xref: /kernel/linux/linux-6.6/drivers/usb/core/usb.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/usb/core/usb.c
4 *
5 * (C) Copyright Linus Torvalds 1999
6 * (C) Copyright Johannes Erdfelt 1999-2001
7 * (C) Copyright Andreas Gal 1999
8 * (C) Copyright Gregory P. Smith 1999
9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
10 * (C) Copyright Randy Dunlap 2000
11 * (C) Copyright David Brownell 2000-2004
12 * (C) Copyright Yggdrasil Computing, Inc. 2000
13 *     (usb_device_id matching changes by Adam J. Richter)
14 * (C) Copyright Greg Kroah-Hartman 2002-2003
15 *
16 * Released under the GPLv2 only.
17 *
18 * NOTE! This is not actually a driver at all, rather this is
19 * just a collection of helper routines that implement the
20 * generic USB things that the real drivers can use..
21 *
22 * Think of this as a "USB library" rather than anything else,
23 * with no callbacks.  Callbacks are evil.
24 */
25
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/of.h>
29#include <linux/string.h>
30#include <linux/bitops.h>
31#include <linux/slab.h>
32#include <linux/kmod.h>
33#include <linux/init.h>
34#include <linux/spinlock.h>
35#include <linux/errno.h>
36#include <linux/usb.h>
37#include <linux/usb/hcd.h>
38#include <linux/mutex.h>
39#include <linux/workqueue.h>
40#include <linux/debugfs.h>
41#include <linux/usb/of.h>
42
43#include <asm/io.h>
44#include <linux/scatterlist.h>
45#include <linux/mm.h>
46#include <linux/dma-mapping.h>
47
48#include "hub.h"
49
50const char *usbcore_name = "usbcore";
51
52static bool nousb;	/* Disable USB when built into kernel image */
53
54module_param(nousb, bool, 0444);
55
56/*
57 * for external read access to <nousb>
58 */
59int usb_disabled(void)
60{
61	return nousb;
62}
63EXPORT_SYMBOL_GPL(usb_disabled);
64
65#ifdef	CONFIG_PM
66/* Default delay value, in seconds */
67static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
68module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
69MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
70
71#else
72#define usb_autosuspend_delay		0
73#endif
74
75static bool match_endpoint(struct usb_endpoint_descriptor *epd,
76		struct usb_endpoint_descriptor **bulk_in,
77		struct usb_endpoint_descriptor **bulk_out,
78		struct usb_endpoint_descriptor **int_in,
79		struct usb_endpoint_descriptor **int_out)
80{
81	switch (usb_endpoint_type(epd)) {
82	case USB_ENDPOINT_XFER_BULK:
83		if (usb_endpoint_dir_in(epd)) {
84			if (bulk_in && !*bulk_in) {
85				*bulk_in = epd;
86				break;
87			}
88		} else {
89			if (bulk_out && !*bulk_out) {
90				*bulk_out = epd;
91				break;
92			}
93		}
94
95		return false;
96	case USB_ENDPOINT_XFER_INT:
97		if (usb_endpoint_dir_in(epd)) {
98			if (int_in && !*int_in) {
99				*int_in = epd;
100				break;
101			}
102		} else {
103			if (int_out && !*int_out) {
104				*int_out = epd;
105				break;
106			}
107		}
108
109		return false;
110	default:
111		return false;
112	}
113
114	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
115			(!int_in || *int_in) && (!int_out || *int_out);
116}
117
118/**
119 * usb_find_common_endpoints() -- look up common endpoint descriptors
120 * @alt:	alternate setting to search
121 * @bulk_in:	pointer to descriptor pointer, or NULL
122 * @bulk_out:	pointer to descriptor pointer, or NULL
123 * @int_in:	pointer to descriptor pointer, or NULL
124 * @int_out:	pointer to descriptor pointer, or NULL
125 *
126 * Search the alternate setting's endpoint descriptors for the first bulk-in,
127 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
128 * provided pointers (unless they are NULL).
129 *
130 * If a requested endpoint is not found, the corresponding pointer is set to
131 * NULL.
132 *
133 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
134 */
135int usb_find_common_endpoints(struct usb_host_interface *alt,
136		struct usb_endpoint_descriptor **bulk_in,
137		struct usb_endpoint_descriptor **bulk_out,
138		struct usb_endpoint_descriptor **int_in,
139		struct usb_endpoint_descriptor **int_out)
140{
141	struct usb_endpoint_descriptor *epd;
142	int i;
143
144	if (bulk_in)
145		*bulk_in = NULL;
146	if (bulk_out)
147		*bulk_out = NULL;
148	if (int_in)
149		*int_in = NULL;
150	if (int_out)
151		*int_out = NULL;
152
153	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
154		epd = &alt->endpoint[i].desc;
155
156		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
157			return 0;
158	}
159
160	return -ENXIO;
161}
162EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
163
164/**
165 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
166 * @alt:	alternate setting to search
167 * @bulk_in:	pointer to descriptor pointer, or NULL
168 * @bulk_out:	pointer to descriptor pointer, or NULL
169 * @int_in:	pointer to descriptor pointer, or NULL
170 * @int_out:	pointer to descriptor pointer, or NULL
171 *
172 * Search the alternate setting's endpoint descriptors for the last bulk-in,
173 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
174 * provided pointers (unless they are NULL).
175 *
176 * If a requested endpoint is not found, the corresponding pointer is set to
177 * NULL.
178 *
179 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
180 */
181int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
182		struct usb_endpoint_descriptor **bulk_in,
183		struct usb_endpoint_descriptor **bulk_out,
184		struct usb_endpoint_descriptor **int_in,
185		struct usb_endpoint_descriptor **int_out)
186{
187	struct usb_endpoint_descriptor *epd;
188	int i;
189
190	if (bulk_in)
191		*bulk_in = NULL;
192	if (bulk_out)
193		*bulk_out = NULL;
194	if (int_in)
195		*int_in = NULL;
196	if (int_out)
197		*int_out = NULL;
198
199	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
200		epd = &alt->endpoint[i].desc;
201
202		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
203			return 0;
204	}
205
206	return -ENXIO;
207}
208EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
209
210/**
211 * usb_find_endpoint() - Given an endpoint address, search for the endpoint's
212 * usb_host_endpoint structure in an interface's current altsetting.
213 * @intf: the interface whose current altsetting should be searched
214 * @ep_addr: the endpoint address (number and direction) to find
215 *
216 * Search the altsetting's list of endpoints for one with the specified address.
217 *
218 * Return: Pointer to the usb_host_endpoint if found, %NULL otherwise.
219 */
220static const struct usb_host_endpoint *usb_find_endpoint(
221		const struct usb_interface *intf, unsigned int ep_addr)
222{
223	int n;
224	const struct usb_host_endpoint *ep;
225
226	n = intf->cur_altsetting->desc.bNumEndpoints;
227	ep = intf->cur_altsetting->endpoint;
228	for (; n > 0; (--n, ++ep)) {
229		if (ep->desc.bEndpointAddress == ep_addr)
230			return ep;
231	}
232	return NULL;
233}
234
235/**
236 * usb_check_bulk_endpoints - Check whether an interface's current altsetting
237 * contains a set of bulk endpoints with the given addresses.
238 * @intf: the interface whose current altsetting should be searched
239 * @ep_addrs: 0-terminated array of the endpoint addresses (number and
240 * direction) to look for
241 *
242 * Search for endpoints with the specified addresses and check their types.
243 *
244 * Return: %true if all the endpoints are found and are bulk, %false otherwise.
245 */
246bool usb_check_bulk_endpoints(
247		const struct usb_interface *intf, const u8 *ep_addrs)
248{
249	const struct usb_host_endpoint *ep;
250
251	for (; *ep_addrs; ++ep_addrs) {
252		ep = usb_find_endpoint(intf, *ep_addrs);
253		if (!ep || !usb_endpoint_xfer_bulk(&ep->desc))
254			return false;
255	}
256	return true;
257}
258EXPORT_SYMBOL_GPL(usb_check_bulk_endpoints);
259
260/**
261 * usb_check_int_endpoints - Check whether an interface's current altsetting
262 * contains a set of interrupt endpoints with the given addresses.
263 * @intf: the interface whose current altsetting should be searched
264 * @ep_addrs: 0-terminated array of the endpoint addresses (number and
265 * direction) to look for
266 *
267 * Search for endpoints with the specified addresses and check their types.
268 *
269 * Return: %true if all the endpoints are found and are interrupt,
270 * %false otherwise.
271 */
272bool usb_check_int_endpoints(
273		const struct usb_interface *intf, const u8 *ep_addrs)
274{
275	const struct usb_host_endpoint *ep;
276
277	for (; *ep_addrs; ++ep_addrs) {
278		ep = usb_find_endpoint(intf, *ep_addrs);
279		if (!ep || !usb_endpoint_xfer_int(&ep->desc))
280			return false;
281	}
282	return true;
283}
284EXPORT_SYMBOL_GPL(usb_check_int_endpoints);
285
286/**
287 * usb_find_alt_setting() - Given a configuration, find the alternate setting
288 * for the given interface.
289 * @config: the configuration to search (not necessarily the current config).
290 * @iface_num: interface number to search in
291 * @alt_num: alternate interface setting number to search for.
292 *
293 * Search the configuration's interface cache for the given alt setting.
294 *
295 * Return: The alternate setting, if found. %NULL otherwise.
296 */
297struct usb_host_interface *usb_find_alt_setting(
298		struct usb_host_config *config,
299		unsigned int iface_num,
300		unsigned int alt_num)
301{
302	struct usb_interface_cache *intf_cache = NULL;
303	int i;
304
305	if (!config)
306		return NULL;
307	for (i = 0; i < config->desc.bNumInterfaces; i++) {
308		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
309				== iface_num) {
310			intf_cache = config->intf_cache[i];
311			break;
312		}
313	}
314	if (!intf_cache)
315		return NULL;
316	for (i = 0; i < intf_cache->num_altsetting; i++)
317		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
318			return &intf_cache->altsetting[i];
319
320	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
321			"config %u\n", alt_num, iface_num,
322			config->desc.bConfigurationValue);
323	return NULL;
324}
325EXPORT_SYMBOL_GPL(usb_find_alt_setting);
326
327/**
328 * usb_ifnum_to_if - get the interface object with a given interface number
329 * @dev: the device whose current configuration is considered
330 * @ifnum: the desired interface
331 *
332 * This walks the device descriptor for the currently active configuration
333 * to find the interface object with the particular interface number.
334 *
335 * Note that configuration descriptors are not required to assign interface
336 * numbers sequentially, so that it would be incorrect to assume that
337 * the first interface in that descriptor corresponds to interface zero.
338 * This routine helps device drivers avoid such mistakes.
339 * However, you should make sure that you do the right thing with any
340 * alternate settings available for this interfaces.
341 *
342 * Don't call this function unless you are bound to one of the interfaces
343 * on this device or you have locked the device!
344 *
345 * Return: A pointer to the interface that has @ifnum as interface number,
346 * if found. %NULL otherwise.
347 */
348struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
349				      unsigned ifnum)
350{
351	struct usb_host_config *config = dev->actconfig;
352	int i;
353
354	if (!config)
355		return NULL;
356	for (i = 0; i < config->desc.bNumInterfaces; i++)
357		if (config->interface[i]->altsetting[0]
358				.desc.bInterfaceNumber == ifnum)
359			return config->interface[i];
360
361	return NULL;
362}
363EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
364
365/**
366 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
367 * @intf: the interface containing the altsetting in question
368 * @altnum: the desired alternate setting number
369 *
370 * This searches the altsetting array of the specified interface for
371 * an entry with the correct bAlternateSetting value.
372 *
373 * Note that altsettings need not be stored sequentially by number, so
374 * it would be incorrect to assume that the first altsetting entry in
375 * the array corresponds to altsetting zero.  This routine helps device
376 * drivers avoid such mistakes.
377 *
378 * Don't call this function unless you are bound to the intf interface
379 * or you have locked the device!
380 *
381 * Return: A pointer to the entry of the altsetting array of @intf that
382 * has @altnum as the alternate setting number. %NULL if not found.
383 */
384struct usb_host_interface *usb_altnum_to_altsetting(
385					const struct usb_interface *intf,
386					unsigned int altnum)
387{
388	int i;
389
390	for (i = 0; i < intf->num_altsetting; i++) {
391		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
392			return &intf->altsetting[i];
393	}
394	return NULL;
395}
396EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
397
398struct find_interface_arg {
399	int minor;
400	struct device_driver *drv;
401};
402
403static int __find_interface(struct device *dev, const void *data)
404{
405	const struct find_interface_arg *arg = data;
406	struct usb_interface *intf;
407
408	if (!is_usb_interface(dev))
409		return 0;
410
411	if (dev->driver != arg->drv)
412		return 0;
413	intf = to_usb_interface(dev);
414	return intf->minor == arg->minor;
415}
416
417/**
418 * usb_find_interface - find usb_interface pointer for driver and device
419 * @drv: the driver whose current configuration is considered
420 * @minor: the minor number of the desired device
421 *
422 * This walks the bus device list and returns a pointer to the interface
423 * with the matching minor and driver.  Note, this only works for devices
424 * that share the USB major number.
425 *
426 * Return: A pointer to the interface with the matching major and @minor.
427 */
428struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
429{
430	struct find_interface_arg argb;
431	struct device *dev;
432
433	argb.minor = minor;
434	argb.drv = &drv->drvwrap.driver;
435
436	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
437
438	/* Drop reference count from bus_find_device */
439	put_device(dev);
440
441	return dev ? to_usb_interface(dev) : NULL;
442}
443EXPORT_SYMBOL_GPL(usb_find_interface);
444
445struct each_dev_arg {
446	void *data;
447	int (*fn)(struct usb_device *, void *);
448};
449
450static int __each_dev(struct device *dev, void *data)
451{
452	struct each_dev_arg *arg = (struct each_dev_arg *)data;
453
454	/* There are struct usb_interface on the same bus, filter them out */
455	if (!is_usb_device(dev))
456		return 0;
457
458	return arg->fn(to_usb_device(dev), arg->data);
459}
460
461/**
462 * usb_for_each_dev - iterate over all USB devices in the system
463 * @data: data pointer that will be handed to the callback function
464 * @fn: callback function to be called for each USB device
465 *
466 * Iterate over all USB devices and call @fn for each, passing it @data. If it
467 * returns anything other than 0, we break the iteration prematurely and return
468 * that value.
469 */
470int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
471{
472	struct each_dev_arg arg = {data, fn};
473
474	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
475}
476EXPORT_SYMBOL_GPL(usb_for_each_dev);
477
478/**
479 * usb_release_dev - free a usb device structure when all users of it are finished.
480 * @dev: device that's been disconnected
481 *
482 * Will be called only by the device core when all users of this usb device are
483 * done.
484 */
485static void usb_release_dev(struct device *dev)
486{
487	struct usb_device *udev;
488	struct usb_hcd *hcd;
489
490	udev = to_usb_device(dev);
491	hcd = bus_to_hcd(udev->bus);
492
493	usb_destroy_configuration(udev);
494	usb_release_bos_descriptor(udev);
495	of_node_put(dev->of_node);
496	usb_put_hcd(hcd);
497	kfree(udev->product);
498	kfree(udev->manufacturer);
499	kfree(udev->serial);
500	kfree(udev);
501}
502
503static int usb_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
504{
505	const struct usb_device *usb_dev;
506
507	usb_dev = to_usb_device(dev);
508
509	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
510		return -ENOMEM;
511
512	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
513		return -ENOMEM;
514
515	return 0;
516}
517
518#ifdef	CONFIG_PM
519
520/* USB device Power-Management thunks.
521 * There's no need to distinguish here between quiescing a USB device
522 * and powering it down; the generic_suspend() routine takes care of
523 * it by skipping the usb_port_suspend() call for a quiesce.  And for
524 * USB interfaces there's no difference at all.
525 */
526
527static int usb_dev_prepare(struct device *dev)
528{
529	return 0;		/* Implement eventually? */
530}
531
532static void usb_dev_complete(struct device *dev)
533{
534	/* Currently used only for rebinding interfaces */
535	usb_resume_complete(dev);
536}
537
538static int usb_dev_suspend(struct device *dev)
539{
540	return usb_suspend(dev, PMSG_SUSPEND);
541}
542
543static int usb_dev_resume(struct device *dev)
544{
545	return usb_resume(dev, PMSG_RESUME);
546}
547
548static int usb_dev_freeze(struct device *dev)
549{
550	return usb_suspend(dev, PMSG_FREEZE);
551}
552
553static int usb_dev_thaw(struct device *dev)
554{
555	return usb_resume(dev, PMSG_THAW);
556}
557
558static int usb_dev_poweroff(struct device *dev)
559{
560	return usb_suspend(dev, PMSG_HIBERNATE);
561}
562
563static int usb_dev_restore(struct device *dev)
564{
565	return usb_resume(dev, PMSG_RESTORE);
566}
567
568static const struct dev_pm_ops usb_device_pm_ops = {
569	.prepare =	usb_dev_prepare,
570	.complete =	usb_dev_complete,
571	.suspend =	usb_dev_suspend,
572	.resume =	usb_dev_resume,
573	.freeze =	usb_dev_freeze,
574	.thaw =		usb_dev_thaw,
575	.poweroff =	usb_dev_poweroff,
576	.restore =	usb_dev_restore,
577	.runtime_suspend =	usb_runtime_suspend,
578	.runtime_resume =	usb_runtime_resume,
579	.runtime_idle =		usb_runtime_idle,
580};
581
582#endif	/* CONFIG_PM */
583
584
585static char *usb_devnode(const struct device *dev,
586			 umode_t *mode, kuid_t *uid, kgid_t *gid)
587{
588	const struct usb_device *usb_dev;
589
590	usb_dev = to_usb_device(dev);
591	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
592			 usb_dev->bus->busnum, usb_dev->devnum);
593}
594
595struct device_type usb_device_type = {
596	.name =		"usb_device",
597	.release =	usb_release_dev,
598	.uevent =	usb_dev_uevent,
599	.devnode = 	usb_devnode,
600#ifdef CONFIG_PM
601	.pm =		&usb_device_pm_ops,
602#endif
603};
604
605static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
606{
607	struct usb_hub *hub;
608
609	if (!dev->parent)
610		return true; /* Root hub always ok [and always wired] */
611
612	switch (hcd->dev_policy) {
613	case USB_DEVICE_AUTHORIZE_NONE:
614	default:
615		return false;
616
617	case USB_DEVICE_AUTHORIZE_ALL:
618		return true;
619
620	case USB_DEVICE_AUTHORIZE_INTERNAL:
621		hub = usb_hub_to_struct_hub(dev->parent);
622		return hub->ports[dev->portnum - 1]->connect_type ==
623				USB_PORT_CONNECT_TYPE_HARD_WIRED;
624	}
625}
626
627/**
628 * usb_alloc_dev - usb device constructor (usbcore-internal)
629 * @parent: hub to which device is connected; null to allocate a root hub
630 * @bus: bus used to access the device
631 * @port1: one-based index of port; ignored for root hubs
632 *
633 * Context: task context, might sleep.
634 *
635 * Only hub drivers (including virtual root hub drivers for host
636 * controllers) should ever call this.
637 *
638 * This call may not be used in a non-sleeping context.
639 *
640 * Return: On success, a pointer to the allocated usb device. %NULL on
641 * failure.
642 */
643struct usb_device *usb_alloc_dev(struct usb_device *parent,
644				 struct usb_bus *bus, unsigned port1)
645{
646	struct usb_device *dev;
647	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
648	unsigned raw_port = port1;
649
650	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
651	if (!dev)
652		return NULL;
653
654	if (!usb_get_hcd(usb_hcd)) {
655		kfree(dev);
656		return NULL;
657	}
658	/* Root hubs aren't true devices, so don't allocate HCD resources */
659	if (usb_hcd->driver->alloc_dev && parent &&
660		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
661		usb_put_hcd(bus_to_hcd(bus));
662		kfree(dev);
663		return NULL;
664	}
665
666	device_initialize(&dev->dev);
667	dev->dev.bus = &usb_bus_type;
668	dev->dev.type = &usb_device_type;
669	dev->dev.groups = usb_device_groups;
670	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
671	dev->state = USB_STATE_ATTACHED;
672	dev->lpm_disable_count = 1;
673	atomic_set(&dev->urbnum, 0);
674
675	INIT_LIST_HEAD(&dev->ep0.urb_list);
676	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
677	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
678	/* ep0 maxpacket comes later, from device descriptor */
679	usb_enable_endpoint(dev, &dev->ep0, false);
680	dev->can_submit = 1;
681
682	/* Save readable and stable topology id, distinguishing devices
683	 * by location for diagnostics, tools, driver model, etc.  The
684	 * string is a path along hub ports, from the root.  Each device's
685	 * dev->devpath will be stable until USB is re-cabled, and hubs
686	 * are often labeled with these port numbers.  The name isn't
687	 * as stable:  bus->busnum changes easily from modprobe order,
688	 * cardbus or pci hotplugging, and so on.
689	 */
690	if (unlikely(!parent)) {
691		dev->devpath[0] = '0';
692		dev->route = 0;
693
694		dev->dev.parent = bus->controller;
695		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
696		dev_set_name(&dev->dev, "usb%d", bus->busnum);
697	} else {
698		/* match any labeling on the hubs; it's one-based */
699		if (parent->devpath[0] == '0') {
700			snprintf(dev->devpath, sizeof dev->devpath,
701				"%d", port1);
702			/* Root ports are not counted in route string */
703			dev->route = 0;
704		} else {
705			snprintf(dev->devpath, sizeof dev->devpath,
706				"%s.%d", parent->devpath, port1);
707			/* Route string assumes hubs have less than 16 ports */
708			if (port1 < 15)
709				dev->route = parent->route +
710					(port1 << ((parent->level - 1)*4));
711			else
712				dev->route = parent->route +
713					(15 << ((parent->level - 1)*4));
714		}
715
716		dev->dev.parent = &parent->dev;
717		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
718
719		if (!parent->parent) {
720			/* device under root hub's port */
721			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
722				port1);
723		}
724		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
725
726		/* hub driver sets up TT records */
727	}
728
729	dev->portnum = port1;
730	dev->bus = bus;
731	dev->parent = parent;
732	INIT_LIST_HEAD(&dev->filelist);
733
734#ifdef	CONFIG_PM
735	pm_runtime_set_autosuspend_delay(&dev->dev,
736			usb_autosuspend_delay * 1000);
737	dev->connect_time = jiffies;
738	dev->active_duration = -jiffies;
739#endif
740
741	dev->authorized = usb_dev_authorized(dev, usb_hcd);
742	return dev;
743}
744EXPORT_SYMBOL_GPL(usb_alloc_dev);
745
746/**
747 * usb_get_dev - increments the reference count of the usb device structure
748 * @dev: the device being referenced
749 *
750 * Each live reference to a device should be refcounted.
751 *
752 * Drivers for USB interfaces should normally record such references in
753 * their probe() methods, when they bind to an interface, and release
754 * them by calling usb_put_dev(), in their disconnect() methods.
755 * However, if a driver does not access the usb_device structure after
756 * its disconnect() method returns then refcounting is not necessary,
757 * because the USB core guarantees that a usb_device will not be
758 * deallocated until after all of its interface drivers have been unbound.
759 *
760 * Return: A pointer to the device with the incremented reference counter.
761 */
762struct usb_device *usb_get_dev(struct usb_device *dev)
763{
764	if (dev)
765		get_device(&dev->dev);
766	return dev;
767}
768EXPORT_SYMBOL_GPL(usb_get_dev);
769
770/**
771 * usb_put_dev - release a use of the usb device structure
772 * @dev: device that's been disconnected
773 *
774 * Must be called when a user of a device is finished with it.  When the last
775 * user of the device calls this function, the memory of the device is freed.
776 */
777void usb_put_dev(struct usb_device *dev)
778{
779	if (dev)
780		put_device(&dev->dev);
781}
782EXPORT_SYMBOL_GPL(usb_put_dev);
783
784/**
785 * usb_get_intf - increments the reference count of the usb interface structure
786 * @intf: the interface being referenced
787 *
788 * Each live reference to a interface must be refcounted.
789 *
790 * Drivers for USB interfaces should normally record such references in
791 * their probe() methods, when they bind to an interface, and release
792 * them by calling usb_put_intf(), in their disconnect() methods.
793 * However, if a driver does not access the usb_interface structure after
794 * its disconnect() method returns then refcounting is not necessary,
795 * because the USB core guarantees that a usb_interface will not be
796 * deallocated until after its driver has been unbound.
797 *
798 * Return: A pointer to the interface with the incremented reference counter.
799 */
800struct usb_interface *usb_get_intf(struct usb_interface *intf)
801{
802	if (intf)
803		get_device(&intf->dev);
804	return intf;
805}
806EXPORT_SYMBOL_GPL(usb_get_intf);
807
808/**
809 * usb_put_intf - release a use of the usb interface structure
810 * @intf: interface that's been decremented
811 *
812 * Must be called when a user of an interface is finished with it.  When the
813 * last user of the interface calls this function, the memory of the interface
814 * is freed.
815 */
816void usb_put_intf(struct usb_interface *intf)
817{
818	if (intf)
819		put_device(&intf->dev);
820}
821EXPORT_SYMBOL_GPL(usb_put_intf);
822
823/**
824 * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint
825 * @intf: the usb interface
826 *
827 * While a USB device cannot perform DMA operations by itself, many USB
828 * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint
829 * for the given USB interface, if any. The returned device structure must be
830 * released with put_device().
831 *
832 * See also usb_get_dma_device().
833 *
834 * Returns: A reference to the usb interface's DMA endpoint; or NULL if none
835 *          exists.
836 */
837struct device *usb_intf_get_dma_device(struct usb_interface *intf)
838{
839	struct usb_device *udev = interface_to_usbdev(intf);
840	struct device *dmadev;
841
842	if (!udev->bus)
843		return NULL;
844
845	dmadev = get_device(udev->bus->sysdev);
846	if (!dmadev || !dmadev->dma_mask) {
847		put_device(dmadev);
848		return NULL;
849	}
850
851	return dmadev;
852}
853EXPORT_SYMBOL_GPL(usb_intf_get_dma_device);
854
855/*			USB device locking
856 *
857 * USB devices and interfaces are locked using the semaphore in their
858 * embedded struct device.  The hub driver guarantees that whenever a
859 * device is connected or disconnected, drivers are called with the
860 * USB device locked as well as their particular interface.
861 *
862 * Complications arise when several devices are to be locked at the same
863 * time.  Only hub-aware drivers that are part of usbcore ever have to
864 * do this; nobody else needs to worry about it.  The rule for locking
865 * is simple:
866 *
867 *	When locking both a device and its parent, always lock the
868 *	parent first.
869 */
870
871/**
872 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
873 * @udev: device that's being locked
874 * @iface: interface bound to the driver making the request (optional)
875 *
876 * Attempts to acquire the device lock, but fails if the device is
877 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
878 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
879 * lock, the routine polls repeatedly.  This is to prevent deadlock with
880 * disconnect; in some drivers (such as usb-storage) the disconnect()
881 * or suspend() method will block waiting for a device reset to complete.
882 *
883 * Return: A negative error code for failure, otherwise 0.
884 */
885int usb_lock_device_for_reset(struct usb_device *udev,
886			      const struct usb_interface *iface)
887{
888	unsigned long jiffies_expire = jiffies + HZ;
889
890	if (udev->state == USB_STATE_NOTATTACHED)
891		return -ENODEV;
892	if (udev->state == USB_STATE_SUSPENDED)
893		return -EHOSTUNREACH;
894	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
895			iface->condition == USB_INTERFACE_UNBOUND))
896		return -EINTR;
897
898	while (!usb_trylock_device(udev)) {
899
900		/* If we can't acquire the lock after waiting one second,
901		 * we're probably deadlocked */
902		if (time_after(jiffies, jiffies_expire))
903			return -EBUSY;
904
905		msleep(15);
906		if (udev->state == USB_STATE_NOTATTACHED)
907			return -ENODEV;
908		if (udev->state == USB_STATE_SUSPENDED)
909			return -EHOSTUNREACH;
910		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
911				iface->condition == USB_INTERFACE_UNBOUND))
912			return -EINTR;
913	}
914	return 0;
915}
916EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
917
918/**
919 * usb_get_current_frame_number - return current bus frame number
920 * @dev: the device whose bus is being queried
921 *
922 * Return: The current frame number for the USB host controller used
923 * with the given USB device. This can be used when scheduling
924 * isochronous requests.
925 *
926 * Note: Different kinds of host controller have different "scheduling
927 * horizons". While one type might support scheduling only 32 frames
928 * into the future, others could support scheduling up to 1024 frames
929 * into the future.
930 *
931 */
932int usb_get_current_frame_number(struct usb_device *dev)
933{
934	return usb_hcd_get_frame_number(dev);
935}
936EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
937
938/*-------------------------------------------------------------------*/
939/*
940 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
941 * extra field of the interface and endpoint descriptor structs.
942 */
943
944int __usb_get_extra_descriptor(char *buffer, unsigned size,
945			       unsigned char type, void **ptr, size_t minsize)
946{
947	struct usb_descriptor_header *header;
948
949	while (size >= sizeof(struct usb_descriptor_header)) {
950		header = (struct usb_descriptor_header *)buffer;
951
952		if (header->bLength < 2 || header->bLength > size) {
953			printk(KERN_ERR
954				"%s: bogus descriptor, type %d length %d\n",
955				usbcore_name,
956				header->bDescriptorType,
957				header->bLength);
958			return -1;
959		}
960
961		if (header->bDescriptorType == type && header->bLength >= minsize) {
962			*ptr = header;
963			return 0;
964		}
965
966		buffer += header->bLength;
967		size -= header->bLength;
968	}
969	return -1;
970}
971EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
972
973/**
974 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
975 * @dev: device the buffer will be used with
976 * @size: requested buffer size
977 * @mem_flags: affect whether allocation may block
978 * @dma: used to return DMA address of buffer
979 *
980 * Return: Either null (indicating no buffer could be allocated), or the
981 * cpu-space pointer to a buffer that may be used to perform DMA to the
982 * specified device.  Such cpu-space buffers are returned along with the DMA
983 * address (through the pointer provided).
984 *
985 * Note:
986 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
987 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
988 * hardware during URB completion/resubmit.  The implementation varies between
989 * platforms, depending on details of how DMA will work to this device.
990 * Using these buffers also eliminates cacheline sharing problems on
991 * architectures where CPU caches are not DMA-coherent.  On systems without
992 * bus-snooping caches, these buffers are uncached.
993 *
994 * When the buffer is no longer used, free it with usb_free_coherent().
995 */
996void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
997			 dma_addr_t *dma)
998{
999	if (!dev || !dev->bus)
1000		return NULL;
1001	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
1002}
1003EXPORT_SYMBOL_GPL(usb_alloc_coherent);
1004
1005/**
1006 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
1007 * @dev: device the buffer was used with
1008 * @size: requested buffer size
1009 * @addr: CPU address of buffer
1010 * @dma: DMA address of buffer
1011 *
1012 * This reclaims an I/O buffer, letting it be reused.  The memory must have
1013 * been allocated using usb_alloc_coherent(), and the parameters must match
1014 * those provided in that allocation request.
1015 */
1016void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
1017		       dma_addr_t dma)
1018{
1019	if (!dev || !dev->bus)
1020		return;
1021	if (!addr)
1022		return;
1023	hcd_buffer_free(dev->bus, size, addr, dma);
1024}
1025EXPORT_SYMBOL_GPL(usb_free_coherent);
1026
1027/*
1028 * Notifications of device and interface registration
1029 */
1030static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1031		void *data)
1032{
1033	struct device *dev = data;
1034
1035	switch (action) {
1036	case BUS_NOTIFY_ADD_DEVICE:
1037		if (dev->type == &usb_device_type)
1038			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1039		else if (dev->type == &usb_if_device_type)
1040			usb_create_sysfs_intf_files(to_usb_interface(dev));
1041		break;
1042
1043	case BUS_NOTIFY_DEL_DEVICE:
1044		if (dev->type == &usb_device_type)
1045			usb_remove_sysfs_dev_files(to_usb_device(dev));
1046		else if (dev->type == &usb_if_device_type)
1047			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1048		break;
1049	}
1050	return 0;
1051}
1052
1053static struct notifier_block usb_bus_nb = {
1054	.notifier_call = usb_bus_notify,
1055};
1056
1057static void usb_debugfs_init(void)
1058{
1059	debugfs_create_file("devices", 0444, usb_debug_root, NULL,
1060			    &usbfs_devices_fops);
1061}
1062
1063static void usb_debugfs_cleanup(void)
1064{
1065	debugfs_lookup_and_remove("devices", usb_debug_root);
1066}
1067
1068/*
1069 * Init
1070 */
1071static int __init usb_init(void)
1072{
1073	int retval;
1074	if (usb_disabled()) {
1075		pr_info("%s: USB support disabled\n", usbcore_name);
1076		return 0;
1077	}
1078	usb_init_pool_max();
1079
1080	usb_debugfs_init();
1081
1082	usb_acpi_register();
1083	retval = bus_register(&usb_bus_type);
1084	if (retval)
1085		goto bus_register_failed;
1086	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1087	if (retval)
1088		goto bus_notifier_failed;
1089	retval = usb_major_init();
1090	if (retval)
1091		goto major_init_failed;
1092	retval = class_register(&usbmisc_class);
1093	if (retval)
1094		goto class_register_failed;
1095	retval = usb_register(&usbfs_driver);
1096	if (retval)
1097		goto driver_register_failed;
1098	retval = usb_devio_init();
1099	if (retval)
1100		goto usb_devio_init_failed;
1101	retval = usb_hub_init();
1102	if (retval)
1103		goto hub_init_failed;
1104	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1105	if (!retval)
1106		goto out;
1107
1108	usb_hub_cleanup();
1109hub_init_failed:
1110	usb_devio_cleanup();
1111usb_devio_init_failed:
1112	usb_deregister(&usbfs_driver);
1113driver_register_failed:
1114	class_unregister(&usbmisc_class);
1115class_register_failed:
1116	usb_major_cleanup();
1117major_init_failed:
1118	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1119bus_notifier_failed:
1120	bus_unregister(&usb_bus_type);
1121bus_register_failed:
1122	usb_acpi_unregister();
1123	usb_debugfs_cleanup();
1124out:
1125	return retval;
1126}
1127
1128/*
1129 * Cleanup
1130 */
1131static void __exit usb_exit(void)
1132{
1133	/* This will matter if shutdown/reboot does exitcalls. */
1134	if (usb_disabled())
1135		return;
1136
1137	usb_release_quirk_list();
1138	usb_deregister_device_driver(&usb_generic_driver);
1139	usb_major_cleanup();
1140	usb_deregister(&usbfs_driver);
1141	usb_devio_cleanup();
1142	usb_hub_cleanup();
1143	class_unregister(&usbmisc_class);
1144	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1145	bus_unregister(&usb_bus_type);
1146	usb_acpi_unregister();
1147	usb_debugfs_cleanup();
1148	idr_destroy(&usb_bus_idr);
1149}
1150
1151subsys_initcall(usb_init);
1152module_exit(usb_exit);
1153MODULE_LICENSE("GPL");
1154