1// SPDX-License-Identifier: GPL-2.0
2/*
3 * message.c - synchronous message handling
4 *
5 * Released under the GPLv2 only.
6 */
7
8#include <linux/acpi.h>
9#include <linux/pci.h>	/* for scatterlist macros */
10#include <linux/usb.h>
11#include <linux/module.h>
12#include <linux/of.h>
13#include <linux/slab.h>
14#include <linux/mm.h>
15#include <linux/timer.h>
16#include <linux/ctype.h>
17#include <linux/nls.h>
18#include <linux/device.h>
19#include <linux/scatterlist.h>
20#include <linux/usb/cdc.h>
21#include <linux/usb/quirks.h>
22#include <linux/usb/hcd.h>	/* for usbcore internals */
23#include <linux/usb/of.h>
24#include <asm/byteorder.h>
25
26#include "usb.h"
27
28static void cancel_async_set_config(struct usb_device *udev);
29
30struct api_context {
31	struct completion	done;
32	int			status;
33};
34
35static void usb_api_blocking_completion(struct urb *urb)
36{
37	struct api_context *ctx = urb->context;
38
39	ctx->status = urb->status;
40	complete(&ctx->done);
41}
42
43
44/*
45 * Starts urb and waits for completion or timeout. Note that this call
46 * is NOT interruptible. Many device driver i/o requests should be
47 * interruptible and therefore these drivers should implement their
48 * own interruptible routines.
49 */
50static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
51{
52	struct api_context ctx;
53	unsigned long expire;
54	int retval;
55
56	init_completion(&ctx.done);
57	urb->context = &ctx;
58	urb->actual_length = 0;
59	retval = usb_submit_urb(urb, GFP_NOIO);
60	if (unlikely(retval))
61		goto out;
62
63	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
64	if (!wait_for_completion_timeout(&ctx.done, expire)) {
65		usb_kill_urb(urb);
66		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
67
68		dev_dbg(&urb->dev->dev,
69			"%s timed out on ep%d%s len=%u/%u\n",
70			current->comm,
71			usb_endpoint_num(&urb->ep->desc),
72			usb_urb_dir_in(urb) ? "in" : "out",
73			urb->actual_length,
74			urb->transfer_buffer_length);
75	} else
76		retval = ctx.status;
77out:
78	if (actual_length)
79		*actual_length = urb->actual_length;
80
81	usb_free_urb(urb);
82	return retval;
83}
84
85/*-------------------------------------------------------------------*/
86/* returns status (negative) or length (positive) */
87static int usb_internal_control_msg(struct usb_device *usb_dev,
88				    unsigned int pipe,
89				    struct usb_ctrlrequest *cmd,
90				    void *data, int len, int timeout)
91{
92	struct urb *urb;
93	int retv;
94	int length;
95
96	urb = usb_alloc_urb(0, GFP_NOIO);
97	if (!urb)
98		return -ENOMEM;
99
100	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
101			     len, usb_api_blocking_completion, NULL);
102
103	retv = usb_start_wait_urb(urb, timeout, &length);
104	if (retv < 0)
105		return retv;
106	else
107		return length;
108}
109
110/**
111 * usb_control_msg - Builds a control urb, sends it off and waits for completion
112 * @dev: pointer to the usb device to send the message to
113 * @pipe: endpoint "pipe" to send the message to
114 * @request: USB message request value
115 * @requesttype: USB message request type value
116 * @value: USB message value
117 * @index: USB message index value
118 * @data: pointer to the data to send
119 * @size: length in bytes of the data to send
120 * @timeout: time in msecs to wait for the message to complete before timing
121 *	out (if 0 the wait is forever)
122 *
123 * Context: task context, might sleep.
124 *
125 * This function sends a simple control message to a specified endpoint and
126 * waits for the message to complete, or timeout.
127 *
128 * Don't use this function from within an interrupt context. If you need
129 * an asynchronous message, or need to send a message from within interrupt
130 * context, use usb_submit_urb(). If a thread in your driver uses this call,
131 * make sure your disconnect() method can wait for it to complete. Since you
132 * don't have a handle on the URB used, you can't cancel the request.
133 *
134 * Return: If successful, the number of bytes transferred. Otherwise, a negative
135 * error number.
136 */
137int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
138		    __u8 requesttype, __u16 value, __u16 index, void *data,
139		    __u16 size, int timeout)
140{
141	struct usb_ctrlrequest *dr;
142	int ret;
143
144	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
145	if (!dr)
146		return -ENOMEM;
147
148	dr->bRequestType = requesttype;
149	dr->bRequest = request;
150	dr->wValue = cpu_to_le16(value);
151	dr->wIndex = cpu_to_le16(index);
152	dr->wLength = cpu_to_le16(size);
153
154	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
155
156	/* Linger a bit, prior to the next control message. */
157	if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
158		msleep(200);
159
160	kfree(dr);
161
162	return ret;
163}
164EXPORT_SYMBOL_GPL(usb_control_msg);
165
166/**
167 * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion
168 * @dev: pointer to the usb device to send the message to
169 * @endpoint: endpoint to send the message to
170 * @request: USB message request value
171 * @requesttype: USB message request type value
172 * @value: USB message value
173 * @index: USB message index value
174 * @driver_data: pointer to the data to send
175 * @size: length in bytes of the data to send
176 * @timeout: time in msecs to wait for the message to complete before timing
177 *	out (if 0 the wait is forever)
178 * @memflags: the flags for memory allocation for buffers
179 *
180 * Context: !in_interrupt ()
181 *
182 * This function sends a control message to a specified endpoint that is not
183 * expected to fill in a response (i.e. a "send message") and waits for the
184 * message to complete, or timeout.
185 *
186 * Do not use this function from within an interrupt context. If you need
187 * an asynchronous message, or need to send a message from within interrupt
188 * context, use usb_submit_urb(). If a thread in your driver uses this call,
189 * make sure your disconnect() method can wait for it to complete. Since you
190 * don't have a handle on the URB used, you can't cancel the request.
191 *
192 * The data pointer can be made to a reference on the stack, or anywhere else,
193 * as it will not be modified at all.  This does not have the restriction that
194 * usb_control_msg() has where the data pointer must be to dynamically allocated
195 * memory (i.e. memory that can be successfully DMAed to a device).
196 *
197 * Return: If successful, 0 is returned, Otherwise, a negative error number.
198 */
199int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
200			 __u8 requesttype, __u16 value, __u16 index,
201			 const void *driver_data, __u16 size, int timeout,
202			 gfp_t memflags)
203{
204	unsigned int pipe = usb_sndctrlpipe(dev, endpoint);
205	int ret;
206	u8 *data = NULL;
207
208	if (size) {
209		data = kmemdup(driver_data, size, memflags);
210		if (!data)
211			return -ENOMEM;
212	}
213
214	ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
215			      data, size, timeout);
216	kfree(data);
217
218	if (ret < 0)
219		return ret;
220
221	return 0;
222}
223EXPORT_SYMBOL_GPL(usb_control_msg_send);
224
225/**
226 * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion
227 * @dev: pointer to the usb device to send the message to
228 * @endpoint: endpoint to send the message to
229 * @request: USB message request value
230 * @requesttype: USB message request type value
231 * @value: USB message value
232 * @index: USB message index value
233 * @driver_data: pointer to the data to be filled in by the message
234 * @size: length in bytes of the data to be received
235 * @timeout: time in msecs to wait for the message to complete before timing
236 *	out (if 0 the wait is forever)
237 * @memflags: the flags for memory allocation for buffers
238 *
239 * Context: !in_interrupt ()
240 *
241 * This function sends a control message to a specified endpoint that is
242 * expected to fill in a response (i.e. a "receive message") and waits for the
243 * message to complete, or timeout.
244 *
245 * Do not use this function from within an interrupt context. If you need
246 * an asynchronous message, or need to send a message from within interrupt
247 * context, use usb_submit_urb(). If a thread in your driver uses this call,
248 * make sure your disconnect() method can wait for it to complete. Since you
249 * don't have a handle on the URB used, you can't cancel the request.
250 *
251 * The data pointer can be made to a reference on the stack, or anywhere else
252 * that can be successfully written to.  This function does not have the
253 * restriction that usb_control_msg() has where the data pointer must be to
254 * dynamically allocated memory (i.e. memory that can be successfully DMAed to a
255 * device).
256 *
257 * The "whole" message must be properly received from the device in order for
258 * this function to be successful.  If a device returns less than the expected
259 * amount of data, then the function will fail.  Do not use this for messages
260 * where a variable amount of data might be returned.
261 *
262 * Return: If successful, 0 is returned, Otherwise, a negative error number.
263 */
264int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
265			 __u8 requesttype, __u16 value, __u16 index,
266			 void *driver_data, __u16 size, int timeout,
267			 gfp_t memflags)
268{
269	unsigned int pipe = usb_rcvctrlpipe(dev, endpoint);
270	int ret;
271	u8 *data;
272
273	if (!size || !driver_data)
274		return -EINVAL;
275
276	data = kmalloc(size, memflags);
277	if (!data)
278		return -ENOMEM;
279
280	ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
281			      data, size, timeout);
282
283	if (ret < 0)
284		goto exit;
285
286	if (ret == size) {
287		memcpy(driver_data, data, size);
288		ret = 0;
289	} else {
290		ret = -EREMOTEIO;
291	}
292
293exit:
294	kfree(data);
295	return ret;
296}
297EXPORT_SYMBOL_GPL(usb_control_msg_recv);
298
299/**
300 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
301 * @usb_dev: pointer to the usb device to send the message to
302 * @pipe: endpoint "pipe" to send the message to
303 * @data: pointer to the data to send
304 * @len: length in bytes of the data to send
305 * @actual_length: pointer to a location to put the actual length transferred
306 *	in bytes
307 * @timeout: time in msecs to wait for the message to complete before
308 *	timing out (if 0 the wait is forever)
309 *
310 * Context: task context, might sleep.
311 *
312 * This function sends a simple interrupt message to a specified endpoint and
313 * waits for the message to complete, or timeout.
314 *
315 * Don't use this function from within an interrupt context. If you need
316 * an asynchronous message, or need to send a message from within interrupt
317 * context, use usb_submit_urb() If a thread in your driver uses this call,
318 * make sure your disconnect() method can wait for it to complete. Since you
319 * don't have a handle on the URB used, you can't cancel the request.
320 *
321 * Return:
322 * If successful, 0. Otherwise a negative error number. The number of actual
323 * bytes transferred will be stored in the @actual_length parameter.
324 */
325int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
326		      void *data, int len, int *actual_length, int timeout)
327{
328	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
329}
330EXPORT_SYMBOL_GPL(usb_interrupt_msg);
331
332/**
333 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
334 * @usb_dev: pointer to the usb device to send the message to
335 * @pipe: endpoint "pipe" to send the message to
336 * @data: pointer to the data to send
337 * @len: length in bytes of the data to send
338 * @actual_length: pointer to a location to put the actual length transferred
339 *	in bytes
340 * @timeout: time in msecs to wait for the message to complete before
341 *	timing out (if 0 the wait is forever)
342 *
343 * Context: task context, might sleep.
344 *
345 * This function sends a simple bulk message to a specified endpoint
346 * and waits for the message to complete, or timeout.
347 *
348 * Don't use this function from within an interrupt context. If you need
349 * an asynchronous message, or need to send a message from within interrupt
350 * context, use usb_submit_urb() If a thread in your driver uses this call,
351 * make sure your disconnect() method can wait for it to complete. Since you
352 * don't have a handle on the URB used, you can't cancel the request.
353 *
354 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
355 * users are forced to abuse this routine by using it to submit URBs for
356 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
357 * (with the default interval) if the target is an interrupt endpoint.
358 *
359 * Return:
360 * If successful, 0. Otherwise a negative error number. The number of actual
361 * bytes transferred will be stored in the @actual_length parameter.
362 *
363 */
364int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
365		 void *data, int len, int *actual_length, int timeout)
366{
367	struct urb *urb;
368	struct usb_host_endpoint *ep;
369
370	ep = usb_pipe_endpoint(usb_dev, pipe);
371	if (!ep || len < 0)
372		return -EINVAL;
373
374	urb = usb_alloc_urb(0, GFP_KERNEL);
375	if (!urb)
376		return -ENOMEM;
377
378	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
379			USB_ENDPOINT_XFER_INT) {
380		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
381		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
382				usb_api_blocking_completion, NULL,
383				ep->desc.bInterval);
384	} else
385		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
386				usb_api_blocking_completion, NULL);
387
388	return usb_start_wait_urb(urb, timeout, actual_length);
389}
390EXPORT_SYMBOL_GPL(usb_bulk_msg);
391
392/*-------------------------------------------------------------------*/
393
394static void sg_clean(struct usb_sg_request *io)
395{
396	if (io->urbs) {
397		while (io->entries--)
398			usb_free_urb(io->urbs[io->entries]);
399		kfree(io->urbs);
400		io->urbs = NULL;
401	}
402	io->dev = NULL;
403}
404
405static void sg_complete(struct urb *urb)
406{
407	unsigned long flags;
408	struct usb_sg_request *io = urb->context;
409	int status = urb->status;
410
411	spin_lock_irqsave(&io->lock, flags);
412
413	/* In 2.5 we require hcds' endpoint queues not to progress after fault
414	 * reports, until the completion callback (this!) returns.  That lets
415	 * device driver code (like this routine) unlink queued urbs first,
416	 * if it needs to, since the HC won't work on them at all.  So it's
417	 * not possible for page N+1 to overwrite page N, and so on.
418	 *
419	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
420	 * complete before the HCD can get requests away from hardware,
421	 * though never during cleanup after a hard fault.
422	 */
423	if (io->status
424			&& (io->status != -ECONNRESET
425				|| status != -ECONNRESET)
426			&& urb->actual_length) {
427		dev_err(io->dev->bus->controller,
428			"dev %s ep%d%s scatterlist error %d/%d\n",
429			io->dev->devpath,
430			usb_endpoint_num(&urb->ep->desc),
431			usb_urb_dir_in(urb) ? "in" : "out",
432			status, io->status);
433		/* BUG (); */
434	}
435
436	if (io->status == 0 && status && status != -ECONNRESET) {
437		int i, found, retval;
438
439		io->status = status;
440
441		/* the previous urbs, and this one, completed already.
442		 * unlink pending urbs so they won't rx/tx bad data.
443		 * careful: unlink can sometimes be synchronous...
444		 */
445		spin_unlock_irqrestore(&io->lock, flags);
446		for (i = 0, found = 0; i < io->entries; i++) {
447			if (!io->urbs[i])
448				continue;
449			if (found) {
450				usb_block_urb(io->urbs[i]);
451				retval = usb_unlink_urb(io->urbs[i]);
452				if (retval != -EINPROGRESS &&
453				    retval != -ENODEV &&
454				    retval != -EBUSY &&
455				    retval != -EIDRM)
456					dev_err(&io->dev->dev,
457						"%s, unlink --> %d\n",
458						__func__, retval);
459			} else if (urb == io->urbs[i])
460				found = 1;
461		}
462		spin_lock_irqsave(&io->lock, flags);
463	}
464
465	/* on the last completion, signal usb_sg_wait() */
466	io->bytes += urb->actual_length;
467	io->count--;
468	if (!io->count)
469		complete(&io->complete);
470
471	spin_unlock_irqrestore(&io->lock, flags);
472}
473
474
475/**
476 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
477 * @io: request block being initialized.  until usb_sg_wait() returns,
478 *	treat this as a pointer to an opaque block of memory,
479 * @dev: the usb device that will send or receive the data
480 * @pipe: endpoint "pipe" used to transfer the data
481 * @period: polling rate for interrupt endpoints, in frames or
482 * 	(for high speed endpoints) microframes; ignored for bulk
483 * @sg: scatterlist entries
484 * @nents: how many entries in the scatterlist
485 * @length: how many bytes to send from the scatterlist, or zero to
486 * 	send every byte identified in the list.
487 * @mem_flags: SLAB_* flags affecting memory allocations in this call
488 *
489 * This initializes a scatter/gather request, allocating resources such as
490 * I/O mappings and urb memory (except maybe memory used by USB controller
491 * drivers).
492 *
493 * The request must be issued using usb_sg_wait(), which waits for the I/O to
494 * complete (or to be canceled) and then cleans up all resources allocated by
495 * usb_sg_init().
496 *
497 * The request may be canceled with usb_sg_cancel(), either before or after
498 * usb_sg_wait() is called.
499 *
500 * Return: Zero for success, else a negative errno value.
501 */
502int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
503		unsigned pipe, unsigned	period, struct scatterlist *sg,
504		int nents, size_t length, gfp_t mem_flags)
505{
506	int i;
507	int urb_flags;
508	int use_sg;
509
510	if (!io || !dev || !sg
511			|| usb_pipecontrol(pipe)
512			|| usb_pipeisoc(pipe)
513			|| nents <= 0)
514		return -EINVAL;
515
516	spin_lock_init(&io->lock);
517	io->dev = dev;
518	io->pipe = pipe;
519
520	if (dev->bus->sg_tablesize > 0) {
521		use_sg = true;
522		io->entries = 1;
523	} else {
524		use_sg = false;
525		io->entries = nents;
526	}
527
528	/* initialize all the urbs we'll use */
529	io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
530	if (!io->urbs)
531		goto nomem;
532
533	urb_flags = URB_NO_INTERRUPT;
534	if (usb_pipein(pipe))
535		urb_flags |= URB_SHORT_NOT_OK;
536
537	for_each_sg(sg, sg, io->entries, i) {
538		struct urb *urb;
539		unsigned len;
540
541		urb = usb_alloc_urb(0, mem_flags);
542		if (!urb) {
543			io->entries = i;
544			goto nomem;
545		}
546		io->urbs[i] = urb;
547
548		urb->dev = NULL;
549		urb->pipe = pipe;
550		urb->interval = period;
551		urb->transfer_flags = urb_flags;
552		urb->complete = sg_complete;
553		urb->context = io;
554		urb->sg = sg;
555
556		if (use_sg) {
557			/* There is no single transfer buffer */
558			urb->transfer_buffer = NULL;
559			urb->num_sgs = nents;
560
561			/* A length of zero means transfer the whole sg list */
562			len = length;
563			if (len == 0) {
564				struct scatterlist	*sg2;
565				int			j;
566
567				for_each_sg(sg, sg2, nents, j)
568					len += sg2->length;
569			}
570		} else {
571			/*
572			 * Some systems can't use DMA; they use PIO instead.
573			 * For their sakes, transfer_buffer is set whenever
574			 * possible.
575			 */
576			if (!PageHighMem(sg_page(sg)))
577				urb->transfer_buffer = sg_virt(sg);
578			else
579				urb->transfer_buffer = NULL;
580
581			len = sg->length;
582			if (length) {
583				len = min_t(size_t, len, length);
584				length -= len;
585				if (length == 0)
586					io->entries = i + 1;
587			}
588		}
589		urb->transfer_buffer_length = len;
590	}
591	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
592
593	/* transaction state */
594	io->count = io->entries;
595	io->status = 0;
596	io->bytes = 0;
597	init_completion(&io->complete);
598	return 0;
599
600nomem:
601	sg_clean(io);
602	return -ENOMEM;
603}
604EXPORT_SYMBOL_GPL(usb_sg_init);
605
606/**
607 * usb_sg_wait - synchronously execute scatter/gather request
608 * @io: request block handle, as initialized with usb_sg_init().
609 * 	some fields become accessible when this call returns.
610 *
611 * Context: task context, might sleep.
612 *
613 * This function blocks until the specified I/O operation completes.  It
614 * leverages the grouping of the related I/O requests to get good transfer
615 * rates, by queueing the requests.  At higher speeds, such queuing can
616 * significantly improve USB throughput.
617 *
618 * There are three kinds of completion for this function.
619 *
620 * (1) success, where io->status is zero.  The number of io->bytes
621 *     transferred is as requested.
622 * (2) error, where io->status is a negative errno value.  The number
623 *     of io->bytes transferred before the error is usually less
624 *     than requested, and can be nonzero.
625 * (3) cancellation, a type of error with status -ECONNRESET that
626 *     is initiated by usb_sg_cancel().
627 *
628 * When this function returns, all memory allocated through usb_sg_init() or
629 * this call will have been freed.  The request block parameter may still be
630 * passed to usb_sg_cancel(), or it may be freed.  It could also be
631 * reinitialized and then reused.
632 *
633 * Data Transfer Rates:
634 *
635 * Bulk transfers are valid for full or high speed endpoints.
636 * The best full speed data rate is 19 packets of 64 bytes each
637 * per frame, or 1216 bytes per millisecond.
638 * The best high speed data rate is 13 packets of 512 bytes each
639 * per microframe, or 52 KBytes per millisecond.
640 *
641 * The reason to use interrupt transfers through this API would most likely
642 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
643 * could be transferred.  That capability is less useful for low or full
644 * speed interrupt endpoints, which allow at most one packet per millisecond,
645 * of at most 8 or 64 bytes (respectively).
646 *
647 * It is not necessary to call this function to reserve bandwidth for devices
648 * under an xHCI host controller, as the bandwidth is reserved when the
649 * configuration or interface alt setting is selected.
650 */
651void usb_sg_wait(struct usb_sg_request *io)
652{
653	int i;
654	int entries = io->entries;
655
656	/* queue the urbs.  */
657	spin_lock_irq(&io->lock);
658	i = 0;
659	while (i < entries && !io->status) {
660		int retval;
661
662		io->urbs[i]->dev = io->dev;
663		spin_unlock_irq(&io->lock);
664
665		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
666
667		switch (retval) {
668			/* maybe we retrying will recover */
669		case -ENXIO:	/* hc didn't queue this one */
670		case -EAGAIN:
671		case -ENOMEM:
672			retval = 0;
673			yield();
674			break;
675
676			/* no error? continue immediately.
677			 *
678			 * NOTE: to work better with UHCI (4K I/O buffer may
679			 * need 3K of TDs) it may be good to limit how many
680			 * URBs are queued at once; N milliseconds?
681			 */
682		case 0:
683			++i;
684			cpu_relax();
685			break;
686
687			/* fail any uncompleted urbs */
688		default:
689			io->urbs[i]->status = retval;
690			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
691				__func__, retval);
692			usb_sg_cancel(io);
693		}
694		spin_lock_irq(&io->lock);
695		if (retval && (io->status == 0 || io->status == -ECONNRESET))
696			io->status = retval;
697	}
698	io->count -= entries - i;
699	if (io->count == 0)
700		complete(&io->complete);
701	spin_unlock_irq(&io->lock);
702
703	/* OK, yes, this could be packaged as non-blocking.
704	 * So could the submit loop above ... but it's easier to
705	 * solve neither problem than to solve both!
706	 */
707	wait_for_completion(&io->complete);
708
709	sg_clean(io);
710}
711EXPORT_SYMBOL_GPL(usb_sg_wait);
712
713/**
714 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
715 * @io: request block, initialized with usb_sg_init()
716 *
717 * This stops a request after it has been started by usb_sg_wait().
718 * It can also prevents one initialized by usb_sg_init() from starting,
719 * so that call just frees resources allocated to the request.
720 */
721void usb_sg_cancel(struct usb_sg_request *io)
722{
723	unsigned long flags;
724	int i, retval;
725
726	spin_lock_irqsave(&io->lock, flags);
727	if (io->status || io->count == 0) {
728		spin_unlock_irqrestore(&io->lock, flags);
729		return;
730	}
731	/* shut everything down */
732	io->status = -ECONNRESET;
733	io->count++;		/* Keep the request alive until we're done */
734	spin_unlock_irqrestore(&io->lock, flags);
735
736	for (i = io->entries - 1; i >= 0; --i) {
737		usb_block_urb(io->urbs[i]);
738
739		retval = usb_unlink_urb(io->urbs[i]);
740		if (retval != -EINPROGRESS
741		    && retval != -ENODEV
742		    && retval != -EBUSY
743		    && retval != -EIDRM)
744			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
745				 __func__, retval);
746	}
747
748	spin_lock_irqsave(&io->lock, flags);
749	io->count--;
750	if (!io->count)
751		complete(&io->complete);
752	spin_unlock_irqrestore(&io->lock, flags);
753}
754EXPORT_SYMBOL_GPL(usb_sg_cancel);
755
756/*-------------------------------------------------------------------*/
757
758/**
759 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
760 * @dev: the device whose descriptor is being retrieved
761 * @type: the descriptor type (USB_DT_*)
762 * @index: the number of the descriptor
763 * @buf: where to put the descriptor
764 * @size: how big is "buf"?
765 *
766 * Context: task context, might sleep.
767 *
768 * Gets a USB descriptor.  Convenience functions exist to simplify
769 * getting some types of descriptors.  Use
770 * usb_get_string() or usb_string() for USB_DT_STRING.
771 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
772 * are part of the device structure.
773 * In addition to a number of USB-standard descriptors, some
774 * devices also use class-specific or vendor-specific descriptors.
775 *
776 * This call is synchronous, and may not be used in an interrupt context.
777 *
778 * Return: The number of bytes received on success, or else the status code
779 * returned by the underlying usb_control_msg() call.
780 */
781int usb_get_descriptor(struct usb_device *dev, unsigned char type,
782		       unsigned char index, void *buf, int size)
783{
784	int i;
785	int result;
786
787	if (size <= 0)		/* No point in asking for no data */
788		return -EINVAL;
789
790	memset(buf, 0, size);	/* Make sure we parse really received data */
791
792	for (i = 0; i < 3; ++i) {
793		/* retry on length 0 or error; some devices are flakey */
794		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
795				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
796				(type << 8) + index, 0, buf, size,
797				USB_CTRL_GET_TIMEOUT);
798		if (result <= 0 && result != -ETIMEDOUT)
799			continue;
800		if (result > 1 && ((u8 *)buf)[1] != type) {
801			result = -ENODATA;
802			continue;
803		}
804		break;
805	}
806	return result;
807}
808EXPORT_SYMBOL_GPL(usb_get_descriptor);
809
810/**
811 * usb_get_string - gets a string descriptor
812 * @dev: the device whose string descriptor is being retrieved
813 * @langid: code for language chosen (from string descriptor zero)
814 * @index: the number of the descriptor
815 * @buf: where to put the string
816 * @size: how big is "buf"?
817 *
818 * Context: task context, might sleep.
819 *
820 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
821 * in little-endian byte order).
822 * The usb_string() function will often be a convenient way to turn
823 * these strings into kernel-printable form.
824 *
825 * Strings may be referenced in device, configuration, interface, or other
826 * descriptors, and could also be used in vendor-specific ways.
827 *
828 * This call is synchronous, and may not be used in an interrupt context.
829 *
830 * Return: The number of bytes received on success, or else the status code
831 * returned by the underlying usb_control_msg() call.
832 */
833static int usb_get_string(struct usb_device *dev, unsigned short langid,
834			  unsigned char index, void *buf, int size)
835{
836	int i;
837	int result;
838
839	if (size <= 0)		/* No point in asking for no data */
840		return -EINVAL;
841
842	for (i = 0; i < 3; ++i) {
843		/* retry on length 0 or stall; some devices are flakey */
844		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
845			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
846			(USB_DT_STRING << 8) + index, langid, buf, size,
847			USB_CTRL_GET_TIMEOUT);
848		if (result == 0 || result == -EPIPE)
849			continue;
850		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
851			result = -ENODATA;
852			continue;
853		}
854		break;
855	}
856	return result;
857}
858
859static void usb_try_string_workarounds(unsigned char *buf, int *length)
860{
861	int newlength, oldlength = *length;
862
863	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
864		if (!isprint(buf[newlength]) || buf[newlength + 1])
865			break;
866
867	if (newlength > 2) {
868		buf[0] = newlength;
869		*length = newlength;
870	}
871}
872
873static int usb_string_sub(struct usb_device *dev, unsigned int langid,
874			  unsigned int index, unsigned char *buf)
875{
876	int rc;
877
878	/* Try to read the string descriptor by asking for the maximum
879	 * possible number of bytes */
880	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
881		rc = -EIO;
882	else
883		rc = usb_get_string(dev, langid, index, buf, 255);
884
885	/* If that failed try to read the descriptor length, then
886	 * ask for just that many bytes */
887	if (rc < 2) {
888		rc = usb_get_string(dev, langid, index, buf, 2);
889		if (rc == 2)
890			rc = usb_get_string(dev, langid, index, buf, buf[0]);
891	}
892
893	if (rc >= 2) {
894		if (!buf[0] && !buf[1])
895			usb_try_string_workarounds(buf, &rc);
896
897		/* There might be extra junk at the end of the descriptor */
898		if (buf[0] < rc)
899			rc = buf[0];
900
901		rc = rc - (rc & 1); /* force a multiple of two */
902	}
903
904	if (rc < 2)
905		rc = (rc < 0 ? rc : -EINVAL);
906
907	return rc;
908}
909
910static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
911{
912	int err;
913
914	if (dev->have_langid)
915		return 0;
916
917	if (dev->string_langid < 0)
918		return -EPIPE;
919
920	err = usb_string_sub(dev, 0, 0, tbuf);
921
922	/* If the string was reported but is malformed, default to english
923	 * (0x0409) */
924	if (err == -ENODATA || (err > 0 && err < 4)) {
925		dev->string_langid = 0x0409;
926		dev->have_langid = 1;
927		dev_err(&dev->dev,
928			"language id specifier not provided by device, defaulting to English\n");
929		return 0;
930	}
931
932	/* In case of all other errors, we assume the device is not able to
933	 * deal with strings at all. Set string_langid to -1 in order to
934	 * prevent any string to be retrieved from the device */
935	if (err < 0) {
936		dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
937					err);
938		dev->string_langid = -1;
939		return -EPIPE;
940	}
941
942	/* always use the first langid listed */
943	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
944	dev->have_langid = 1;
945	dev_dbg(&dev->dev, "default language 0x%04x\n",
946				dev->string_langid);
947	return 0;
948}
949
950/**
951 * usb_string - returns UTF-8 version of a string descriptor
952 * @dev: the device whose string descriptor is being retrieved
953 * @index: the number of the descriptor
954 * @buf: where to put the string
955 * @size: how big is "buf"?
956 *
957 * Context: task context, might sleep.
958 *
959 * This converts the UTF-16LE encoded strings returned by devices, from
960 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
961 * that are more usable in most kernel contexts.  Note that this function
962 * chooses strings in the first language supported by the device.
963 *
964 * This call is synchronous, and may not be used in an interrupt context.
965 *
966 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
967 */
968int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
969{
970	unsigned char *tbuf;
971	int err;
972
973	if (dev->state == USB_STATE_SUSPENDED)
974		return -EHOSTUNREACH;
975	if (size <= 0 || !buf)
976		return -EINVAL;
977	buf[0] = 0;
978	if (index <= 0 || index >= 256)
979		return -EINVAL;
980	tbuf = kmalloc(256, GFP_NOIO);
981	if (!tbuf)
982		return -ENOMEM;
983
984	err = usb_get_langid(dev, tbuf);
985	if (err < 0)
986		goto errout;
987
988	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
989	if (err < 0)
990		goto errout;
991
992	size--;		/* leave room for trailing NULL char in output buffer */
993	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
994			UTF16_LITTLE_ENDIAN, buf, size);
995	buf[err] = 0;
996
997	if (tbuf[1] != USB_DT_STRING)
998		dev_dbg(&dev->dev,
999			"wrong descriptor type %02x for string %d (\"%s\")\n",
1000			tbuf[1], index, buf);
1001
1002 errout:
1003	kfree(tbuf);
1004	return err;
1005}
1006EXPORT_SYMBOL_GPL(usb_string);
1007
1008/* one UTF-8-encoded 16-bit character has at most three bytes */
1009#define MAX_USB_STRING_SIZE (127 * 3 + 1)
1010
1011/**
1012 * usb_cache_string - read a string descriptor and cache it for later use
1013 * @udev: the device whose string descriptor is being read
1014 * @index: the descriptor index
1015 *
1016 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
1017 * or %NULL if the index is 0 or the string could not be read.
1018 */
1019char *usb_cache_string(struct usb_device *udev, int index)
1020{
1021	char *buf;
1022	char *smallbuf = NULL;
1023	int len;
1024
1025	if (index <= 0)
1026		return NULL;
1027
1028	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
1029	if (buf) {
1030		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
1031		if (len > 0) {
1032			smallbuf = kmalloc(++len, GFP_NOIO);
1033			if (!smallbuf)
1034				return buf;
1035			memcpy(smallbuf, buf, len);
1036		}
1037		kfree(buf);
1038	}
1039	return smallbuf;
1040}
1041EXPORT_SYMBOL_GPL(usb_cache_string);
1042
1043/*
1044 * usb_get_device_descriptor - read the device descriptor
1045 * @udev: the device whose device descriptor should be read
1046 *
1047 * Context: task context, might sleep.
1048 *
1049 * Not exported, only for use by the core.  If drivers really want to read
1050 * the device descriptor directly, they can call usb_get_descriptor() with
1051 * type = USB_DT_DEVICE and index = 0.
1052 *
1053 * Returns: a pointer to a dynamically allocated usb_device_descriptor
1054 * structure (which the caller must deallocate), or an ERR_PTR value.
1055 */
1056struct usb_device_descriptor *usb_get_device_descriptor(struct usb_device *udev)
1057{
1058	struct usb_device_descriptor *desc;
1059	int ret;
1060
1061	desc = kmalloc(sizeof(*desc), GFP_NOIO);
1062	if (!desc)
1063		return ERR_PTR(-ENOMEM);
1064
1065	ret = usb_get_descriptor(udev, USB_DT_DEVICE, 0, desc, sizeof(*desc));
1066	if (ret == sizeof(*desc))
1067		return desc;
1068
1069	if (ret >= 0)
1070		ret = -EMSGSIZE;
1071	kfree(desc);
1072	return ERR_PTR(ret);
1073}
1074
1075/*
1076 * usb_set_isoch_delay - informs the device of the packet transmit delay
1077 * @dev: the device whose delay is to be informed
1078 * Context: task context, might sleep
1079 *
1080 * Since this is an optional request, we don't bother if it fails.
1081 */
1082int usb_set_isoch_delay(struct usb_device *dev)
1083{
1084	/* skip hub devices */
1085	if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
1086		return 0;
1087
1088	/* skip non-SS/non-SSP devices */
1089	if (dev->speed < USB_SPEED_SUPER)
1090		return 0;
1091
1092	return usb_control_msg_send(dev, 0,
1093			USB_REQ_SET_ISOCH_DELAY,
1094			USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
1095			dev->hub_delay, 0, NULL, 0,
1096			USB_CTRL_SET_TIMEOUT,
1097			GFP_NOIO);
1098}
1099
1100/**
1101 * usb_get_status - issues a GET_STATUS call
1102 * @dev: the device whose status is being checked
1103 * @recip: USB_RECIP_*; for device, interface, or endpoint
1104 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
1105 * @target: zero (for device), else interface or endpoint number
1106 * @data: pointer to two bytes of bitmap data
1107 *
1108 * Context: task context, might sleep.
1109 *
1110 * Returns device, interface, or endpoint status.  Normally only of
1111 * interest to see if the device is self powered, or has enabled the
1112 * remote wakeup facility; or whether a bulk or interrupt endpoint
1113 * is halted ("stalled").
1114 *
1115 * Bits in these status bitmaps are set using the SET_FEATURE request,
1116 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
1117 * function should be used to clear halt ("stall") status.
1118 *
1119 * This call is synchronous, and may not be used in an interrupt context.
1120 *
1121 * Returns 0 and the status value in *@data (in host byte order) on success,
1122 * or else the status code from the underlying usb_control_msg() call.
1123 */
1124int usb_get_status(struct usb_device *dev, int recip, int type, int target,
1125		void *data)
1126{
1127	int ret;
1128	void *status;
1129	int length;
1130
1131	switch (type) {
1132	case USB_STATUS_TYPE_STANDARD:
1133		length = 2;
1134		break;
1135	case USB_STATUS_TYPE_PTM:
1136		if (recip != USB_RECIP_DEVICE)
1137			return -EINVAL;
1138
1139		length = 4;
1140		break;
1141	default:
1142		return -EINVAL;
1143	}
1144
1145	status =  kmalloc(length, GFP_KERNEL);
1146	if (!status)
1147		return -ENOMEM;
1148
1149	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1150		USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1151		target, status, length, USB_CTRL_GET_TIMEOUT);
1152
1153	switch (ret) {
1154	case 4:
1155		if (type != USB_STATUS_TYPE_PTM) {
1156			ret = -EIO;
1157			break;
1158		}
1159
1160		*(u32 *) data = le32_to_cpu(*(__le32 *) status);
1161		ret = 0;
1162		break;
1163	case 2:
1164		if (type != USB_STATUS_TYPE_STANDARD) {
1165			ret = -EIO;
1166			break;
1167		}
1168
1169		*(u16 *) data = le16_to_cpu(*(__le16 *) status);
1170		ret = 0;
1171		break;
1172	default:
1173		ret = -EIO;
1174	}
1175
1176	kfree(status);
1177	return ret;
1178}
1179EXPORT_SYMBOL_GPL(usb_get_status);
1180
1181/**
1182 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1183 * @dev: device whose endpoint is halted
1184 * @pipe: endpoint "pipe" being cleared
1185 *
1186 * Context: task context, might sleep.
1187 *
1188 * This is used to clear halt conditions for bulk and interrupt endpoints,
1189 * as reported by URB completion status.  Endpoints that are halted are
1190 * sometimes referred to as being "stalled".  Such endpoints are unable
1191 * to transmit or receive data until the halt status is cleared.  Any URBs
1192 * queued for such an endpoint should normally be unlinked by the driver
1193 * before clearing the halt condition, as described in sections 5.7.5
1194 * and 5.8.5 of the USB 2.0 spec.
1195 *
1196 * Note that control and isochronous endpoints don't halt, although control
1197 * endpoints report "protocol stall" (for unsupported requests) using the
1198 * same status code used to report a true stall.
1199 *
1200 * This call is synchronous, and may not be used in an interrupt context.
1201 *
1202 * Return: Zero on success, or else the status code returned by the
1203 * underlying usb_control_msg() call.
1204 */
1205int usb_clear_halt(struct usb_device *dev, int pipe)
1206{
1207	int result;
1208	int endp = usb_pipeendpoint(pipe);
1209
1210	if (usb_pipein(pipe))
1211		endp |= USB_DIR_IN;
1212
1213	/* we don't care if it wasn't halted first. in fact some devices
1214	 * (like some ibmcam model 1 units) seem to expect hosts to make
1215	 * this request for iso endpoints, which can't halt!
1216	 */
1217	result = usb_control_msg_send(dev, 0,
1218				      USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1219				      USB_ENDPOINT_HALT, endp, NULL, 0,
1220				      USB_CTRL_SET_TIMEOUT, GFP_NOIO);
1221
1222	/* don't un-halt or force to DATA0 except on success */
1223	if (result)
1224		return result;
1225
1226	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1227	 * the clear "took", so some devices could lock up if you check...
1228	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1229	 *
1230	 * NOTE:  make sure the logic here doesn't diverge much from
1231	 * the copy in usb-storage, for as long as we need two copies.
1232	 */
1233
1234	usb_reset_endpoint(dev, endp);
1235
1236	return 0;
1237}
1238EXPORT_SYMBOL_GPL(usb_clear_halt);
1239
1240static int create_intf_ep_devs(struct usb_interface *intf)
1241{
1242	struct usb_device *udev = interface_to_usbdev(intf);
1243	struct usb_host_interface *alt = intf->cur_altsetting;
1244	int i;
1245
1246	if (intf->ep_devs_created || intf->unregistering)
1247		return 0;
1248
1249	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1250		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1251	intf->ep_devs_created = 1;
1252	return 0;
1253}
1254
1255static void remove_intf_ep_devs(struct usb_interface *intf)
1256{
1257	struct usb_host_interface *alt = intf->cur_altsetting;
1258	int i;
1259
1260	if (!intf->ep_devs_created)
1261		return;
1262
1263	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1264		usb_remove_ep_devs(&alt->endpoint[i]);
1265	intf->ep_devs_created = 0;
1266}
1267
1268/**
1269 * usb_disable_endpoint -- Disable an endpoint by address
1270 * @dev: the device whose endpoint is being disabled
1271 * @epaddr: the endpoint's address.  Endpoint number for output,
1272 *	endpoint number + USB_DIR_IN for input
1273 * @reset_hardware: flag to erase any endpoint state stored in the
1274 *	controller hardware
1275 *
1276 * Disables the endpoint for URB submission and nukes all pending URBs.
1277 * If @reset_hardware is set then also deallocates hcd/hardware state
1278 * for the endpoint.
1279 */
1280void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1281		bool reset_hardware)
1282{
1283	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1284	struct usb_host_endpoint *ep;
1285
1286	if (!dev)
1287		return;
1288
1289	if (usb_endpoint_out(epaddr)) {
1290		ep = dev->ep_out[epnum];
1291		if (reset_hardware && epnum != 0)
1292			dev->ep_out[epnum] = NULL;
1293	} else {
1294		ep = dev->ep_in[epnum];
1295		if (reset_hardware && epnum != 0)
1296			dev->ep_in[epnum] = NULL;
1297	}
1298	if (ep) {
1299		ep->enabled = 0;
1300		usb_hcd_flush_endpoint(dev, ep);
1301		if (reset_hardware)
1302			usb_hcd_disable_endpoint(dev, ep);
1303	}
1304}
1305
1306/**
1307 * usb_reset_endpoint - Reset an endpoint's state.
1308 * @dev: the device whose endpoint is to be reset
1309 * @epaddr: the endpoint's address.  Endpoint number for output,
1310 *	endpoint number + USB_DIR_IN for input
1311 *
1312 * Resets any host-side endpoint state such as the toggle bit,
1313 * sequence number or current window.
1314 */
1315void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1316{
1317	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1318	struct usb_host_endpoint *ep;
1319
1320	if (usb_endpoint_out(epaddr))
1321		ep = dev->ep_out[epnum];
1322	else
1323		ep = dev->ep_in[epnum];
1324	if (ep)
1325		usb_hcd_reset_endpoint(dev, ep);
1326}
1327EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1328
1329
1330/**
1331 * usb_disable_interface -- Disable all endpoints for an interface
1332 * @dev: the device whose interface is being disabled
1333 * @intf: pointer to the interface descriptor
1334 * @reset_hardware: flag to erase any endpoint state stored in the
1335 *	controller hardware
1336 *
1337 * Disables all the endpoints for the interface's current altsetting.
1338 */
1339void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1340		bool reset_hardware)
1341{
1342	struct usb_host_interface *alt = intf->cur_altsetting;
1343	int i;
1344
1345	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1346		usb_disable_endpoint(dev,
1347				alt->endpoint[i].desc.bEndpointAddress,
1348				reset_hardware);
1349	}
1350}
1351
1352/*
1353 * usb_disable_device_endpoints -- Disable all endpoints for a device
1354 * @dev: the device whose endpoints are being disabled
1355 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1356 */
1357static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1358{
1359	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1360	int i;
1361
1362	if (hcd->driver->check_bandwidth) {
1363		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1364		for (i = skip_ep0; i < 16; ++i) {
1365			usb_disable_endpoint(dev, i, false);
1366			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1367		}
1368		/* Remove endpoints from the host controller internal state */
1369		mutex_lock(hcd->bandwidth_mutex);
1370		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1371		mutex_unlock(hcd->bandwidth_mutex);
1372	}
1373	/* Second pass: remove endpoint pointers */
1374	for (i = skip_ep0; i < 16; ++i) {
1375		usb_disable_endpoint(dev, i, true);
1376		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1377	}
1378}
1379
1380/**
1381 * usb_disable_device - Disable all the endpoints for a USB device
1382 * @dev: the device whose endpoints are being disabled
1383 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1384 *
1385 * Disables all the device's endpoints, potentially including endpoint 0.
1386 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1387 * pending urbs) and usbcore state for the interfaces, so that usbcore
1388 * must usb_set_configuration() before any interfaces could be used.
1389 */
1390void usb_disable_device(struct usb_device *dev, int skip_ep0)
1391{
1392	int i;
1393
1394	/* getting rid of interfaces will disconnect
1395	 * any drivers bound to them (a key side effect)
1396	 */
1397	if (dev->actconfig) {
1398		/*
1399		 * FIXME: In order to avoid self-deadlock involving the
1400		 * bandwidth_mutex, we have to mark all the interfaces
1401		 * before unregistering any of them.
1402		 */
1403		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1404			dev->actconfig->interface[i]->unregistering = 1;
1405
1406		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1407			struct usb_interface	*interface;
1408
1409			/* remove this interface if it has been registered */
1410			interface = dev->actconfig->interface[i];
1411			if (!device_is_registered(&interface->dev))
1412				continue;
1413			dev_dbg(&dev->dev, "unregistering interface %s\n",
1414				dev_name(&interface->dev));
1415			remove_intf_ep_devs(interface);
1416			device_del(&interface->dev);
1417		}
1418
1419		/* Now that the interfaces are unbound, nobody should
1420		 * try to access them.
1421		 */
1422		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1423			put_device(&dev->actconfig->interface[i]->dev);
1424			dev->actconfig->interface[i] = NULL;
1425		}
1426
1427		usb_disable_usb2_hardware_lpm(dev);
1428		usb_unlocked_disable_lpm(dev);
1429		usb_disable_ltm(dev);
1430
1431		dev->actconfig = NULL;
1432		if (dev->state == USB_STATE_CONFIGURED)
1433			usb_set_device_state(dev, USB_STATE_ADDRESS);
1434	}
1435
1436	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1437		skip_ep0 ? "non-ep0" : "all");
1438
1439	usb_disable_device_endpoints(dev, skip_ep0);
1440}
1441
1442/**
1443 * usb_enable_endpoint - Enable an endpoint for USB communications
1444 * @dev: the device whose interface is being enabled
1445 * @ep: the endpoint
1446 * @reset_ep: flag to reset the endpoint state
1447 *
1448 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1449 * For control endpoints, both the input and output sides are handled.
1450 */
1451void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1452		bool reset_ep)
1453{
1454	int epnum = usb_endpoint_num(&ep->desc);
1455	int is_out = usb_endpoint_dir_out(&ep->desc);
1456	int is_control = usb_endpoint_xfer_control(&ep->desc);
1457
1458	if (reset_ep)
1459		usb_hcd_reset_endpoint(dev, ep);
1460	if (is_out || is_control)
1461		dev->ep_out[epnum] = ep;
1462	if (!is_out || is_control)
1463		dev->ep_in[epnum] = ep;
1464	ep->enabled = 1;
1465}
1466
1467/**
1468 * usb_enable_interface - Enable all the endpoints for an interface
1469 * @dev: the device whose interface is being enabled
1470 * @intf: pointer to the interface descriptor
1471 * @reset_eps: flag to reset the endpoints' state
1472 *
1473 * Enables all the endpoints for the interface's current altsetting.
1474 */
1475void usb_enable_interface(struct usb_device *dev,
1476		struct usb_interface *intf, bool reset_eps)
1477{
1478	struct usb_host_interface *alt = intf->cur_altsetting;
1479	int i;
1480
1481	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1482		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1483}
1484
1485/**
1486 * usb_set_interface - Makes a particular alternate setting be current
1487 * @dev: the device whose interface is being updated
1488 * @interface: the interface being updated
1489 * @alternate: the setting being chosen.
1490 *
1491 * Context: task context, might sleep.
1492 *
1493 * This is used to enable data transfers on interfaces that may not
1494 * be enabled by default.  Not all devices support such configurability.
1495 * Only the driver bound to an interface may change its setting.
1496 *
1497 * Within any given configuration, each interface may have several
1498 * alternative settings.  These are often used to control levels of
1499 * bandwidth consumption.  For example, the default setting for a high
1500 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1501 * while interrupt transfers of up to 3KBytes per microframe are legal.
1502 * Also, isochronous endpoints may never be part of an
1503 * interface's default setting.  To access such bandwidth, alternate
1504 * interface settings must be made current.
1505 *
1506 * Note that in the Linux USB subsystem, bandwidth associated with
1507 * an endpoint in a given alternate setting is not reserved until an URB
1508 * is submitted that needs that bandwidth.  Some other operating systems
1509 * allocate bandwidth early, when a configuration is chosen.
1510 *
1511 * xHCI reserves bandwidth and configures the alternate setting in
1512 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1513 * may be disabled. Drivers cannot rely on any particular alternate
1514 * setting being in effect after a failure.
1515 *
1516 * This call is synchronous, and may not be used in an interrupt context.
1517 * Also, drivers must not change altsettings while urbs are scheduled for
1518 * endpoints in that interface; all such urbs must first be completed
1519 * (perhaps forced by unlinking).
1520 *
1521 * Return: Zero on success, or else the status code returned by the
1522 * underlying usb_control_msg() call.
1523 */
1524int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1525{
1526	struct usb_interface *iface;
1527	struct usb_host_interface *alt;
1528	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1529	int i, ret, manual = 0;
1530	unsigned int epaddr;
1531	unsigned int pipe;
1532
1533	if (dev->state == USB_STATE_SUSPENDED)
1534		return -EHOSTUNREACH;
1535
1536	iface = usb_ifnum_to_if(dev, interface);
1537	if (!iface) {
1538		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1539			interface);
1540		return -EINVAL;
1541	}
1542	if (iface->unregistering)
1543		return -ENODEV;
1544
1545	alt = usb_altnum_to_altsetting(iface, alternate);
1546	if (!alt) {
1547		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1548			 alternate);
1549		return -EINVAL;
1550	}
1551	/*
1552	 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1553	 * including freeing dropped endpoint ring buffers.
1554	 * Make sure the interface endpoints are flushed before that
1555	 */
1556	usb_disable_interface(dev, iface, false);
1557
1558	/* Make sure we have enough bandwidth for this alternate interface.
1559	 * Remove the current alt setting and add the new alt setting.
1560	 */
1561	mutex_lock(hcd->bandwidth_mutex);
1562	/* Disable LPM, and re-enable it once the new alt setting is installed,
1563	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1564	 */
1565	if (usb_disable_lpm(dev)) {
1566		dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1567		mutex_unlock(hcd->bandwidth_mutex);
1568		return -ENOMEM;
1569	}
1570	/* Changing alt-setting also frees any allocated streams */
1571	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1572		iface->cur_altsetting->endpoint[i].streams = 0;
1573
1574	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1575	if (ret < 0) {
1576		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1577				alternate);
1578		usb_enable_lpm(dev);
1579		mutex_unlock(hcd->bandwidth_mutex);
1580		return ret;
1581	}
1582
1583	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1584		ret = -EPIPE;
1585	else
1586		ret = usb_control_msg_send(dev, 0,
1587					   USB_REQ_SET_INTERFACE,
1588					   USB_RECIP_INTERFACE, alternate,
1589					   interface, NULL, 0, 5000,
1590					   GFP_NOIO);
1591
1592	/* 9.4.10 says devices don't need this and are free to STALL the
1593	 * request if the interface only has one alternate setting.
1594	 */
1595	if (ret == -EPIPE && iface->num_altsetting == 1) {
1596		dev_dbg(&dev->dev,
1597			"manual set_interface for iface %d, alt %d\n",
1598			interface, alternate);
1599		manual = 1;
1600	} else if (ret) {
1601		/* Re-instate the old alt setting */
1602		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1603		usb_enable_lpm(dev);
1604		mutex_unlock(hcd->bandwidth_mutex);
1605		return ret;
1606	}
1607	mutex_unlock(hcd->bandwidth_mutex);
1608
1609	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1610	 * when they implement async or easily-killable versions of this or
1611	 * other "should-be-internal" functions (like clear_halt).
1612	 * should hcd+usbcore postprocess control requests?
1613	 */
1614
1615	/* prevent submissions using previous endpoint settings */
1616	if (iface->cur_altsetting != alt) {
1617		remove_intf_ep_devs(iface);
1618		usb_remove_sysfs_intf_files(iface);
1619	}
1620	usb_disable_interface(dev, iface, true);
1621
1622	iface->cur_altsetting = alt;
1623
1624	/* Now that the interface is installed, re-enable LPM. */
1625	usb_unlocked_enable_lpm(dev);
1626
1627	/* If the interface only has one altsetting and the device didn't
1628	 * accept the request, we attempt to carry out the equivalent action
1629	 * by manually clearing the HALT feature for each endpoint in the
1630	 * new altsetting.
1631	 */
1632	if (manual) {
1633		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1634			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1635			pipe = __create_pipe(dev,
1636					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1637					(usb_endpoint_out(epaddr) ?
1638					USB_DIR_OUT : USB_DIR_IN);
1639
1640			usb_clear_halt(dev, pipe);
1641		}
1642	}
1643
1644	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1645	 *
1646	 * Note:
1647	 * Despite EP0 is always present in all interfaces/AS, the list of
1648	 * endpoints from the descriptor does not contain EP0. Due to its
1649	 * omnipresence one might expect EP0 being considered "affected" by
1650	 * any SetInterface request and hence assume toggles need to be reset.
1651	 * However, EP0 toggles are re-synced for every individual transfer
1652	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1653	 * (Likewise, EP0 never "halts" on well designed devices.)
1654	 */
1655	usb_enable_interface(dev, iface, true);
1656	if (device_is_registered(&iface->dev)) {
1657		usb_create_sysfs_intf_files(iface);
1658		create_intf_ep_devs(iface);
1659	}
1660	return 0;
1661}
1662EXPORT_SYMBOL_GPL(usb_set_interface);
1663
1664/**
1665 * usb_reset_configuration - lightweight device reset
1666 * @dev: the device whose configuration is being reset
1667 *
1668 * This issues a standard SET_CONFIGURATION request to the device using
1669 * the current configuration.  The effect is to reset most USB-related
1670 * state in the device, including interface altsettings (reset to zero),
1671 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1672 * endpoints).  Other usbcore state is unchanged, including bindings of
1673 * usb device drivers to interfaces.
1674 *
1675 * Because this affects multiple interfaces, avoid using this with composite
1676 * (multi-interface) devices.  Instead, the driver for each interface may
1677 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1678 * some devices don't support the SET_INTERFACE request, and others won't
1679 * reset all the interface state (notably endpoint state).  Resetting the whole
1680 * configuration would affect other drivers' interfaces.
1681 *
1682 * The caller must own the device lock.
1683 *
1684 * Return: Zero on success, else a negative error code.
1685 *
1686 * If this routine fails the device will probably be in an unusable state
1687 * with endpoints disabled, and interfaces only partially enabled.
1688 */
1689int usb_reset_configuration(struct usb_device *dev)
1690{
1691	int			i, retval;
1692	struct usb_host_config	*config;
1693	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1694
1695	if (dev->state == USB_STATE_SUSPENDED)
1696		return -EHOSTUNREACH;
1697
1698	/* caller must have locked the device and must own
1699	 * the usb bus readlock (so driver bindings are stable);
1700	 * calls during probe() are fine
1701	 */
1702
1703	usb_disable_device_endpoints(dev, 1); /* skip ep0*/
1704
1705	config = dev->actconfig;
1706	retval = 0;
1707	mutex_lock(hcd->bandwidth_mutex);
1708	/* Disable LPM, and re-enable it once the configuration is reset, so
1709	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1710	 */
1711	if (usb_disable_lpm(dev)) {
1712		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1713		mutex_unlock(hcd->bandwidth_mutex);
1714		return -ENOMEM;
1715	}
1716
1717	/* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1718	retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1719	if (retval < 0) {
1720		usb_enable_lpm(dev);
1721		mutex_unlock(hcd->bandwidth_mutex);
1722		return retval;
1723	}
1724	retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
1725				      config->desc.bConfigurationValue, 0,
1726				      NULL, 0, USB_CTRL_SET_TIMEOUT,
1727				      GFP_NOIO);
1728	if (retval) {
1729		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1730		usb_enable_lpm(dev);
1731		mutex_unlock(hcd->bandwidth_mutex);
1732		return retval;
1733	}
1734	mutex_unlock(hcd->bandwidth_mutex);
1735
1736	/* re-init hc/hcd interface/endpoint state */
1737	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1738		struct usb_interface *intf = config->interface[i];
1739		struct usb_host_interface *alt;
1740
1741		alt = usb_altnum_to_altsetting(intf, 0);
1742
1743		/* No altsetting 0?  We'll assume the first altsetting.
1744		 * We could use a GetInterface call, but if a device is
1745		 * so non-compliant that it doesn't have altsetting 0
1746		 * then I wouldn't trust its reply anyway.
1747		 */
1748		if (!alt)
1749			alt = &intf->altsetting[0];
1750
1751		if (alt != intf->cur_altsetting) {
1752			remove_intf_ep_devs(intf);
1753			usb_remove_sysfs_intf_files(intf);
1754		}
1755		intf->cur_altsetting = alt;
1756		usb_enable_interface(dev, intf, true);
1757		if (device_is_registered(&intf->dev)) {
1758			usb_create_sysfs_intf_files(intf);
1759			create_intf_ep_devs(intf);
1760		}
1761	}
1762	/* Now that the interfaces are installed, re-enable LPM. */
1763	usb_unlocked_enable_lpm(dev);
1764	return 0;
1765}
1766EXPORT_SYMBOL_GPL(usb_reset_configuration);
1767
1768static void usb_release_interface(struct device *dev)
1769{
1770	struct usb_interface *intf = to_usb_interface(dev);
1771	struct usb_interface_cache *intfc =
1772			altsetting_to_usb_interface_cache(intf->altsetting);
1773
1774	kref_put(&intfc->ref, usb_release_interface_cache);
1775	usb_put_dev(interface_to_usbdev(intf));
1776	of_node_put(dev->of_node);
1777	kfree(intf);
1778}
1779
1780/*
1781 * usb_deauthorize_interface - deauthorize an USB interface
1782 *
1783 * @intf: USB interface structure
1784 */
1785void usb_deauthorize_interface(struct usb_interface *intf)
1786{
1787	struct device *dev = &intf->dev;
1788
1789	device_lock(dev->parent);
1790
1791	if (intf->authorized) {
1792		device_lock(dev);
1793		intf->authorized = 0;
1794		device_unlock(dev);
1795
1796		usb_forced_unbind_intf(intf);
1797	}
1798
1799	device_unlock(dev->parent);
1800}
1801
1802/*
1803 * usb_authorize_interface - authorize an USB interface
1804 *
1805 * @intf: USB interface structure
1806 */
1807void usb_authorize_interface(struct usb_interface *intf)
1808{
1809	struct device *dev = &intf->dev;
1810
1811	if (!intf->authorized) {
1812		device_lock(dev);
1813		intf->authorized = 1; /* authorize interface */
1814		device_unlock(dev);
1815	}
1816}
1817
1818static int usb_if_uevent(const struct device *dev, struct kobj_uevent_env *env)
1819{
1820	const struct usb_device *usb_dev;
1821	const struct usb_interface *intf;
1822	const struct usb_host_interface *alt;
1823
1824	intf = to_usb_interface(dev);
1825	usb_dev = interface_to_usbdev(intf);
1826	alt = intf->cur_altsetting;
1827
1828	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1829		   alt->desc.bInterfaceClass,
1830		   alt->desc.bInterfaceSubClass,
1831		   alt->desc.bInterfaceProtocol))
1832		return -ENOMEM;
1833
1834	if (add_uevent_var(env,
1835		   "MODALIAS=usb:"
1836		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1837		   le16_to_cpu(usb_dev->descriptor.idVendor),
1838		   le16_to_cpu(usb_dev->descriptor.idProduct),
1839		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1840		   usb_dev->descriptor.bDeviceClass,
1841		   usb_dev->descriptor.bDeviceSubClass,
1842		   usb_dev->descriptor.bDeviceProtocol,
1843		   alt->desc.bInterfaceClass,
1844		   alt->desc.bInterfaceSubClass,
1845		   alt->desc.bInterfaceProtocol,
1846		   alt->desc.bInterfaceNumber))
1847		return -ENOMEM;
1848
1849	return 0;
1850}
1851
1852struct device_type usb_if_device_type = {
1853	.name =		"usb_interface",
1854	.release =	usb_release_interface,
1855	.uevent =	usb_if_uevent,
1856};
1857
1858static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1859						struct usb_host_config *config,
1860						u8 inum)
1861{
1862	struct usb_interface_assoc_descriptor *retval = NULL;
1863	struct usb_interface_assoc_descriptor *intf_assoc;
1864	int first_intf;
1865	int last_intf;
1866	int i;
1867
1868	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1869		intf_assoc = config->intf_assoc[i];
1870		if (intf_assoc->bInterfaceCount == 0)
1871			continue;
1872
1873		first_intf = intf_assoc->bFirstInterface;
1874		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1875		if (inum >= first_intf && inum <= last_intf) {
1876			if (!retval)
1877				retval = intf_assoc;
1878			else
1879				dev_err(&dev->dev, "Interface #%d referenced"
1880					" by multiple IADs\n", inum);
1881		}
1882	}
1883
1884	return retval;
1885}
1886
1887
1888/*
1889 * Internal function to queue a device reset
1890 * See usb_queue_reset_device() for more details
1891 */
1892static void __usb_queue_reset_device(struct work_struct *ws)
1893{
1894	int rc;
1895	struct usb_interface *iface =
1896		container_of(ws, struct usb_interface, reset_ws);
1897	struct usb_device *udev = interface_to_usbdev(iface);
1898
1899	rc = usb_lock_device_for_reset(udev, iface);
1900	if (rc >= 0) {
1901		usb_reset_device(udev);
1902		usb_unlock_device(udev);
1903	}
1904	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1905}
1906
1907/*
1908 * Internal function to set the wireless_status sysfs attribute
1909 * See usb_set_wireless_status() for more details
1910 */
1911static void __usb_wireless_status_intf(struct work_struct *ws)
1912{
1913	struct usb_interface *iface =
1914		container_of(ws, struct usb_interface, wireless_status_work);
1915
1916	device_lock(iface->dev.parent);
1917	if (iface->sysfs_files_created)
1918		usb_update_wireless_status_attr(iface);
1919	device_unlock(iface->dev.parent);
1920	usb_put_intf(iface);	/* Undo _get_ in usb_set_wireless_status() */
1921}
1922
1923/**
1924 * usb_set_wireless_status - sets the wireless_status struct member
1925 * @iface: the interface to modify
1926 * @status: the new wireless status
1927 *
1928 * Set the wireless_status struct member to the new value, and emit
1929 * sysfs changes as necessary.
1930 *
1931 * Returns: 0 on success, -EALREADY if already set.
1932 */
1933int usb_set_wireless_status(struct usb_interface *iface,
1934		enum usb_wireless_status status)
1935{
1936	if (iface->wireless_status == status)
1937		return -EALREADY;
1938
1939	usb_get_intf(iface);
1940	iface->wireless_status = status;
1941	schedule_work(&iface->wireless_status_work);
1942
1943	return 0;
1944}
1945EXPORT_SYMBOL_GPL(usb_set_wireless_status);
1946
1947/*
1948 * usb_set_configuration - Makes a particular device setting be current
1949 * @dev: the device whose configuration is being updated
1950 * @configuration: the configuration being chosen.
1951 *
1952 * Context: task context, might sleep. Caller holds device lock.
1953 *
1954 * This is used to enable non-default device modes.  Not all devices
1955 * use this kind of configurability; many devices only have one
1956 * configuration.
1957 *
1958 * @configuration is the value of the configuration to be installed.
1959 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1960 * must be non-zero; a value of zero indicates that the device in
1961 * unconfigured.  However some devices erroneously use 0 as one of their
1962 * configuration values.  To help manage such devices, this routine will
1963 * accept @configuration = -1 as indicating the device should be put in
1964 * an unconfigured state.
1965 *
1966 * USB device configurations may affect Linux interoperability,
1967 * power consumption and the functionality available.  For example,
1968 * the default configuration is limited to using 100mA of bus power,
1969 * so that when certain device functionality requires more power,
1970 * and the device is bus powered, that functionality should be in some
1971 * non-default device configuration.  Other device modes may also be
1972 * reflected as configuration options, such as whether two ISDN
1973 * channels are available independently; and choosing between open
1974 * standard device protocols (like CDC) or proprietary ones.
1975 *
1976 * Note that a non-authorized device (dev->authorized == 0) will only
1977 * be put in unconfigured mode.
1978 *
1979 * Note that USB has an additional level of device configurability,
1980 * associated with interfaces.  That configurability is accessed using
1981 * usb_set_interface().
1982 *
1983 * This call is synchronous. The calling context must be able to sleep,
1984 * must own the device lock, and must not hold the driver model's USB
1985 * bus mutex; usb interface driver probe() methods cannot use this routine.
1986 *
1987 * Returns zero on success, or else the status code returned by the
1988 * underlying call that failed.  On successful completion, each interface
1989 * in the original device configuration has been destroyed, and each one
1990 * in the new configuration has been probed by all relevant usb device
1991 * drivers currently known to the kernel.
1992 */
1993int usb_set_configuration(struct usb_device *dev, int configuration)
1994{
1995	int i, ret;
1996	struct usb_host_config *cp = NULL;
1997	struct usb_interface **new_interfaces = NULL;
1998	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1999	int n, nintf;
2000
2001	if (dev->authorized == 0 || configuration == -1)
2002		configuration = 0;
2003	else {
2004		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
2005			if (dev->config[i].desc.bConfigurationValue ==
2006					configuration) {
2007				cp = &dev->config[i];
2008				break;
2009			}
2010		}
2011	}
2012	if ((!cp && configuration != 0))
2013		return -EINVAL;
2014
2015	/* The USB spec says configuration 0 means unconfigured.
2016	 * But if a device includes a configuration numbered 0,
2017	 * we will accept it as a correctly configured state.
2018	 * Use -1 if you really want to unconfigure the device.
2019	 */
2020	if (cp && configuration == 0)
2021		dev_warn(&dev->dev, "config 0 descriptor??\n");
2022
2023	/* Allocate memory for new interfaces before doing anything else,
2024	 * so that if we run out then nothing will have changed. */
2025	n = nintf = 0;
2026	if (cp) {
2027		nintf = cp->desc.bNumInterfaces;
2028		new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
2029					       GFP_NOIO);
2030		if (!new_interfaces)
2031			return -ENOMEM;
2032
2033		for (; n < nintf; ++n) {
2034			new_interfaces[n] = kzalloc(
2035					sizeof(struct usb_interface),
2036					GFP_NOIO);
2037			if (!new_interfaces[n]) {
2038				ret = -ENOMEM;
2039free_interfaces:
2040				while (--n >= 0)
2041					kfree(new_interfaces[n]);
2042				kfree(new_interfaces);
2043				return ret;
2044			}
2045		}
2046
2047		i = dev->bus_mA - usb_get_max_power(dev, cp);
2048		if (i < 0)
2049			dev_warn(&dev->dev, "new config #%d exceeds power "
2050					"limit by %dmA\n",
2051					configuration, -i);
2052	}
2053
2054	/* Wake up the device so we can send it the Set-Config request */
2055	ret = usb_autoresume_device(dev);
2056	if (ret)
2057		goto free_interfaces;
2058
2059	/* if it's already configured, clear out old state first.
2060	 * getting rid of old interfaces means unbinding their drivers.
2061	 */
2062	if (dev->state != USB_STATE_ADDRESS)
2063		usb_disable_device(dev, 1);	/* Skip ep0 */
2064
2065	/* Get rid of pending async Set-Config requests for this device */
2066	cancel_async_set_config(dev);
2067
2068	/* Make sure we have bandwidth (and available HCD resources) for this
2069	 * configuration.  Remove endpoints from the schedule if we're dropping
2070	 * this configuration to set configuration 0.  After this point, the
2071	 * host controller will not allow submissions to dropped endpoints.  If
2072	 * this call fails, the device state is unchanged.
2073	 */
2074	mutex_lock(hcd->bandwidth_mutex);
2075	/* Disable LPM, and re-enable it once the new configuration is
2076	 * installed, so that the xHCI driver can recalculate the U1/U2
2077	 * timeouts.
2078	 */
2079	if (dev->actconfig && usb_disable_lpm(dev)) {
2080		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
2081		mutex_unlock(hcd->bandwidth_mutex);
2082		ret = -ENOMEM;
2083		goto free_interfaces;
2084	}
2085	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
2086	if (ret < 0) {
2087		if (dev->actconfig)
2088			usb_enable_lpm(dev);
2089		mutex_unlock(hcd->bandwidth_mutex);
2090		usb_autosuspend_device(dev);
2091		goto free_interfaces;
2092	}
2093
2094	/*
2095	 * Initialize the new interface structures and the
2096	 * hc/hcd/usbcore interface/endpoint state.
2097	 */
2098	for (i = 0; i < nintf; ++i) {
2099		struct usb_interface_cache *intfc;
2100		struct usb_interface *intf;
2101		struct usb_host_interface *alt;
2102		u8 ifnum;
2103
2104		cp->interface[i] = intf = new_interfaces[i];
2105		intfc = cp->intf_cache[i];
2106		intf->altsetting = intfc->altsetting;
2107		intf->num_altsetting = intfc->num_altsetting;
2108		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
2109		kref_get(&intfc->ref);
2110
2111		alt = usb_altnum_to_altsetting(intf, 0);
2112
2113		/* No altsetting 0?  We'll assume the first altsetting.
2114		 * We could use a GetInterface call, but if a device is
2115		 * so non-compliant that it doesn't have altsetting 0
2116		 * then I wouldn't trust its reply anyway.
2117		 */
2118		if (!alt)
2119			alt = &intf->altsetting[0];
2120
2121		ifnum = alt->desc.bInterfaceNumber;
2122		intf->intf_assoc = find_iad(dev, cp, ifnum);
2123		intf->cur_altsetting = alt;
2124		usb_enable_interface(dev, intf, true);
2125		intf->dev.parent = &dev->dev;
2126		if (usb_of_has_combined_node(dev)) {
2127			device_set_of_node_from_dev(&intf->dev, &dev->dev);
2128		} else {
2129			intf->dev.of_node = usb_of_get_interface_node(dev,
2130					configuration, ifnum);
2131		}
2132		ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
2133		intf->dev.driver = NULL;
2134		intf->dev.bus = &usb_bus_type;
2135		intf->dev.type = &usb_if_device_type;
2136		intf->dev.groups = usb_interface_groups;
2137		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
2138		INIT_WORK(&intf->wireless_status_work, __usb_wireless_status_intf);
2139		intf->minor = -1;
2140		device_initialize(&intf->dev);
2141		pm_runtime_no_callbacks(&intf->dev);
2142		dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
2143				dev->devpath, configuration, ifnum);
2144		usb_get_dev(dev);
2145	}
2146	kfree(new_interfaces);
2147
2148	ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
2149				   configuration, 0, NULL, 0,
2150				   USB_CTRL_SET_TIMEOUT, GFP_NOIO);
2151	if (ret && cp) {
2152		/*
2153		 * All the old state is gone, so what else can we do?
2154		 * The device is probably useless now anyway.
2155		 */
2156		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
2157		for (i = 0; i < nintf; ++i) {
2158			usb_disable_interface(dev, cp->interface[i], true);
2159			put_device(&cp->interface[i]->dev);
2160			cp->interface[i] = NULL;
2161		}
2162		cp = NULL;
2163	}
2164
2165	dev->actconfig = cp;
2166	mutex_unlock(hcd->bandwidth_mutex);
2167
2168	if (!cp) {
2169		usb_set_device_state(dev, USB_STATE_ADDRESS);
2170
2171		/* Leave LPM disabled while the device is unconfigured. */
2172		usb_autosuspend_device(dev);
2173		return ret;
2174	}
2175	usb_set_device_state(dev, USB_STATE_CONFIGURED);
2176
2177	if (cp->string == NULL &&
2178			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2179		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2180
2181	/* Now that the interfaces are installed, re-enable LPM. */
2182	usb_unlocked_enable_lpm(dev);
2183	/* Enable LTM if it was turned off by usb_disable_device. */
2184	usb_enable_ltm(dev);
2185
2186	/* Now that all the interfaces are set up, register them
2187	 * to trigger binding of drivers to interfaces.  probe()
2188	 * routines may install different altsettings and may
2189	 * claim() any interfaces not yet bound.  Many class drivers
2190	 * need that: CDC, audio, video, etc.
2191	 */
2192	for (i = 0; i < nintf; ++i) {
2193		struct usb_interface *intf = cp->interface[i];
2194
2195		if (intf->dev.of_node &&
2196		    !of_device_is_available(intf->dev.of_node)) {
2197			dev_info(&dev->dev, "skipping disabled interface %d\n",
2198				 intf->cur_altsetting->desc.bInterfaceNumber);
2199			continue;
2200		}
2201
2202		dev_dbg(&dev->dev,
2203			"adding %s (config #%d, interface %d)\n",
2204			dev_name(&intf->dev), configuration,
2205			intf->cur_altsetting->desc.bInterfaceNumber);
2206		device_enable_async_suspend(&intf->dev);
2207		ret = device_add(&intf->dev);
2208		if (ret != 0) {
2209			dev_err(&dev->dev, "device_add(%s) --> %d\n",
2210				dev_name(&intf->dev), ret);
2211			continue;
2212		}
2213		create_intf_ep_devs(intf);
2214	}
2215
2216	usb_autosuspend_device(dev);
2217	return 0;
2218}
2219EXPORT_SYMBOL_GPL(usb_set_configuration);
2220
2221static LIST_HEAD(set_config_list);
2222static DEFINE_SPINLOCK(set_config_lock);
2223
2224struct set_config_request {
2225	struct usb_device	*udev;
2226	int			config;
2227	struct work_struct	work;
2228	struct list_head	node;
2229};
2230
2231/* Worker routine for usb_driver_set_configuration() */
2232static void driver_set_config_work(struct work_struct *work)
2233{
2234	struct set_config_request *req =
2235		container_of(work, struct set_config_request, work);
2236	struct usb_device *udev = req->udev;
2237
2238	usb_lock_device(udev);
2239	spin_lock(&set_config_lock);
2240	list_del(&req->node);
2241	spin_unlock(&set_config_lock);
2242
2243	if (req->config >= -1)		/* Is req still valid? */
2244		usb_set_configuration(udev, req->config);
2245	usb_unlock_device(udev);
2246	usb_put_dev(udev);
2247	kfree(req);
2248}
2249
2250/* Cancel pending Set-Config requests for a device whose configuration
2251 * was just changed
2252 */
2253static void cancel_async_set_config(struct usb_device *udev)
2254{
2255	struct set_config_request *req;
2256
2257	spin_lock(&set_config_lock);
2258	list_for_each_entry(req, &set_config_list, node) {
2259		if (req->udev == udev)
2260			req->config = -999;	/* Mark as cancelled */
2261	}
2262	spin_unlock(&set_config_lock);
2263}
2264
2265/**
2266 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2267 * @udev: the device whose configuration is being updated
2268 * @config: the configuration being chosen.
2269 * Context: In process context, must be able to sleep
2270 *
2271 * Device interface drivers are not allowed to change device configurations.
2272 * This is because changing configurations will destroy the interface the
2273 * driver is bound to and create new ones; it would be like a floppy-disk
2274 * driver telling the computer to replace the floppy-disk drive with a
2275 * tape drive!
2276 *
2277 * Still, in certain specialized circumstances the need may arise.  This
2278 * routine gets around the normal restrictions by using a work thread to
2279 * submit the change-config request.
2280 *
2281 * Return: 0 if the request was successfully queued, error code otherwise.
2282 * The caller has no way to know whether the queued request will eventually
2283 * succeed.
2284 */
2285int usb_driver_set_configuration(struct usb_device *udev, int config)
2286{
2287	struct set_config_request *req;
2288
2289	req = kmalloc(sizeof(*req), GFP_KERNEL);
2290	if (!req)
2291		return -ENOMEM;
2292	req->udev = udev;
2293	req->config = config;
2294	INIT_WORK(&req->work, driver_set_config_work);
2295
2296	spin_lock(&set_config_lock);
2297	list_add(&req->node, &set_config_list);
2298	spin_unlock(&set_config_lock);
2299
2300	usb_get_dev(udev);
2301	schedule_work(&req->work);
2302	return 0;
2303}
2304EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2305
2306/**
2307 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2308 * @hdr: the place to put the results of the parsing
2309 * @intf: the interface for which parsing is requested
2310 * @buffer: pointer to the extra headers to be parsed
2311 * @buflen: length of the extra headers
2312 *
2313 * This evaluates the extra headers present in CDC devices which
2314 * bind the interfaces for data and control and provide details
2315 * about the capabilities of the device.
2316 *
2317 * Return: number of descriptors parsed or -EINVAL
2318 * if the header is contradictory beyond salvage
2319 */
2320
2321int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2322				struct usb_interface *intf,
2323				u8 *buffer,
2324				int buflen)
2325{
2326	/* duplicates are ignored */
2327	struct usb_cdc_union_desc *union_header = NULL;
2328
2329	/* duplicates are not tolerated */
2330	struct usb_cdc_header_desc *header = NULL;
2331	struct usb_cdc_ether_desc *ether = NULL;
2332	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2333	struct usb_cdc_mdlm_desc *desc = NULL;
2334
2335	unsigned int elength;
2336	int cnt = 0;
2337
2338	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2339	hdr->phonet_magic_present = false;
2340	while (buflen > 0) {
2341		elength = buffer[0];
2342		if (!elength) {
2343			dev_err(&intf->dev, "skipping garbage byte\n");
2344			elength = 1;
2345			goto next_desc;
2346		}
2347		if ((buflen < elength) || (elength < 3)) {
2348			dev_err(&intf->dev, "invalid descriptor buffer length\n");
2349			break;
2350		}
2351		if (buffer[1] != USB_DT_CS_INTERFACE) {
2352			dev_err(&intf->dev, "skipping garbage\n");
2353			goto next_desc;
2354		}
2355
2356		switch (buffer[2]) {
2357		case USB_CDC_UNION_TYPE: /* we've found it */
2358			if (elength < sizeof(struct usb_cdc_union_desc))
2359				goto next_desc;
2360			if (union_header) {
2361				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2362				goto next_desc;
2363			}
2364			union_header = (struct usb_cdc_union_desc *)buffer;
2365			break;
2366		case USB_CDC_COUNTRY_TYPE:
2367			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2368				goto next_desc;
2369			hdr->usb_cdc_country_functional_desc =
2370				(struct usb_cdc_country_functional_desc *)buffer;
2371			break;
2372		case USB_CDC_HEADER_TYPE:
2373			if (elength != sizeof(struct usb_cdc_header_desc))
2374				goto next_desc;
2375			if (header)
2376				return -EINVAL;
2377			header = (struct usb_cdc_header_desc *)buffer;
2378			break;
2379		case USB_CDC_ACM_TYPE:
2380			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2381				goto next_desc;
2382			hdr->usb_cdc_acm_descriptor =
2383				(struct usb_cdc_acm_descriptor *)buffer;
2384			break;
2385		case USB_CDC_ETHERNET_TYPE:
2386			if (elength != sizeof(struct usb_cdc_ether_desc))
2387				goto next_desc;
2388			if (ether)
2389				return -EINVAL;
2390			ether = (struct usb_cdc_ether_desc *)buffer;
2391			break;
2392		case USB_CDC_CALL_MANAGEMENT_TYPE:
2393			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2394				goto next_desc;
2395			hdr->usb_cdc_call_mgmt_descriptor =
2396				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2397			break;
2398		case USB_CDC_DMM_TYPE:
2399			if (elength < sizeof(struct usb_cdc_dmm_desc))
2400				goto next_desc;
2401			hdr->usb_cdc_dmm_desc =
2402				(struct usb_cdc_dmm_desc *)buffer;
2403			break;
2404		case USB_CDC_MDLM_TYPE:
2405			if (elength < sizeof(struct usb_cdc_mdlm_desc))
2406				goto next_desc;
2407			if (desc)
2408				return -EINVAL;
2409			desc = (struct usb_cdc_mdlm_desc *)buffer;
2410			break;
2411		case USB_CDC_MDLM_DETAIL_TYPE:
2412			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2413				goto next_desc;
2414			if (detail)
2415				return -EINVAL;
2416			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2417			break;
2418		case USB_CDC_NCM_TYPE:
2419			if (elength < sizeof(struct usb_cdc_ncm_desc))
2420				goto next_desc;
2421			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2422			break;
2423		case USB_CDC_MBIM_TYPE:
2424			if (elength < sizeof(struct usb_cdc_mbim_desc))
2425				goto next_desc;
2426
2427			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2428			break;
2429		case USB_CDC_MBIM_EXTENDED_TYPE:
2430			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2431				break;
2432			hdr->usb_cdc_mbim_extended_desc =
2433				(struct usb_cdc_mbim_extended_desc *)buffer;
2434			break;
2435		case CDC_PHONET_MAGIC_NUMBER:
2436			hdr->phonet_magic_present = true;
2437			break;
2438		default:
2439			/*
2440			 * there are LOTS more CDC descriptors that
2441			 * could legitimately be found here.
2442			 */
2443			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2444					buffer[2], elength);
2445			goto next_desc;
2446		}
2447		cnt++;
2448next_desc:
2449		buflen -= elength;
2450		buffer += elength;
2451	}
2452	hdr->usb_cdc_union_desc = union_header;
2453	hdr->usb_cdc_header_desc = header;
2454	hdr->usb_cdc_mdlm_detail_desc = detail;
2455	hdr->usb_cdc_mdlm_desc = desc;
2456	hdr->usb_cdc_ether_desc = ether;
2457	return cnt;
2458}
2459
2460EXPORT_SYMBOL(cdc_parse_cdc_header);
2461