a36Sopenharmony_ci{
148162306a36Sopenharmony_ci	int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
148262306a36Sopenharmony_ci	u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
148362306a36Sopenharmony_ci	bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
148462306a36Sopenharmony_ci	bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
148562306a36Sopenharmony_ci	bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
148662306a36Sopenharmony_ci	u32 hprt = dwc2_readl(hsotg, HPRT0);
148762306a36Sopenharmony_ci	u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
148862306a36Sopenharmony_ci	bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
148962306a36Sopenharmony_ci			 dev_speed != USB_SPEED_HIGH);
149062306a36Sopenharmony_ci	int maxp = dwc2_hcd_get_maxp(&urb->pipe_info);
149162306a36Sopenharmony_ci	int maxp_mult = dwc2_hcd_get_maxp_mult(&urb->pipe_info);
149262306a36Sopenharmony_ci	int bytecount = maxp_mult * maxp;
149362306a36Sopenharmony_ci	char *speed, *type;
149462306a36Sopenharmony_ci
149562306a36Sopenharmony_ci	/* Initialize QH */
149662306a36Sopenharmony_ci	qh->hsotg = hsotg;
149762306a36Sopenharmony_ci	timer_setup(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 0);
149862306a36Sopenharmony_ci	hrtimer_init(&qh->wait_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
149962306a36Sopenharmony_ci	qh->wait_timer.function = &dwc2_wait_timer_fn;
150062306a36Sopenharmony_ci	qh->ep_type = ep_type;
150162306a36Sopenharmony_ci	qh->ep_is_in = ep_is_in;
150262306a36Sopenharmony_ci
150362306a36Sopenharmony_ci	qh->data_toggle = DWC2_HC_PID_DATA0;
150462306a36Sopenharmony_ci	qh->maxp = maxp;
150562306a36Sopenharmony_ci	qh->maxp_mult = maxp_mult;
150662306a36Sopenharmony_ci	INIT_LIST_HEAD(&qh->qtd_list);
150762306a36Sopenharmony_ci	INIT_LIST_HEAD(&qh->qh_list_entry);
150862306a36Sopenharmony_ci
150962306a36Sopenharmony_ci	qh->do_split = do_split;
151062306a36Sopenharmony_ci	qh->dev_speed = dev_speed;
151162306a36Sopenharmony_ci
151262306a36Sopenharmony_ci	if (ep_is_int || ep_is_isoc) {
151362306a36Sopenharmony_ci		/* Compute scheduling parameters once and save them */
151462306a36Sopenharmony_ci		int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
151562306a36Sopenharmony_ci		struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
151662306a36Sopenharmony_ci							       mem_flags,
151762306a36Sopenharmony_ci							       &qh->ttport);
151862306a36Sopenharmony_ci		int device_ns;
151962306a36Sopenharmony_ci
152062306a36Sopenharmony_ci		qh->dwc_tt = dwc_tt;
152162306a36Sopenharmony_ci
152262306a36Sopenharmony_ci		qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
152362306a36Sopenharmony_ci				       ep_is_isoc, bytecount));
152462306a36Sopenharmony_ci		device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
152562306a36Sopenharmony_ci					      ep_is_isoc, bytecount);
152662306a36Sopenharmony_ci
152762306a36Sopenharmony_ci		if (do_split && dwc_tt)
152862306a36Sopenharmony_ci			device_ns += dwc_tt->usb_tt->think_time;
152962306a36Sopenharmony_ci		qh->device_us = NS_TO_US(device_ns);
153062306a36Sopenharmony_ci
153162306a36Sopenharmony_ci		qh->device_interval = urb->interval;
153262306a36Sopenharmony_ci		qh->host_interval = urb->interval * (do_split ? 8 : 1);
153362306a36Sopenharmony_ci
153462306a36Sopenharmony_ci		/*
153562306a36Sopenharmony_ci		 * Schedule low speed if we're running the host in low or
153662306a36Sopenharmony_ci		 * full speed OR if we've got a "TT" to deal with to access this
153762306a36Sopenharmony_ci		 * device.
153862306a36Sopenharmony_ci		 */
153962306a36Sopenharmony_ci		qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
154062306a36Sopenharmony_ci					 dwc_tt;
154162306a36Sopenharmony_ci
154262306a36Sopenharmony_ci		if (do_split) {
154362306a36Sopenharmony_ci			/* We won't know num transfers until we schedule */
154462306a36Sopenharmony_ci			qh->num_hs_transfers = -1;
154562306a36Sopenharmony_ci		} else if (dev_speed == USB_SPEED_HIGH) {
154662306a36Sopenharmony_ci			qh->num_hs_transfers = 1;
154762306a36Sopenharmony_ci		} else {
154862306a36Sopenharmony_ci			qh->num_hs_transfers = 0;
154962306a36Sopenharmony_ci		}
155062306a36Sopenharmony_ci
155162306a36Sopenharmony_ci		/* We'll schedule later when we have something to do */
155262306a36Sopenharmony_ci	}
155362306a36Sopenharmony_ci
155462306a36Sopenharmony_ci	switch (dev_speed) {
155562306a36Sopenharmony_ci	case USB_SPEED_LOW:
155662306a36Sopenharmony_ci		speed = "low";
155762306a36Sopenharmony_ci		break;
155862306a36Sopenharmony_ci	case USB_SPEED_FULL:
155962306a36Sopenharmony_ci		speed = "full";
156062306a36Sopenharmony_ci		break;
156162306a36Sopenharmony_ci	case USB_SPEED_HIGH:
156262306a36Sopenharmony_ci		speed = "high";
156362306a36Sopenharmony_ci		break;
156462306a36Sopenharmony_ci	default:
156562306a36Sopenharmony_ci		speed = "?";
156662306a36Sopenharmony_ci		break;
156762306a36Sopenharmony_ci	}
156862306a36Sopenharmony_ci
156962306a36Sopenharmony_ci	switch (qh->ep_type) {
157062306a36Sopenharmony_ci	case USB_ENDPOINT_XFER_ISOC:
157162306a36Sopenharmony_ci		type = "isochronous";
157262306a36Sopenharmony_ci		break;
157362306a36Sopenharmony_ci	case USB_ENDPOINT_XFER_INT:
157462306a36Sopenharmony_ci		type = "interrupt";
157562306a36Sopenharmony_ci		break;
157662306a36Sopenharmony_ci	case USB_ENDPOINT_XFER_CONTROL:
157762306a36Sopenharmony_ci		type = "control";
157862306a36Sopenharmony_ci		break;
157962306a36Sopenharmony_ci	case USB_ENDPOINT_XFER_BULK:
158062306a36Sopenharmony_ci		type = "bulk";
158162306a36Sopenharmony_ci		break;
158262306a36Sopenharmony_ci	default:
158362306a36Sopenharmony_ci		type = "?";
158462306a36Sopenharmony_ci		break;
158562306a36Sopenharmony_ci	}
158662306a36Sopenharmony_ci
158762306a36Sopenharmony_ci	dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
158862306a36Sopenharmony_ci		     speed, bytecount);
158962306a36Sopenharmony_ci	dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
159062306a36Sopenharmony_ci		     dwc2_hcd_get_dev_addr(&urb->pipe_info),
159162306a36Sopenharmony_ci		     dwc2_hcd_get_ep_num(&urb->pipe_info),
159262306a36Sopenharmony_ci		     ep_is_in ? "IN" : "OUT");
159362306a36Sopenharmony_ci	if (ep_is_int || ep_is_isoc) {
159462306a36Sopenharmony_ci		dwc2_sch_dbg(hsotg,
159562306a36Sopenharmony_ci			     "QH=%p ...duration: host=%d us, device=%d us\n",
159662306a36Sopenharmony_ci			     qh, qh->host_us, qh->device_us);
159762306a36Sopenharmony_ci		dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
159862306a36Sopenharmony_ci			     qh, qh->host_interval, qh->device_interval);
159962306a36Sopenharmony_ci		if (qh->schedule_low_speed)
160062306a36Sopenharmony_ci			dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
160162306a36Sopenharmony_ci				     qh, dwc2_get_ls_map(hsotg, qh));
160262306a36Sopenharmony_ci	}
160362306a36Sopenharmony_ci}
160462306a36Sopenharmony_ci
160562306a36Sopenharmony_ci/**
160662306a36Sopenharmony_ci * dwc2_hcd_qh_create() - Allocates and initializes a QH
160762306a36Sopenharmony_ci *
160862306a36Sopenharmony_ci * @hsotg:        The HCD state structure for the DWC OTG controller
160962306a36Sopenharmony_ci * @urb:          Holds the information about the device/endpoint needed
161062306a36Sopenharmony_ci *                to initialize the QH
161162306a36Sopenharmony_ci * @mem_flags:   Flags for allocating memory.
161262306a36Sopenharmony_ci *
161362306a36Sopenharmony_ci * Return: Pointer to the newly allocated QH, or NULL on error
161462306a36Sopenharmony_ci */
161562306a36Sopenharmony_cistruct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
161662306a36Sopenharmony_ci				   struct dwc2_hcd_urb *urb,
161762306a36Sopenharmony_ci					  gfp_t mem_flags)
161862306a36Sopenharmony_ci{
161962306a36Sopenharmony_ci	struct dwc2_qh *qh;
162062306a36Sopenharmony_ci
162162306a36Sopenharmony_ci	if (!urb->priv)
162262306a36Sopenharmony_ci		return NULL;
162362306a36Sopenharmony_ci
162462306a36Sopenharmony_ci	/* Allocate memory */
162562306a36Sopenharmony_ci	qh = kzalloc(sizeof(*qh), mem_flags);
162662306a36Sopenharmony_ci	if (!qh)
162762306a36Sopenharmony_ci		return NULL;
162862306a36Sopenharmony_ci
162962306a36Sopenharmony_ci	dwc2_qh_init(hsotg, qh, urb, mem_flags);
163062306a36Sopenharmony_ci
163162306a36Sopenharmony_ci	if (hsotg->params.dma_desc_enable &&
163262306a36Sopenharmony_ci	    dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
163362306a36Sopenharmony_ci		dwc2_hcd_qh_free(hsotg, qh);
163462306a36Sopenharmony_ci		return NULL;
163562306a36Sopenharmony_ci	}
163662306a36Sopenharmony_ci
163762306a36Sopenharmony_ci	return qh;
163862306a36Sopenharmony_ci}
163962306a36Sopenharmony_ci
164062306a36Sopenharmony_ci/**
164162306a36Sopenharmony_ci * dwc2_hcd_qh_free() - Frees the QH
164262306a36Sopenharmony_ci *
164362306a36Sopenharmony_ci * @hsotg: HCD instance
164462306a36Sopenharmony_ci * @qh:    The QH to free
164562306a36Sopenharmony_ci *
164662306a36Sopenharmony_ci * QH should already be removed from the list. QTD list should already be empty
164762306a36Sopenharmony_ci * if called from URB Dequeue.
164862306a36Sopenharmony_ci *
164962306a36Sopenharmony_ci * Must NOT be called with interrupt disabled or spinlock held
165062306a36Sopenharmony_ci */
165162306a36Sopenharmony_civoid dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
165262306a36Sopenharmony_ci{
165362306a36Sopenharmony_ci	/* Make sure any unreserve work is finished. */
165462306a36Sopenharmony_ci	if (del_timer_sync(&qh->unreserve_timer)) {
165562306a36Sopenharmony_ci		unsigned long flags;
165662306a36Sopenharmony_ci
165762306a36Sopenharmony_ci		spin_lock_irqsave(&hsotg->lock, flags);
165862306a36Sopenharmony_ci		dwc2_do_unreserve(hsotg, qh);
165962306a36Sopenharmony_ci		spin_unlock_irqrestore(&hsotg->lock, flags);
166062306a36Sopenharmony_ci	}
166162306a36Sopenharmony_ci
166262306a36Sopenharmony_ci	/*
166362306a36Sopenharmony_ci	 * We don't have the lock so we can safely wait until the wait timer
166462306a36Sopenharmony_ci	 * finishes.  Of course, at this point in time we'd better have set
166562306a36Sopenharmony_ci	 * wait_timer_active to false so if this timer was still pending it
166662306a36Sopenharmony_ci	 * won't do anything anyway, but we want it to finish before we free
166762306a36Sopenharmony_ci	 * memory.
166862306a36Sopenharmony_ci	 */
166962306a36Sopenharmony_ci	hrtimer_cancel(&qh->wait_timer);
167062306a36Sopenharmony_ci
167162306a36Sopenharmony_ci	dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
167262306a36Sopenharmony_ci
167362306a36Sopenharmony_ci	if (qh->desc_list)
167462306a36Sopenharmony_ci		dwc2_hcd_qh_free_ddma(hsotg, qh);
167562306a36Sopenharmony_ci	else if (hsotg->unaligned_cache && qh->dw_align_buf)
167662306a36Sopenharmony_ci		kmem_cache_free(hsotg->unaligned_cache, qh->dw_align_buf);
167762306a36Sopenharmony_ci
167862306a36Sopenharmony_ci	kfree(qh);
167962306a36Sopenharmony_ci}
168062306a36Sopenharmony_ci
168162306a36Sopenharmony_ci/**
168262306a36Sopenharmony_ci * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
168362306a36Sopenharmony_ci * schedule if it is not already in the schedule. If the QH is already in
168462306a36Sopenharmony_ci * the schedule, no action is taken.
168562306a36Sopenharmony_ci *
168662306a36Sopenharmony_ci * @hsotg: The HCD state structure for the DWC OTG controller
168762306a36Sopenharmony_ci * @qh:    The QH to add
168862306a36Sopenharmony_ci *
168962306a36Sopenharmony_ci * Return: 0 if successful, negative error code otherwise
169062306a36Sopenharmony_ci */
169162306a36Sopenharmony_ciint dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
169262306a36Sopenharmony_ci{
169362306a36Sopenharmony_ci	int status;
169462306a36Sopenharmony_ci	u32 intr_mask;
169562306a36Sopenharmony_ci	ktime_t delay;
169662306a36Sopenharmony_ci
169762306a36Sopenharmony_ci	if (dbg_qh(qh))
169862306a36Sopenharmony_ci		dev_vdbg(hsotg->dev, "%s()\n", __func__);
169962306a36Sopenharmony_ci
170062306a36Sopenharmony_ci	if (!list_empty(&qh->qh_list_entry))
170162306a36Sopenharmony_ci		/* QH already in a schedule */
170262306a36Sopenharmony_ci		return 0;
170362306a36Sopenharmony_ci
170462306a36Sopenharmony_ci	/* Add the new QH to the appropriate schedule */
170562306a36Sopenharmony_ci	if (dwc2_qh_is_non_per(qh)) {
170662306a36Sopenharmony_ci		/* Schedule right away */
170762306a36Sopenharmony_ci		qh->start_active_frame = hsotg->frame_number;
170862306a36Sopenharmony_ci		qh->next_active_frame = qh->start_active_frame;
170962306a36Sopenharmony_ci
171062306a36Sopenharmony_ci		if (qh->want_wait) {
171162306a36Sopenharmony_ci			list_add_tail(&qh->qh_list_entry,
171262306a36Sopenharmony_ci				      &hsotg->non_periodic_sched_waiting);
171362306a36Sopenharmony_ci			qh->wait_timer_cancel = false;
171462306a36Sopenharmony_ci			delay = ktime_set(0, DWC2_RETRY_WAIT_DELAY);
171562306a36Sopenharmony_ci			hrtimer_start(&qh->wait_timer, delay, HRTIMER_MODE_REL);
171662306a36Sopenharmony_ci		} else {
171762306a36Sopenharmony_ci			list_add_tail(&qh->qh_list_entry,
171862306a36Sopenharmony_ci				      &hsotg->non_periodic_sched_inactive);
171962306a36Sopenharmony_ci		}
172062306a36Sopenharmony_ci		return 0;
172162306a36Sopenharmony_ci	}
172262306a36Sopenharmony_ci
172362306a36Sopenharmony_ci	status = dwc2_schedule_periodic(hsotg, qh);
172462306a36Sopenharmony_ci	if (status)
172562306a36Sopenharmony_ci		return status;
172662306a36Sopenharmony_ci	if (!hsotg->periodic_qh_count) {
172762306a36Sopenharmony_ci		intr_mask = dwc2_readl(hsotg, GINTMSK);
172862306a36Sopenharmony_ci		intr_mask |= GINTSTS_SOF;
172962306a36Sopenharmony_ci		dwc2_writel(hsotg, intr_mask, GINTMSK);
173062306a36Sopenharmony_ci	}
173162306a36Sopenharmony_ci	hsotg->periodic_qh_count++;
173262306a36Sopenharmony_ci
173362306a36Sopenharmony_ci	return 0;
173462306a36Sopenharmony_ci}
173562306a36Sopenharmony_ci
173662306a36Sopenharmony_ci/**
173762306a36Sopenharmony_ci * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
173862306a36Sopenharmony_ci * schedule. Memory is not freed.
173962306a36Sopenharmony_ci *
174062306a36Sopenharmony_ci * @hsotg: The HCD state structure
174162306a36Sopenharmony_ci * @qh:    QH to remove from schedule
174262306a36Sopenharmony_ci */
174362306a36Sopenharmony_civoid dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
174462306a36Sopenharmony_ci{
174562306a36Sopenharmony_ci	u32 intr_mask;
174662306a36Sopenharmony_ci
174762306a36Sopenharmony_ci	dev_vdbg(hsotg->dev, "%s()\n", __func__);
174862306a36Sopenharmony_ci
174962306a36Sopenharmony_ci	/* If the wait_timer is pending, this will stop it from acting */
175062306a36Sopenharmony_ci	qh->wait_timer_cancel = true;
175162306a36Sopenharmony_ci
175262306a36Sopenharmony_ci	if (list_empty(&qh->qh_list_entry))
175362306a36Sopenharmony_ci		/* QH is not in a schedule */
175462306a36Sopenharmony_ci		return;
175562306a36Sopenharmony_ci
175662306a36Sopenharmony_ci	if (dwc2_qh_is_non_per(qh)) {
175762306a36Sopenharmony_ci		if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
175862306a36Sopenharmony_ci			hsotg->non_periodic_qh_ptr =
175962306a36Sopenharmony_ci					hsotg->non_periodic_qh_ptr->next;
176062306a36Sopenharmony_ci		list_del_init(&qh->qh_list_entry);
176162306a36Sopenharmony_ci		return;
176262306a36Sopenharmony_ci	}
176362306a36Sopenharmony_ci
176462306a36Sopenharmony_ci	dwc2_deschedule_periodic(hsotg, qh);
176562306a36Sopenharmony_ci	hsotg->periodic_qh_count--;
176662306a36Sopenharmony_ci	if (!hsotg->periodic_qh_count &&
176762306a36Sopenharmony_ci	    !hsotg->params.dma_desc_enable) {
176862306a36Sopenharmony_ci		intr_mask = dwc2_readl(hsotg, GINTMSK);
176962306a36Sopenharmony_ci		intr_mask &= ~GINTSTS_SOF;
177062306a36Sopenharmony_ci		dwc2_writel(hsotg, intr_mask, GINTMSK);
177162306a36Sopenharmony_ci	}
177262306a36Sopenharmony_ci}
177362306a36Sopenharmony_ci
177462306a36Sopenharmony_ci/**
177562306a36Sopenharmony_ci * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
177662306a36Sopenharmony_ci *
177762306a36Sopenharmony_ci * This is called for setting next_active_frame for periodic splits for all but
177862306a36Sopenharmony_ci * the first packet of the split.  Confusing?  I thought so...
177962306a36Sopenharmony_ci *
178062306a36Sopenharmony_ci * Periodic splits are single low/full speed transfers that we end up splitting
178162306a36Sopenharmony_ci * up into several high speed transfers.  They always fit into one full (1 ms)
178262306a36Sopenharmony_ci * frame but might be split over several microframes (125 us each).  We to put
178362306a36Sopenharmony_ci * each of the parts on a very specific high speed frame.
178462306a36Sopenharmony_ci *
178562306a36Sopenharmony_ci * This function figures out where the next active uFrame needs to be.
178662306a36Sopenharmony_ci *
178762306a36Sopenharmony_ci * @hsotg:        The HCD state structure
178862306a36Sopenharmony_ci * @qh:           QH for the periodic transfer.
178962306a36Sopenharmony_ci * @frame_number: The current frame number.
179062306a36Sopenharmony_ci *
179162306a36Sopenharmony_ci * Return: number missed by (or 0 if we didn't miss).
179262306a36Sopenharmony_ci */
179362306a36Sopenharmony_cistatic int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
179462306a36Sopenharmony_ci					struct dwc2_qh *qh, u16 frame_number)
179562306a36Sopenharmony_ci{
179662306a36Sopenharmony_ci	u16 old_frame = qh->next_active_frame;
179762306a36Sopenharmony_ci	u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
179862306a36Sopenharmony_ci	int missed = 0;
179962306a36Sopenharmony_ci	u16 incr;
180062306a36Sopenharmony_ci
180162306a36Sopenharmony_ci	/*
180262306a36Sopenharmony_ci	 * See dwc2_uframe_schedule_split() for split scheduling.
180362306a36Sopenharmony_ci	 *
180462306a36Sopenharmony_ci	 * Basically: increment 1 normally, but 2 right after the start split
180562306a36Sopenharmony_ci	 * (except for ISOC out).
180662306a36Sopenharmony_ci	 */
180762306a36Sopenharmony_ci	if (old_frame == qh->start_active_frame &&
180862306a36Sopenharmony_ci	    !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
180962306a36Sopenharmony_ci		incr = 2;
181062306a36Sopenharmony_ci	else
181162306a36Sopenharmony_ci		incr = 1;
181262306a36Sopenharmony_ci
181362306a36Sopenharmony_ci	qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
181462306a36Sopenharmony_ci
181562306a36Sopenharmony_ci	/*
181662306a36Sopenharmony_ci	 * Note that it's OK for frame_number to be 1 frame past
181762306a36Sopenharmony_ci	 * next_active_frame.  Remember that next_active_frame is supposed to
181862306a36Sopenharmony_ci	 * be 1 frame _before_ when we want to be scheduled.  If we're 1 frame
181962306a36Sopenharmony_ci	 * past it just means schedule ASAP.
182062306a36Sopenharmony_ci	 *
182162306a36Sopenharmony_ci	 * It's _not_ OK, however, if we're more than one frame past.
182262306a36Sopenharmony_ci	 */
182362306a36Sopenharmony_ci	if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
182462306a36Sopenharmony_ci		/*
182562306a36Sopenharmony_ci		 * OOPS, we missed.  That's actually pretty bad since
182662306a36Sopenharmony_ci		 * the hub will be unhappy; try ASAP I guess.
182762306a36Sopenharmony_ci		 */
182862306a36Sopenharmony_ci		missed = dwc2_frame_num_dec(prev_frame_number,
182962306a36Sopenharmony_ci					    qh->next_active_frame);
183062306a36Sopenharmony_ci		qh->next_active_frame = frame_number;
183162306a36Sopenharmony_ci	}
183262306a36Sopenharmony_ci
183362306a36Sopenharmony_ci	return missed;
183462306a36Sopenharmony_ci}
183562306a36Sopenharmony_ci
183662306a36Sopenharmony_ci/**
183762306a36Sopenharmony_ci * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
183862306a36Sopenharmony_ci *
183962306a36Sopenharmony_ci * This is called for setting next_active_frame for a periodic transfer for
184062306a36Sopenharmony_ci * all cases other than midway through a periodic split.  This will also update
184162306a36Sopenharmony_ci * start_active_frame.
184262306a36Sopenharmony_ci *
184362306a36Sopenharmony_ci * Since we _always_ keep start_active_frame as the start of the previous
184462306a36Sopenharmony_ci * transfer this is normally pretty easy: we just add our interval to
184562306a36Sopenharmony_ci * start_active_frame and we've got our answer.
184662306a36Sopenharmony_ci *
184762306a36Sopenharmony_ci * The tricks come into play if we miss.  In that case we'll look for the next
184862306a36Sopenharmony_ci * slot we can fit into.
184962306a36Sopenharmony_ci *
185062306a36Sopenharmony_ci * @hsotg:        The HCD state structure
185162306a36Sopenharmony_ci * @qh:           QH for the periodic transfer.
185262306a36Sopenharmony_ci * @frame_number: The current frame number.
185362306a36Sopenharmony_ci *
185462306a36Sopenharmony_ci * Return: number missed by (or 0 if we didn't miss).
185562306a36Sopenharmony_ci */
185662306a36Sopenharmony_cistatic int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
185762306a36Sopenharmony_ci				    struct dwc2_qh *qh, u16 frame_number)
185862306a36Sopenharmony_ci{
185962306a36Sopenharmony_ci	int missed = 0;
186062306a36Sopenharmony_ci	u16 interval = qh->host_interval;
186162306a36Sopenharmony_ci	u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
186262306a36Sopenharmony_ci
186362306a36Sopenharmony_ci	qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
186462306a36Sopenharmony_ci						    interval);
186562306a36Sopenharmony_ci
186662306a36Sopenharmony_ci	/*
186762306a36Sopenharmony_ci	 * The dwc2_frame_num_gt() function used below won't work terribly well
186862306a36Sopenharmony_ci	 * with if we just incremented by a really large intervals since the
186962306a36Sopenharmony_ci	 * frame counter only goes to 0x3fff.  It's terribly unlikely that we
187062306a36Sopenharmony_ci	 * will have missed in this case anyway.  Just go to exit.  If we want
187162306a36Sopenharmony_ci	 * to try to do better we'll need to keep track of a bigger counter
187262306a36Sopenharmony_ci	 * somewhere in the driver and handle overflows.
187362306a36Sopenharmony_ci	 */
187462306a36Sopenharmony_ci	if (interval >= 0x1000)
187562306a36Sopenharmony_ci		goto exit;
187662306a36Sopenharmony_ci
187762306a36Sopenharmony_ci	/*
187862306a36Sopenharmony_ci	 * Test for misses, which is when it's too late to schedule.
187962306a36Sopenharmony_ci	 *
188062306a36Sopenharmony_ci	 * A few things to note:
188162306a36Sopenharmony_ci	 * - We compare against prev_frame_number since start_active_frame
188262306a36Sopenharmony_ci	 *   and next_active_frame are always 1 frame before we want things
188362306a36Sopenharmony_ci	 *   to be active and we assume we can still get scheduled in the
188462306a36Sopenharmony_ci	 *   current frame number.
188562306a36Sopenharmony_ci	 * - It's possible for start_active_frame (now incremented) to be
188662306a36Sopenharmony_ci	 *   next_active_frame if we got an EO MISS (even_odd miss) which
188762306a36Sopenharmony_ci	 *   basically means that we detected there wasn't enough time for
188862306a36Sopenharmony_ci	 *   the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
188962306a36Sopenharmony_ci	 *   at the last second.  We want to make sure we don't schedule
189062306a36Sopenharmony_ci	 *   another transfer for the same frame.  My test webcam doesn't seem
189162306a36Sopenharmony_ci	 *   terribly upset by missing a transfer but really doesn't like when
189262306a36Sopenharmony_ci	 *   we do two transfers in the same frame.
189362306a36Sopenharmony_ci	 * - Some misses are expected.  Specifically, in order to work
189462306a36Sopenharmony_ci	 *   perfectly dwc2 really needs quite spectacular interrupt latency
189562306a36Sopenharmony_ci	 *   requirements.  It needs to be able to handle its interrupts
189662306a36Sopenharmony_ci	 *   completely within 125 us of them being asserted. That not only
189762306a36Sopenharmony_ci	 *   means that the dwc2 interrupt handler needs to be fast but it
189862306a36Sopenharmony_ci	 *   means that nothing else in the system has to block dwc2 for a long
189962306a36Sopenharmony_ci	 *   time.  We can help with the dwc2 parts of this, but it's hard to
190062306a36Sopenharmony_ci	 *   guarantee that a system will have interrupt latency < 125 us, so
190162306a36Sopenharmony_ci	 *   we have to be robust to some misses.
190262306a36Sopenharmony_ci	 */
190362306a36Sopenharmony_ci	if (qh->start_active_frame == qh->next_active_frame ||
190462306a36Sopenharmony_ci	    dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
190562306a36Sopenharmony_ci		u16 ideal_start = qh->start_active_frame;
190662306a36Sopenharmony_ci		int periods_in_map;
190762306a36Sopenharmony_ci
190862306a36Sopenharmony_ci		/*
190962306a36Sopenharmony_ci		 * Adjust interval as per gcd with map size.
191062306a36Sopenharmony_ci		 * See pmap_schedule() for more details here.
191162306a36Sopenharmony_ci		 */
191262306a36Sopenharmony_ci		if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
191362306a36Sopenharmony_ci			periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
191462306a36Sopenharmony_ci		else
191562306a36Sopenharmony_ci			periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
191662306a36Sopenharmony_ci		interval = gcd(interval, periods_in_map);
191762306a36Sopenharmony_ci
191862306a36Sopenharmony_ci		do {
191962306a36Sopenharmony_ci			qh->start_active_frame = dwc2_frame_num_inc(
192062306a36Sopenharmony_ci				qh->start_active_frame, interval);
192162306a36Sopenharmony_ci		} while (dwc2_frame_num_gt(prev_frame_number,
192262306a36Sopenharmony_ci					   qh->start_active_frame));
192362306a36Sopenharmony_ci
192462306a36Sopenharmony_ci		missed = dwc2_frame_num_dec(qh->start_active_frame,
192562306a36Sopenharmony_ci					    ideal_start);
192662306a36Sopenharmony_ci	}
192762306a36Sopenharmony_ci
192862306a36Sopenharmony_ciexit:
192962306a36Sopenharmony_ci	qh->next_active_frame = qh->start_active_frame;
193062306a36Sopenharmony_ci
193162306a36Sopenharmony_ci	return missed;
193262306a36Sopenharmony_ci}
193362306a36Sopenharmony_ci
193462306a36Sopenharmony_ci/*
193562306a36Sopenharmony_ci * Deactivates a QH. For non-periodic QHs, removes the QH from the active
193662306a36Sopenharmony_ci * non-periodic schedule. The QH is added to the inactive non-periodic
193762306a36Sopenharmony_ci * schedule if any QTDs are still attached to the QH.
193862306a36Sopenharmony_ci *
193962306a36Sopenharmony_ci * For periodic QHs, the QH is removed from the periodic queued schedule. If
194062306a36Sopenharmony_ci * there are any QTDs still attached to the QH, the QH is added to either the
194162306a36Sopenharmony_ci * periodic inactive schedule or the periodic ready schedule and its next
194262306a36Sopenharmony_ci * scheduled frame is calculated. The QH is placed in the ready schedule if
194362306a36Sopenharmony_ci * the scheduled frame has been reached already. Otherwise it's placed in the
194462306a36Sopenharmony_ci * inactive schedule. If there are no QTDs attached to the QH, the QH is
194562306a36Sopenharmony_ci * completely removed from the periodic schedule.
194662306a36Sopenharmony_ci */
194762306a36Sopenharmony_civoid dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
194862306a36Sopenharmony_ci			    int sched_next_periodic_split)
194962306a36Sopenharmony_ci{
195062306a36Sopenharmony_ci	u16 old_frame = qh->next_active_frame;
195162306a36Sopenharmony_ci	u16 frame_number;
195262306a36Sopenharmony_ci	int missed;
195362306a36Sopenharmony_ci
195462306a36Sopenharmony_ci	if (dbg_qh(qh))
195562306a36Sopenharmony_ci		dev_vdbg(hsotg->dev, "%s()\n", __func__);
195662306a36Sopenharmony_ci
195762306a36Sopenharmony_ci	if (dwc2_qh_is_non_per(qh)) {
195862306a36Sopenharmony_ci		dwc2_hcd_qh_unlink(hsotg, qh);
195962306a36Sopenharmony_ci		if (!list_empty(&qh->qtd_list))
196062306a36Sopenharmony_ci			/* Add back to inactive/waiting non-periodic schedule */
196162306a36Sopenharmony_ci			dwc2_hcd_qh_add(hsotg, qh);
196262306a36Sopenharmony_ci		return;
196362306a36Sopenharmony_ci	}
196462306a36Sopenharmony_ci
196562306a36Sopenharmony_ci	/*
196662306a36Sopenharmony_ci	 * Use the real frame number rather than the cached value as of the
196762306a36Sopenharmony_ci	 * last SOF just to get us a little closer to reality.  Note that
196862306a36Sopenharmony_ci	 * means we don't actually know if we've already handled the SOF
196962306a36Sopenharmony_ci	 * interrupt for this frame.
197062306a36Sopenharmony_ci	 */
197162306a36Sopenharmony_ci	frame_number = dwc2_hcd_get_frame_number(hsotg);
197262306a36Sopenharmony_ci
197362306a36Sopenharmony_ci	if (sched_next_periodic_split)
197462306a36Sopenharmony_ci		missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
197562306a36Sopenharmony_ci	else
197662306a36Sopenharmony_ci		missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
197762306a36Sopenharmony_ci
197862306a36Sopenharmony_ci	dwc2_sch_vdbg(hsotg,
197962306a36Sopenharmony_ci		      "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
198062306a36Sopenharmony_ci		     qh, sched_next_periodic_split, frame_number, old_frame,
198162306a36Sopenharmony_ci		     qh->next_active_frame,
198262306a36Sopenharmony_ci		     dwc2_frame_num_dec(qh->next_active_frame, old_frame),
198362306a36Sopenharmony_ci		missed, missed ? "MISS" : "");
198462306a36Sopenharmony_ci
198562306a36Sopenharmony_ci	if (list_empty(&qh->qtd_list)) {
198662306a36Sopenharmony_ci		dwc2_hcd_qh_unlink(hsotg, qh);
198762306a36Sopenharmony_ci		return;
198862306a36Sopenharmony_ci	}
198962306a36Sopenharmony_ci
199062306a36Sopenharmony_ci	/*
199162306a36Sopenharmony_ci	 * Remove from periodic_sched_queued and move to
199262306a36Sopenharmony_ci	 * appropriate queue
199362306a36Sopenharmony_ci	 *
199462306a36Sopenharmony_ci	 * Note: we purposely use the frame_number from the "hsotg" structure
199562306a36Sopenharmony_ci	 * since we know SOF interrupt will handle future frames.
199662306a36Sopenharmony_ci	 */
199762306a36Sopenharmony_ci	if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
199862306a36Sopenharmony_ci		list_move_tail(&qh->qh_list_entry,
199962306a36Sopenharmony_ci			       &hsotg->periodic_sched_ready);
200062306a36Sopenharmony_ci	else
200162306a36Sopenharmony_ci		list_move_tail(&qh->qh_list_entry,
200262306a36Sopenharmony_ci			       &hsotg->periodic_sched_inactive);
200362306a36Sopenharmony_ci}
200462306a36Sopenharmony_ci
200562306a36Sopenharmony_ci/**
200662306a36Sopenharmony_ci * dwc2_hcd_qtd_init() - Initializes a QTD structure
200762306a36Sopenharmony_ci *
200862306a36Sopenharmony_ci * @qtd: The QTD to initialize
200962306a36Sopenharmony_ci * @urb: The associated URB
201062306a36Sopenharmony_ci */
201162306a36Sopenharmony_civoid dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
201262306a36Sopenharmony_ci{
201362306a36Sopenharmony_ci	qtd->urb = urb;
201462306a36Sopenharmony_ci	if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
201562306a36Sopenharmony_ci			USB_ENDPOINT_XFER_CONTROL) {
201662306a36Sopenharmony_ci		/*
201762306a36Sopenharmony_ci		 * The only time the QTD data toggle is used is on the data
201862306a36Sopenharmony_ci		 * phase of control transfers. This phase always starts with
201962306a36Sopenharmony_ci		 * DATA1.
202062306a36Sopenharmony_ci		 */
202162306a36Sopenharmony_ci		qtd->data_toggle = DWC2_HC_PID_DATA1;
202262306a36Sopenharmony_ci		qtd->control_phase = DWC2_CONTROL_SETUP;
202362306a36Sopenharmony_ci	}
202462306a36Sopenharmony_ci
202562306a36Sopenharmony_ci	/* Start split */
202662306a36Sopenharmony_ci	qtd->complete_split = 0;
202762306a36Sopenharmony_ci	qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
202862306a36Sopenharmony_ci	qtd->isoc_split_offset = 0;
202962306a36Sopenharmony_ci	qtd->in_process = 0;
203062306a36Sopenharmony_ci
203162306a36Sopenharmony_ci	/* Store the qtd ptr in the urb to reference the QTD */
203262306a36Sopenharmony_ci	urb->qtd = qtd;
203362306a36Sopenharmony_ci}
203462306a36Sopenharmony_ci
203562306a36Sopenharmony_ci/**
203662306a36Sopenharmony_ci * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
203762306a36Sopenharmony_ci *			Caller must hold driver lock.
203862306a36Sopenharmony_ci *
203962306a36Sopenharmony_ci * @hsotg:        The DWC HCD structure
204062306a36Sopenharmony_ci * @qtd:          The QTD to add
204162306a36Sopenharmony_ci * @qh:           Queue head to add qtd to
204262306a36Sopenharmony_ci *
204362306a36Sopenharmony_ci * Return: 0 if successful, negative error code otherwise
204462306a36Sopenharmony_ci *
204562306a36Sopenharmony_ci * If the QH to which the QTD is added is not currently scheduled, it is placed
204662306a36Sopenharmony_ci * into the proper schedule based on its EP type.
204762306a36Sopenharmony_ci */
204862306a36Sopenharmony_ciint dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
204962306a36Sopenharmony_ci		     struct dwc2_qh *qh)
205062306a36Sopenharmony_ci{
205162306a36Sopenharmony_ci	int retval;
205262306a36Sopenharmony_ci
205362306a36Sopenharmony_ci	if (unlikely(!qh)) {
205462306a36Sopenharmony_ci		dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
205562306a36Sopenharmony_ci		retval = -EINVAL;
205662306a36Sopenharmony_ci		goto fail;
205762306a36Sopenharmony_ci	}
205862306a36Sopenharmony_ci
205962306a36Sopenharmony_ci	retval = dwc2_hcd_qh_add(hsotg, qh);
206062306a36Sopenharmony_ci	if (retval)
206162306a36Sopenharmony_ci		goto fail;
206262306a36Sopenharmony_ci
206362306a36Sopenharmony_ci	qtd->qh = qh;
206462306a36Sopenharmony_ci	list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
206562306a36Sopenharmony_ci
206662306a36Sopenharmony_ci	return 0;
206762306a36Sopenharmony_cifail:
206862306a36Sopenharmony_ci	return retval;
206962306a36Sopenharmony_ci}
2070