xref: /kernel/linux/linux-6.6/drivers/ufs/core/ufshcd.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 *	Santosh Yaraganavi <santosh.sy@samsung.com>
9 *	Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12#include <linux/async.h>
13#include <linux/devfreq.h>
14#include <linux/nls.h>
15#include <linux/of.h>
16#include <linux/bitfield.h>
17#include <linux/blk-pm.h>
18#include <linux/blkdev.h>
19#include <linux/clk.h>
20#include <linux/delay.h>
21#include <linux/interrupt.h>
22#include <linux/module.h>
23#include <linux/regulator/consumer.h>
24#include <linux/sched/clock.h>
25#include <linux/iopoll.h>
26#include <scsi/scsi_cmnd.h>
27#include <scsi/scsi_dbg.h>
28#include <scsi/scsi_driver.h>
29#include <scsi/scsi_eh.h>
30#include "ufshcd-priv.h"
31#include <ufs/ufs_quirks.h>
32#include <ufs/unipro.h>
33#include "ufs-sysfs.h"
34#include "ufs-debugfs.h"
35#include "ufs-fault-injection.h"
36#include "ufs_bsg.h"
37#include "ufshcd-crypto.h"
38#include <asm/unaligned.h>
39
40#define CREATE_TRACE_POINTS
41#include <trace/events/ufs.h>
42
43#define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44				 UTP_TASK_REQ_COMPL |\
45				 UFSHCD_ERROR_MASK)
46
47#define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48				 UFSHCD_ERROR_MASK |\
49				 MCQ_CQ_EVENT_STATUS)
50
51
52/* UIC command timeout, unit: ms */
53#define UIC_CMD_TIMEOUT	500
54
55/* NOP OUT retries waiting for NOP IN response */
56#define NOP_OUT_RETRIES    10
57/* Timeout after 50 msecs if NOP OUT hangs without response */
58#define NOP_OUT_TIMEOUT    50 /* msecs */
59
60/* Query request retries */
61#define QUERY_REQ_RETRIES 3
62/* Query request timeout */
63#define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64
65/* Advanced RPMB request timeout */
66#define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67
68/* Task management command timeout */
69#define TM_CMD_TIMEOUT	100 /* msecs */
70
71/* maximum number of retries for a general UIC command  */
72#define UFS_UIC_COMMAND_RETRIES 3
73
74/* maximum number of link-startup retries */
75#define DME_LINKSTARTUP_RETRIES 3
76
77/* maximum number of reset retries before giving up */
78#define MAX_HOST_RESET_RETRIES 5
79
80/* Maximum number of error handler retries before giving up */
81#define MAX_ERR_HANDLER_RETRIES 5
82
83/* Expose the flag value from utp_upiu_query.value */
84#define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85
86/* Interrupt aggregation default timeout, unit: 40us */
87#define INT_AGGR_DEF_TO	0x02
88
89/* default delay of autosuspend: 2000 ms */
90#define RPM_AUTOSUSPEND_DELAY_MS 2000
91
92/* Default delay of RPM device flush delayed work */
93#define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94
95/* Default value of wait time before gating device ref clock */
96#define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97
98/* Polling time to wait for fDeviceInit */
99#define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100
101/* UFSHC 4.0 compliant HC support this mode. */
102static bool use_mcq_mode = true;
103
104static bool is_mcq_supported(struct ufs_hba *hba)
105{
106	return hba->mcq_sup && use_mcq_mode;
107}
108
109module_param(use_mcq_mode, bool, 0644);
110MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111
112#define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
113	({                                                              \
114		int _ret;                                               \
115		if (_on)                                                \
116			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
117		else                                                    \
118			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
119		_ret;                                                   \
120	})
121
122#define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
123	size_t __len = (len);                                            \
124	print_hex_dump(KERN_ERR, prefix_str,                             \
125		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126		       16, 4, buf, __len, false);                        \
127} while (0)
128
129int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130		     const char *prefix)
131{
132	u32 *regs;
133	size_t pos;
134
135	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136		return -EINVAL;
137
138	regs = kzalloc(len, GFP_ATOMIC);
139	if (!regs)
140		return -ENOMEM;
141
142	for (pos = 0; pos < len; pos += 4) {
143		if (offset == 0 &&
144		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145		    pos <= REG_UIC_ERROR_CODE_DME)
146			continue;
147		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148	}
149
150	ufshcd_hex_dump(prefix, regs, len);
151	kfree(regs);
152
153	return 0;
154}
155EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156
157enum {
158	UFSHCD_MAX_CHANNEL	= 0,
159	UFSHCD_MAX_ID		= 1,
160	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
161	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
162};
163
164static const char *const ufshcd_state_name[] = {
165	[UFSHCD_STATE_RESET]			= "reset",
166	[UFSHCD_STATE_OPERATIONAL]		= "operational",
167	[UFSHCD_STATE_ERROR]			= "error",
168	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
169	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
170};
171
172/* UFSHCD error handling flags */
173enum {
174	UFSHCD_EH_IN_PROGRESS = (1 << 0),
175};
176
177/* UFSHCD UIC layer error flags */
178enum {
179	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186};
187
188#define ufshcd_set_eh_in_progress(h) \
189	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190#define ufshcd_eh_in_progress(h) \
191	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192#define ufshcd_clear_eh_in_progress(h) \
193	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194
195const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202	/*
203	 * For DeepSleep, the link is first put in hibern8 and then off.
204	 * Leaving the link in hibern8 is not supported.
205	 */
206	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207};
208
209static inline enum ufs_dev_pwr_mode
210ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211{
212	return ufs_pm_lvl_states[lvl].dev_state;
213}
214
215static inline enum uic_link_state
216ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217{
218	return ufs_pm_lvl_states[lvl].link_state;
219}
220
221static inline enum ufs_pm_level
222ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223					enum uic_link_state link_state)
224{
225	enum ufs_pm_level lvl;
226
227	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229			(ufs_pm_lvl_states[lvl].link_state == link_state))
230			return lvl;
231	}
232
233	/* if no match found, return the level 0 */
234	return UFS_PM_LVL_0;
235}
236
237static const struct ufs_dev_quirk ufs_fixups[] = {
238	/* UFS cards deviations table */
239	{ .wmanufacturerid = UFS_VENDOR_MICRON,
240	  .model = UFS_ANY_MODEL,
241	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
242	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
243	  .model = UFS_ANY_MODEL,
244	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
245		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
246		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
247	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
248	  .model = UFS_ANY_MODEL,
249	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
250	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
251	  .model = "hB8aL1" /*H28U62301AMR*/,
252	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
253	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
254	  .model = UFS_ANY_MODEL,
255	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
257	  .model = "THGLF2G9C8KBADG",
258	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
259	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
260	  .model = "THGLF2G9D8KBADG",
261	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
262	{}
263};
264
265static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
266static void ufshcd_async_scan(void *data, async_cookie_t cookie);
267static int ufshcd_reset_and_restore(struct ufs_hba *hba);
268static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
269static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
270static void ufshcd_hba_exit(struct ufs_hba *hba);
271static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
272static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
273static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
274static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
275static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
276static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
279static irqreturn_t ufshcd_intr(int irq, void *__hba);
280static int ufshcd_change_power_mode(struct ufs_hba *hba,
281			     struct ufs_pa_layer_attr *pwr_mode);
282static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
283static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
284static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
285					 struct ufs_vreg *vreg);
286static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
287						 bool enable);
288static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
289static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
290
291static inline void ufshcd_enable_irq(struct ufs_hba *hba)
292{
293	if (!hba->is_irq_enabled) {
294		enable_irq(hba->irq);
295		hba->is_irq_enabled = true;
296	}
297}
298
299static inline void ufshcd_disable_irq(struct ufs_hba *hba)
300{
301	if (hba->is_irq_enabled) {
302		disable_irq(hba->irq);
303		hba->is_irq_enabled = false;
304	}
305}
306
307static void ufshcd_configure_wb(struct ufs_hba *hba)
308{
309	if (!ufshcd_is_wb_allowed(hba))
310		return;
311
312	ufshcd_wb_toggle(hba, true);
313
314	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
315
316	if (ufshcd_is_wb_buf_flush_allowed(hba))
317		ufshcd_wb_toggle_buf_flush(hba, true);
318}
319
320static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
321{
322	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
323		scsi_unblock_requests(hba->host);
324}
325
326static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
327{
328	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
329		scsi_block_requests(hba->host);
330}
331
332static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
333				      enum ufs_trace_str_t str_t)
334{
335	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
336	struct utp_upiu_header *header;
337
338	if (!trace_ufshcd_upiu_enabled())
339		return;
340
341	if (str_t == UFS_CMD_SEND)
342		header = &rq->header;
343	else
344		header = &hba->lrb[tag].ucd_rsp_ptr->header;
345
346	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
347			  UFS_TSF_CDB);
348}
349
350static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
351					enum ufs_trace_str_t str_t,
352					struct utp_upiu_req *rq_rsp)
353{
354	if (!trace_ufshcd_upiu_enabled())
355		return;
356
357	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
358			  &rq_rsp->qr, UFS_TSF_OSF);
359}
360
361static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
362				     enum ufs_trace_str_t str_t)
363{
364	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
365
366	if (!trace_ufshcd_upiu_enabled())
367		return;
368
369	if (str_t == UFS_TM_SEND)
370		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
371				  &descp->upiu_req.req_header,
372				  &descp->upiu_req.input_param1,
373				  UFS_TSF_TM_INPUT);
374	else
375		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
376				  &descp->upiu_rsp.rsp_header,
377				  &descp->upiu_rsp.output_param1,
378				  UFS_TSF_TM_OUTPUT);
379}
380
381static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
382					 const struct uic_command *ucmd,
383					 enum ufs_trace_str_t str_t)
384{
385	u32 cmd;
386
387	if (!trace_ufshcd_uic_command_enabled())
388		return;
389
390	if (str_t == UFS_CMD_SEND)
391		cmd = ucmd->command;
392	else
393		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
394
395	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
396				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
397				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
398				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
399}
400
401static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
402				     enum ufs_trace_str_t str_t)
403{
404	u64 lba = 0;
405	u8 opcode = 0, group_id = 0;
406	u32 doorbell = 0;
407	u32 intr;
408	int hwq_id = -1;
409	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
410	struct scsi_cmnd *cmd = lrbp->cmd;
411	struct request *rq = scsi_cmd_to_rq(cmd);
412	int transfer_len = -1;
413
414	if (!cmd)
415		return;
416
417	/* trace UPIU also */
418	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
419	if (!trace_ufshcd_command_enabled())
420		return;
421
422	opcode = cmd->cmnd[0];
423
424	if (opcode == READ_10 || opcode == WRITE_10) {
425		/*
426		 * Currently we only fully trace read(10) and write(10) commands
427		 */
428		transfer_len =
429		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
430		lba = scsi_get_lba(cmd);
431		if (opcode == WRITE_10)
432			group_id = lrbp->cmd->cmnd[6];
433	} else if (opcode == UNMAP) {
434		/*
435		 * The number of Bytes to be unmapped beginning with the lba.
436		 */
437		transfer_len = blk_rq_bytes(rq);
438		lba = scsi_get_lba(cmd);
439	}
440
441	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
442
443	if (is_mcq_enabled(hba)) {
444		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
445
446		hwq_id = hwq->id;
447	} else {
448		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
449	}
450	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
451			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
452}
453
454static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
455{
456	struct ufs_clk_info *clki;
457	struct list_head *head = &hba->clk_list_head;
458
459	if (list_empty(head))
460		return;
461
462	list_for_each_entry(clki, head, list) {
463		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
464				clki->max_freq)
465			dev_err(hba->dev, "clk: %s, rate: %u\n",
466					clki->name, clki->curr_freq);
467	}
468}
469
470static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
471			     const char *err_name)
472{
473	int i;
474	bool found = false;
475	const struct ufs_event_hist *e;
476
477	if (id >= UFS_EVT_CNT)
478		return;
479
480	e = &hba->ufs_stats.event[id];
481
482	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
483		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
484
485		if (e->tstamp[p] == 0)
486			continue;
487		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
488			e->val[p], div_u64(e->tstamp[p], 1000));
489		found = true;
490	}
491
492	if (!found)
493		dev_err(hba->dev, "No record of %s\n", err_name);
494	else
495		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
496}
497
498static void ufshcd_print_evt_hist(struct ufs_hba *hba)
499{
500	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
501
502	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
503	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
504	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
505	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
506	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
507	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
508			 "auto_hibern8_err");
509	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
510	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
511			 "link_startup_fail");
512	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
513	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
514			 "suspend_fail");
515	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
516	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
517			 "wlun suspend_fail");
518	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
519	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
520	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
521
522	ufshcd_vops_dbg_register_dump(hba);
523}
524
525static
526void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
527{
528	const struct ufshcd_lrb *lrbp;
529	int prdt_length;
530
531	lrbp = &hba->lrb[tag];
532
533	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
534			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
535	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
536			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
537	dev_err(hba->dev,
538		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
539		tag, (u64)lrbp->utrd_dma_addr);
540
541	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
542			sizeof(struct utp_transfer_req_desc));
543	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
544		(u64)lrbp->ucd_req_dma_addr);
545	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
546			sizeof(struct utp_upiu_req));
547	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
548		(u64)lrbp->ucd_rsp_dma_addr);
549	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
550			sizeof(struct utp_upiu_rsp));
551
552	prdt_length = le16_to_cpu(
553		lrbp->utr_descriptor_ptr->prd_table_length);
554	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
555		prdt_length /= ufshcd_sg_entry_size(hba);
556
557	dev_err(hba->dev,
558		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
559		tag, prdt_length,
560		(u64)lrbp->ucd_prdt_dma_addr);
561
562	if (pr_prdt)
563		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
564			ufshcd_sg_entry_size(hba) * prdt_length);
565}
566
567static bool ufshcd_print_tr_iter(struct request *req, void *priv)
568{
569	struct scsi_device *sdev = req->q->queuedata;
570	struct Scsi_Host *shost = sdev->host;
571	struct ufs_hba *hba = shost_priv(shost);
572
573	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
574
575	return true;
576}
577
578/**
579 * ufshcd_print_trs_all - print trs for all started requests.
580 * @hba: per-adapter instance.
581 * @pr_prdt: need to print prdt or not.
582 */
583static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
584{
585	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
586}
587
588static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
589{
590	int tag;
591
592	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
593		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
594
595		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
596		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
597	}
598}
599
600static void ufshcd_print_host_state(struct ufs_hba *hba)
601{
602	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
603
604	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
605	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
606		hba->outstanding_reqs, hba->outstanding_tasks);
607	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
608		hba->saved_err, hba->saved_uic_err);
609	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
610		hba->curr_dev_pwr_mode, hba->uic_link_state);
611	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
612		hba->pm_op_in_progress, hba->is_sys_suspended);
613	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
614		hba->auto_bkops_enabled, hba->host->host_self_blocked);
615	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
616	dev_err(hba->dev,
617		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
618		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
619		hba->ufs_stats.hibern8_exit_cnt);
620	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
621		div_u64(hba->ufs_stats.last_intr_ts, 1000),
622		hba->ufs_stats.last_intr_status);
623	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
624		hba->eh_flags, hba->req_abort_count);
625	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
626		hba->ufs_version, hba->capabilities, hba->caps);
627	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
628		hba->dev_quirks);
629	if (sdev_ufs)
630		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
631			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
632
633	ufshcd_print_clk_freqs(hba);
634}
635
636/**
637 * ufshcd_print_pwr_info - print power params as saved in hba
638 * power info
639 * @hba: per-adapter instance
640 */
641static void ufshcd_print_pwr_info(struct ufs_hba *hba)
642{
643	static const char * const names[] = {
644		"INVALID MODE",
645		"FAST MODE",
646		"SLOW_MODE",
647		"INVALID MODE",
648		"FASTAUTO_MODE",
649		"SLOWAUTO_MODE",
650		"INVALID MODE",
651	};
652
653	/*
654	 * Using dev_dbg to avoid messages during runtime PM to avoid
655	 * never-ending cycles of messages written back to storage by user space
656	 * causing runtime resume, causing more messages and so on.
657	 */
658	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
659		 __func__,
660		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
661		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
662		 names[hba->pwr_info.pwr_rx],
663		 names[hba->pwr_info.pwr_tx],
664		 hba->pwr_info.hs_rate);
665}
666
667static void ufshcd_device_reset(struct ufs_hba *hba)
668{
669	int err;
670
671	err = ufshcd_vops_device_reset(hba);
672
673	if (!err) {
674		ufshcd_set_ufs_dev_active(hba);
675		if (ufshcd_is_wb_allowed(hba)) {
676			hba->dev_info.wb_enabled = false;
677			hba->dev_info.wb_buf_flush_enabled = false;
678		}
679	}
680	if (err != -EOPNOTSUPP)
681		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
682}
683
684void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
685{
686	if (!us)
687		return;
688
689	if (us < 10)
690		udelay(us);
691	else
692		usleep_range(us, us + tolerance);
693}
694EXPORT_SYMBOL_GPL(ufshcd_delay_us);
695
696/**
697 * ufshcd_wait_for_register - wait for register value to change
698 * @hba: per-adapter interface
699 * @reg: mmio register offset
700 * @mask: mask to apply to the read register value
701 * @val: value to wait for
702 * @interval_us: polling interval in microseconds
703 * @timeout_ms: timeout in milliseconds
704 *
705 * Return: -ETIMEDOUT on error, zero on success.
706 */
707static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
708				u32 val, unsigned long interval_us,
709				unsigned long timeout_ms)
710{
711	int err = 0;
712	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
713
714	/* ignore bits that we don't intend to wait on */
715	val = val & mask;
716
717	while ((ufshcd_readl(hba, reg) & mask) != val) {
718		usleep_range(interval_us, interval_us + 50);
719		if (time_after(jiffies, timeout)) {
720			if ((ufshcd_readl(hba, reg) & mask) != val)
721				err = -ETIMEDOUT;
722			break;
723		}
724	}
725
726	return err;
727}
728
729/**
730 * ufshcd_get_intr_mask - Get the interrupt bit mask
731 * @hba: Pointer to adapter instance
732 *
733 * Return: interrupt bit mask per version
734 */
735static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
736{
737	if (hba->ufs_version == ufshci_version(1, 0))
738		return INTERRUPT_MASK_ALL_VER_10;
739	if (hba->ufs_version <= ufshci_version(2, 0))
740		return INTERRUPT_MASK_ALL_VER_11;
741
742	return INTERRUPT_MASK_ALL_VER_21;
743}
744
745/**
746 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
747 * @hba: Pointer to adapter instance
748 *
749 * Return: UFSHCI version supported by the controller
750 */
751static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
752{
753	u32 ufshci_ver;
754
755	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
756		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
757	else
758		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
759
760	/*
761	 * UFSHCI v1.x uses a different version scheme, in order
762	 * to allow the use of comparisons with the ufshci_version
763	 * function, we convert it to the same scheme as ufs 2.0+.
764	 */
765	if (ufshci_ver & 0x00010000)
766		return ufshci_version(1, ufshci_ver & 0x00000100);
767
768	return ufshci_ver;
769}
770
771/**
772 * ufshcd_is_device_present - Check if any device connected to
773 *			      the host controller
774 * @hba: pointer to adapter instance
775 *
776 * Return: true if device present, false if no device detected
777 */
778static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
779{
780	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
781}
782
783/**
784 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
785 * @lrbp: pointer to local command reference block
786 * @cqe: pointer to the completion queue entry
787 *
788 * This function is used to get the OCS field from UTRD
789 *
790 * Return: the OCS field in the UTRD.
791 */
792static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
793				      struct cq_entry *cqe)
794{
795	if (cqe)
796		return le32_to_cpu(cqe->status) & MASK_OCS;
797
798	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
799}
800
801/**
802 * ufshcd_utrl_clear() - Clear requests from the controller request list.
803 * @hba: per adapter instance
804 * @mask: mask with one bit set for each request to be cleared
805 */
806static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
807{
808	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
809		mask = ~mask;
810	/*
811	 * From the UFSHCI specification: "UTP Transfer Request List CLear
812	 * Register (UTRLCLR): This field is bit significant. Each bit
813	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
814	 * corresponds to request slot 0. A bit in this field is set to ‘0’
815	 * by host software to indicate to the host controller that a transfer
816	 * request slot is cleared. The host controller
817	 * shall free up any resources associated to the request slot
818	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
819	 * host software indicates no change to request slots by setting the
820	 * associated bits in this field to ‘1’. Bits in this field shall only
821	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
822	 */
823	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
824}
825
826/**
827 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
828 * @hba: per adapter instance
829 * @pos: position of the bit to be cleared
830 */
831static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
832{
833	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
835	else
836		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
837}
838
839/**
840 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
841 * @reg: Register value of host controller status
842 *
843 * Return: 0 on success; a positive value if failed.
844 */
845static inline int ufshcd_get_lists_status(u32 reg)
846{
847	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
848}
849
850/**
851 * ufshcd_get_uic_cmd_result - Get the UIC command result
852 * @hba: Pointer to adapter instance
853 *
854 * This function gets the result of UIC command completion
855 *
856 * Return: 0 on success; non-zero value on error.
857 */
858static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859{
860	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861	       MASK_UIC_COMMAND_RESULT;
862}
863
864/**
865 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866 * @hba: Pointer to adapter instance
867 *
868 * This function gets UIC command argument3
869 *
870 * Return: 0 on success; non-zero value on error.
871 */
872static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
873{
874	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
875}
876
877/**
878 * ufshcd_get_req_rsp - returns the TR response transaction type
879 * @ucd_rsp_ptr: pointer to response UPIU
880 *
881 * Return: UPIU type.
882 */
883static inline enum upiu_response_transaction
884ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
885{
886	return ucd_rsp_ptr->header.transaction_code;
887}
888
889/**
890 * ufshcd_is_exception_event - Check if the device raised an exception event
891 * @ucd_rsp_ptr: pointer to response UPIU
892 *
893 * The function checks if the device raised an exception event indicated in
894 * the Device Information field of response UPIU.
895 *
896 * Return: true if exception is raised, false otherwise.
897 */
898static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
899{
900	return ucd_rsp_ptr->header.device_information & 1;
901}
902
903/**
904 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
905 * @hba: per adapter instance
906 */
907static inline void
908ufshcd_reset_intr_aggr(struct ufs_hba *hba)
909{
910	ufshcd_writel(hba, INT_AGGR_ENABLE |
911		      INT_AGGR_COUNTER_AND_TIMER_RESET,
912		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
913}
914
915/**
916 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
917 * @hba: per adapter instance
918 * @cnt: Interrupt aggregation counter threshold
919 * @tmout: Interrupt aggregation timeout value
920 */
921static inline void
922ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
923{
924	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
925		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
926		      INT_AGGR_TIMEOUT_VAL(tmout),
927		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
928}
929
930/**
931 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
932 * @hba: per adapter instance
933 */
934static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
935{
936	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
937}
938
939/**
940 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
941 *			When run-stop registers are set to 1, it indicates the
942 *			host controller that it can process the requests
943 * @hba: per adapter instance
944 */
945static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
946{
947	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
948		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
949	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
950		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
951}
952
953/**
954 * ufshcd_hba_start - Start controller initialization sequence
955 * @hba: per adapter instance
956 */
957static inline void ufshcd_hba_start(struct ufs_hba *hba)
958{
959	u32 val = CONTROLLER_ENABLE;
960
961	if (ufshcd_crypto_enable(hba))
962		val |= CRYPTO_GENERAL_ENABLE;
963
964	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
965}
966
967/**
968 * ufshcd_is_hba_active - Get controller state
969 * @hba: per adapter instance
970 *
971 * Return: true if and only if the controller is active.
972 */
973bool ufshcd_is_hba_active(struct ufs_hba *hba)
974{
975	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
976}
977EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
978
979u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
980{
981	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
982	if (hba->ufs_version <= ufshci_version(1, 1))
983		return UFS_UNIPRO_VER_1_41;
984	else
985		return UFS_UNIPRO_VER_1_6;
986}
987EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
988
989static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
990{
991	/*
992	 * If both host and device support UniPro ver1.6 or later, PA layer
993	 * parameters tuning happens during link startup itself.
994	 *
995	 * We can manually tune PA layer parameters if either host or device
996	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
997	 * logic simple, we will only do manual tuning if local unipro version
998	 * doesn't support ver1.6 or later.
999	 */
1000	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1001}
1002
1003/**
1004 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1005 * @hba: per adapter instance
1006 * @scale_up: If True, set max possible frequency othewise set low frequency
1007 *
1008 * Return: 0 if successful; < 0 upon failure.
1009 */
1010static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1011{
1012	int ret = 0;
1013	struct ufs_clk_info *clki;
1014	struct list_head *head = &hba->clk_list_head;
1015
1016	if (list_empty(head))
1017		goto out;
1018
1019	list_for_each_entry(clki, head, list) {
1020		if (!IS_ERR_OR_NULL(clki->clk)) {
1021			if (scale_up && clki->max_freq) {
1022				if (clki->curr_freq == clki->max_freq)
1023					continue;
1024
1025				ret = clk_set_rate(clki->clk, clki->max_freq);
1026				if (ret) {
1027					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1028						__func__, clki->name,
1029						clki->max_freq, ret);
1030					break;
1031				}
1032				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1033						"scaled up", clki->name,
1034						clki->curr_freq,
1035						clki->max_freq);
1036
1037				clki->curr_freq = clki->max_freq;
1038
1039			} else if (!scale_up && clki->min_freq) {
1040				if (clki->curr_freq == clki->min_freq)
1041					continue;
1042
1043				ret = clk_set_rate(clki->clk, clki->min_freq);
1044				if (ret) {
1045					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046						__func__, clki->name,
1047						clki->min_freq, ret);
1048					break;
1049				}
1050				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051						"scaled down", clki->name,
1052						clki->curr_freq,
1053						clki->min_freq);
1054				clki->curr_freq = clki->min_freq;
1055			}
1056		}
1057		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1058				clki->name, clk_get_rate(clki->clk));
1059	}
1060
1061out:
1062	return ret;
1063}
1064
1065/**
1066 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1067 * @hba: per adapter instance
1068 * @scale_up: True if scaling up and false if scaling down
1069 *
1070 * Return: 0 if successful; < 0 upon failure.
1071 */
1072static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1073{
1074	int ret = 0;
1075	ktime_t start = ktime_get();
1076
1077	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1078	if (ret)
1079		goto out;
1080
1081	ret = ufshcd_set_clk_freq(hba, scale_up);
1082	if (ret)
1083		goto out;
1084
1085	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1086	if (ret)
1087		ufshcd_set_clk_freq(hba, !scale_up);
1088
1089out:
1090	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1091			(scale_up ? "up" : "down"),
1092			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1093	return ret;
1094}
1095
1096/**
1097 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1098 * @hba: per adapter instance
1099 * @scale_up: True if scaling up and false if scaling down
1100 *
1101 * Return: true if scaling is required, false otherwise.
1102 */
1103static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1104					       bool scale_up)
1105{
1106	struct ufs_clk_info *clki;
1107	struct list_head *head = &hba->clk_list_head;
1108
1109	if (list_empty(head))
1110		return false;
1111
1112	list_for_each_entry(clki, head, list) {
1113		if (!IS_ERR_OR_NULL(clki->clk)) {
1114			if (scale_up && clki->max_freq) {
1115				if (clki->curr_freq == clki->max_freq)
1116					continue;
1117				return true;
1118			} else if (!scale_up && clki->min_freq) {
1119				if (clki->curr_freq == clki->min_freq)
1120					continue;
1121				return true;
1122			}
1123		}
1124	}
1125
1126	return false;
1127}
1128
1129/*
1130 * Determine the number of pending commands by counting the bits in the SCSI
1131 * device budget maps. This approach has been selected because a bit is set in
1132 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1133 * flag. The host_self_blocked flag can be modified by calling
1134 * scsi_block_requests() or scsi_unblock_requests().
1135 */
1136static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1137{
1138	const struct scsi_device *sdev;
1139	u32 pending = 0;
1140
1141	lockdep_assert_held(hba->host->host_lock);
1142	__shost_for_each_device(sdev, hba->host)
1143		pending += sbitmap_weight(&sdev->budget_map);
1144
1145	return pending;
1146}
1147
1148/*
1149 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1150 * has expired.
1151 *
1152 * Return: 0 upon success; -EBUSY upon timeout.
1153 */
1154static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1155					u64 wait_timeout_us)
1156{
1157	unsigned long flags;
1158	int ret = 0;
1159	u32 tm_doorbell;
1160	u32 tr_pending;
1161	bool timeout = false, do_last_check = false;
1162	ktime_t start;
1163
1164	ufshcd_hold(hba);
1165	spin_lock_irqsave(hba->host->host_lock, flags);
1166	/*
1167	 * Wait for all the outstanding tasks/transfer requests.
1168	 * Verify by checking the doorbell registers are clear.
1169	 */
1170	start = ktime_get();
1171	do {
1172		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1173			ret = -EBUSY;
1174			goto out;
1175		}
1176
1177		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1178		tr_pending = ufshcd_pending_cmds(hba);
1179		if (!tm_doorbell && !tr_pending) {
1180			timeout = false;
1181			break;
1182		} else if (do_last_check) {
1183			break;
1184		}
1185
1186		spin_unlock_irqrestore(hba->host->host_lock, flags);
1187		io_schedule_timeout(msecs_to_jiffies(20));
1188		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1189		    wait_timeout_us) {
1190			timeout = true;
1191			/*
1192			 * We might have scheduled out for long time so make
1193			 * sure to check if doorbells are cleared by this time
1194			 * or not.
1195			 */
1196			do_last_check = true;
1197		}
1198		spin_lock_irqsave(hba->host->host_lock, flags);
1199	} while (tm_doorbell || tr_pending);
1200
1201	if (timeout) {
1202		dev_err(hba->dev,
1203			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1204			__func__, tm_doorbell, tr_pending);
1205		ret = -EBUSY;
1206	}
1207out:
1208	spin_unlock_irqrestore(hba->host->host_lock, flags);
1209	ufshcd_release(hba);
1210	return ret;
1211}
1212
1213/**
1214 * ufshcd_scale_gear - scale up/down UFS gear
1215 * @hba: per adapter instance
1216 * @scale_up: True for scaling up gear and false for scaling down
1217 *
1218 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1219 * non-zero for any other errors.
1220 */
1221static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1222{
1223	int ret = 0;
1224	struct ufs_pa_layer_attr new_pwr_info;
1225
1226	if (scale_up) {
1227		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1228		       sizeof(struct ufs_pa_layer_attr));
1229	} else {
1230		memcpy(&new_pwr_info, &hba->pwr_info,
1231		       sizeof(struct ufs_pa_layer_attr));
1232
1233		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1234		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1235			/* save the current power mode */
1236			memcpy(&hba->clk_scaling.saved_pwr_info,
1237				&hba->pwr_info,
1238				sizeof(struct ufs_pa_layer_attr));
1239
1240			/* scale down gear */
1241			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1242			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1243		}
1244	}
1245
1246	/* check if the power mode needs to be changed or not? */
1247	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1248	if (ret)
1249		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1250			__func__, ret,
1251			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1252			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1253
1254	return ret;
1255}
1256
1257/*
1258 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1259 * has expired.
1260 *
1261 * Return: 0 upon success; -EBUSY upon timeout.
1262 */
1263static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1264{
1265	int ret = 0;
1266	/*
1267	 * make sure that there are no outstanding requests when
1268	 * clock scaling is in progress
1269	 */
1270	ufshcd_scsi_block_requests(hba);
1271	mutex_lock(&hba->wb_mutex);
1272	down_write(&hba->clk_scaling_lock);
1273
1274	if (!hba->clk_scaling.is_allowed ||
1275	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1276		ret = -EBUSY;
1277		up_write(&hba->clk_scaling_lock);
1278		mutex_unlock(&hba->wb_mutex);
1279		ufshcd_scsi_unblock_requests(hba);
1280		goto out;
1281	}
1282
1283	/* let's not get into low power until clock scaling is completed */
1284	ufshcd_hold(hba);
1285
1286out:
1287	return ret;
1288}
1289
1290static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1291{
1292	up_write(&hba->clk_scaling_lock);
1293
1294	/* Enable Write Booster if we have scaled up else disable it */
1295	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1296		ufshcd_wb_toggle(hba, scale_up);
1297
1298	mutex_unlock(&hba->wb_mutex);
1299
1300	ufshcd_scsi_unblock_requests(hba);
1301	ufshcd_release(hba);
1302}
1303
1304/**
1305 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1306 * @hba: per adapter instance
1307 * @scale_up: True for scaling up and false for scalin down
1308 *
1309 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1310 * for any other errors.
1311 */
1312static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1313{
1314	int ret = 0;
1315
1316	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1317	if (ret)
1318		return ret;
1319
1320	/* scale down the gear before scaling down clocks */
1321	if (!scale_up) {
1322		ret = ufshcd_scale_gear(hba, false);
1323		if (ret)
1324			goto out_unprepare;
1325	}
1326
1327	ret = ufshcd_scale_clks(hba, scale_up);
1328	if (ret) {
1329		if (!scale_up)
1330			ufshcd_scale_gear(hba, true);
1331		goto out_unprepare;
1332	}
1333
1334	/* scale up the gear after scaling up clocks */
1335	if (scale_up) {
1336		ret = ufshcd_scale_gear(hba, true);
1337		if (ret) {
1338			ufshcd_scale_clks(hba, false);
1339			goto out_unprepare;
1340		}
1341	}
1342
1343out_unprepare:
1344	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1345	return ret;
1346}
1347
1348static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1349{
1350	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1351					   clk_scaling.suspend_work);
1352	unsigned long irq_flags;
1353
1354	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1355	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1356		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1357		return;
1358	}
1359	hba->clk_scaling.is_suspended = true;
1360	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361
1362	__ufshcd_suspend_clkscaling(hba);
1363}
1364
1365static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1366{
1367	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1368					   clk_scaling.resume_work);
1369	unsigned long irq_flags;
1370
1371	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1372	if (!hba->clk_scaling.is_suspended) {
1373		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374		return;
1375	}
1376	hba->clk_scaling.is_suspended = false;
1377	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378
1379	devfreq_resume_device(hba->devfreq);
1380}
1381
1382static int ufshcd_devfreq_target(struct device *dev,
1383				unsigned long *freq, u32 flags)
1384{
1385	int ret = 0;
1386	struct ufs_hba *hba = dev_get_drvdata(dev);
1387	ktime_t start;
1388	bool scale_up, sched_clk_scaling_suspend_work = false;
1389	struct list_head *clk_list = &hba->clk_list_head;
1390	struct ufs_clk_info *clki;
1391	unsigned long irq_flags;
1392
1393	if (!ufshcd_is_clkscaling_supported(hba))
1394		return -EINVAL;
1395
1396	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1397	/* Override with the closest supported frequency */
1398	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1399	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400	if (ufshcd_eh_in_progress(hba)) {
1401		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402		return 0;
1403	}
1404
1405	if (!hba->clk_scaling.active_reqs)
1406		sched_clk_scaling_suspend_work = true;
1407
1408	if (list_empty(clk_list)) {
1409		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1410		goto out;
1411	}
1412
1413	/* Decide based on the rounded-off frequency and update */
1414	scale_up = *freq == clki->max_freq;
1415	if (!scale_up)
1416		*freq = clki->min_freq;
1417	/* Update the frequency */
1418	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1419		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420		ret = 0;
1421		goto out; /* no state change required */
1422	}
1423	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424
1425	start = ktime_get();
1426	ret = ufshcd_devfreq_scale(hba, scale_up);
1427
1428	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1429		(scale_up ? "up" : "down"),
1430		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1431
1432out:
1433	if (sched_clk_scaling_suspend_work)
1434		queue_work(hba->clk_scaling.workq,
1435			   &hba->clk_scaling.suspend_work);
1436
1437	return ret;
1438}
1439
1440static int ufshcd_devfreq_get_dev_status(struct device *dev,
1441		struct devfreq_dev_status *stat)
1442{
1443	struct ufs_hba *hba = dev_get_drvdata(dev);
1444	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1445	unsigned long flags;
1446	struct list_head *clk_list = &hba->clk_list_head;
1447	struct ufs_clk_info *clki;
1448	ktime_t curr_t;
1449
1450	if (!ufshcd_is_clkscaling_supported(hba))
1451		return -EINVAL;
1452
1453	memset(stat, 0, sizeof(*stat));
1454
1455	spin_lock_irqsave(hba->host->host_lock, flags);
1456	curr_t = ktime_get();
1457	if (!scaling->window_start_t)
1458		goto start_window;
1459
1460	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1461	/*
1462	 * If current frequency is 0, then the ondemand governor considers
1463	 * there's no initial frequency set. And it always requests to set
1464	 * to max. frequency.
1465	 */
1466	stat->current_frequency = clki->curr_freq;
1467	if (scaling->is_busy_started)
1468		scaling->tot_busy_t += ktime_us_delta(curr_t,
1469				scaling->busy_start_t);
1470
1471	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1472	stat->busy_time = scaling->tot_busy_t;
1473start_window:
1474	scaling->window_start_t = curr_t;
1475	scaling->tot_busy_t = 0;
1476
1477	if (scaling->active_reqs) {
1478		scaling->busy_start_t = curr_t;
1479		scaling->is_busy_started = true;
1480	} else {
1481		scaling->busy_start_t = 0;
1482		scaling->is_busy_started = false;
1483	}
1484	spin_unlock_irqrestore(hba->host->host_lock, flags);
1485	return 0;
1486}
1487
1488static int ufshcd_devfreq_init(struct ufs_hba *hba)
1489{
1490	struct list_head *clk_list = &hba->clk_list_head;
1491	struct ufs_clk_info *clki;
1492	struct devfreq *devfreq;
1493	int ret;
1494
1495	/* Skip devfreq if we don't have any clocks in the list */
1496	if (list_empty(clk_list))
1497		return 0;
1498
1499	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1501	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1502
1503	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1504					 &hba->vps->ondemand_data);
1505	devfreq = devfreq_add_device(hba->dev,
1506			&hba->vps->devfreq_profile,
1507			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1508			&hba->vps->ondemand_data);
1509	if (IS_ERR(devfreq)) {
1510		ret = PTR_ERR(devfreq);
1511		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1512
1513		dev_pm_opp_remove(hba->dev, clki->min_freq);
1514		dev_pm_opp_remove(hba->dev, clki->max_freq);
1515		return ret;
1516	}
1517
1518	hba->devfreq = devfreq;
1519
1520	return 0;
1521}
1522
1523static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1524{
1525	struct list_head *clk_list = &hba->clk_list_head;
1526	struct ufs_clk_info *clki;
1527
1528	if (!hba->devfreq)
1529		return;
1530
1531	devfreq_remove_device(hba->devfreq);
1532	hba->devfreq = NULL;
1533
1534	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1535	dev_pm_opp_remove(hba->dev, clki->min_freq);
1536	dev_pm_opp_remove(hba->dev, clki->max_freq);
1537}
1538
1539static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1540{
1541	unsigned long flags;
1542
1543	devfreq_suspend_device(hba->devfreq);
1544	spin_lock_irqsave(hba->host->host_lock, flags);
1545	hba->clk_scaling.window_start_t = 0;
1546	spin_unlock_irqrestore(hba->host->host_lock, flags);
1547}
1548
1549static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1550{
1551	unsigned long flags;
1552	bool suspend = false;
1553
1554	cancel_work_sync(&hba->clk_scaling.suspend_work);
1555	cancel_work_sync(&hba->clk_scaling.resume_work);
1556
1557	spin_lock_irqsave(hba->host->host_lock, flags);
1558	if (!hba->clk_scaling.is_suspended) {
1559		suspend = true;
1560		hba->clk_scaling.is_suspended = true;
1561	}
1562	spin_unlock_irqrestore(hba->host->host_lock, flags);
1563
1564	if (suspend)
1565		__ufshcd_suspend_clkscaling(hba);
1566}
1567
1568static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1569{
1570	unsigned long flags;
1571	bool resume = false;
1572
1573	spin_lock_irqsave(hba->host->host_lock, flags);
1574	if (hba->clk_scaling.is_suspended) {
1575		resume = true;
1576		hba->clk_scaling.is_suspended = false;
1577	}
1578	spin_unlock_irqrestore(hba->host->host_lock, flags);
1579
1580	if (resume)
1581		devfreq_resume_device(hba->devfreq);
1582}
1583
1584static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1585		struct device_attribute *attr, char *buf)
1586{
1587	struct ufs_hba *hba = dev_get_drvdata(dev);
1588
1589	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1590}
1591
1592static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1593		struct device_attribute *attr, const char *buf, size_t count)
1594{
1595	struct ufs_hba *hba = dev_get_drvdata(dev);
1596	u32 value;
1597	int err = 0;
1598
1599	if (kstrtou32(buf, 0, &value))
1600		return -EINVAL;
1601
1602	down(&hba->host_sem);
1603	if (!ufshcd_is_user_access_allowed(hba)) {
1604		err = -EBUSY;
1605		goto out;
1606	}
1607
1608	value = !!value;
1609	if (value == hba->clk_scaling.is_enabled)
1610		goto out;
1611
1612	ufshcd_rpm_get_sync(hba);
1613	ufshcd_hold(hba);
1614
1615	hba->clk_scaling.is_enabled = value;
1616
1617	if (value) {
1618		ufshcd_resume_clkscaling(hba);
1619	} else {
1620		ufshcd_suspend_clkscaling(hba);
1621		err = ufshcd_devfreq_scale(hba, true);
1622		if (err)
1623			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1624					__func__, err);
1625	}
1626
1627	ufshcd_release(hba);
1628	ufshcd_rpm_put_sync(hba);
1629out:
1630	up(&hba->host_sem);
1631	return err ? err : count;
1632}
1633
1634static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1635{
1636	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1637	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1638	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1639	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1640	hba->clk_scaling.enable_attr.attr.mode = 0644;
1641	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1642		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1643}
1644
1645static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1646{
1647	if (hba->clk_scaling.enable_attr.attr.name)
1648		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1649}
1650
1651static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1652{
1653	char wq_name[sizeof("ufs_clkscaling_00")];
1654
1655	if (!ufshcd_is_clkscaling_supported(hba))
1656		return;
1657
1658	if (!hba->clk_scaling.min_gear)
1659		hba->clk_scaling.min_gear = UFS_HS_G1;
1660
1661	INIT_WORK(&hba->clk_scaling.suspend_work,
1662		  ufshcd_clk_scaling_suspend_work);
1663	INIT_WORK(&hba->clk_scaling.resume_work,
1664		  ufshcd_clk_scaling_resume_work);
1665
1666	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1667		 hba->host->host_no);
1668	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1669
1670	hba->clk_scaling.is_initialized = true;
1671}
1672
1673static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1674{
1675	if (!hba->clk_scaling.is_initialized)
1676		return;
1677
1678	ufshcd_remove_clk_scaling_sysfs(hba);
1679	destroy_workqueue(hba->clk_scaling.workq);
1680	ufshcd_devfreq_remove(hba);
1681	hba->clk_scaling.is_initialized = false;
1682}
1683
1684static void ufshcd_ungate_work(struct work_struct *work)
1685{
1686	int ret;
1687	unsigned long flags;
1688	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1689			clk_gating.ungate_work);
1690
1691	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1692
1693	spin_lock_irqsave(hba->host->host_lock, flags);
1694	if (hba->clk_gating.state == CLKS_ON) {
1695		spin_unlock_irqrestore(hba->host->host_lock, flags);
1696		return;
1697	}
1698
1699	spin_unlock_irqrestore(hba->host->host_lock, flags);
1700	ufshcd_hba_vreg_set_hpm(hba);
1701	ufshcd_setup_clocks(hba, true);
1702
1703	ufshcd_enable_irq(hba);
1704
1705	/* Exit from hibern8 */
1706	if (ufshcd_can_hibern8_during_gating(hba)) {
1707		/* Prevent gating in this path */
1708		hba->clk_gating.is_suspended = true;
1709		if (ufshcd_is_link_hibern8(hba)) {
1710			ret = ufshcd_uic_hibern8_exit(hba);
1711			if (ret)
1712				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1713					__func__, ret);
1714			else
1715				ufshcd_set_link_active(hba);
1716		}
1717		hba->clk_gating.is_suspended = false;
1718	}
1719}
1720
1721/**
1722 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1723 * Also, exit from hibern8 mode and set the link as active.
1724 * @hba: per adapter instance
1725 */
1726void ufshcd_hold(struct ufs_hba *hba)
1727{
1728	bool flush_result;
1729	unsigned long flags;
1730
1731	if (!ufshcd_is_clkgating_allowed(hba) ||
1732	    !hba->clk_gating.is_initialized)
1733		return;
1734	spin_lock_irqsave(hba->host->host_lock, flags);
1735	hba->clk_gating.active_reqs++;
1736
1737start:
1738	switch (hba->clk_gating.state) {
1739	case CLKS_ON:
1740		/*
1741		 * Wait for the ungate work to complete if in progress.
1742		 * Though the clocks may be in ON state, the link could
1743		 * still be in hibner8 state if hibern8 is allowed
1744		 * during clock gating.
1745		 * Make sure we exit hibern8 state also in addition to
1746		 * clocks being ON.
1747		 */
1748		if (ufshcd_can_hibern8_during_gating(hba) &&
1749		    ufshcd_is_link_hibern8(hba)) {
1750			spin_unlock_irqrestore(hba->host->host_lock, flags);
1751			flush_result = flush_work(&hba->clk_gating.ungate_work);
1752			if (hba->clk_gating.is_suspended && !flush_result)
1753				return;
1754			spin_lock_irqsave(hba->host->host_lock, flags);
1755			goto start;
1756		}
1757		break;
1758	case REQ_CLKS_OFF:
1759		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1760			hba->clk_gating.state = CLKS_ON;
1761			trace_ufshcd_clk_gating(dev_name(hba->dev),
1762						hba->clk_gating.state);
1763			break;
1764		}
1765		/*
1766		 * If we are here, it means gating work is either done or
1767		 * currently running. Hence, fall through to cancel gating
1768		 * work and to enable clocks.
1769		 */
1770		fallthrough;
1771	case CLKS_OFF:
1772		hba->clk_gating.state = REQ_CLKS_ON;
1773		trace_ufshcd_clk_gating(dev_name(hba->dev),
1774					hba->clk_gating.state);
1775		queue_work(hba->clk_gating.clk_gating_workq,
1776			   &hba->clk_gating.ungate_work);
1777		/*
1778		 * fall through to check if we should wait for this
1779		 * work to be done or not.
1780		 */
1781		fallthrough;
1782	case REQ_CLKS_ON:
1783		spin_unlock_irqrestore(hba->host->host_lock, flags);
1784		flush_work(&hba->clk_gating.ungate_work);
1785		/* Make sure state is CLKS_ON before returning */
1786		spin_lock_irqsave(hba->host->host_lock, flags);
1787		goto start;
1788	default:
1789		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1790				__func__, hba->clk_gating.state);
1791		break;
1792	}
1793	spin_unlock_irqrestore(hba->host->host_lock, flags);
1794}
1795EXPORT_SYMBOL_GPL(ufshcd_hold);
1796
1797static void ufshcd_gate_work(struct work_struct *work)
1798{
1799	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1800			clk_gating.gate_work.work);
1801	unsigned long flags;
1802	int ret;
1803
1804	spin_lock_irqsave(hba->host->host_lock, flags);
1805	/*
1806	 * In case you are here to cancel this work the gating state
1807	 * would be marked as REQ_CLKS_ON. In this case save time by
1808	 * skipping the gating work and exit after changing the clock
1809	 * state to CLKS_ON.
1810	 */
1811	if (hba->clk_gating.is_suspended ||
1812		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1813		hba->clk_gating.state = CLKS_ON;
1814		trace_ufshcd_clk_gating(dev_name(hba->dev),
1815					hba->clk_gating.state);
1816		goto rel_lock;
1817	}
1818
1819	if (hba->clk_gating.active_reqs
1820		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1821		|| hba->outstanding_reqs || hba->outstanding_tasks
1822		|| hba->active_uic_cmd || hba->uic_async_done)
1823		goto rel_lock;
1824
1825	spin_unlock_irqrestore(hba->host->host_lock, flags);
1826
1827	/* put the link into hibern8 mode before turning off clocks */
1828	if (ufshcd_can_hibern8_during_gating(hba)) {
1829		ret = ufshcd_uic_hibern8_enter(hba);
1830		if (ret) {
1831			hba->clk_gating.state = CLKS_ON;
1832			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1833					__func__, ret);
1834			trace_ufshcd_clk_gating(dev_name(hba->dev),
1835						hba->clk_gating.state);
1836			goto out;
1837		}
1838		ufshcd_set_link_hibern8(hba);
1839	}
1840
1841	ufshcd_disable_irq(hba);
1842
1843	ufshcd_setup_clocks(hba, false);
1844
1845	/* Put the host controller in low power mode if possible */
1846	ufshcd_hba_vreg_set_lpm(hba);
1847	/*
1848	 * In case you are here to cancel this work the gating state
1849	 * would be marked as REQ_CLKS_ON. In this case keep the state
1850	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1851	 * and a request to turn them on is pending. By doing this way,
1852	 * we keep the state machine in tact and this would ultimately
1853	 * prevent from doing cancel work multiple times when there are
1854	 * new requests arriving before the current cancel work is done.
1855	 */
1856	spin_lock_irqsave(hba->host->host_lock, flags);
1857	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1858		hba->clk_gating.state = CLKS_OFF;
1859		trace_ufshcd_clk_gating(dev_name(hba->dev),
1860					hba->clk_gating.state);
1861	}
1862rel_lock:
1863	spin_unlock_irqrestore(hba->host->host_lock, flags);
1864out:
1865	return;
1866}
1867
1868/* host lock must be held before calling this variant */
1869static void __ufshcd_release(struct ufs_hba *hba)
1870{
1871	if (!ufshcd_is_clkgating_allowed(hba))
1872		return;
1873
1874	hba->clk_gating.active_reqs--;
1875
1876	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1877	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1878	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1879	    hba->active_uic_cmd || hba->uic_async_done ||
1880	    hba->clk_gating.state == CLKS_OFF)
1881		return;
1882
1883	hba->clk_gating.state = REQ_CLKS_OFF;
1884	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1885	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1886			   &hba->clk_gating.gate_work,
1887			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1888}
1889
1890void ufshcd_release(struct ufs_hba *hba)
1891{
1892	unsigned long flags;
1893
1894	spin_lock_irqsave(hba->host->host_lock, flags);
1895	__ufshcd_release(hba);
1896	spin_unlock_irqrestore(hba->host->host_lock, flags);
1897}
1898EXPORT_SYMBOL_GPL(ufshcd_release);
1899
1900static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1901		struct device_attribute *attr, char *buf)
1902{
1903	struct ufs_hba *hba = dev_get_drvdata(dev);
1904
1905	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1906}
1907
1908void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1909{
1910	struct ufs_hba *hba = dev_get_drvdata(dev);
1911	unsigned long flags;
1912
1913	spin_lock_irqsave(hba->host->host_lock, flags);
1914	hba->clk_gating.delay_ms = value;
1915	spin_unlock_irqrestore(hba->host->host_lock, flags);
1916}
1917EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1918
1919static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1920		struct device_attribute *attr, const char *buf, size_t count)
1921{
1922	unsigned long value;
1923
1924	if (kstrtoul(buf, 0, &value))
1925		return -EINVAL;
1926
1927	ufshcd_clkgate_delay_set(dev, value);
1928	return count;
1929}
1930
1931static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1932		struct device_attribute *attr, char *buf)
1933{
1934	struct ufs_hba *hba = dev_get_drvdata(dev);
1935
1936	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1937}
1938
1939static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1940		struct device_attribute *attr, const char *buf, size_t count)
1941{
1942	struct ufs_hba *hba = dev_get_drvdata(dev);
1943	unsigned long flags;
1944	u32 value;
1945
1946	if (kstrtou32(buf, 0, &value))
1947		return -EINVAL;
1948
1949	value = !!value;
1950
1951	spin_lock_irqsave(hba->host->host_lock, flags);
1952	if (value == hba->clk_gating.is_enabled)
1953		goto out;
1954
1955	if (value)
1956		__ufshcd_release(hba);
1957	else
1958		hba->clk_gating.active_reqs++;
1959
1960	hba->clk_gating.is_enabled = value;
1961out:
1962	spin_unlock_irqrestore(hba->host->host_lock, flags);
1963	return count;
1964}
1965
1966static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1967{
1968	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1969	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1970	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1971	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1972	hba->clk_gating.delay_attr.attr.mode = 0644;
1973	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1974		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1975
1976	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1977	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1978	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1979	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1980	hba->clk_gating.enable_attr.attr.mode = 0644;
1981	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1982		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1983}
1984
1985static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1986{
1987	if (hba->clk_gating.delay_attr.attr.name)
1988		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1989	if (hba->clk_gating.enable_attr.attr.name)
1990		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1991}
1992
1993static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1994{
1995	char wq_name[sizeof("ufs_clk_gating_00")];
1996
1997	if (!ufshcd_is_clkgating_allowed(hba))
1998		return;
1999
2000	hba->clk_gating.state = CLKS_ON;
2001
2002	hba->clk_gating.delay_ms = 150;
2003	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2004	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2005
2006	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2007		 hba->host->host_no);
2008	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2009					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2010
2011	ufshcd_init_clk_gating_sysfs(hba);
2012
2013	hba->clk_gating.is_enabled = true;
2014	hba->clk_gating.is_initialized = true;
2015}
2016
2017static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2018{
2019	if (!hba->clk_gating.is_initialized)
2020		return;
2021
2022	ufshcd_remove_clk_gating_sysfs(hba);
2023
2024	/* Ungate the clock if necessary. */
2025	ufshcd_hold(hba);
2026	hba->clk_gating.is_initialized = false;
2027	ufshcd_release(hba);
2028
2029	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2030}
2031
2032static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2033{
2034	bool queue_resume_work = false;
2035	ktime_t curr_t = ktime_get();
2036	unsigned long flags;
2037
2038	if (!ufshcd_is_clkscaling_supported(hba))
2039		return;
2040
2041	spin_lock_irqsave(hba->host->host_lock, flags);
2042	if (!hba->clk_scaling.active_reqs++)
2043		queue_resume_work = true;
2044
2045	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2046		spin_unlock_irqrestore(hba->host->host_lock, flags);
2047		return;
2048	}
2049
2050	if (queue_resume_work)
2051		queue_work(hba->clk_scaling.workq,
2052			   &hba->clk_scaling.resume_work);
2053
2054	if (!hba->clk_scaling.window_start_t) {
2055		hba->clk_scaling.window_start_t = curr_t;
2056		hba->clk_scaling.tot_busy_t = 0;
2057		hba->clk_scaling.is_busy_started = false;
2058	}
2059
2060	if (!hba->clk_scaling.is_busy_started) {
2061		hba->clk_scaling.busy_start_t = curr_t;
2062		hba->clk_scaling.is_busy_started = true;
2063	}
2064	spin_unlock_irqrestore(hba->host->host_lock, flags);
2065}
2066
2067static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2068{
2069	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2070	unsigned long flags;
2071
2072	if (!ufshcd_is_clkscaling_supported(hba))
2073		return;
2074
2075	spin_lock_irqsave(hba->host->host_lock, flags);
2076	hba->clk_scaling.active_reqs--;
2077	if (!scaling->active_reqs && scaling->is_busy_started) {
2078		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2079					scaling->busy_start_t));
2080		scaling->busy_start_t = 0;
2081		scaling->is_busy_started = false;
2082	}
2083	spin_unlock_irqrestore(hba->host->host_lock, flags);
2084}
2085
2086static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2087{
2088	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2089		return READ;
2090	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2091		return WRITE;
2092	else
2093		return -EINVAL;
2094}
2095
2096static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2097						struct ufshcd_lrb *lrbp)
2098{
2099	const struct ufs_hba_monitor *m = &hba->monitor;
2100
2101	return (m->enabled && lrbp && lrbp->cmd &&
2102		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2103		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2104}
2105
2106static void ufshcd_start_monitor(struct ufs_hba *hba,
2107				 const struct ufshcd_lrb *lrbp)
2108{
2109	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2110	unsigned long flags;
2111
2112	spin_lock_irqsave(hba->host->host_lock, flags);
2113	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2114		hba->monitor.busy_start_ts[dir] = ktime_get();
2115	spin_unlock_irqrestore(hba->host->host_lock, flags);
2116}
2117
2118static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2119{
2120	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2121	unsigned long flags;
2122
2123	spin_lock_irqsave(hba->host->host_lock, flags);
2124	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2125		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2126		struct ufs_hba_monitor *m = &hba->monitor;
2127		ktime_t now, inc, lat;
2128
2129		now = lrbp->compl_time_stamp;
2130		inc = ktime_sub(now, m->busy_start_ts[dir]);
2131		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2132		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2133
2134		/* Update latencies */
2135		m->nr_req[dir]++;
2136		lat = ktime_sub(now, lrbp->issue_time_stamp);
2137		m->lat_sum[dir] += lat;
2138		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2139			m->lat_max[dir] = lat;
2140		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2141			m->lat_min[dir] = lat;
2142
2143		m->nr_queued[dir]--;
2144		/* Push forward the busy start of monitor */
2145		m->busy_start_ts[dir] = now;
2146	}
2147	spin_unlock_irqrestore(hba->host->host_lock, flags);
2148}
2149
2150/**
2151 * ufshcd_send_command - Send SCSI or device management commands
2152 * @hba: per adapter instance
2153 * @task_tag: Task tag of the command
2154 * @hwq: pointer to hardware queue instance
2155 */
2156static inline
2157void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2158			 struct ufs_hw_queue *hwq)
2159{
2160	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2161	unsigned long flags;
2162
2163	lrbp->issue_time_stamp = ktime_get();
2164	lrbp->issue_time_stamp_local_clock = local_clock();
2165	lrbp->compl_time_stamp = ktime_set(0, 0);
2166	lrbp->compl_time_stamp_local_clock = 0;
2167	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2168	ufshcd_clk_scaling_start_busy(hba);
2169	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2170		ufshcd_start_monitor(hba, lrbp);
2171
2172	if (is_mcq_enabled(hba)) {
2173		int utrd_size = sizeof(struct utp_transfer_req_desc);
2174		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2175		struct utp_transfer_req_desc *dest;
2176
2177		spin_lock(&hwq->sq_lock);
2178		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2179		memcpy(dest, src, utrd_size);
2180		ufshcd_inc_sq_tail(hwq);
2181		spin_unlock(&hwq->sq_lock);
2182	} else {
2183		spin_lock_irqsave(&hba->outstanding_lock, flags);
2184		if (hba->vops && hba->vops->setup_xfer_req)
2185			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2186						  !!lrbp->cmd);
2187		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2188		ufshcd_writel(hba, 1 << lrbp->task_tag,
2189			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2190		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2191	}
2192}
2193
2194/**
2195 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2196 * @lrbp: pointer to local reference block
2197 */
2198static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2199{
2200	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2201	u16 resp_len;
2202	int len;
2203
2204	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2205	if (sense_buffer && resp_len) {
2206		int len_to_copy;
2207
2208		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2209		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2210
2211		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2212		       len_to_copy);
2213	}
2214}
2215
2216/**
2217 * ufshcd_copy_query_response() - Copy the Query Response and the data
2218 * descriptor
2219 * @hba: per adapter instance
2220 * @lrbp: pointer to local reference block
2221 *
2222 * Return: 0 upon success; < 0 upon failure.
2223 */
2224static
2225int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2226{
2227	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2228
2229	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2230
2231	/* Get the descriptor */
2232	if (hba->dev_cmd.query.descriptor &&
2233	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2234		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2235				GENERAL_UPIU_REQUEST_SIZE;
2236		u16 resp_len;
2237		u16 buf_len;
2238
2239		/* data segment length */
2240		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2241				       .data_segment_length);
2242		buf_len = be16_to_cpu(
2243				hba->dev_cmd.query.request.upiu_req.length);
2244		if (likely(buf_len >= resp_len)) {
2245			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2246		} else {
2247			dev_warn(hba->dev,
2248				 "%s: rsp size %d is bigger than buffer size %d",
2249				 __func__, resp_len, buf_len);
2250			return -EINVAL;
2251		}
2252	}
2253
2254	return 0;
2255}
2256
2257/**
2258 * ufshcd_hba_capabilities - Read controller capabilities
2259 * @hba: per adapter instance
2260 *
2261 * Return: 0 on success, negative on error.
2262 */
2263static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2264{
2265	int err;
2266
2267	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2268	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2269		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2270
2271	/* nutrs and nutmrs are 0 based values */
2272	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2273	hba->nutmrs =
2274	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2275	hba->reserved_slot = hba->nutrs - 1;
2276
2277	/* Read crypto capabilities */
2278	err = ufshcd_hba_init_crypto_capabilities(hba);
2279	if (err) {
2280		dev_err(hba->dev, "crypto setup failed\n");
2281		return err;
2282	}
2283
2284	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2285	if (!hba->mcq_sup)
2286		return 0;
2287
2288	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2289	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2290				     hba->mcq_capabilities);
2291
2292	return 0;
2293}
2294
2295/**
2296 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2297 *                            to accept UIC commands
2298 * @hba: per adapter instance
2299 *
2300 * Return: true on success, else false.
2301 */
2302static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2303{
2304	u32 val;
2305	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2306				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2307				    REG_CONTROLLER_STATUS);
2308	return ret == 0 ? true : false;
2309}
2310
2311/**
2312 * ufshcd_get_upmcrs - Get the power mode change request status
2313 * @hba: Pointer to adapter instance
2314 *
2315 * This function gets the UPMCRS field of HCS register
2316 *
2317 * Return: value of UPMCRS field.
2318 */
2319static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2320{
2321	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2322}
2323
2324/**
2325 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2326 * @hba: per adapter instance
2327 * @uic_cmd: UIC command
2328 */
2329static inline void
2330ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2331{
2332	lockdep_assert_held(&hba->uic_cmd_mutex);
2333
2334	WARN_ON(hba->active_uic_cmd);
2335
2336	hba->active_uic_cmd = uic_cmd;
2337
2338	/* Write Args */
2339	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2340	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2341	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2342
2343	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2344
2345	/* Write UIC Cmd */
2346	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2347		      REG_UIC_COMMAND);
2348}
2349
2350/**
2351 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2352 * @hba: per adapter instance
2353 * @uic_cmd: UIC command
2354 *
2355 * Return: 0 only if success.
2356 */
2357static int
2358ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2359{
2360	int ret;
2361	unsigned long flags;
2362
2363	lockdep_assert_held(&hba->uic_cmd_mutex);
2364
2365	if (wait_for_completion_timeout(&uic_cmd->done,
2366					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2367		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2368	} else {
2369		ret = -ETIMEDOUT;
2370		dev_err(hba->dev,
2371			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2372			uic_cmd->command, uic_cmd->argument3);
2373
2374		if (!uic_cmd->cmd_active) {
2375			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2376				__func__);
2377			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2378		}
2379	}
2380
2381	spin_lock_irqsave(hba->host->host_lock, flags);
2382	hba->active_uic_cmd = NULL;
2383	spin_unlock_irqrestore(hba->host->host_lock, flags);
2384
2385	return ret;
2386}
2387
2388/**
2389 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2390 * @hba: per adapter instance
2391 * @uic_cmd: UIC command
2392 * @completion: initialize the completion only if this is set to true
2393 *
2394 * Return: 0 only if success.
2395 */
2396static int
2397__ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2398		      bool completion)
2399{
2400	lockdep_assert_held(&hba->uic_cmd_mutex);
2401
2402	if (!ufshcd_ready_for_uic_cmd(hba)) {
2403		dev_err(hba->dev,
2404			"Controller not ready to accept UIC commands\n");
2405		return -EIO;
2406	}
2407
2408	if (completion)
2409		init_completion(&uic_cmd->done);
2410
2411	uic_cmd->cmd_active = 1;
2412	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2413
2414	return 0;
2415}
2416
2417/**
2418 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2419 * @hba: per adapter instance
2420 * @uic_cmd: UIC command
2421 *
2422 * Return: 0 only if success.
2423 */
2424int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2425{
2426	int ret;
2427
2428	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2429		return 0;
2430
2431	ufshcd_hold(hba);
2432	mutex_lock(&hba->uic_cmd_mutex);
2433	ufshcd_add_delay_before_dme_cmd(hba);
2434
2435	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2436	if (!ret)
2437		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2438
2439	mutex_unlock(&hba->uic_cmd_mutex);
2440
2441	ufshcd_release(hba);
2442	return ret;
2443}
2444
2445/**
2446 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2447 * @hba:	per-adapter instance
2448 * @lrbp:	pointer to local reference block
2449 * @sg_entries:	The number of sg lists actually used
2450 * @sg_list:	Pointer to SG list
2451 */
2452static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2453			       struct scatterlist *sg_list)
2454{
2455	struct ufshcd_sg_entry *prd;
2456	struct scatterlist *sg;
2457	int i;
2458
2459	if (sg_entries) {
2460
2461		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2462			lrbp->utr_descriptor_ptr->prd_table_length =
2463				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2464		else
2465			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2466
2467		prd = lrbp->ucd_prdt_ptr;
2468
2469		for_each_sg(sg_list, sg, sg_entries, i) {
2470			const unsigned int len = sg_dma_len(sg);
2471
2472			/*
2473			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2474			 * based value that indicates the length, in bytes, of
2475			 * the data block. A maximum of length of 256KB may
2476			 * exist for any entry. Bits 1:0 of this field shall be
2477			 * 11b to indicate Dword granularity. A value of '3'
2478			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2479			 */
2480			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2481			prd->size = cpu_to_le32(len - 1);
2482			prd->addr = cpu_to_le64(sg->dma_address);
2483			prd->reserved = 0;
2484			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2485		}
2486	} else {
2487		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2488	}
2489}
2490
2491/**
2492 * ufshcd_map_sg - Map scatter-gather list to prdt
2493 * @hba: per adapter instance
2494 * @lrbp: pointer to local reference block
2495 *
2496 * Return: 0 in case of success, non-zero value in case of failure.
2497 */
2498static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2499{
2500	struct scsi_cmnd *cmd = lrbp->cmd;
2501	int sg_segments = scsi_dma_map(cmd);
2502
2503	if (sg_segments < 0)
2504		return sg_segments;
2505
2506	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2507
2508	return 0;
2509}
2510
2511/**
2512 * ufshcd_enable_intr - enable interrupts
2513 * @hba: per adapter instance
2514 * @intrs: interrupt bits
2515 */
2516static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2517{
2518	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2519
2520	if (hba->ufs_version == ufshci_version(1, 0)) {
2521		u32 rw;
2522		rw = set & INTERRUPT_MASK_RW_VER_10;
2523		set = rw | ((set ^ intrs) & intrs);
2524	} else {
2525		set |= intrs;
2526	}
2527
2528	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2529}
2530
2531/**
2532 * ufshcd_disable_intr - disable interrupts
2533 * @hba: per adapter instance
2534 * @intrs: interrupt bits
2535 */
2536static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2537{
2538	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2539
2540	if (hba->ufs_version == ufshci_version(1, 0)) {
2541		u32 rw;
2542		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2543			~(intrs & INTERRUPT_MASK_RW_VER_10);
2544		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2545
2546	} else {
2547		set &= ~intrs;
2548	}
2549
2550	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2551}
2552
2553/**
2554 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2555 * descriptor according to request
2556 * @lrbp: pointer to local reference block
2557 * @upiu_flags: flags required in the header
2558 * @cmd_dir: requests data direction
2559 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2560 */
2561static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2562					enum dma_data_direction cmd_dir, int ehs_length)
2563{
2564	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2565	struct request_desc_header *h = &req_desc->header;
2566	enum utp_data_direction data_direction;
2567
2568	*h = (typeof(*h)){ };
2569
2570	if (cmd_dir == DMA_FROM_DEVICE) {
2571		data_direction = UTP_DEVICE_TO_HOST;
2572		*upiu_flags = UPIU_CMD_FLAGS_READ;
2573	} else if (cmd_dir == DMA_TO_DEVICE) {
2574		data_direction = UTP_HOST_TO_DEVICE;
2575		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2576	} else {
2577		data_direction = UTP_NO_DATA_TRANSFER;
2578		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2579	}
2580
2581	h->command_type = lrbp->command_type;
2582	h->data_direction = data_direction;
2583	h->ehs_length = ehs_length;
2584
2585	if (lrbp->intr_cmd)
2586		h->interrupt = 1;
2587
2588	/* Prepare crypto related dwords */
2589	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2590
2591	/*
2592	 * assigning invalid value for command status. Controller
2593	 * updates OCS on command completion, with the command
2594	 * status
2595	 */
2596	h->ocs = OCS_INVALID_COMMAND_STATUS;
2597
2598	req_desc->prd_table_length = 0;
2599}
2600
2601/**
2602 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2603 * for scsi commands
2604 * @lrbp: local reference block pointer
2605 * @upiu_flags: flags
2606 */
2607static
2608void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2609{
2610	struct scsi_cmnd *cmd = lrbp->cmd;
2611	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2612	unsigned short cdb_len;
2613
2614	ucd_req_ptr->header = (struct utp_upiu_header){
2615		.transaction_code = UPIU_TRANSACTION_COMMAND,
2616		.flags = upiu_flags,
2617		.lun = lrbp->lun,
2618		.task_tag = lrbp->task_tag,
2619		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2620	};
2621
2622	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2623
2624	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2625	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2626	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2627
2628	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2629}
2630
2631/**
2632 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2633 * @hba: UFS hba
2634 * @lrbp: local reference block pointer
2635 * @upiu_flags: flags
2636 */
2637static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2638				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2639{
2640	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2641	struct ufs_query *query = &hba->dev_cmd.query;
2642	u16 len = be16_to_cpu(query->request.upiu_req.length);
2643
2644	/* Query request header */
2645	ucd_req_ptr->header = (struct utp_upiu_header){
2646		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2647		.flags = upiu_flags,
2648		.lun = lrbp->lun,
2649		.task_tag = lrbp->task_tag,
2650		.query_function = query->request.query_func,
2651		/* Data segment length only need for WRITE_DESC */
2652		.data_segment_length =
2653			query->request.upiu_req.opcode ==
2654					UPIU_QUERY_OPCODE_WRITE_DESC ?
2655				cpu_to_be16(len) :
2656				0,
2657	};
2658
2659	/* Copy the Query Request buffer as is */
2660	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2661			QUERY_OSF_SIZE);
2662
2663	/* Copy the Descriptor */
2664	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2665		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2666
2667	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2668}
2669
2670static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2671{
2672	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2673
2674	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2675
2676	ucd_req_ptr->header = (struct utp_upiu_header){
2677		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2678		.task_tag = lrbp->task_tag,
2679	};
2680
2681	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2682}
2683
2684/**
2685 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2686 *			     for Device Management Purposes
2687 * @hba: per adapter instance
2688 * @lrbp: pointer to local reference block
2689 *
2690 * Return: 0 upon success; < 0 upon failure.
2691 */
2692static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2693				      struct ufshcd_lrb *lrbp)
2694{
2695	u8 upiu_flags;
2696	int ret = 0;
2697
2698	if (hba->ufs_version <= ufshci_version(1, 1))
2699		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2700	else
2701		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2702
2703	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2704	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2705		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2706	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2707		ufshcd_prepare_utp_nop_upiu(lrbp);
2708	else
2709		ret = -EINVAL;
2710
2711	return ret;
2712}
2713
2714/**
2715 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2716 *			   for SCSI Purposes
2717 * @hba: per adapter instance
2718 * @lrbp: pointer to local reference block
2719 *
2720 * Return: 0 upon success; < 0 upon failure.
2721 */
2722static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2723{
2724	u8 upiu_flags;
2725	int ret = 0;
2726
2727	if (hba->ufs_version <= ufshci_version(1, 1))
2728		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2729	else
2730		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2731
2732	if (likely(lrbp->cmd)) {
2733		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2734		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2735	} else {
2736		ret = -EINVAL;
2737	}
2738
2739	return ret;
2740}
2741
2742/**
2743 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2744 * @upiu_wlun_id: UPIU W-LUN id
2745 *
2746 * Return: SCSI W-LUN id.
2747 */
2748static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2749{
2750	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2751}
2752
2753static inline bool is_device_wlun(struct scsi_device *sdev)
2754{
2755	return sdev->lun ==
2756		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2757}
2758
2759/*
2760 * Associate the UFS controller queue with the default and poll HCTX types.
2761 * Initialize the mq_map[] arrays.
2762 */
2763static void ufshcd_map_queues(struct Scsi_Host *shost)
2764{
2765	struct ufs_hba *hba = shost_priv(shost);
2766	int i, queue_offset = 0;
2767
2768	if (!is_mcq_supported(hba)) {
2769		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2770		hba->nr_queues[HCTX_TYPE_READ] = 0;
2771		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2772		hba->nr_hw_queues = 1;
2773	}
2774
2775	for (i = 0; i < shost->nr_maps; i++) {
2776		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2777
2778		map->nr_queues = hba->nr_queues[i];
2779		if (!map->nr_queues)
2780			continue;
2781		map->queue_offset = queue_offset;
2782		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2783			map->queue_offset = 0;
2784
2785		blk_mq_map_queues(map);
2786		queue_offset += map->nr_queues;
2787	}
2788}
2789
2790static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2791{
2792	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2793		i * ufshcd_get_ucd_size(hba);
2794	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2795	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2796		i * ufshcd_get_ucd_size(hba);
2797	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2798				       response_upiu);
2799	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2800
2801	lrb->utr_descriptor_ptr = utrdlp + i;
2802	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2803		i * sizeof(struct utp_transfer_req_desc);
2804	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2805	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2806	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2807	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2808	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2809	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2810}
2811
2812/**
2813 * ufshcd_queuecommand - main entry point for SCSI requests
2814 * @host: SCSI host pointer
2815 * @cmd: command from SCSI Midlayer
2816 *
2817 * Return: 0 for success, non-zero in case of failure.
2818 */
2819static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2820{
2821	struct ufs_hba *hba = shost_priv(host);
2822	int tag = scsi_cmd_to_rq(cmd)->tag;
2823	struct ufshcd_lrb *lrbp;
2824	int err = 0;
2825	struct ufs_hw_queue *hwq = NULL;
2826
2827	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2828
2829	switch (hba->ufshcd_state) {
2830	case UFSHCD_STATE_OPERATIONAL:
2831		break;
2832	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2833		/*
2834		 * SCSI error handler can call ->queuecommand() while UFS error
2835		 * handler is in progress. Error interrupts could change the
2836		 * state from UFSHCD_STATE_RESET to
2837		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2838		 * being issued in that case.
2839		 */
2840		if (ufshcd_eh_in_progress(hba)) {
2841			err = SCSI_MLQUEUE_HOST_BUSY;
2842			goto out;
2843		}
2844		break;
2845	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2846		/*
2847		 * pm_runtime_get_sync() is used at error handling preparation
2848		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2849		 * PM ops, it can never be finished if we let SCSI layer keep
2850		 * retrying it, which gets err handler stuck forever. Neither
2851		 * can we let the scsi cmd pass through, because UFS is in bad
2852		 * state, the scsi cmd may eventually time out, which will get
2853		 * err handler blocked for too long. So, just fail the scsi cmd
2854		 * sent from PM ops, err handler can recover PM error anyways.
2855		 */
2856		if (hba->pm_op_in_progress) {
2857			hba->force_reset = true;
2858			set_host_byte(cmd, DID_BAD_TARGET);
2859			scsi_done(cmd);
2860			goto out;
2861		}
2862		fallthrough;
2863	case UFSHCD_STATE_RESET:
2864		err = SCSI_MLQUEUE_HOST_BUSY;
2865		goto out;
2866	case UFSHCD_STATE_ERROR:
2867		set_host_byte(cmd, DID_ERROR);
2868		scsi_done(cmd);
2869		goto out;
2870	}
2871
2872	hba->req_abort_count = 0;
2873
2874	ufshcd_hold(hba);
2875
2876	lrbp = &hba->lrb[tag];
2877	lrbp->cmd = cmd;
2878	lrbp->task_tag = tag;
2879	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2880	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2881
2882	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2883
2884	lrbp->req_abort_skip = false;
2885
2886	ufshcd_comp_scsi_upiu(hba, lrbp);
2887
2888	err = ufshcd_map_sg(hba, lrbp);
2889	if (err) {
2890		ufshcd_release(hba);
2891		goto out;
2892	}
2893
2894	if (is_mcq_enabled(hba))
2895		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2896
2897	ufshcd_send_command(hba, tag, hwq);
2898
2899out:
2900	if (ufs_trigger_eh()) {
2901		unsigned long flags;
2902
2903		spin_lock_irqsave(hba->host->host_lock, flags);
2904		ufshcd_schedule_eh_work(hba);
2905		spin_unlock_irqrestore(hba->host->host_lock, flags);
2906	}
2907
2908	return err;
2909}
2910
2911static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2912		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2913{
2914	lrbp->cmd = NULL;
2915	lrbp->task_tag = tag;
2916	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2917	lrbp->intr_cmd = true; /* No interrupt aggregation */
2918	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2919	hba->dev_cmd.type = cmd_type;
2920
2921	return ufshcd_compose_devman_upiu(hba, lrbp);
2922}
2923
2924/*
2925 * Check with the block layer if the command is inflight
2926 * @cmd: command to check.
2927 *
2928 * Return: true if command is inflight; false if not.
2929 */
2930bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2931{
2932	struct request *rq;
2933
2934	if (!cmd)
2935		return false;
2936
2937	rq = scsi_cmd_to_rq(cmd);
2938	if (!blk_mq_request_started(rq))
2939		return false;
2940
2941	return true;
2942}
2943
2944/*
2945 * Clear the pending command in the controller and wait until
2946 * the controller confirms that the command has been cleared.
2947 * @hba: per adapter instance
2948 * @task_tag: The tag number of the command to be cleared.
2949 */
2950static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2951{
2952	u32 mask;
2953	unsigned long flags;
2954	int err;
2955
2956	if (is_mcq_enabled(hba)) {
2957		/*
2958		 * MCQ mode. Clean up the MCQ resources similar to
2959		 * what the ufshcd_utrl_clear() does for SDB mode.
2960		 */
2961		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2962		if (err) {
2963			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2964				__func__, task_tag, err);
2965			return err;
2966		}
2967		return 0;
2968	}
2969
2970	mask = 1U << task_tag;
2971
2972	/* clear outstanding transaction before retry */
2973	spin_lock_irqsave(hba->host->host_lock, flags);
2974	ufshcd_utrl_clear(hba, mask);
2975	spin_unlock_irqrestore(hba->host->host_lock, flags);
2976
2977	/*
2978	 * wait for h/w to clear corresponding bit in door-bell.
2979	 * max. wait is 1 sec.
2980	 */
2981	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2982					mask, ~mask, 1000, 1000);
2983}
2984
2985/**
2986 * ufshcd_dev_cmd_completion() - handles device management command responses
2987 * @hba: per adapter instance
2988 * @lrbp: pointer to local reference block
2989 *
2990 * Return: 0 upon success; < 0 upon failure.
2991 */
2992static int
2993ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2994{
2995	enum upiu_response_transaction resp;
2996	int err = 0;
2997
2998	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2999	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3000
3001	switch (resp) {
3002	case UPIU_TRANSACTION_NOP_IN:
3003		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3004			err = -EINVAL;
3005			dev_err(hba->dev, "%s: unexpected response %x\n",
3006					__func__, resp);
3007		}
3008		break;
3009	case UPIU_TRANSACTION_QUERY_RSP: {
3010		u8 response = lrbp->ucd_rsp_ptr->header.response;
3011
3012		if (response == 0)
3013			err = ufshcd_copy_query_response(hba, lrbp);
3014		break;
3015	}
3016	case UPIU_TRANSACTION_REJECT_UPIU:
3017		/* TODO: handle Reject UPIU Response */
3018		err = -EPERM;
3019		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3020				__func__);
3021		break;
3022	case UPIU_TRANSACTION_RESPONSE:
3023		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3024			err = -EINVAL;
3025			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3026		}
3027		break;
3028	default:
3029		err = -EINVAL;
3030		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3031				__func__, resp);
3032		break;
3033	}
3034
3035	return err;
3036}
3037
3038static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3039		struct ufshcd_lrb *lrbp, int max_timeout)
3040{
3041	unsigned long time_left = msecs_to_jiffies(max_timeout);
3042	unsigned long flags;
3043	bool pending;
3044	int err;
3045
3046retry:
3047	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3048						time_left);
3049
3050	if (likely(time_left)) {
3051		/*
3052		 * The completion handler called complete() and the caller of
3053		 * this function still owns the @lrbp tag so the code below does
3054		 * not trigger any race conditions.
3055		 */
3056		hba->dev_cmd.complete = NULL;
3057		err = ufshcd_get_tr_ocs(lrbp, NULL);
3058		if (!err)
3059			err = ufshcd_dev_cmd_completion(hba, lrbp);
3060	} else {
3061		err = -ETIMEDOUT;
3062		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3063			__func__, lrbp->task_tag);
3064
3065		/* MCQ mode */
3066		if (is_mcq_enabled(hba)) {
3067			err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3068			hba->dev_cmd.complete = NULL;
3069			return err;
3070		}
3071
3072		/* SDB mode */
3073		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3074			/* successfully cleared the command, retry if needed */
3075			err = -EAGAIN;
3076			/*
3077			 * Since clearing the command succeeded we also need to
3078			 * clear the task tag bit from the outstanding_reqs
3079			 * variable.
3080			 */
3081			spin_lock_irqsave(&hba->outstanding_lock, flags);
3082			pending = test_bit(lrbp->task_tag,
3083					   &hba->outstanding_reqs);
3084			if (pending) {
3085				hba->dev_cmd.complete = NULL;
3086				__clear_bit(lrbp->task_tag,
3087					    &hba->outstanding_reqs);
3088			}
3089			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3090
3091			if (!pending) {
3092				/*
3093				 * The completion handler ran while we tried to
3094				 * clear the command.
3095				 */
3096				time_left = 1;
3097				goto retry;
3098			}
3099		} else {
3100			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3101				__func__, lrbp->task_tag);
3102
3103			spin_lock_irqsave(&hba->outstanding_lock, flags);
3104			pending = test_bit(lrbp->task_tag,
3105					   &hba->outstanding_reqs);
3106			if (pending)
3107				hba->dev_cmd.complete = NULL;
3108			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3109
3110			if (!pending) {
3111				/*
3112				 * The completion handler ran while we tried to
3113				 * clear the command.
3114				 */
3115				time_left = 1;
3116				goto retry;
3117			}
3118		}
3119	}
3120
3121	return err;
3122}
3123
3124/**
3125 * ufshcd_exec_dev_cmd - API for sending device management requests
3126 * @hba: UFS hba
3127 * @cmd_type: specifies the type (NOP, Query...)
3128 * @timeout: timeout in milliseconds
3129 *
3130 * Return: 0 upon success; < 0 upon failure.
3131 *
3132 * NOTE: Since there is only one available tag for device management commands,
3133 * it is expected you hold the hba->dev_cmd.lock mutex.
3134 */
3135static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3136		enum dev_cmd_type cmd_type, int timeout)
3137{
3138	DECLARE_COMPLETION_ONSTACK(wait);
3139	const u32 tag = hba->reserved_slot;
3140	struct ufshcd_lrb *lrbp;
3141	int err;
3142
3143	/* Protects use of hba->reserved_slot. */
3144	lockdep_assert_held(&hba->dev_cmd.lock);
3145
3146	down_read(&hba->clk_scaling_lock);
3147
3148	lrbp = &hba->lrb[tag];
3149	lrbp->cmd = NULL;
3150	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3151	if (unlikely(err))
3152		goto out;
3153
3154	hba->dev_cmd.complete = &wait;
3155
3156	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3157
3158	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3159	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3160	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3161				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3162
3163out:
3164	up_read(&hba->clk_scaling_lock);
3165	return err;
3166}
3167
3168/**
3169 * ufshcd_init_query() - init the query response and request parameters
3170 * @hba: per-adapter instance
3171 * @request: address of the request pointer to be initialized
3172 * @response: address of the response pointer to be initialized
3173 * @opcode: operation to perform
3174 * @idn: flag idn to access
3175 * @index: LU number to access
3176 * @selector: query/flag/descriptor further identification
3177 */
3178static inline void ufshcd_init_query(struct ufs_hba *hba,
3179		struct ufs_query_req **request, struct ufs_query_res **response,
3180		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3181{
3182	*request = &hba->dev_cmd.query.request;
3183	*response = &hba->dev_cmd.query.response;
3184	memset(*request, 0, sizeof(struct ufs_query_req));
3185	memset(*response, 0, sizeof(struct ufs_query_res));
3186	(*request)->upiu_req.opcode = opcode;
3187	(*request)->upiu_req.idn = idn;
3188	(*request)->upiu_req.index = index;
3189	(*request)->upiu_req.selector = selector;
3190}
3191
3192static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3193	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3194{
3195	int ret;
3196	int retries;
3197
3198	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3199		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3200		if (ret)
3201			dev_dbg(hba->dev,
3202				"%s: failed with error %d, retries %d\n",
3203				__func__, ret, retries);
3204		else
3205			break;
3206	}
3207
3208	if (ret)
3209		dev_err(hba->dev,
3210			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3211			__func__, opcode, idn, ret, retries);
3212	return ret;
3213}
3214
3215/**
3216 * ufshcd_query_flag() - API function for sending flag query requests
3217 * @hba: per-adapter instance
3218 * @opcode: flag query to perform
3219 * @idn: flag idn to access
3220 * @index: flag index to access
3221 * @flag_res: the flag value after the query request completes
3222 *
3223 * Return: 0 for success, non-zero in case of failure.
3224 */
3225int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3226			enum flag_idn idn, u8 index, bool *flag_res)
3227{
3228	struct ufs_query_req *request = NULL;
3229	struct ufs_query_res *response = NULL;
3230	int err, selector = 0;
3231	int timeout = QUERY_REQ_TIMEOUT;
3232
3233	BUG_ON(!hba);
3234
3235	ufshcd_hold(hba);
3236	mutex_lock(&hba->dev_cmd.lock);
3237	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3238			selector);
3239
3240	switch (opcode) {
3241	case UPIU_QUERY_OPCODE_SET_FLAG:
3242	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3243	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3244		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3245		break;
3246	case UPIU_QUERY_OPCODE_READ_FLAG:
3247		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3248		if (!flag_res) {
3249			/* No dummy reads */
3250			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3251					__func__);
3252			err = -EINVAL;
3253			goto out_unlock;
3254		}
3255		break;
3256	default:
3257		dev_err(hba->dev,
3258			"%s: Expected query flag opcode but got = %d\n",
3259			__func__, opcode);
3260		err = -EINVAL;
3261		goto out_unlock;
3262	}
3263
3264	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3265
3266	if (err) {
3267		dev_err(hba->dev,
3268			"%s: Sending flag query for idn %d failed, err = %d\n",
3269			__func__, idn, err);
3270		goto out_unlock;
3271	}
3272
3273	if (flag_res)
3274		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3275				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3276
3277out_unlock:
3278	mutex_unlock(&hba->dev_cmd.lock);
3279	ufshcd_release(hba);
3280	return err;
3281}
3282
3283/**
3284 * ufshcd_query_attr - API function for sending attribute requests
3285 * @hba: per-adapter instance
3286 * @opcode: attribute opcode
3287 * @idn: attribute idn to access
3288 * @index: index field
3289 * @selector: selector field
3290 * @attr_val: the attribute value after the query request completes
3291 *
3292 * Return: 0 for success, non-zero in case of failure.
3293*/
3294int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3295		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3296{
3297	struct ufs_query_req *request = NULL;
3298	struct ufs_query_res *response = NULL;
3299	int err;
3300
3301	BUG_ON(!hba);
3302
3303	if (!attr_val) {
3304		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3305				__func__, opcode);
3306		return -EINVAL;
3307	}
3308
3309	ufshcd_hold(hba);
3310
3311	mutex_lock(&hba->dev_cmd.lock);
3312	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3313			selector);
3314
3315	switch (opcode) {
3316	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3317		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3318		request->upiu_req.value = cpu_to_be32(*attr_val);
3319		break;
3320	case UPIU_QUERY_OPCODE_READ_ATTR:
3321		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3322		break;
3323	default:
3324		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3325				__func__, opcode);
3326		err = -EINVAL;
3327		goto out_unlock;
3328	}
3329
3330	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3331
3332	if (err) {
3333		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3334				__func__, opcode, idn, index, err);
3335		goto out_unlock;
3336	}
3337
3338	*attr_val = be32_to_cpu(response->upiu_res.value);
3339
3340out_unlock:
3341	mutex_unlock(&hba->dev_cmd.lock);
3342	ufshcd_release(hba);
3343	return err;
3344}
3345
3346/**
3347 * ufshcd_query_attr_retry() - API function for sending query
3348 * attribute with retries
3349 * @hba: per-adapter instance
3350 * @opcode: attribute opcode
3351 * @idn: attribute idn to access
3352 * @index: index field
3353 * @selector: selector field
3354 * @attr_val: the attribute value after the query request
3355 * completes
3356 *
3357 * Return: 0 for success, non-zero in case of failure.
3358*/
3359int ufshcd_query_attr_retry(struct ufs_hba *hba,
3360	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3361	u32 *attr_val)
3362{
3363	int ret = 0;
3364	u32 retries;
3365
3366	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3367		ret = ufshcd_query_attr(hba, opcode, idn, index,
3368						selector, attr_val);
3369		if (ret)
3370			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3371				__func__, ret, retries);
3372		else
3373			break;
3374	}
3375
3376	if (ret)
3377		dev_err(hba->dev,
3378			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3379			__func__, idn, ret, QUERY_REQ_RETRIES);
3380	return ret;
3381}
3382
3383static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3384			enum query_opcode opcode, enum desc_idn idn, u8 index,
3385			u8 selector, u8 *desc_buf, int *buf_len)
3386{
3387	struct ufs_query_req *request = NULL;
3388	struct ufs_query_res *response = NULL;
3389	int err;
3390
3391	BUG_ON(!hba);
3392
3393	if (!desc_buf) {
3394		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3395				__func__, opcode);
3396		return -EINVAL;
3397	}
3398
3399	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3400		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3401				__func__, *buf_len);
3402		return -EINVAL;
3403	}
3404
3405	ufshcd_hold(hba);
3406
3407	mutex_lock(&hba->dev_cmd.lock);
3408	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3409			selector);
3410	hba->dev_cmd.query.descriptor = desc_buf;
3411	request->upiu_req.length = cpu_to_be16(*buf_len);
3412
3413	switch (opcode) {
3414	case UPIU_QUERY_OPCODE_WRITE_DESC:
3415		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3416		break;
3417	case UPIU_QUERY_OPCODE_READ_DESC:
3418		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3419		break;
3420	default:
3421		dev_err(hba->dev,
3422				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3423				__func__, opcode);
3424		err = -EINVAL;
3425		goto out_unlock;
3426	}
3427
3428	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3429
3430	if (err) {
3431		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3432				__func__, opcode, idn, index, err);
3433		goto out_unlock;
3434	}
3435
3436	*buf_len = be16_to_cpu(response->upiu_res.length);
3437
3438out_unlock:
3439	hba->dev_cmd.query.descriptor = NULL;
3440	mutex_unlock(&hba->dev_cmd.lock);
3441	ufshcd_release(hba);
3442	return err;
3443}
3444
3445/**
3446 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3447 * @hba: per-adapter instance
3448 * @opcode: attribute opcode
3449 * @idn: attribute idn to access
3450 * @index: index field
3451 * @selector: selector field
3452 * @desc_buf: the buffer that contains the descriptor
3453 * @buf_len: length parameter passed to the device
3454 *
3455 * The buf_len parameter will contain, on return, the length parameter
3456 * received on the response.
3457 *
3458 * Return: 0 for success, non-zero in case of failure.
3459 */
3460int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3461				  enum query_opcode opcode,
3462				  enum desc_idn idn, u8 index,
3463				  u8 selector,
3464				  u8 *desc_buf, int *buf_len)
3465{
3466	int err;
3467	int retries;
3468
3469	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3470		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3471						selector, desc_buf, buf_len);
3472		if (!err || err == -EINVAL)
3473			break;
3474	}
3475
3476	return err;
3477}
3478
3479/**
3480 * ufshcd_read_desc_param - read the specified descriptor parameter
3481 * @hba: Pointer to adapter instance
3482 * @desc_id: descriptor idn value
3483 * @desc_index: descriptor index
3484 * @param_offset: offset of the parameter to read
3485 * @param_read_buf: pointer to buffer where parameter would be read
3486 * @param_size: sizeof(param_read_buf)
3487 *
3488 * Return: 0 in case of success, non-zero otherwise.
3489 */
3490int ufshcd_read_desc_param(struct ufs_hba *hba,
3491			   enum desc_idn desc_id,
3492			   int desc_index,
3493			   u8 param_offset,
3494			   u8 *param_read_buf,
3495			   u8 param_size)
3496{
3497	int ret;
3498	u8 *desc_buf;
3499	int buff_len = QUERY_DESC_MAX_SIZE;
3500	bool is_kmalloc = true;
3501
3502	/* Safety check */
3503	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3504		return -EINVAL;
3505
3506	/* Check whether we need temp memory */
3507	if (param_offset != 0 || param_size < buff_len) {
3508		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3509		if (!desc_buf)
3510			return -ENOMEM;
3511	} else {
3512		desc_buf = param_read_buf;
3513		is_kmalloc = false;
3514	}
3515
3516	/* Request for full descriptor */
3517	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3518					    desc_id, desc_index, 0,
3519					    desc_buf, &buff_len);
3520	if (ret) {
3521		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3522			__func__, desc_id, desc_index, param_offset, ret);
3523		goto out;
3524	}
3525
3526	/* Update descriptor length */
3527	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3528
3529	if (param_offset >= buff_len) {
3530		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3531			__func__, param_offset, desc_id, buff_len);
3532		ret = -EINVAL;
3533		goto out;
3534	}
3535
3536	/* Sanity check */
3537	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3538		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3539			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3540		ret = -EINVAL;
3541		goto out;
3542	}
3543
3544	if (is_kmalloc) {
3545		/* Make sure we don't copy more data than available */
3546		if (param_offset >= buff_len)
3547			ret = -EINVAL;
3548		else
3549			memcpy(param_read_buf, &desc_buf[param_offset],
3550			       min_t(u32, param_size, buff_len - param_offset));
3551	}
3552out:
3553	if (is_kmalloc)
3554		kfree(desc_buf);
3555	return ret;
3556}
3557
3558/**
3559 * struct uc_string_id - unicode string
3560 *
3561 * @len: size of this descriptor inclusive
3562 * @type: descriptor type
3563 * @uc: unicode string character
3564 */
3565struct uc_string_id {
3566	u8 len;
3567	u8 type;
3568	wchar_t uc[];
3569} __packed;
3570
3571/* replace non-printable or non-ASCII characters with spaces */
3572static inline char ufshcd_remove_non_printable(u8 ch)
3573{
3574	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3575}
3576
3577/**
3578 * ufshcd_read_string_desc - read string descriptor
3579 * @hba: pointer to adapter instance
3580 * @desc_index: descriptor index
3581 * @buf: pointer to buffer where descriptor would be read,
3582 *       the caller should free the memory.
3583 * @ascii: if true convert from unicode to ascii characters
3584 *         null terminated string.
3585 *
3586 * Return:
3587 * *      string size on success.
3588 * *      -ENOMEM: on allocation failure
3589 * *      -EINVAL: on a wrong parameter
3590 */
3591int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3592			    u8 **buf, bool ascii)
3593{
3594	struct uc_string_id *uc_str;
3595	u8 *str;
3596	int ret;
3597
3598	if (!buf)
3599		return -EINVAL;
3600
3601	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3602	if (!uc_str)
3603		return -ENOMEM;
3604
3605	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3606				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3607	if (ret < 0) {
3608		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3609			QUERY_REQ_RETRIES, ret);
3610		str = NULL;
3611		goto out;
3612	}
3613
3614	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3615		dev_dbg(hba->dev, "String Desc is of zero length\n");
3616		str = NULL;
3617		ret = 0;
3618		goto out;
3619	}
3620
3621	if (ascii) {
3622		ssize_t ascii_len;
3623		int i;
3624		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3625		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3626		str = kzalloc(ascii_len, GFP_KERNEL);
3627		if (!str) {
3628			ret = -ENOMEM;
3629			goto out;
3630		}
3631
3632		/*
3633		 * the descriptor contains string in UTF16 format
3634		 * we need to convert to utf-8 so it can be displayed
3635		 */
3636		ret = utf16s_to_utf8s(uc_str->uc,
3637				      uc_str->len - QUERY_DESC_HDR_SIZE,
3638				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3639
3640		/* replace non-printable or non-ASCII characters with spaces */
3641		for (i = 0; i < ret; i++)
3642			str[i] = ufshcd_remove_non_printable(str[i]);
3643
3644		str[ret++] = '\0';
3645
3646	} else {
3647		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3648		if (!str) {
3649			ret = -ENOMEM;
3650			goto out;
3651		}
3652		ret = uc_str->len;
3653	}
3654out:
3655	*buf = str;
3656	kfree(uc_str);
3657	return ret;
3658}
3659
3660/**
3661 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3662 * @hba: Pointer to adapter instance
3663 * @lun: lun id
3664 * @param_offset: offset of the parameter to read
3665 * @param_read_buf: pointer to buffer where parameter would be read
3666 * @param_size: sizeof(param_read_buf)
3667 *
3668 * Return: 0 in case of success, non-zero otherwise.
3669 */
3670static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3671					      int lun,
3672					      enum unit_desc_param param_offset,
3673					      u8 *param_read_buf,
3674					      u32 param_size)
3675{
3676	/*
3677	 * Unit descriptors are only available for general purpose LUs (LUN id
3678	 * from 0 to 7) and RPMB Well known LU.
3679	 */
3680	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3681		return -EOPNOTSUPP;
3682
3683	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3684				      param_offset, param_read_buf, param_size);
3685}
3686
3687static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3688{
3689	int err = 0;
3690	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3691
3692	if (hba->dev_info.wspecversion >= 0x300) {
3693		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3694				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3695				&gating_wait);
3696		if (err)
3697			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3698					 err, gating_wait);
3699
3700		if (gating_wait == 0) {
3701			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3702			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3703					 gating_wait);
3704		}
3705
3706		hba->dev_info.clk_gating_wait_us = gating_wait;
3707	}
3708
3709	return err;
3710}
3711
3712/**
3713 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3714 * @hba: per adapter instance
3715 *
3716 * 1. Allocate DMA memory for Command Descriptor array
3717 *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3718 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3719 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3720 *	(UTMRDL)
3721 * 4. Allocate memory for local reference block(lrb).
3722 *
3723 * Return: 0 for success, non-zero in case of failure.
3724 */
3725static int ufshcd_memory_alloc(struct ufs_hba *hba)
3726{
3727	size_t utmrdl_size, utrdl_size, ucdl_size;
3728
3729	/* Allocate memory for UTP command descriptors */
3730	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3731	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3732						  ucdl_size,
3733						  &hba->ucdl_dma_addr,
3734						  GFP_KERNEL);
3735
3736	/*
3737	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3738	 */
3739	if (!hba->ucdl_base_addr ||
3740	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3741		dev_err(hba->dev,
3742			"Command Descriptor Memory allocation failed\n");
3743		goto out;
3744	}
3745
3746	/*
3747	 * Allocate memory for UTP Transfer descriptors
3748	 * UFSHCI requires 1KB alignment of UTRD
3749	 */
3750	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3751	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3752						   utrdl_size,
3753						   &hba->utrdl_dma_addr,
3754						   GFP_KERNEL);
3755	if (!hba->utrdl_base_addr ||
3756	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3757		dev_err(hba->dev,
3758			"Transfer Descriptor Memory allocation failed\n");
3759		goto out;
3760	}
3761
3762	/*
3763	 * Skip utmrdl allocation; it may have been
3764	 * allocated during first pass and not released during
3765	 * MCQ memory allocation.
3766	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3767	 */
3768	if (hba->utmrdl_base_addr)
3769		goto skip_utmrdl;
3770	/*
3771	 * Allocate memory for UTP Task Management descriptors
3772	 * UFSHCI requires 1KB alignment of UTMRD
3773	 */
3774	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3775	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3776						    utmrdl_size,
3777						    &hba->utmrdl_dma_addr,
3778						    GFP_KERNEL);
3779	if (!hba->utmrdl_base_addr ||
3780	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3781		dev_err(hba->dev,
3782		"Task Management Descriptor Memory allocation failed\n");
3783		goto out;
3784	}
3785
3786skip_utmrdl:
3787	/* Allocate memory for local reference block */
3788	hba->lrb = devm_kcalloc(hba->dev,
3789				hba->nutrs, sizeof(struct ufshcd_lrb),
3790				GFP_KERNEL);
3791	if (!hba->lrb) {
3792		dev_err(hba->dev, "LRB Memory allocation failed\n");
3793		goto out;
3794	}
3795	return 0;
3796out:
3797	return -ENOMEM;
3798}
3799
3800/**
3801 * ufshcd_host_memory_configure - configure local reference block with
3802 *				memory offsets
3803 * @hba: per adapter instance
3804 *
3805 * Configure Host memory space
3806 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3807 * address.
3808 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3809 * and PRDT offset.
3810 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3811 * into local reference block.
3812 */
3813static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3814{
3815	struct utp_transfer_req_desc *utrdlp;
3816	dma_addr_t cmd_desc_dma_addr;
3817	dma_addr_t cmd_desc_element_addr;
3818	u16 response_offset;
3819	u16 prdt_offset;
3820	int cmd_desc_size;
3821	int i;
3822
3823	utrdlp = hba->utrdl_base_addr;
3824
3825	response_offset =
3826		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3827	prdt_offset =
3828		offsetof(struct utp_transfer_cmd_desc, prd_table);
3829
3830	cmd_desc_size = ufshcd_get_ucd_size(hba);
3831	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3832
3833	for (i = 0; i < hba->nutrs; i++) {
3834		/* Configure UTRD with command descriptor base address */
3835		cmd_desc_element_addr =
3836				(cmd_desc_dma_addr + (cmd_desc_size * i));
3837		utrdlp[i].command_desc_base_addr =
3838				cpu_to_le64(cmd_desc_element_addr);
3839
3840		/* Response upiu and prdt offset should be in double words */
3841		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3842			utrdlp[i].response_upiu_offset =
3843				cpu_to_le16(response_offset);
3844			utrdlp[i].prd_table_offset =
3845				cpu_to_le16(prdt_offset);
3846			utrdlp[i].response_upiu_length =
3847				cpu_to_le16(ALIGNED_UPIU_SIZE);
3848		} else {
3849			utrdlp[i].response_upiu_offset =
3850				cpu_to_le16(response_offset >> 2);
3851			utrdlp[i].prd_table_offset =
3852				cpu_to_le16(prdt_offset >> 2);
3853			utrdlp[i].response_upiu_length =
3854				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3855		}
3856
3857		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3858	}
3859}
3860
3861/**
3862 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3863 * @hba: per adapter instance
3864 *
3865 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3866 * in order to initialize the Unipro link startup procedure.
3867 * Once the Unipro links are up, the device connected to the controller
3868 * is detected.
3869 *
3870 * Return: 0 on success, non-zero value on failure.
3871 */
3872static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3873{
3874	struct uic_command uic_cmd = {0};
3875	int ret;
3876
3877	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3878
3879	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3880	if (ret)
3881		dev_dbg(hba->dev,
3882			"dme-link-startup: error code %d\n", ret);
3883	return ret;
3884}
3885/**
3886 * ufshcd_dme_reset - UIC command for DME_RESET
3887 * @hba: per adapter instance
3888 *
3889 * DME_RESET command is issued in order to reset UniPro stack.
3890 * This function now deals with cold reset.
3891 *
3892 * Return: 0 on success, non-zero value on failure.
3893 */
3894static int ufshcd_dme_reset(struct ufs_hba *hba)
3895{
3896	struct uic_command uic_cmd = {0};
3897	int ret;
3898
3899	uic_cmd.command = UIC_CMD_DME_RESET;
3900
3901	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3902	if (ret)
3903		dev_err(hba->dev,
3904			"dme-reset: error code %d\n", ret);
3905
3906	return ret;
3907}
3908
3909int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3910			       int agreed_gear,
3911			       int adapt_val)
3912{
3913	int ret;
3914
3915	if (agreed_gear < UFS_HS_G4)
3916		adapt_val = PA_NO_ADAPT;
3917
3918	ret = ufshcd_dme_set(hba,
3919			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3920			     adapt_val);
3921	return ret;
3922}
3923EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3924
3925/**
3926 * ufshcd_dme_enable - UIC command for DME_ENABLE
3927 * @hba: per adapter instance
3928 *
3929 * DME_ENABLE command is issued in order to enable UniPro stack.
3930 *
3931 * Return: 0 on success, non-zero value on failure.
3932 */
3933static int ufshcd_dme_enable(struct ufs_hba *hba)
3934{
3935	struct uic_command uic_cmd = {0};
3936	int ret;
3937
3938	uic_cmd.command = UIC_CMD_DME_ENABLE;
3939
3940	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3941	if (ret)
3942		dev_err(hba->dev,
3943			"dme-enable: error code %d\n", ret);
3944
3945	return ret;
3946}
3947
3948static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3949{
3950	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3951	unsigned long min_sleep_time_us;
3952
3953	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3954		return;
3955
3956	/*
3957	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3958	 * this function
3959	 */
3960	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3961		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3962	} else {
3963		unsigned long delta =
3964			(unsigned long) ktime_to_us(
3965				ktime_sub(ktime_get(),
3966				hba->last_dme_cmd_tstamp));
3967
3968		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3969			min_sleep_time_us =
3970				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3971		else
3972			return; /* no more delay required */
3973	}
3974
3975	/* allow sleep for extra 50us if needed */
3976	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3977}
3978
3979/**
3980 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3981 * @hba: per adapter instance
3982 * @attr_sel: uic command argument1
3983 * @attr_set: attribute set type as uic command argument2
3984 * @mib_val: setting value as uic command argument3
3985 * @peer: indicate whether peer or local
3986 *
3987 * Return: 0 on success, non-zero value on failure.
3988 */
3989int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3990			u8 attr_set, u32 mib_val, u8 peer)
3991{
3992	struct uic_command uic_cmd = {0};
3993	static const char *const action[] = {
3994		"dme-set",
3995		"dme-peer-set"
3996	};
3997	const char *set = action[!!peer];
3998	int ret;
3999	int retries = UFS_UIC_COMMAND_RETRIES;
4000
4001	uic_cmd.command = peer ?
4002		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4003	uic_cmd.argument1 = attr_sel;
4004	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4005	uic_cmd.argument3 = mib_val;
4006
4007	do {
4008		/* for peer attributes we retry upon failure */
4009		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4010		if (ret)
4011			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4012				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4013	} while (ret && peer && --retries);
4014
4015	if (ret)
4016		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4017			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4018			UFS_UIC_COMMAND_RETRIES - retries);
4019
4020	return ret;
4021}
4022EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4023
4024/**
4025 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4026 * @hba: per adapter instance
4027 * @attr_sel: uic command argument1
4028 * @mib_val: the value of the attribute as returned by the UIC command
4029 * @peer: indicate whether peer or local
4030 *
4031 * Return: 0 on success, non-zero value on failure.
4032 */
4033int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4034			u32 *mib_val, u8 peer)
4035{
4036	struct uic_command uic_cmd = {0};
4037	static const char *const action[] = {
4038		"dme-get",
4039		"dme-peer-get"
4040	};
4041	const char *get = action[!!peer];
4042	int ret;
4043	int retries = UFS_UIC_COMMAND_RETRIES;
4044	struct ufs_pa_layer_attr orig_pwr_info;
4045	struct ufs_pa_layer_attr temp_pwr_info;
4046	bool pwr_mode_change = false;
4047
4048	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4049		orig_pwr_info = hba->pwr_info;
4050		temp_pwr_info = orig_pwr_info;
4051
4052		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4053		    orig_pwr_info.pwr_rx == FAST_MODE) {
4054			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4055			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4056			pwr_mode_change = true;
4057		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4058		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4059			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4060			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4061			pwr_mode_change = true;
4062		}
4063		if (pwr_mode_change) {
4064			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4065			if (ret)
4066				goto out;
4067		}
4068	}
4069
4070	uic_cmd.command = peer ?
4071		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4072	uic_cmd.argument1 = attr_sel;
4073
4074	do {
4075		/* for peer attributes we retry upon failure */
4076		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4077		if (ret)
4078			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4079				get, UIC_GET_ATTR_ID(attr_sel), ret);
4080	} while (ret && peer && --retries);
4081
4082	if (ret)
4083		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4084			get, UIC_GET_ATTR_ID(attr_sel),
4085			UFS_UIC_COMMAND_RETRIES - retries);
4086
4087	if (mib_val && !ret)
4088		*mib_val = uic_cmd.argument3;
4089
4090	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4091	    && pwr_mode_change)
4092		ufshcd_change_power_mode(hba, &orig_pwr_info);
4093out:
4094	return ret;
4095}
4096EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4097
4098/**
4099 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4100 * state) and waits for it to take effect.
4101 *
4102 * @hba: per adapter instance
4103 * @cmd: UIC command to execute
4104 *
4105 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4106 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4107 * and device UniPro link and hence it's final completion would be indicated by
4108 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4109 * addition to normal UIC command completion Status (UCCS). This function only
4110 * returns after the relevant status bits indicate the completion.
4111 *
4112 * Return: 0 on success, non-zero value on failure.
4113 */
4114static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4115{
4116	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4117	unsigned long flags;
4118	u8 status;
4119	int ret;
4120	bool reenable_intr = false;
4121
4122	mutex_lock(&hba->uic_cmd_mutex);
4123	ufshcd_add_delay_before_dme_cmd(hba);
4124
4125	spin_lock_irqsave(hba->host->host_lock, flags);
4126	if (ufshcd_is_link_broken(hba)) {
4127		ret = -ENOLINK;
4128		goto out_unlock;
4129	}
4130	hba->uic_async_done = &uic_async_done;
4131	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4132		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4133		/*
4134		 * Make sure UIC command completion interrupt is disabled before
4135		 * issuing UIC command.
4136		 */
4137		wmb();
4138		reenable_intr = true;
4139	}
4140	spin_unlock_irqrestore(hba->host->host_lock, flags);
4141	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4142	if (ret) {
4143		dev_err(hba->dev,
4144			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4145			cmd->command, cmd->argument3, ret);
4146		goto out;
4147	}
4148
4149	if (!wait_for_completion_timeout(hba->uic_async_done,
4150					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4151		dev_err(hba->dev,
4152			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4153			cmd->command, cmd->argument3);
4154
4155		if (!cmd->cmd_active) {
4156			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4157				__func__);
4158			goto check_upmcrs;
4159		}
4160
4161		ret = -ETIMEDOUT;
4162		goto out;
4163	}
4164
4165check_upmcrs:
4166	status = ufshcd_get_upmcrs(hba);
4167	if (status != PWR_LOCAL) {
4168		dev_err(hba->dev,
4169			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4170			cmd->command, status);
4171		ret = (status != PWR_OK) ? status : -1;
4172	}
4173out:
4174	if (ret) {
4175		ufshcd_print_host_state(hba);
4176		ufshcd_print_pwr_info(hba);
4177		ufshcd_print_evt_hist(hba);
4178	}
4179
4180	spin_lock_irqsave(hba->host->host_lock, flags);
4181	hba->active_uic_cmd = NULL;
4182	hba->uic_async_done = NULL;
4183	if (reenable_intr)
4184		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4185	if (ret) {
4186		ufshcd_set_link_broken(hba);
4187		ufshcd_schedule_eh_work(hba);
4188	}
4189out_unlock:
4190	spin_unlock_irqrestore(hba->host->host_lock, flags);
4191	mutex_unlock(&hba->uic_cmd_mutex);
4192
4193	return ret;
4194}
4195
4196/**
4197 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4198 *				using DME_SET primitives.
4199 * @hba: per adapter instance
4200 * @mode: powr mode value
4201 *
4202 * Return: 0 on success, non-zero value on failure.
4203 */
4204int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4205{
4206	struct uic_command uic_cmd = {0};
4207	int ret;
4208
4209	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4210		ret = ufshcd_dme_set(hba,
4211				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4212		if (ret) {
4213			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4214						__func__, ret);
4215			goto out;
4216		}
4217	}
4218
4219	uic_cmd.command = UIC_CMD_DME_SET;
4220	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4221	uic_cmd.argument3 = mode;
4222	ufshcd_hold(hba);
4223	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4224	ufshcd_release(hba);
4225
4226out:
4227	return ret;
4228}
4229EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4230
4231int ufshcd_link_recovery(struct ufs_hba *hba)
4232{
4233	int ret;
4234	unsigned long flags;
4235
4236	spin_lock_irqsave(hba->host->host_lock, flags);
4237	hba->ufshcd_state = UFSHCD_STATE_RESET;
4238	ufshcd_set_eh_in_progress(hba);
4239	spin_unlock_irqrestore(hba->host->host_lock, flags);
4240
4241	/* Reset the attached device */
4242	ufshcd_device_reset(hba);
4243
4244	ret = ufshcd_host_reset_and_restore(hba);
4245
4246	spin_lock_irqsave(hba->host->host_lock, flags);
4247	if (ret)
4248		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4249	ufshcd_clear_eh_in_progress(hba);
4250	spin_unlock_irqrestore(hba->host->host_lock, flags);
4251
4252	if (ret)
4253		dev_err(hba->dev, "%s: link recovery failed, err %d",
4254			__func__, ret);
4255
4256	return ret;
4257}
4258EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4259
4260int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4261{
4262	int ret;
4263	struct uic_command uic_cmd = {0};
4264	ktime_t start = ktime_get();
4265
4266	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4267
4268	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4269	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4270	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4271			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4272
4273	if (ret)
4274		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4275			__func__, ret);
4276	else
4277		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4278								POST_CHANGE);
4279
4280	return ret;
4281}
4282EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4283
4284int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4285{
4286	struct uic_command uic_cmd = {0};
4287	int ret;
4288	ktime_t start = ktime_get();
4289
4290	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4291
4292	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4293	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4294	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4295			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4296
4297	if (ret) {
4298		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4299			__func__, ret);
4300	} else {
4301		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4302								POST_CHANGE);
4303		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4304		hba->ufs_stats.hibern8_exit_cnt++;
4305	}
4306
4307	return ret;
4308}
4309EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4310
4311void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4312{
4313	unsigned long flags;
4314	bool update = false;
4315
4316	if (!ufshcd_is_auto_hibern8_supported(hba))
4317		return;
4318
4319	spin_lock_irqsave(hba->host->host_lock, flags);
4320	if (hba->ahit != ahit) {
4321		hba->ahit = ahit;
4322		update = true;
4323	}
4324	spin_unlock_irqrestore(hba->host->host_lock, flags);
4325
4326	if (update &&
4327	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4328		ufshcd_rpm_get_sync(hba);
4329		ufshcd_hold(hba);
4330		ufshcd_auto_hibern8_enable(hba);
4331		ufshcd_release(hba);
4332		ufshcd_rpm_put_sync(hba);
4333	}
4334}
4335EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4336
4337void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4338{
4339	if (!ufshcd_is_auto_hibern8_supported(hba))
4340		return;
4341
4342	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4343}
4344
4345 /**
4346 * ufshcd_init_pwr_info - setting the POR (power on reset)
4347 * values in hba power info
4348 * @hba: per-adapter instance
4349 */
4350static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4351{
4352	hba->pwr_info.gear_rx = UFS_PWM_G1;
4353	hba->pwr_info.gear_tx = UFS_PWM_G1;
4354	hba->pwr_info.lane_rx = UFS_LANE_1;
4355	hba->pwr_info.lane_tx = UFS_LANE_1;
4356	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4357	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4358	hba->pwr_info.hs_rate = 0;
4359}
4360
4361/**
4362 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4363 * @hba: per-adapter instance
4364 *
4365 * Return: 0 upon success; < 0 upon failure.
4366 */
4367static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4368{
4369	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4370
4371	if (hba->max_pwr_info.is_valid)
4372		return 0;
4373
4374	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4375		pwr_info->pwr_tx = FASTAUTO_MODE;
4376		pwr_info->pwr_rx = FASTAUTO_MODE;
4377	} else {
4378		pwr_info->pwr_tx = FAST_MODE;
4379		pwr_info->pwr_rx = FAST_MODE;
4380	}
4381	pwr_info->hs_rate = PA_HS_MODE_B;
4382
4383	/* Get the connected lane count */
4384	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4385			&pwr_info->lane_rx);
4386	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4387			&pwr_info->lane_tx);
4388
4389	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4390		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4391				__func__,
4392				pwr_info->lane_rx,
4393				pwr_info->lane_tx);
4394		return -EINVAL;
4395	}
4396
4397	/*
4398	 * First, get the maximum gears of HS speed.
4399	 * If a zero value, it means there is no HSGEAR capability.
4400	 * Then, get the maximum gears of PWM speed.
4401	 */
4402	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4403	if (!pwr_info->gear_rx) {
4404		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4405				&pwr_info->gear_rx);
4406		if (!pwr_info->gear_rx) {
4407			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4408				__func__, pwr_info->gear_rx);
4409			return -EINVAL;
4410		}
4411		pwr_info->pwr_rx = SLOW_MODE;
4412	}
4413
4414	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4415			&pwr_info->gear_tx);
4416	if (!pwr_info->gear_tx) {
4417		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4418				&pwr_info->gear_tx);
4419		if (!pwr_info->gear_tx) {
4420			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4421				__func__, pwr_info->gear_tx);
4422			return -EINVAL;
4423		}
4424		pwr_info->pwr_tx = SLOW_MODE;
4425	}
4426
4427	hba->max_pwr_info.is_valid = true;
4428	return 0;
4429}
4430
4431static int ufshcd_change_power_mode(struct ufs_hba *hba,
4432			     struct ufs_pa_layer_attr *pwr_mode)
4433{
4434	int ret;
4435
4436	/* if already configured to the requested pwr_mode */
4437	if (!hba->force_pmc &&
4438	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4439	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4440	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4441	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4442	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4443	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4444	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4445		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4446		return 0;
4447	}
4448
4449	/*
4450	 * Configure attributes for power mode change with below.
4451	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4452	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4453	 * - PA_HSSERIES
4454	 */
4455	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4456	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4457			pwr_mode->lane_rx);
4458	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4459			pwr_mode->pwr_rx == FAST_MODE)
4460		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4461	else
4462		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4463
4464	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4465	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4466			pwr_mode->lane_tx);
4467	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4468			pwr_mode->pwr_tx == FAST_MODE)
4469		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4470	else
4471		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4472
4473	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4474	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4475	    pwr_mode->pwr_rx == FAST_MODE ||
4476	    pwr_mode->pwr_tx == FAST_MODE)
4477		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4478						pwr_mode->hs_rate);
4479
4480	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4481		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4482				DL_FC0ProtectionTimeOutVal_Default);
4483		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4484				DL_TC0ReplayTimeOutVal_Default);
4485		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4486				DL_AFC0ReqTimeOutVal_Default);
4487		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4488				DL_FC1ProtectionTimeOutVal_Default);
4489		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4490				DL_TC1ReplayTimeOutVal_Default);
4491		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4492				DL_AFC1ReqTimeOutVal_Default);
4493
4494		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4495				DL_FC0ProtectionTimeOutVal_Default);
4496		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4497				DL_TC0ReplayTimeOutVal_Default);
4498		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4499				DL_AFC0ReqTimeOutVal_Default);
4500	}
4501
4502	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4503			| pwr_mode->pwr_tx);
4504
4505	if (ret) {
4506		dev_err(hba->dev,
4507			"%s: power mode change failed %d\n", __func__, ret);
4508	} else {
4509		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4510								pwr_mode);
4511
4512		memcpy(&hba->pwr_info, pwr_mode,
4513			sizeof(struct ufs_pa_layer_attr));
4514	}
4515
4516	return ret;
4517}
4518
4519/**
4520 * ufshcd_config_pwr_mode - configure a new power mode
4521 * @hba: per-adapter instance
4522 * @desired_pwr_mode: desired power configuration
4523 *
4524 * Return: 0 upon success; < 0 upon failure.
4525 */
4526int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4527		struct ufs_pa_layer_attr *desired_pwr_mode)
4528{
4529	struct ufs_pa_layer_attr final_params = { 0 };
4530	int ret;
4531
4532	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4533					desired_pwr_mode, &final_params);
4534
4535	if (ret)
4536		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4537
4538	ret = ufshcd_change_power_mode(hba, &final_params);
4539
4540	return ret;
4541}
4542EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4543
4544/**
4545 * ufshcd_complete_dev_init() - checks device readiness
4546 * @hba: per-adapter instance
4547 *
4548 * Set fDeviceInit flag and poll until device toggles it.
4549 *
4550 * Return: 0 upon success; < 0 upon failure.
4551 */
4552static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4553{
4554	int err;
4555	bool flag_res = true;
4556	ktime_t timeout;
4557
4558	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4559		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4560	if (err) {
4561		dev_err(hba->dev,
4562			"%s: setting fDeviceInit flag failed with error %d\n",
4563			__func__, err);
4564		goto out;
4565	}
4566
4567	/* Poll fDeviceInit flag to be cleared */
4568	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4569	do {
4570		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4571					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4572		if (!flag_res)
4573			break;
4574		usleep_range(500, 1000);
4575	} while (ktime_before(ktime_get(), timeout));
4576
4577	if (err) {
4578		dev_err(hba->dev,
4579				"%s: reading fDeviceInit flag failed with error %d\n",
4580				__func__, err);
4581	} else if (flag_res) {
4582		dev_err(hba->dev,
4583				"%s: fDeviceInit was not cleared by the device\n",
4584				__func__);
4585		err = -EBUSY;
4586	}
4587out:
4588	return err;
4589}
4590
4591/**
4592 * ufshcd_make_hba_operational - Make UFS controller operational
4593 * @hba: per adapter instance
4594 *
4595 * To bring UFS host controller to operational state,
4596 * 1. Enable required interrupts
4597 * 2. Configure interrupt aggregation
4598 * 3. Program UTRL and UTMRL base address
4599 * 4. Configure run-stop-registers
4600 *
4601 * Return: 0 on success, non-zero value on failure.
4602 */
4603int ufshcd_make_hba_operational(struct ufs_hba *hba)
4604{
4605	int err = 0;
4606	u32 reg;
4607
4608	/* Enable required interrupts */
4609	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4610
4611	/* Configure interrupt aggregation */
4612	if (ufshcd_is_intr_aggr_allowed(hba))
4613		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4614	else
4615		ufshcd_disable_intr_aggr(hba);
4616
4617	/* Configure UTRL and UTMRL base address registers */
4618	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4619			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4620	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4621			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4622	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4623			REG_UTP_TASK_REQ_LIST_BASE_L);
4624	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4625			REG_UTP_TASK_REQ_LIST_BASE_H);
4626
4627	/*
4628	 * Make sure base address and interrupt setup are updated before
4629	 * enabling the run/stop registers below.
4630	 */
4631	wmb();
4632
4633	/*
4634	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4635	 */
4636	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4637	if (!(ufshcd_get_lists_status(reg))) {
4638		ufshcd_enable_run_stop_reg(hba);
4639	} else {
4640		dev_err(hba->dev,
4641			"Host controller not ready to process requests");
4642		err = -EIO;
4643	}
4644
4645	return err;
4646}
4647EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4648
4649/**
4650 * ufshcd_hba_stop - Send controller to reset state
4651 * @hba: per adapter instance
4652 */
4653void ufshcd_hba_stop(struct ufs_hba *hba)
4654{
4655	unsigned long flags;
4656	int err;
4657
4658	/*
4659	 * Obtain the host lock to prevent that the controller is disabled
4660	 * while the UFS interrupt handler is active on another CPU.
4661	 */
4662	spin_lock_irqsave(hba->host->host_lock, flags);
4663	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4664	spin_unlock_irqrestore(hba->host->host_lock, flags);
4665
4666	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4667					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4668					10, 1);
4669	if (err)
4670		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4671}
4672EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4673
4674/**
4675 * ufshcd_hba_execute_hce - initialize the controller
4676 * @hba: per adapter instance
4677 *
4678 * The controller resets itself and controller firmware initialization
4679 * sequence kicks off. When controller is ready it will set
4680 * the Host Controller Enable bit to 1.
4681 *
4682 * Return: 0 on success, non-zero value on failure.
4683 */
4684static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4685{
4686	int retry_outer = 3;
4687	int retry_inner;
4688
4689start:
4690	if (ufshcd_is_hba_active(hba))
4691		/* change controller state to "reset state" */
4692		ufshcd_hba_stop(hba);
4693
4694	/* UniPro link is disabled at this point */
4695	ufshcd_set_link_off(hba);
4696
4697	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4698
4699	/* start controller initialization sequence */
4700	ufshcd_hba_start(hba);
4701
4702	/*
4703	 * To initialize a UFS host controller HCE bit must be set to 1.
4704	 * During initialization the HCE bit value changes from 1->0->1.
4705	 * When the host controller completes initialization sequence
4706	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4707	 * to check if the controller has completed initialization sequence.
4708	 * So without this delay the value HCE = 1, set in the previous
4709	 * instruction might be read back.
4710	 * This delay can be changed based on the controller.
4711	 */
4712	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4713
4714	/* wait for the host controller to complete initialization */
4715	retry_inner = 50;
4716	while (!ufshcd_is_hba_active(hba)) {
4717		if (retry_inner) {
4718			retry_inner--;
4719		} else {
4720			dev_err(hba->dev,
4721				"Controller enable failed\n");
4722			if (retry_outer) {
4723				retry_outer--;
4724				goto start;
4725			}
4726			return -EIO;
4727		}
4728		usleep_range(1000, 1100);
4729	}
4730
4731	/* enable UIC related interrupts */
4732	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4733
4734	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4735
4736	return 0;
4737}
4738
4739int ufshcd_hba_enable(struct ufs_hba *hba)
4740{
4741	int ret;
4742
4743	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4744		ufshcd_set_link_off(hba);
4745		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4746
4747		/* enable UIC related interrupts */
4748		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4749		ret = ufshcd_dme_reset(hba);
4750		if (ret) {
4751			dev_err(hba->dev, "DME_RESET failed\n");
4752			return ret;
4753		}
4754
4755		ret = ufshcd_dme_enable(hba);
4756		if (ret) {
4757			dev_err(hba->dev, "Enabling DME failed\n");
4758			return ret;
4759		}
4760
4761		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4762	} else {
4763		ret = ufshcd_hba_execute_hce(hba);
4764	}
4765
4766	return ret;
4767}
4768EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4769
4770static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4771{
4772	int tx_lanes = 0, i, err = 0;
4773
4774	if (!peer)
4775		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4776			       &tx_lanes);
4777	else
4778		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4779				    &tx_lanes);
4780	for (i = 0; i < tx_lanes; i++) {
4781		if (!peer)
4782			err = ufshcd_dme_set(hba,
4783				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4784					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4785					0);
4786		else
4787			err = ufshcd_dme_peer_set(hba,
4788				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4789					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4790					0);
4791		if (err) {
4792			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4793				__func__, peer, i, err);
4794			break;
4795		}
4796	}
4797
4798	return err;
4799}
4800
4801static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4802{
4803	return ufshcd_disable_tx_lcc(hba, true);
4804}
4805
4806void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4807{
4808	struct ufs_event_hist *e;
4809
4810	if (id >= UFS_EVT_CNT)
4811		return;
4812
4813	e = &hba->ufs_stats.event[id];
4814	e->val[e->pos] = val;
4815	e->tstamp[e->pos] = local_clock();
4816	e->cnt += 1;
4817	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4818
4819	ufshcd_vops_event_notify(hba, id, &val);
4820}
4821EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4822
4823/**
4824 * ufshcd_link_startup - Initialize unipro link startup
4825 * @hba: per adapter instance
4826 *
4827 * Return: 0 for success, non-zero in case of failure.
4828 */
4829static int ufshcd_link_startup(struct ufs_hba *hba)
4830{
4831	int ret;
4832	int retries = DME_LINKSTARTUP_RETRIES;
4833	bool link_startup_again = false;
4834
4835	/*
4836	 * If UFS device isn't active then we will have to issue link startup
4837	 * 2 times to make sure the device state move to active.
4838	 */
4839	if (!ufshcd_is_ufs_dev_active(hba))
4840		link_startup_again = true;
4841
4842link_startup:
4843	do {
4844		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4845
4846		ret = ufshcd_dme_link_startup(hba);
4847
4848		/* check if device is detected by inter-connect layer */
4849		if (!ret && !ufshcd_is_device_present(hba)) {
4850			ufshcd_update_evt_hist(hba,
4851					       UFS_EVT_LINK_STARTUP_FAIL,
4852					       0);
4853			dev_err(hba->dev, "%s: Device not present\n", __func__);
4854			ret = -ENXIO;
4855			goto out;
4856		}
4857
4858		/*
4859		 * DME link lost indication is only received when link is up,
4860		 * but we can't be sure if the link is up until link startup
4861		 * succeeds. So reset the local Uni-Pro and try again.
4862		 */
4863		if (ret && retries && ufshcd_hba_enable(hba)) {
4864			ufshcd_update_evt_hist(hba,
4865					       UFS_EVT_LINK_STARTUP_FAIL,
4866					       (u32)ret);
4867			goto out;
4868		}
4869	} while (ret && retries--);
4870
4871	if (ret) {
4872		/* failed to get the link up... retire */
4873		ufshcd_update_evt_hist(hba,
4874				       UFS_EVT_LINK_STARTUP_FAIL,
4875				       (u32)ret);
4876		goto out;
4877	}
4878
4879	if (link_startup_again) {
4880		link_startup_again = false;
4881		retries = DME_LINKSTARTUP_RETRIES;
4882		goto link_startup;
4883	}
4884
4885	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4886	ufshcd_init_pwr_info(hba);
4887	ufshcd_print_pwr_info(hba);
4888
4889	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4890		ret = ufshcd_disable_device_tx_lcc(hba);
4891		if (ret)
4892			goto out;
4893	}
4894
4895	/* Include any host controller configuration via UIC commands */
4896	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4897	if (ret)
4898		goto out;
4899
4900	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4901	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4902	ret = ufshcd_make_hba_operational(hba);
4903out:
4904	if (ret) {
4905		dev_err(hba->dev, "link startup failed %d\n", ret);
4906		ufshcd_print_host_state(hba);
4907		ufshcd_print_pwr_info(hba);
4908		ufshcd_print_evt_hist(hba);
4909	}
4910	return ret;
4911}
4912
4913/**
4914 * ufshcd_verify_dev_init() - Verify device initialization
4915 * @hba: per-adapter instance
4916 *
4917 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4918 * device Transport Protocol (UTP) layer is ready after a reset.
4919 * If the UTP layer at the device side is not initialized, it may
4920 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4921 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4922 *
4923 * Return: 0 upon success; < 0 upon failure.
4924 */
4925static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4926{
4927	int err = 0;
4928	int retries;
4929
4930	ufshcd_hold(hba);
4931	mutex_lock(&hba->dev_cmd.lock);
4932	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4933		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4934					  hba->nop_out_timeout);
4935
4936		if (!err || err == -ETIMEDOUT)
4937			break;
4938
4939		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4940	}
4941	mutex_unlock(&hba->dev_cmd.lock);
4942	ufshcd_release(hba);
4943
4944	if (err)
4945		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4946	return err;
4947}
4948
4949/**
4950 * ufshcd_setup_links - associate link b/w device wlun and other luns
4951 * @sdev: pointer to SCSI device
4952 * @hba: pointer to ufs hba
4953 */
4954static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4955{
4956	struct device_link *link;
4957
4958	/*
4959	 * Device wlun is the supplier & rest of the luns are consumers.
4960	 * This ensures that device wlun suspends after all other luns.
4961	 */
4962	if (hba->ufs_device_wlun) {
4963		link = device_link_add(&sdev->sdev_gendev,
4964				       &hba->ufs_device_wlun->sdev_gendev,
4965				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4966		if (!link) {
4967			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4968				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4969			return;
4970		}
4971		hba->luns_avail--;
4972		/* Ignore REPORT_LUN wlun probing */
4973		if (hba->luns_avail == 1) {
4974			ufshcd_rpm_put(hba);
4975			return;
4976		}
4977	} else {
4978		/*
4979		 * Device wlun is probed. The assumption is that WLUNs are
4980		 * scanned before other LUNs.
4981		 */
4982		hba->luns_avail--;
4983	}
4984}
4985
4986/**
4987 * ufshcd_lu_init - Initialize the relevant parameters of the LU
4988 * @hba: per-adapter instance
4989 * @sdev: pointer to SCSI device
4990 */
4991static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
4992{
4993	int len = QUERY_DESC_MAX_SIZE;
4994	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
4995	u8 lun_qdepth = hba->nutrs;
4996	u8 *desc_buf;
4997	int ret;
4998
4999	desc_buf = kzalloc(len, GFP_KERNEL);
5000	if (!desc_buf)
5001		goto set_qdepth;
5002
5003	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5004	if (ret < 0) {
5005		if (ret == -EOPNOTSUPP)
5006			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5007			lun_qdepth = 1;
5008		kfree(desc_buf);
5009		goto set_qdepth;
5010	}
5011
5012	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5013		/*
5014		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5015		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5016		 */
5017		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5018	}
5019	/*
5020	 * According to UFS device specification, the write protection mode is only supported by
5021	 * normal LU, not supported by WLUN.
5022	 */
5023	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5024	    !hba->dev_info.is_lu_power_on_wp &&
5025	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5026		hba->dev_info.is_lu_power_on_wp = true;
5027
5028	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5029	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5030	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5031		hba->dev_info.b_advanced_rpmb_en = true;
5032
5033
5034	kfree(desc_buf);
5035set_qdepth:
5036	/*
5037	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5038	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5039	 */
5040	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5041	scsi_change_queue_depth(sdev, lun_qdepth);
5042}
5043
5044/**
5045 * ufshcd_slave_alloc - handle initial SCSI device configurations
5046 * @sdev: pointer to SCSI device
5047 *
5048 * Return: success.
5049 */
5050static int ufshcd_slave_alloc(struct scsi_device *sdev)
5051{
5052	struct ufs_hba *hba;
5053
5054	hba = shost_priv(sdev->host);
5055
5056	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5057	sdev->use_10_for_ms = 1;
5058
5059	/* DBD field should be set to 1 in mode sense(10) */
5060	sdev->set_dbd_for_ms = 1;
5061
5062	/* allow SCSI layer to restart the device in case of errors */
5063	sdev->allow_restart = 1;
5064
5065	/* REPORT SUPPORTED OPERATION CODES is not supported */
5066	sdev->no_report_opcodes = 1;
5067
5068	/* WRITE_SAME command is not supported */
5069	sdev->no_write_same = 1;
5070
5071	ufshcd_lu_init(hba, sdev);
5072
5073	ufshcd_setup_links(hba, sdev);
5074
5075	return 0;
5076}
5077
5078/**
5079 * ufshcd_change_queue_depth - change queue depth
5080 * @sdev: pointer to SCSI device
5081 * @depth: required depth to set
5082 *
5083 * Change queue depth and make sure the max. limits are not crossed.
5084 *
5085 * Return: new queue depth.
5086 */
5087static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5088{
5089	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5090}
5091
5092/**
5093 * ufshcd_slave_configure - adjust SCSI device configurations
5094 * @sdev: pointer to SCSI device
5095 *
5096 * Return: 0 (success).
5097 */
5098static int ufshcd_slave_configure(struct scsi_device *sdev)
5099{
5100	struct ufs_hba *hba = shost_priv(sdev->host);
5101	struct request_queue *q = sdev->request_queue;
5102
5103	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5104	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5105		blk_queue_update_dma_alignment(q, SZ_4K - 1);
5106	/*
5107	 * Block runtime-pm until all consumers are added.
5108	 * Refer ufshcd_setup_links().
5109	 */
5110	if (is_device_wlun(sdev))
5111		pm_runtime_get_noresume(&sdev->sdev_gendev);
5112	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5113		sdev->rpm_autosuspend = 1;
5114	/*
5115	 * Do not print messages during runtime PM to avoid never-ending cycles
5116	 * of messages written back to storage by user space causing runtime
5117	 * resume, causing more messages and so on.
5118	 */
5119	sdev->silence_suspend = 1;
5120
5121	ufshcd_crypto_register(hba, q);
5122
5123	return 0;
5124}
5125
5126/**
5127 * ufshcd_slave_destroy - remove SCSI device configurations
5128 * @sdev: pointer to SCSI device
5129 */
5130static void ufshcd_slave_destroy(struct scsi_device *sdev)
5131{
5132	struct ufs_hba *hba;
5133	unsigned long flags;
5134
5135	hba = shost_priv(sdev->host);
5136
5137	/* Drop the reference as it won't be needed anymore */
5138	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5139		spin_lock_irqsave(hba->host->host_lock, flags);
5140		hba->ufs_device_wlun = NULL;
5141		spin_unlock_irqrestore(hba->host->host_lock, flags);
5142	} else if (hba->ufs_device_wlun) {
5143		struct device *supplier = NULL;
5144
5145		/* Ensure UFS Device WLUN exists and does not disappear */
5146		spin_lock_irqsave(hba->host->host_lock, flags);
5147		if (hba->ufs_device_wlun) {
5148			supplier = &hba->ufs_device_wlun->sdev_gendev;
5149			get_device(supplier);
5150		}
5151		spin_unlock_irqrestore(hba->host->host_lock, flags);
5152
5153		if (supplier) {
5154			/*
5155			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5156			 * device will not have been registered but can still
5157			 * have a device link holding a reference to the device.
5158			 */
5159			device_link_remove(&sdev->sdev_gendev, supplier);
5160			put_device(supplier);
5161		}
5162	}
5163}
5164
5165/**
5166 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5167 * @lrbp: pointer to local reference block of completed command
5168 * @scsi_status: SCSI command status
5169 *
5170 * Return: value base on SCSI command status.
5171 */
5172static inline int
5173ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5174{
5175	int result = 0;
5176
5177	switch (scsi_status) {
5178	case SAM_STAT_CHECK_CONDITION:
5179		ufshcd_copy_sense_data(lrbp);
5180		fallthrough;
5181	case SAM_STAT_GOOD:
5182		result |= DID_OK << 16 | scsi_status;
5183		break;
5184	case SAM_STAT_TASK_SET_FULL:
5185	case SAM_STAT_BUSY:
5186	case SAM_STAT_TASK_ABORTED:
5187		ufshcd_copy_sense_data(lrbp);
5188		result |= scsi_status;
5189		break;
5190	default:
5191		result |= DID_ERROR << 16;
5192		break;
5193	} /* end of switch */
5194
5195	return result;
5196}
5197
5198/**
5199 * ufshcd_transfer_rsp_status - Get overall status of the response
5200 * @hba: per adapter instance
5201 * @lrbp: pointer to local reference block of completed command
5202 * @cqe: pointer to the completion queue entry
5203 *
5204 * Return: result of the command to notify SCSI midlayer.
5205 */
5206static inline int
5207ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5208			   struct cq_entry *cqe)
5209{
5210	int result = 0;
5211	int scsi_status;
5212	enum utp_ocs ocs;
5213	u8 upiu_flags;
5214	u32 resid;
5215
5216	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5217	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5218	/*
5219	 * Test !overflow instead of underflow to support UFS devices that do
5220	 * not set either flag.
5221	 */
5222	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5223		scsi_set_resid(lrbp->cmd, resid);
5224
5225	/* overall command status of utrd */
5226	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5227
5228	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5229		if (lrbp->ucd_rsp_ptr->header.response ||
5230		    lrbp->ucd_rsp_ptr->header.status)
5231			ocs = OCS_SUCCESS;
5232	}
5233
5234	switch (ocs) {
5235	case OCS_SUCCESS:
5236		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5237		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5238		case UPIU_TRANSACTION_RESPONSE:
5239			/*
5240			 * get the result based on SCSI status response
5241			 * to notify the SCSI midlayer of the command status
5242			 */
5243			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5244			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5245
5246			/*
5247			 * Currently we are only supporting BKOPs exception
5248			 * events hence we can ignore BKOPs exception event
5249			 * during power management callbacks. BKOPs exception
5250			 * event is not expected to be raised in runtime suspend
5251			 * callback as it allows the urgent bkops.
5252			 * During system suspend, we are anyway forcefully
5253			 * disabling the bkops and if urgent bkops is needed
5254			 * it will be enabled on system resume. Long term
5255			 * solution could be to abort the system suspend if
5256			 * UFS device needs urgent BKOPs.
5257			 */
5258			if (!hba->pm_op_in_progress &&
5259			    !ufshcd_eh_in_progress(hba) &&
5260			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5261				/* Flushed in suspend */
5262				schedule_work(&hba->eeh_work);
5263			break;
5264		case UPIU_TRANSACTION_REJECT_UPIU:
5265			/* TODO: handle Reject UPIU Response */
5266			result = DID_ERROR << 16;
5267			dev_err(hba->dev,
5268				"Reject UPIU not fully implemented\n");
5269			break;
5270		default:
5271			dev_err(hba->dev,
5272				"Unexpected request response code = %x\n",
5273				result);
5274			result = DID_ERROR << 16;
5275			break;
5276		}
5277		break;
5278	case OCS_ABORTED:
5279		result |= DID_ABORT << 16;
5280		break;
5281	case OCS_INVALID_COMMAND_STATUS:
5282		result |= DID_REQUEUE << 16;
5283		break;
5284	case OCS_INVALID_CMD_TABLE_ATTR:
5285	case OCS_INVALID_PRDT_ATTR:
5286	case OCS_MISMATCH_DATA_BUF_SIZE:
5287	case OCS_MISMATCH_RESP_UPIU_SIZE:
5288	case OCS_PEER_COMM_FAILURE:
5289	case OCS_FATAL_ERROR:
5290	case OCS_DEVICE_FATAL_ERROR:
5291	case OCS_INVALID_CRYPTO_CONFIG:
5292	case OCS_GENERAL_CRYPTO_ERROR:
5293	default:
5294		result |= DID_ERROR << 16;
5295		dev_err(hba->dev,
5296				"OCS error from controller = %x for tag %d\n",
5297				ocs, lrbp->task_tag);
5298		ufshcd_print_evt_hist(hba);
5299		ufshcd_print_host_state(hba);
5300		break;
5301	} /* end of switch */
5302
5303	if ((host_byte(result) != DID_OK) &&
5304	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5305		ufshcd_print_tr(hba, lrbp->task_tag, true);
5306	return result;
5307}
5308
5309static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5310					 u32 intr_mask)
5311{
5312	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5313	    !ufshcd_is_auto_hibern8_enabled(hba))
5314		return false;
5315
5316	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5317		return false;
5318
5319	if (hba->active_uic_cmd &&
5320	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5321	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5322		return false;
5323
5324	return true;
5325}
5326
5327/**
5328 * ufshcd_uic_cmd_compl - handle completion of uic command
5329 * @hba: per adapter instance
5330 * @intr_status: interrupt status generated by the controller
5331 *
5332 * Return:
5333 *  IRQ_HANDLED - If interrupt is valid
5334 *  IRQ_NONE    - If invalid interrupt
5335 */
5336static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5337{
5338	irqreturn_t retval = IRQ_NONE;
5339
5340	spin_lock(hba->host->host_lock);
5341	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5342		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5343
5344	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5345		hba->active_uic_cmd->argument2 |=
5346			ufshcd_get_uic_cmd_result(hba);
5347		hba->active_uic_cmd->argument3 =
5348			ufshcd_get_dme_attr_val(hba);
5349		if (!hba->uic_async_done)
5350			hba->active_uic_cmd->cmd_active = 0;
5351		complete(&hba->active_uic_cmd->done);
5352		retval = IRQ_HANDLED;
5353	}
5354
5355	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5356		hba->active_uic_cmd->cmd_active = 0;
5357		complete(hba->uic_async_done);
5358		retval = IRQ_HANDLED;
5359	}
5360
5361	if (retval == IRQ_HANDLED)
5362		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5363					     UFS_CMD_COMP);
5364	spin_unlock(hba->host->host_lock);
5365	return retval;
5366}
5367
5368/* Release the resources allocated for processing a SCSI command. */
5369void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5370			     struct ufshcd_lrb *lrbp)
5371{
5372	struct scsi_cmnd *cmd = lrbp->cmd;
5373
5374	scsi_dma_unmap(cmd);
5375	ufshcd_release(hba);
5376	ufshcd_clk_scaling_update_busy(hba);
5377}
5378
5379/**
5380 * ufshcd_compl_one_cqe - handle a completion queue entry
5381 * @hba: per adapter instance
5382 * @task_tag: the task tag of the request to be completed
5383 * @cqe: pointer to the completion queue entry
5384 */
5385void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5386			  struct cq_entry *cqe)
5387{
5388	struct ufshcd_lrb *lrbp;
5389	struct scsi_cmnd *cmd;
5390	enum utp_ocs ocs;
5391
5392	lrbp = &hba->lrb[task_tag];
5393	lrbp->compl_time_stamp = ktime_get();
5394	cmd = lrbp->cmd;
5395	if (cmd) {
5396		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5397			ufshcd_update_monitor(hba, lrbp);
5398		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5399		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5400		ufshcd_release_scsi_cmd(hba, lrbp);
5401		/* Do not touch lrbp after scsi done */
5402		scsi_done(cmd);
5403	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5404		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5405		if (hba->dev_cmd.complete) {
5406			if (cqe) {
5407				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5408				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5409			}
5410			complete(hba->dev_cmd.complete);
5411			ufshcd_clk_scaling_update_busy(hba);
5412		}
5413	}
5414}
5415
5416/**
5417 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5418 * @hba: per adapter instance
5419 * @completed_reqs: bitmask that indicates which requests to complete
5420 */
5421static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5422					unsigned long completed_reqs)
5423{
5424	int tag;
5425
5426	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5427		ufshcd_compl_one_cqe(hba, tag, NULL);
5428}
5429
5430/* Any value that is not an existing queue number is fine for this constant. */
5431enum {
5432	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5433};
5434
5435static void ufshcd_clear_polled(struct ufs_hba *hba,
5436				unsigned long *completed_reqs)
5437{
5438	int tag;
5439
5440	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5441		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5442
5443		if (!cmd)
5444			continue;
5445		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5446			__clear_bit(tag, completed_reqs);
5447	}
5448}
5449
5450/*
5451 * Return: > 0 if one or more commands have been completed or 0 if no
5452 * requests have been completed.
5453 */
5454static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5455{
5456	struct ufs_hba *hba = shost_priv(shost);
5457	unsigned long completed_reqs, flags;
5458	u32 tr_doorbell;
5459	struct ufs_hw_queue *hwq;
5460
5461	if (is_mcq_enabled(hba)) {
5462		hwq = &hba->uhq[queue_num];
5463
5464		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5465	}
5466
5467	spin_lock_irqsave(&hba->outstanding_lock, flags);
5468	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5469	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5470	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5471		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5472		  hba->outstanding_reqs);
5473	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5474		/* Do not complete polled requests from interrupt context. */
5475		ufshcd_clear_polled(hba, &completed_reqs);
5476	}
5477	hba->outstanding_reqs &= ~completed_reqs;
5478	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5479
5480	if (completed_reqs)
5481		__ufshcd_transfer_req_compl(hba, completed_reqs);
5482
5483	return completed_reqs != 0;
5484}
5485
5486/**
5487 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5488 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5489 * to complete the pending transfers and free the resources associated with
5490 * the scsi command.
5491 *
5492 * @hba: per adapter instance
5493 * @force_compl: This flag is set to true when invoked
5494 * from ufshcd_host_reset_and_restore() in which case it requires special
5495 * handling because the host controller has been reset by ufshcd_hba_stop().
5496 */
5497static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5498					      bool force_compl)
5499{
5500	struct ufs_hw_queue *hwq;
5501	struct ufshcd_lrb *lrbp;
5502	struct scsi_cmnd *cmd;
5503	unsigned long flags;
5504	u32 hwq_num, utag;
5505	int tag;
5506
5507	for (tag = 0; tag < hba->nutrs; tag++) {
5508		lrbp = &hba->lrb[tag];
5509		cmd = lrbp->cmd;
5510		if (!ufshcd_cmd_inflight(cmd) ||
5511		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5512			continue;
5513
5514		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5515		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5516		hwq = &hba->uhq[hwq_num];
5517
5518		if (force_compl) {
5519			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5520			/*
5521			 * For those cmds of which the cqes are not present
5522			 * in the cq, complete them explicitly.
5523			 */
5524			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5525				spin_lock_irqsave(&hwq->cq_lock, flags);
5526				set_host_byte(cmd, DID_REQUEUE);
5527				ufshcd_release_scsi_cmd(hba, lrbp);
5528				scsi_done(cmd);
5529				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5530			}
5531		} else {
5532			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5533		}
5534	}
5535}
5536
5537/**
5538 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5539 * @hba: per adapter instance
5540 *
5541 * Return:
5542 *  IRQ_HANDLED - If interrupt is valid
5543 *  IRQ_NONE    - If invalid interrupt
5544 */
5545static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5546{
5547	/* Resetting interrupt aggregation counters first and reading the
5548	 * DOOR_BELL afterward allows us to handle all the completed requests.
5549	 * In order to prevent other interrupts starvation the DB is read once
5550	 * after reset. The down side of this solution is the possibility of
5551	 * false interrupt if device completes another request after resetting
5552	 * aggregation and before reading the DB.
5553	 */
5554	if (ufshcd_is_intr_aggr_allowed(hba) &&
5555	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5556		ufshcd_reset_intr_aggr(hba);
5557
5558	if (ufs_fail_completion())
5559		return IRQ_HANDLED;
5560
5561	/*
5562	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5563	 * do not want polling to trigger spurious interrupt complaints.
5564	 */
5565	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5566
5567	return IRQ_HANDLED;
5568}
5569
5570int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5571{
5572	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5573				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5574				       &ee_ctrl_mask);
5575}
5576
5577int ufshcd_write_ee_control(struct ufs_hba *hba)
5578{
5579	int err;
5580
5581	mutex_lock(&hba->ee_ctrl_mutex);
5582	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5583	mutex_unlock(&hba->ee_ctrl_mutex);
5584	if (err)
5585		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5586			__func__, err);
5587	return err;
5588}
5589
5590int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5591			     const u16 *other_mask, u16 set, u16 clr)
5592{
5593	u16 new_mask, ee_ctrl_mask;
5594	int err = 0;
5595
5596	mutex_lock(&hba->ee_ctrl_mutex);
5597	new_mask = (*mask & ~clr) | set;
5598	ee_ctrl_mask = new_mask | *other_mask;
5599	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5600		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5601	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5602	if (!err) {
5603		hba->ee_ctrl_mask = ee_ctrl_mask;
5604		*mask = new_mask;
5605	}
5606	mutex_unlock(&hba->ee_ctrl_mutex);
5607	return err;
5608}
5609
5610/**
5611 * ufshcd_disable_ee - disable exception event
5612 * @hba: per-adapter instance
5613 * @mask: exception event to disable
5614 *
5615 * Disables exception event in the device so that the EVENT_ALERT
5616 * bit is not set.
5617 *
5618 * Return: zero on success, non-zero error value on failure.
5619 */
5620static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5621{
5622	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5623}
5624
5625/**
5626 * ufshcd_enable_ee - enable exception event
5627 * @hba: per-adapter instance
5628 * @mask: exception event to enable
5629 *
5630 * Enable corresponding exception event in the device to allow
5631 * device to alert host in critical scenarios.
5632 *
5633 * Return: zero on success, non-zero error value on failure.
5634 */
5635static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5636{
5637	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5638}
5639
5640/**
5641 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5642 * @hba: per-adapter instance
5643 *
5644 * Allow device to manage background operations on its own. Enabling
5645 * this might lead to inconsistent latencies during normal data transfers
5646 * as the device is allowed to manage its own way of handling background
5647 * operations.
5648 *
5649 * Return: zero on success, non-zero on failure.
5650 */
5651static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5652{
5653	int err = 0;
5654
5655	if (hba->auto_bkops_enabled)
5656		goto out;
5657
5658	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5659			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5660	if (err) {
5661		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5662				__func__, err);
5663		goto out;
5664	}
5665
5666	hba->auto_bkops_enabled = true;
5667	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5668
5669	/* No need of URGENT_BKOPS exception from the device */
5670	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5671	if (err)
5672		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5673				__func__, err);
5674out:
5675	return err;
5676}
5677
5678/**
5679 * ufshcd_disable_auto_bkops - block device in doing background operations
5680 * @hba: per-adapter instance
5681 *
5682 * Disabling background operations improves command response latency but
5683 * has drawback of device moving into critical state where the device is
5684 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5685 * host is idle so that BKOPS are managed effectively without any negative
5686 * impacts.
5687 *
5688 * Return: zero on success, non-zero on failure.
5689 */
5690static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5691{
5692	int err = 0;
5693
5694	if (!hba->auto_bkops_enabled)
5695		goto out;
5696
5697	/*
5698	 * If host assisted BKOPs is to be enabled, make sure
5699	 * urgent bkops exception is allowed.
5700	 */
5701	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5702	if (err) {
5703		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5704				__func__, err);
5705		goto out;
5706	}
5707
5708	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5709			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5710	if (err) {
5711		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5712				__func__, err);
5713		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5714		goto out;
5715	}
5716
5717	hba->auto_bkops_enabled = false;
5718	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5719	hba->is_urgent_bkops_lvl_checked = false;
5720out:
5721	return err;
5722}
5723
5724/**
5725 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5726 * @hba: per adapter instance
5727 *
5728 * After a device reset the device may toggle the BKOPS_EN flag
5729 * to default value. The s/w tracking variables should be updated
5730 * as well. This function would change the auto-bkops state based on
5731 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5732 */
5733static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5734{
5735	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5736		hba->auto_bkops_enabled = false;
5737		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5738		ufshcd_enable_auto_bkops(hba);
5739	} else {
5740		hba->auto_bkops_enabled = true;
5741		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5742		ufshcd_disable_auto_bkops(hba);
5743	}
5744	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5745	hba->is_urgent_bkops_lvl_checked = false;
5746}
5747
5748static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5749{
5750	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5751			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5752}
5753
5754/**
5755 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5756 * @hba: per-adapter instance
5757 * @status: bkops_status value
5758 *
5759 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5760 * flag in the device to permit background operations if the device
5761 * bkops_status is greater than or equal to "status" argument passed to
5762 * this function, disable otherwise.
5763 *
5764 * Return: 0 for success, non-zero in case of failure.
5765 *
5766 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5767 * to know whether auto bkops is enabled or disabled after this function
5768 * returns control to it.
5769 */
5770static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5771			     enum bkops_status status)
5772{
5773	int err;
5774	u32 curr_status = 0;
5775
5776	err = ufshcd_get_bkops_status(hba, &curr_status);
5777	if (err) {
5778		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5779				__func__, err);
5780		goto out;
5781	} else if (curr_status > BKOPS_STATUS_MAX) {
5782		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5783				__func__, curr_status);
5784		err = -EINVAL;
5785		goto out;
5786	}
5787
5788	if (curr_status >= status)
5789		err = ufshcd_enable_auto_bkops(hba);
5790	else
5791		err = ufshcd_disable_auto_bkops(hba);
5792out:
5793	return err;
5794}
5795
5796/**
5797 * ufshcd_urgent_bkops - handle urgent bkops exception event
5798 * @hba: per-adapter instance
5799 *
5800 * Enable fBackgroundOpsEn flag in the device to permit background
5801 * operations.
5802 *
5803 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5804 * and negative error value for any other failure.
5805 *
5806 * Return: 0 upon success; < 0 upon failure.
5807 */
5808static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5809{
5810	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5811}
5812
5813static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5814{
5815	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5816			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5817}
5818
5819static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5820{
5821	int err;
5822	u32 curr_status = 0;
5823
5824	if (hba->is_urgent_bkops_lvl_checked)
5825		goto enable_auto_bkops;
5826
5827	err = ufshcd_get_bkops_status(hba, &curr_status);
5828	if (err) {
5829		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5830				__func__, err);
5831		goto out;
5832	}
5833
5834	/*
5835	 * We are seeing that some devices are raising the urgent bkops
5836	 * exception events even when BKOPS status doesn't indicate performace
5837	 * impacted or critical. Handle these device by determining their urgent
5838	 * bkops status at runtime.
5839	 */
5840	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5841		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5842				__func__, curr_status);
5843		/* update the current status as the urgent bkops level */
5844		hba->urgent_bkops_lvl = curr_status;
5845		hba->is_urgent_bkops_lvl_checked = true;
5846	}
5847
5848enable_auto_bkops:
5849	err = ufshcd_enable_auto_bkops(hba);
5850out:
5851	if (err < 0)
5852		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5853				__func__, err);
5854}
5855
5856static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5857{
5858	u32 value;
5859
5860	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5861				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5862		return;
5863
5864	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5865
5866	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5867
5868	/*
5869	 * A placeholder for the platform vendors to add whatever additional
5870	 * steps required
5871	 */
5872}
5873
5874static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5875{
5876	u8 index;
5877	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5878				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5879
5880	index = ufshcd_wb_get_query_index(hba);
5881	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5882}
5883
5884int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5885{
5886	int ret;
5887
5888	if (!ufshcd_is_wb_allowed(hba) ||
5889	    hba->dev_info.wb_enabled == enable)
5890		return 0;
5891
5892	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5893	if (ret) {
5894		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5895			__func__, enable ? "enabling" : "disabling", ret);
5896		return ret;
5897	}
5898
5899	hba->dev_info.wb_enabled = enable;
5900	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5901			__func__, enable ? "enabled" : "disabled");
5902
5903	return ret;
5904}
5905
5906static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5907						 bool enable)
5908{
5909	int ret;
5910
5911	ret = __ufshcd_wb_toggle(hba, enable,
5912			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5913	if (ret) {
5914		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5915			__func__, enable ? "enabling" : "disabling", ret);
5916		return;
5917	}
5918	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5919			__func__, enable ? "enabled" : "disabled");
5920}
5921
5922int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5923{
5924	int ret;
5925
5926	if (!ufshcd_is_wb_allowed(hba) ||
5927	    hba->dev_info.wb_buf_flush_enabled == enable)
5928		return 0;
5929
5930	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5931	if (ret) {
5932		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5933			__func__, enable ? "enabling" : "disabling", ret);
5934		return ret;
5935	}
5936
5937	hba->dev_info.wb_buf_flush_enabled = enable;
5938	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5939			__func__, enable ? "enabled" : "disabled");
5940
5941	return ret;
5942}
5943
5944static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5945						u32 avail_buf)
5946{
5947	u32 cur_buf;
5948	int ret;
5949	u8 index;
5950
5951	index = ufshcd_wb_get_query_index(hba);
5952	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5953					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5954					      index, 0, &cur_buf);
5955	if (ret) {
5956		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5957			__func__, ret);
5958		return false;
5959	}
5960
5961	if (!cur_buf) {
5962		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5963			 cur_buf);
5964		return false;
5965	}
5966	/* Let it continue to flush when available buffer exceeds threshold */
5967	return avail_buf < hba->vps->wb_flush_threshold;
5968}
5969
5970static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5971{
5972	if (ufshcd_is_wb_buf_flush_allowed(hba))
5973		ufshcd_wb_toggle_buf_flush(hba, false);
5974
5975	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5976	ufshcd_wb_toggle(hba, false);
5977	hba->caps &= ~UFSHCD_CAP_WB_EN;
5978
5979	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5980}
5981
5982static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5983{
5984	u32 lifetime;
5985	int ret;
5986	u8 index;
5987
5988	index = ufshcd_wb_get_query_index(hba);
5989	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5990				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5991				      index, 0, &lifetime);
5992	if (ret) {
5993		dev_err(hba->dev,
5994			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5995			__func__, ret);
5996		return false;
5997	}
5998
5999	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6000		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6001			__func__, lifetime);
6002		return false;
6003	}
6004
6005	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6006		__func__, lifetime);
6007
6008	return true;
6009}
6010
6011static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6012{
6013	int ret;
6014	u32 avail_buf;
6015	u8 index;
6016
6017	if (!ufshcd_is_wb_allowed(hba))
6018		return false;
6019
6020	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6021		ufshcd_wb_force_disable(hba);
6022		return false;
6023	}
6024
6025	/*
6026	 * The ufs device needs the vcc to be ON to flush.
6027	 * With user-space reduction enabled, it's enough to enable flush
6028	 * by checking only the available buffer. The threshold
6029	 * defined here is > 90% full.
6030	 * With user-space preserved enabled, the current-buffer
6031	 * should be checked too because the wb buffer size can reduce
6032	 * when disk tends to be full. This info is provided by current
6033	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6034	 * keeping vcc on when current buffer is empty.
6035	 */
6036	index = ufshcd_wb_get_query_index(hba);
6037	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6038				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6039				      index, 0, &avail_buf);
6040	if (ret) {
6041		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6042			 __func__, ret);
6043		return false;
6044	}
6045
6046	if (!hba->dev_info.b_presrv_uspc_en)
6047		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6048
6049	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6050}
6051
6052static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6053{
6054	struct ufs_hba *hba = container_of(to_delayed_work(work),
6055					   struct ufs_hba,
6056					   rpm_dev_flush_recheck_work);
6057	/*
6058	 * To prevent unnecessary VCC power drain after device finishes
6059	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6060	 * after a certain delay to recheck the threshold by next runtime
6061	 * suspend.
6062	 */
6063	ufshcd_rpm_get_sync(hba);
6064	ufshcd_rpm_put_sync(hba);
6065}
6066
6067/**
6068 * ufshcd_exception_event_handler - handle exceptions raised by device
6069 * @work: pointer to work data
6070 *
6071 * Read bExceptionEventStatus attribute from the device and handle the
6072 * exception event accordingly.
6073 */
6074static void ufshcd_exception_event_handler(struct work_struct *work)
6075{
6076	struct ufs_hba *hba;
6077	int err;
6078	u32 status = 0;
6079	hba = container_of(work, struct ufs_hba, eeh_work);
6080
6081	ufshcd_scsi_block_requests(hba);
6082	err = ufshcd_get_ee_status(hba, &status);
6083	if (err) {
6084		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6085				__func__, err);
6086		goto out;
6087	}
6088
6089	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6090
6091	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6092		ufshcd_bkops_exception_event_handler(hba);
6093
6094	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6095		ufshcd_temp_exception_event_handler(hba, status);
6096
6097	ufs_debugfs_exception_event(hba, status);
6098out:
6099	ufshcd_scsi_unblock_requests(hba);
6100}
6101
6102/* Complete requests that have door-bell cleared */
6103static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6104{
6105	if (is_mcq_enabled(hba))
6106		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6107	else
6108		ufshcd_transfer_req_compl(hba);
6109
6110	ufshcd_tmc_handler(hba);
6111}
6112
6113/**
6114 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6115 *				to recover from the DL NAC errors or not.
6116 * @hba: per-adapter instance
6117 *
6118 * Return: true if error handling is required, false otherwise.
6119 */
6120static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6121{
6122	unsigned long flags;
6123	bool err_handling = true;
6124
6125	spin_lock_irqsave(hba->host->host_lock, flags);
6126	/*
6127	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6128	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6129	 */
6130	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6131		goto out;
6132
6133	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6134	    ((hba->saved_err & UIC_ERROR) &&
6135	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6136		goto out;
6137
6138	if ((hba->saved_err & UIC_ERROR) &&
6139	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6140		int err;
6141		/*
6142		 * wait for 50ms to see if we can get any other errors or not.
6143		 */
6144		spin_unlock_irqrestore(hba->host->host_lock, flags);
6145		msleep(50);
6146		spin_lock_irqsave(hba->host->host_lock, flags);
6147
6148		/*
6149		 * now check if we have got any other severe errors other than
6150		 * DL NAC error?
6151		 */
6152		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6153		    ((hba->saved_err & UIC_ERROR) &&
6154		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6155			goto out;
6156
6157		/*
6158		 * As DL NAC is the only error received so far, send out NOP
6159		 * command to confirm if link is still active or not.
6160		 *   - If we don't get any response then do error recovery.
6161		 *   - If we get response then clear the DL NAC error bit.
6162		 */
6163
6164		spin_unlock_irqrestore(hba->host->host_lock, flags);
6165		err = ufshcd_verify_dev_init(hba);
6166		spin_lock_irqsave(hba->host->host_lock, flags);
6167
6168		if (err)
6169			goto out;
6170
6171		/* Link seems to be alive hence ignore the DL NAC errors */
6172		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6173			hba->saved_err &= ~UIC_ERROR;
6174		/* clear NAC error */
6175		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6176		if (!hba->saved_uic_err)
6177			err_handling = false;
6178	}
6179out:
6180	spin_unlock_irqrestore(hba->host->host_lock, flags);
6181	return err_handling;
6182}
6183
6184/* host lock must be held before calling this func */
6185static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6186{
6187	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6188	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6189}
6190
6191void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6192{
6193	lockdep_assert_held(hba->host->host_lock);
6194
6195	/* handle fatal errors only when link is not in error state */
6196	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6197		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6198		    ufshcd_is_saved_err_fatal(hba))
6199			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6200		else
6201			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6202		queue_work(hba->eh_wq, &hba->eh_work);
6203	}
6204}
6205
6206static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6207{
6208	spin_lock_irq(hba->host->host_lock);
6209	hba->force_reset = true;
6210	ufshcd_schedule_eh_work(hba);
6211	spin_unlock_irq(hba->host->host_lock);
6212}
6213
6214static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6215{
6216	mutex_lock(&hba->wb_mutex);
6217	down_write(&hba->clk_scaling_lock);
6218	hba->clk_scaling.is_allowed = allow;
6219	up_write(&hba->clk_scaling_lock);
6220	mutex_unlock(&hba->wb_mutex);
6221}
6222
6223static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6224{
6225	if (suspend) {
6226		if (hba->clk_scaling.is_enabled)
6227			ufshcd_suspend_clkscaling(hba);
6228		ufshcd_clk_scaling_allow(hba, false);
6229	} else {
6230		ufshcd_clk_scaling_allow(hba, true);
6231		if (hba->clk_scaling.is_enabled)
6232			ufshcd_resume_clkscaling(hba);
6233	}
6234}
6235
6236static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6237{
6238	ufshcd_rpm_get_sync(hba);
6239	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6240	    hba->is_sys_suspended) {
6241		enum ufs_pm_op pm_op;
6242
6243		/*
6244		 * Don't assume anything of resume, if
6245		 * resume fails, irq and clocks can be OFF, and powers
6246		 * can be OFF or in LPM.
6247		 */
6248		ufshcd_setup_hba_vreg(hba, true);
6249		ufshcd_enable_irq(hba);
6250		ufshcd_setup_vreg(hba, true);
6251		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6252		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6253		ufshcd_hold(hba);
6254		if (!ufshcd_is_clkgating_allowed(hba))
6255			ufshcd_setup_clocks(hba, true);
6256		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6257		ufshcd_vops_resume(hba, pm_op);
6258	} else {
6259		ufshcd_hold(hba);
6260		if (ufshcd_is_clkscaling_supported(hba) &&
6261		    hba->clk_scaling.is_enabled)
6262			ufshcd_suspend_clkscaling(hba);
6263		ufshcd_clk_scaling_allow(hba, false);
6264	}
6265	ufshcd_scsi_block_requests(hba);
6266	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6267	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6268	cancel_work_sync(&hba->eeh_work);
6269}
6270
6271static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6272{
6273	ufshcd_scsi_unblock_requests(hba);
6274	ufshcd_release(hba);
6275	if (ufshcd_is_clkscaling_supported(hba))
6276		ufshcd_clk_scaling_suspend(hba, false);
6277	ufshcd_rpm_put(hba);
6278}
6279
6280static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6281{
6282	return (!hba->is_powered || hba->shutting_down ||
6283		!hba->ufs_device_wlun ||
6284		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6285		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6286		   ufshcd_is_link_broken(hba))));
6287}
6288
6289#ifdef CONFIG_PM
6290static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6291{
6292	struct Scsi_Host *shost = hba->host;
6293	struct scsi_device *sdev;
6294	struct request_queue *q;
6295	int ret;
6296
6297	hba->is_sys_suspended = false;
6298	/*
6299	 * Set RPM status of wlun device to RPM_ACTIVE,
6300	 * this also clears its runtime error.
6301	 */
6302	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6303
6304	/* hba device might have a runtime error otherwise */
6305	if (ret)
6306		ret = pm_runtime_set_active(hba->dev);
6307	/*
6308	 * If wlun device had runtime error, we also need to resume those
6309	 * consumer scsi devices in case any of them has failed to be
6310	 * resumed due to supplier runtime resume failure. This is to unblock
6311	 * blk_queue_enter in case there are bios waiting inside it.
6312	 */
6313	if (!ret) {
6314		shost_for_each_device(sdev, shost) {
6315			q = sdev->request_queue;
6316			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6317				       q->rpm_status == RPM_SUSPENDING))
6318				pm_request_resume(q->dev);
6319		}
6320	}
6321}
6322#else
6323static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6324{
6325}
6326#endif
6327
6328static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6329{
6330	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6331	u32 mode;
6332
6333	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6334
6335	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6336		return true;
6337
6338	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6339		return true;
6340
6341	return false;
6342}
6343
6344static bool ufshcd_abort_one(struct request *rq, void *priv)
6345{
6346	int *ret = priv;
6347	u32 tag = rq->tag;
6348	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6349	struct scsi_device *sdev = cmd->device;
6350	struct Scsi_Host *shost = sdev->host;
6351	struct ufs_hba *hba = shost_priv(shost);
6352	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6353	struct ufs_hw_queue *hwq;
6354	unsigned long flags;
6355
6356	*ret = ufshcd_try_to_abort_task(hba, tag);
6357	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6358		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6359		*ret ? "failed" : "succeeded");
6360
6361	/* Release cmd in MCQ mode if abort succeeds */
6362	if (is_mcq_enabled(hba) && (*ret == 0)) {
6363		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6364		spin_lock_irqsave(&hwq->cq_lock, flags);
6365		if (ufshcd_cmd_inflight(lrbp->cmd))
6366			ufshcd_release_scsi_cmd(hba, lrbp);
6367		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6368	}
6369
6370	return *ret == 0;
6371}
6372
6373/**
6374 * ufshcd_abort_all - Abort all pending commands.
6375 * @hba: Host bus adapter pointer.
6376 *
6377 * Return: true if and only if the host controller needs to be reset.
6378 */
6379static bool ufshcd_abort_all(struct ufs_hba *hba)
6380{
6381	int tag, ret = 0;
6382
6383	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6384	if (ret)
6385		goto out;
6386
6387	/* Clear pending task management requests */
6388	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6389		ret = ufshcd_clear_tm_cmd(hba, tag);
6390		if (ret)
6391			goto out;
6392	}
6393
6394out:
6395	/* Complete the requests that are cleared by s/w */
6396	ufshcd_complete_requests(hba, false);
6397
6398	return ret != 0;
6399}
6400
6401/**
6402 * ufshcd_err_handler - handle UFS errors that require s/w attention
6403 * @work: pointer to work structure
6404 */
6405static void ufshcd_err_handler(struct work_struct *work)
6406{
6407	int retries = MAX_ERR_HANDLER_RETRIES;
6408	struct ufs_hba *hba;
6409	unsigned long flags;
6410	bool needs_restore;
6411	bool needs_reset;
6412	int pmc_err;
6413
6414	hba = container_of(work, struct ufs_hba, eh_work);
6415
6416	dev_info(hba->dev,
6417		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6418		 __func__, ufshcd_state_name[hba->ufshcd_state],
6419		 hba->is_powered, hba->shutting_down, hba->saved_err,
6420		 hba->saved_uic_err, hba->force_reset,
6421		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6422
6423	down(&hba->host_sem);
6424	spin_lock_irqsave(hba->host->host_lock, flags);
6425	if (ufshcd_err_handling_should_stop(hba)) {
6426		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6427			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6428		spin_unlock_irqrestore(hba->host->host_lock, flags);
6429		up(&hba->host_sem);
6430		return;
6431	}
6432	ufshcd_set_eh_in_progress(hba);
6433	spin_unlock_irqrestore(hba->host->host_lock, flags);
6434	ufshcd_err_handling_prepare(hba);
6435	/* Complete requests that have door-bell cleared by h/w */
6436	ufshcd_complete_requests(hba, false);
6437	spin_lock_irqsave(hba->host->host_lock, flags);
6438again:
6439	needs_restore = false;
6440	needs_reset = false;
6441
6442	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6443		hba->ufshcd_state = UFSHCD_STATE_RESET;
6444	/*
6445	 * A full reset and restore might have happened after preparation
6446	 * is finished, double check whether we should stop.
6447	 */
6448	if (ufshcd_err_handling_should_stop(hba))
6449		goto skip_err_handling;
6450
6451	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6452		bool ret;
6453
6454		spin_unlock_irqrestore(hba->host->host_lock, flags);
6455		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6456		ret = ufshcd_quirk_dl_nac_errors(hba);
6457		spin_lock_irqsave(hba->host->host_lock, flags);
6458		if (!ret && ufshcd_err_handling_should_stop(hba))
6459			goto skip_err_handling;
6460	}
6461
6462	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6463	    (hba->saved_uic_err &&
6464	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6465		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6466
6467		spin_unlock_irqrestore(hba->host->host_lock, flags);
6468		ufshcd_print_host_state(hba);
6469		ufshcd_print_pwr_info(hba);
6470		ufshcd_print_evt_hist(hba);
6471		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6472		ufshcd_print_trs_all(hba, pr_prdt);
6473		spin_lock_irqsave(hba->host->host_lock, flags);
6474	}
6475
6476	/*
6477	 * if host reset is required then skip clearing the pending
6478	 * transfers forcefully because they will get cleared during
6479	 * host reset and restore
6480	 */
6481	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6482	    ufshcd_is_saved_err_fatal(hba) ||
6483	    ((hba->saved_err & UIC_ERROR) &&
6484	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6485				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6486		needs_reset = true;
6487		goto do_reset;
6488	}
6489
6490	/*
6491	 * If LINERESET was caught, UFS might have been put to PWM mode,
6492	 * check if power mode restore is needed.
6493	 */
6494	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6495		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6496		if (!hba->saved_uic_err)
6497			hba->saved_err &= ~UIC_ERROR;
6498		spin_unlock_irqrestore(hba->host->host_lock, flags);
6499		if (ufshcd_is_pwr_mode_restore_needed(hba))
6500			needs_restore = true;
6501		spin_lock_irqsave(hba->host->host_lock, flags);
6502		if (!hba->saved_err && !needs_restore)
6503			goto skip_err_handling;
6504	}
6505
6506	hba->silence_err_logs = true;
6507	/* release lock as clear command might sleep */
6508	spin_unlock_irqrestore(hba->host->host_lock, flags);
6509
6510	needs_reset = ufshcd_abort_all(hba);
6511
6512	spin_lock_irqsave(hba->host->host_lock, flags);
6513	hba->silence_err_logs = false;
6514	if (needs_reset)
6515		goto do_reset;
6516
6517	/*
6518	 * After all reqs and tasks are cleared from doorbell,
6519	 * now it is safe to retore power mode.
6520	 */
6521	if (needs_restore) {
6522		spin_unlock_irqrestore(hba->host->host_lock, flags);
6523		/*
6524		 * Hold the scaling lock just in case dev cmds
6525		 * are sent via bsg and/or sysfs.
6526		 */
6527		down_write(&hba->clk_scaling_lock);
6528		hba->force_pmc = true;
6529		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6530		if (pmc_err) {
6531			needs_reset = true;
6532			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6533					__func__, pmc_err);
6534		}
6535		hba->force_pmc = false;
6536		ufshcd_print_pwr_info(hba);
6537		up_write(&hba->clk_scaling_lock);
6538		spin_lock_irqsave(hba->host->host_lock, flags);
6539	}
6540
6541do_reset:
6542	/* Fatal errors need reset */
6543	if (needs_reset) {
6544		int err;
6545
6546		hba->force_reset = false;
6547		spin_unlock_irqrestore(hba->host->host_lock, flags);
6548		err = ufshcd_reset_and_restore(hba);
6549		if (err)
6550			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6551					__func__, err);
6552		else
6553			ufshcd_recover_pm_error(hba);
6554		spin_lock_irqsave(hba->host->host_lock, flags);
6555	}
6556
6557skip_err_handling:
6558	if (!needs_reset) {
6559		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6560			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6561		if (hba->saved_err || hba->saved_uic_err)
6562			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6563			    __func__, hba->saved_err, hba->saved_uic_err);
6564	}
6565	/* Exit in an operational state or dead */
6566	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6567	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6568		if (--retries)
6569			goto again;
6570		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6571	}
6572	ufshcd_clear_eh_in_progress(hba);
6573	spin_unlock_irqrestore(hba->host->host_lock, flags);
6574	ufshcd_err_handling_unprepare(hba);
6575	up(&hba->host_sem);
6576
6577	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6578		 ufshcd_state_name[hba->ufshcd_state]);
6579}
6580
6581/**
6582 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6583 * @hba: per-adapter instance
6584 *
6585 * Return:
6586 *  IRQ_HANDLED - If interrupt is valid
6587 *  IRQ_NONE    - If invalid interrupt
6588 */
6589static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6590{
6591	u32 reg;
6592	irqreturn_t retval = IRQ_NONE;
6593
6594	/* PHY layer error */
6595	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6596	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6597	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6598		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6599		/*
6600		 * To know whether this error is fatal or not, DB timeout
6601		 * must be checked but this error is handled separately.
6602		 */
6603		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6604			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6605					__func__);
6606
6607		/* Got a LINERESET indication. */
6608		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6609			struct uic_command *cmd = NULL;
6610
6611			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6612			if (hba->uic_async_done && hba->active_uic_cmd)
6613				cmd = hba->active_uic_cmd;
6614			/*
6615			 * Ignore the LINERESET during power mode change
6616			 * operation via DME_SET command.
6617			 */
6618			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6619				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6620		}
6621		retval |= IRQ_HANDLED;
6622	}
6623
6624	/* PA_INIT_ERROR is fatal and needs UIC reset */
6625	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6626	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6627	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6628		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6629
6630		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6631			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6632		else if (hba->dev_quirks &
6633				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6634			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6635				hba->uic_error |=
6636					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6637			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6638				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6639		}
6640		retval |= IRQ_HANDLED;
6641	}
6642
6643	/* UIC NL/TL/DME errors needs software retry */
6644	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6645	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6646	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6647		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6648		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6649		retval |= IRQ_HANDLED;
6650	}
6651
6652	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6653	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6654	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6655		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6656		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6657		retval |= IRQ_HANDLED;
6658	}
6659
6660	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6661	if ((reg & UIC_DME_ERROR) &&
6662	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6663		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6664		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6665		retval |= IRQ_HANDLED;
6666	}
6667
6668	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6669			__func__, hba->uic_error);
6670	return retval;
6671}
6672
6673/**
6674 * ufshcd_check_errors - Check for errors that need s/w attention
6675 * @hba: per-adapter instance
6676 * @intr_status: interrupt status generated by the controller
6677 *
6678 * Return:
6679 *  IRQ_HANDLED - If interrupt is valid
6680 *  IRQ_NONE    - If invalid interrupt
6681 */
6682static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6683{
6684	bool queue_eh_work = false;
6685	irqreturn_t retval = IRQ_NONE;
6686
6687	spin_lock(hba->host->host_lock);
6688	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6689
6690	if (hba->errors & INT_FATAL_ERRORS) {
6691		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6692				       hba->errors);
6693		queue_eh_work = true;
6694	}
6695
6696	if (hba->errors & UIC_ERROR) {
6697		hba->uic_error = 0;
6698		retval = ufshcd_update_uic_error(hba);
6699		if (hba->uic_error)
6700			queue_eh_work = true;
6701	}
6702
6703	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6704		dev_err(hba->dev,
6705			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6706			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6707			"Enter" : "Exit",
6708			hba->errors, ufshcd_get_upmcrs(hba));
6709		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6710				       hba->errors);
6711		ufshcd_set_link_broken(hba);
6712		queue_eh_work = true;
6713	}
6714
6715	if (queue_eh_work) {
6716		/*
6717		 * update the transfer error masks to sticky bits, let's do this
6718		 * irrespective of current ufshcd_state.
6719		 */
6720		hba->saved_err |= hba->errors;
6721		hba->saved_uic_err |= hba->uic_error;
6722
6723		/* dump controller state before resetting */
6724		if ((hba->saved_err &
6725		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6726		    (hba->saved_uic_err &&
6727		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6728			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6729					__func__, hba->saved_err,
6730					hba->saved_uic_err);
6731			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6732					 "host_regs: ");
6733			ufshcd_print_pwr_info(hba);
6734		}
6735		ufshcd_schedule_eh_work(hba);
6736		retval |= IRQ_HANDLED;
6737	}
6738	/*
6739	 * if (!queue_eh_work) -
6740	 * Other errors are either non-fatal where host recovers
6741	 * itself without s/w intervention or errors that will be
6742	 * handled by the SCSI core layer.
6743	 */
6744	hba->errors = 0;
6745	hba->uic_error = 0;
6746	spin_unlock(hba->host->host_lock);
6747	return retval;
6748}
6749
6750/**
6751 * ufshcd_tmc_handler - handle task management function completion
6752 * @hba: per adapter instance
6753 *
6754 * Return:
6755 *  IRQ_HANDLED - If interrupt is valid
6756 *  IRQ_NONE    - If invalid interrupt
6757 */
6758static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6759{
6760	unsigned long flags, pending, issued;
6761	irqreturn_t ret = IRQ_NONE;
6762	int tag;
6763
6764	spin_lock_irqsave(hba->host->host_lock, flags);
6765	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6766	issued = hba->outstanding_tasks & ~pending;
6767	for_each_set_bit(tag, &issued, hba->nutmrs) {
6768		struct request *req = hba->tmf_rqs[tag];
6769		struct completion *c = req->end_io_data;
6770
6771		complete(c);
6772		ret = IRQ_HANDLED;
6773	}
6774	spin_unlock_irqrestore(hba->host->host_lock, flags);
6775
6776	return ret;
6777}
6778
6779/**
6780 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6781 * @hba: per adapter instance
6782 *
6783 * Return: IRQ_HANDLED if interrupt is handled.
6784 */
6785static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6786{
6787	struct ufs_hw_queue *hwq;
6788	unsigned long outstanding_cqs;
6789	unsigned int nr_queues;
6790	int i, ret;
6791	u32 events;
6792
6793	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6794	if (ret)
6795		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6796
6797	/* Exclude the poll queues */
6798	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6799	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6800		hwq = &hba->uhq[i];
6801
6802		events = ufshcd_mcq_read_cqis(hba, i);
6803		if (events)
6804			ufshcd_mcq_write_cqis(hba, events, i);
6805
6806		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6807			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6808	}
6809
6810	return IRQ_HANDLED;
6811}
6812
6813/**
6814 * ufshcd_sl_intr - Interrupt service routine
6815 * @hba: per adapter instance
6816 * @intr_status: contains interrupts generated by the controller
6817 *
6818 * Return:
6819 *  IRQ_HANDLED - If interrupt is valid
6820 *  IRQ_NONE    - If invalid interrupt
6821 */
6822static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6823{
6824	irqreturn_t retval = IRQ_NONE;
6825
6826	if (intr_status & UFSHCD_UIC_MASK)
6827		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6828
6829	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6830		retval |= ufshcd_check_errors(hba, intr_status);
6831
6832	if (intr_status & UTP_TASK_REQ_COMPL)
6833		retval |= ufshcd_tmc_handler(hba);
6834
6835	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6836		retval |= ufshcd_transfer_req_compl(hba);
6837
6838	if (intr_status & MCQ_CQ_EVENT_STATUS)
6839		retval |= ufshcd_handle_mcq_cq_events(hba);
6840
6841	return retval;
6842}
6843
6844/**
6845 * ufshcd_intr - Main interrupt service routine
6846 * @irq: irq number
6847 * @__hba: pointer to adapter instance
6848 *
6849 * Return:
6850 *  IRQ_HANDLED - If interrupt is valid
6851 *  IRQ_NONE    - If invalid interrupt
6852 */
6853static irqreturn_t ufshcd_intr(int irq, void *__hba)
6854{
6855	u32 intr_status, enabled_intr_status = 0;
6856	irqreturn_t retval = IRQ_NONE;
6857	struct ufs_hba *hba = __hba;
6858	int retries = hba->nutrs;
6859
6860	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6861	hba->ufs_stats.last_intr_status = intr_status;
6862	hba->ufs_stats.last_intr_ts = local_clock();
6863
6864	/*
6865	 * There could be max of hba->nutrs reqs in flight and in worst case
6866	 * if the reqs get finished 1 by 1 after the interrupt status is
6867	 * read, make sure we handle them by checking the interrupt status
6868	 * again in a loop until we process all of the reqs before returning.
6869	 */
6870	while (intr_status && retries--) {
6871		enabled_intr_status =
6872			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6873		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6874		if (enabled_intr_status)
6875			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6876
6877		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6878	}
6879
6880	if (enabled_intr_status && retval == IRQ_NONE &&
6881	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6882	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6883		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6884					__func__,
6885					intr_status,
6886					hba->ufs_stats.last_intr_status,
6887					enabled_intr_status);
6888		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6889	}
6890
6891	return retval;
6892}
6893
6894static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6895{
6896	int err = 0;
6897	u32 mask = 1 << tag;
6898	unsigned long flags;
6899
6900	if (!test_bit(tag, &hba->outstanding_tasks))
6901		goto out;
6902
6903	spin_lock_irqsave(hba->host->host_lock, flags);
6904	ufshcd_utmrl_clear(hba, tag);
6905	spin_unlock_irqrestore(hba->host->host_lock, flags);
6906
6907	/* poll for max. 1 sec to clear door bell register by h/w */
6908	err = ufshcd_wait_for_register(hba,
6909			REG_UTP_TASK_REQ_DOOR_BELL,
6910			mask, 0, 1000, 1000);
6911
6912	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6913		tag, err < 0 ? "failed" : "succeeded");
6914
6915out:
6916	return err;
6917}
6918
6919static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6920		struct utp_task_req_desc *treq, u8 tm_function)
6921{
6922	struct request_queue *q = hba->tmf_queue;
6923	struct Scsi_Host *host = hba->host;
6924	DECLARE_COMPLETION_ONSTACK(wait);
6925	struct request *req;
6926	unsigned long flags;
6927	int task_tag, err;
6928
6929	/*
6930	 * blk_mq_alloc_request() is used here only to get a free tag.
6931	 */
6932	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6933	if (IS_ERR(req))
6934		return PTR_ERR(req);
6935
6936	req->end_io_data = &wait;
6937	ufshcd_hold(hba);
6938
6939	spin_lock_irqsave(host->host_lock, flags);
6940
6941	task_tag = req->tag;
6942	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6943		  task_tag);
6944	hba->tmf_rqs[req->tag] = req;
6945	treq->upiu_req.req_header.task_tag = task_tag;
6946
6947	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6948	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6949
6950	/* send command to the controller */
6951	__set_bit(task_tag, &hba->outstanding_tasks);
6952
6953	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6954	/* Make sure that doorbell is committed immediately */
6955	wmb();
6956
6957	spin_unlock_irqrestore(host->host_lock, flags);
6958
6959	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6960
6961	/* wait until the task management command is completed */
6962	err = wait_for_completion_io_timeout(&wait,
6963			msecs_to_jiffies(TM_CMD_TIMEOUT));
6964	if (!err) {
6965		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6966		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6967				__func__, tm_function);
6968		if (ufshcd_clear_tm_cmd(hba, task_tag))
6969			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6970					__func__, task_tag);
6971		err = -ETIMEDOUT;
6972	} else {
6973		err = 0;
6974		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6975
6976		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6977	}
6978
6979	spin_lock_irqsave(hba->host->host_lock, flags);
6980	hba->tmf_rqs[req->tag] = NULL;
6981	__clear_bit(task_tag, &hba->outstanding_tasks);
6982	spin_unlock_irqrestore(hba->host->host_lock, flags);
6983
6984	ufshcd_release(hba);
6985	blk_mq_free_request(req);
6986
6987	return err;
6988}
6989
6990/**
6991 * ufshcd_issue_tm_cmd - issues task management commands to controller
6992 * @hba: per adapter instance
6993 * @lun_id: LUN ID to which TM command is sent
6994 * @task_id: task ID to which the TM command is applicable
6995 * @tm_function: task management function opcode
6996 * @tm_response: task management service response return value
6997 *
6998 * Return: non-zero value on error, zero on success.
6999 */
7000static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7001		u8 tm_function, u8 *tm_response)
7002{
7003	struct utp_task_req_desc treq = { };
7004	enum utp_ocs ocs_value;
7005	int err;
7006
7007	/* Configure task request descriptor */
7008	treq.header.interrupt = 1;
7009	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7010
7011	/* Configure task request UPIU */
7012	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7013	treq.upiu_req.req_header.lun = lun_id;
7014	treq.upiu_req.req_header.tm_function = tm_function;
7015
7016	/*
7017	 * The host shall provide the same value for LUN field in the basic
7018	 * header and for Input Parameter.
7019	 */
7020	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7021	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7022
7023	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7024	if (err == -ETIMEDOUT)
7025		return err;
7026
7027	ocs_value = treq.header.ocs & MASK_OCS;
7028	if (ocs_value != OCS_SUCCESS)
7029		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7030				__func__, ocs_value);
7031	else if (tm_response)
7032		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7033				MASK_TM_SERVICE_RESP;
7034	return err;
7035}
7036
7037/**
7038 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7039 * @hba:	per-adapter instance
7040 * @req_upiu:	upiu request
7041 * @rsp_upiu:	upiu reply
7042 * @desc_buff:	pointer to descriptor buffer, NULL if NA
7043 * @buff_len:	descriptor size, 0 if NA
7044 * @cmd_type:	specifies the type (NOP, Query...)
7045 * @desc_op:	descriptor operation
7046 *
7047 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7048 * Therefore, it "rides" the device management infrastructure: uses its tag and
7049 * tasks work queues.
7050 *
7051 * Since there is only one available tag for device management commands,
7052 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7053 *
7054 * Return: 0 upon success; < 0 upon failure.
7055 */
7056static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7057					struct utp_upiu_req *req_upiu,
7058					struct utp_upiu_req *rsp_upiu,
7059					u8 *desc_buff, int *buff_len,
7060					enum dev_cmd_type cmd_type,
7061					enum query_opcode desc_op)
7062{
7063	DECLARE_COMPLETION_ONSTACK(wait);
7064	const u32 tag = hba->reserved_slot;
7065	struct ufshcd_lrb *lrbp;
7066	int err = 0;
7067	u8 upiu_flags;
7068
7069	/* Protects use of hba->reserved_slot. */
7070	lockdep_assert_held(&hba->dev_cmd.lock);
7071
7072	down_read(&hba->clk_scaling_lock);
7073
7074	lrbp = &hba->lrb[tag];
7075	lrbp->cmd = NULL;
7076	lrbp->task_tag = tag;
7077	lrbp->lun = 0;
7078	lrbp->intr_cmd = true;
7079	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7080	hba->dev_cmd.type = cmd_type;
7081
7082	if (hba->ufs_version <= ufshci_version(1, 1))
7083		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7084	else
7085		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7086
7087	/* update the task tag in the request upiu */
7088	req_upiu->header.task_tag = tag;
7089
7090	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7091
7092	/* just copy the upiu request as it is */
7093	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7094	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7095		/* The Data Segment Area is optional depending upon the query
7096		 * function value. for WRITE DESCRIPTOR, the data segment
7097		 * follows right after the tsf.
7098		 */
7099		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7100		*buff_len = 0;
7101	}
7102
7103	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7104
7105	hba->dev_cmd.complete = &wait;
7106
7107	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7108
7109	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7110	/*
7111	 * ignore the returning value here - ufshcd_check_query_response is
7112	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7113	 * read the response directly ignoring all errors.
7114	 */
7115	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7116
7117	/* just copy the upiu response as it is */
7118	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7119	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7120		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7121		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7122					   .data_segment_length);
7123
7124		if (*buff_len >= resp_len) {
7125			memcpy(desc_buff, descp, resp_len);
7126			*buff_len = resp_len;
7127		} else {
7128			dev_warn(hba->dev,
7129				 "%s: rsp size %d is bigger than buffer size %d",
7130				 __func__, resp_len, *buff_len);
7131			*buff_len = 0;
7132			err = -EINVAL;
7133		}
7134	}
7135	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7136				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7137
7138	up_read(&hba->clk_scaling_lock);
7139	return err;
7140}
7141
7142/**
7143 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7144 * @hba:	per-adapter instance
7145 * @req_upiu:	upiu request
7146 * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7147 * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7148 * @desc_buff:	pointer to descriptor buffer, NULL if NA
7149 * @buff_len:	descriptor size, 0 if NA
7150 * @desc_op:	descriptor operation
7151 *
7152 * Supports UTP Transfer requests (nop and query), and UTP Task
7153 * Management requests.
7154 * It is up to the caller to fill the upiu conent properly, as it will
7155 * be copied without any further input validations.
7156 *
7157 * Return: 0 upon success; < 0 upon failure.
7158 */
7159int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7160			     struct utp_upiu_req *req_upiu,
7161			     struct utp_upiu_req *rsp_upiu,
7162			     enum upiu_request_transaction msgcode,
7163			     u8 *desc_buff, int *buff_len,
7164			     enum query_opcode desc_op)
7165{
7166	int err;
7167	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7168	struct utp_task_req_desc treq = { };
7169	enum utp_ocs ocs_value;
7170	u8 tm_f = req_upiu->header.tm_function;
7171
7172	switch (msgcode) {
7173	case UPIU_TRANSACTION_NOP_OUT:
7174		cmd_type = DEV_CMD_TYPE_NOP;
7175		fallthrough;
7176	case UPIU_TRANSACTION_QUERY_REQ:
7177		ufshcd_hold(hba);
7178		mutex_lock(&hba->dev_cmd.lock);
7179		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7180						   desc_buff, buff_len,
7181						   cmd_type, desc_op);
7182		mutex_unlock(&hba->dev_cmd.lock);
7183		ufshcd_release(hba);
7184
7185		break;
7186	case UPIU_TRANSACTION_TASK_REQ:
7187		treq.header.interrupt = 1;
7188		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7189
7190		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7191
7192		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7193		if (err == -ETIMEDOUT)
7194			break;
7195
7196		ocs_value = treq.header.ocs & MASK_OCS;
7197		if (ocs_value != OCS_SUCCESS) {
7198			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7199				ocs_value);
7200			break;
7201		}
7202
7203		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7204
7205		break;
7206	default:
7207		err = -EINVAL;
7208
7209		break;
7210	}
7211
7212	return err;
7213}
7214
7215/**
7216 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7217 * @hba:	per adapter instance
7218 * @req_upiu:	upiu request
7219 * @rsp_upiu:	upiu reply
7220 * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7221 * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7222 * @sg_cnt:	The number of sg lists actually used
7223 * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7224 * @dir:	DMA direction
7225 *
7226 * Return: zero on success, non-zero on failure.
7227 */
7228int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7229			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7230			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7231			 enum dma_data_direction dir)
7232{
7233	DECLARE_COMPLETION_ONSTACK(wait);
7234	const u32 tag = hba->reserved_slot;
7235	struct ufshcd_lrb *lrbp;
7236	int err = 0;
7237	int result;
7238	u8 upiu_flags;
7239	u8 *ehs_data;
7240	u16 ehs_len;
7241
7242	/* Protects use of hba->reserved_slot. */
7243	ufshcd_hold(hba);
7244	mutex_lock(&hba->dev_cmd.lock);
7245	down_read(&hba->clk_scaling_lock);
7246
7247	lrbp = &hba->lrb[tag];
7248	lrbp->cmd = NULL;
7249	lrbp->task_tag = tag;
7250	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7251
7252	lrbp->intr_cmd = true;
7253	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7254	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7255
7256	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7257	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7258
7259	/*
7260	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7261	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7262	 * HW controller takes EHS length from UTRD.
7263	 */
7264	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7265		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7266	else
7267		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7268
7269	/* update the task tag */
7270	req_upiu->header.task_tag = tag;
7271
7272	/* copy the UPIU(contains CDB) request as it is */
7273	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7274	/* Copy EHS, starting with byte32, immediately after the CDB package */
7275	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7276
7277	if (dir != DMA_NONE && sg_list)
7278		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7279
7280	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7281
7282	hba->dev_cmd.complete = &wait;
7283
7284	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7285
7286	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7287
7288	if (!err) {
7289		/* Just copy the upiu response as it is */
7290		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7291		/* Get the response UPIU result */
7292		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7293			lrbp->ucd_rsp_ptr->header.status;
7294
7295		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7296		/*
7297		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7298		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7299		 * Message is 02h
7300		 */
7301		if (ehs_len == 2 && rsp_ehs) {
7302			/*
7303			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7304			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7305			 */
7306			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7307			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7308		}
7309	}
7310
7311	up_read(&hba->clk_scaling_lock);
7312	mutex_unlock(&hba->dev_cmd.lock);
7313	ufshcd_release(hba);
7314	return err ? : result;
7315}
7316
7317/**
7318 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7319 * @cmd: SCSI command pointer
7320 *
7321 * Return: SUCCESS or FAILED.
7322 */
7323static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7324{
7325	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7326	struct Scsi_Host *host;
7327	struct ufs_hba *hba;
7328	struct ufs_hw_queue *hwq;
7329	struct ufshcd_lrb *lrbp;
7330	u32 pos, not_cleared_mask = 0;
7331	int err;
7332	u8 resp = 0xF, lun;
7333
7334	host = cmd->device->host;
7335	hba = shost_priv(host);
7336
7337	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7338	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7339	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7340		if (!err)
7341			err = resp;
7342		goto out;
7343	}
7344
7345	if (is_mcq_enabled(hba)) {
7346		for (pos = 0; pos < hba->nutrs; pos++) {
7347			lrbp = &hba->lrb[pos];
7348			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7349			    lrbp->lun == lun) {
7350				ufshcd_clear_cmd(hba, pos);
7351				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7352				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7353			}
7354		}
7355		err = 0;
7356		goto out;
7357	}
7358
7359	/* clear the commands that were pending for corresponding LUN */
7360	spin_lock_irqsave(&hba->outstanding_lock, flags);
7361	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7362		if (hba->lrb[pos].lun == lun)
7363			__set_bit(pos, &pending_reqs);
7364	hba->outstanding_reqs &= ~pending_reqs;
7365	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7366
7367	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7368		if (ufshcd_clear_cmd(hba, pos) < 0) {
7369			spin_lock_irqsave(&hba->outstanding_lock, flags);
7370			not_cleared = 1U << pos &
7371				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7372			hba->outstanding_reqs |= not_cleared;
7373			not_cleared_mask |= not_cleared;
7374			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7375
7376			dev_err(hba->dev, "%s: failed to clear request %d\n",
7377				__func__, pos);
7378		}
7379	}
7380	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7381
7382out:
7383	hba->req_abort_count = 0;
7384	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7385	if (!err) {
7386		err = SUCCESS;
7387	} else {
7388		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7389		err = FAILED;
7390	}
7391	return err;
7392}
7393
7394static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7395{
7396	struct ufshcd_lrb *lrbp;
7397	int tag;
7398
7399	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7400		lrbp = &hba->lrb[tag];
7401		lrbp->req_abort_skip = true;
7402	}
7403}
7404
7405/**
7406 * ufshcd_try_to_abort_task - abort a specific task
7407 * @hba: Pointer to adapter instance
7408 * @tag: Task tag/index to be aborted
7409 *
7410 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7411 * command, and in host controller by clearing the door-bell register. There can
7412 * be race between controller sending the command to the device while abort is
7413 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7414 * really issued and then try to abort it.
7415 *
7416 * Return: zero on success, non-zero on failure.
7417 */
7418int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7419{
7420	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7421	int err = 0;
7422	int poll_cnt;
7423	u8 resp = 0xF;
7424	u32 reg;
7425
7426	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7427		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7428				UFS_QUERY_TASK, &resp);
7429		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7430			/* cmd pending in the device */
7431			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7432				__func__, tag);
7433			break;
7434		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7435			/*
7436			 * cmd not pending in the device, check if it is
7437			 * in transition.
7438			 */
7439			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7440				__func__, tag);
7441			if (is_mcq_enabled(hba)) {
7442				/* MCQ mode */
7443				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7444					/* sleep for max. 200us same delay as in SDB mode */
7445					usleep_range(100, 200);
7446					continue;
7447				}
7448				/* command completed already */
7449				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7450					__func__, tag);
7451				goto out;
7452			}
7453
7454			/* Single Doorbell Mode */
7455			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7456			if (reg & (1 << tag)) {
7457				/* sleep for max. 200us to stabilize */
7458				usleep_range(100, 200);
7459				continue;
7460			}
7461			/* command completed already */
7462			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7463				__func__, tag);
7464			goto out;
7465		} else {
7466			dev_err(hba->dev,
7467				"%s: no response from device. tag = %d, err %d\n",
7468				__func__, tag, err);
7469			if (!err)
7470				err = resp; /* service response error */
7471			goto out;
7472		}
7473	}
7474
7475	if (!poll_cnt) {
7476		err = -EBUSY;
7477		goto out;
7478	}
7479
7480	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7481			UFS_ABORT_TASK, &resp);
7482	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7483		if (!err) {
7484			err = resp; /* service response error */
7485			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7486				__func__, tag, err);
7487		}
7488		goto out;
7489	}
7490
7491	err = ufshcd_clear_cmd(hba, tag);
7492	if (err)
7493		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7494			__func__, tag, err);
7495
7496out:
7497	return err;
7498}
7499
7500/**
7501 * ufshcd_abort - scsi host template eh_abort_handler callback
7502 * @cmd: SCSI command pointer
7503 *
7504 * Return: SUCCESS or FAILED.
7505 */
7506static int ufshcd_abort(struct scsi_cmnd *cmd)
7507{
7508	struct Scsi_Host *host = cmd->device->host;
7509	struct ufs_hba *hba = shost_priv(host);
7510	int tag = scsi_cmd_to_rq(cmd)->tag;
7511	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7512	unsigned long flags;
7513	int err = FAILED;
7514	bool outstanding;
7515	u32 reg;
7516
7517	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7518
7519	ufshcd_hold(hba);
7520
7521	if (!is_mcq_enabled(hba)) {
7522		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7523		if (!test_bit(tag, &hba->outstanding_reqs)) {
7524			/* If command is already aborted/completed, return FAILED. */
7525			dev_err(hba->dev,
7526				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7527				__func__, tag, hba->outstanding_reqs, reg);
7528			goto release;
7529		}
7530	}
7531
7532	/* Print Transfer Request of aborted task */
7533	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7534
7535	/*
7536	 * Print detailed info about aborted request.
7537	 * As more than one request might get aborted at the same time,
7538	 * print full information only for the first aborted request in order
7539	 * to reduce repeated printouts. For other aborted requests only print
7540	 * basic details.
7541	 */
7542	scsi_print_command(cmd);
7543	if (!hba->req_abort_count) {
7544		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7545		ufshcd_print_evt_hist(hba);
7546		ufshcd_print_host_state(hba);
7547		ufshcd_print_pwr_info(hba);
7548		ufshcd_print_tr(hba, tag, true);
7549	} else {
7550		ufshcd_print_tr(hba, tag, false);
7551	}
7552	hba->req_abort_count++;
7553
7554	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7555		/* only execute this code in single doorbell mode */
7556		dev_err(hba->dev,
7557		"%s: cmd was completed, but without a notifying intr, tag = %d",
7558		__func__, tag);
7559		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7560		goto release;
7561	}
7562
7563	/*
7564	 * Task abort to the device W-LUN is illegal. When this command
7565	 * will fail, due to spec violation, scsi err handling next step
7566	 * will be to send LU reset which, again, is a spec violation.
7567	 * To avoid these unnecessary/illegal steps, first we clean up
7568	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7569	 * then queue the eh_work and bail.
7570	 */
7571	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7572		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7573
7574		spin_lock_irqsave(host->host_lock, flags);
7575		hba->force_reset = true;
7576		ufshcd_schedule_eh_work(hba);
7577		spin_unlock_irqrestore(host->host_lock, flags);
7578		goto release;
7579	}
7580
7581	if (is_mcq_enabled(hba)) {
7582		/* MCQ mode. Branch off to handle abort for mcq mode */
7583		err = ufshcd_mcq_abort(cmd);
7584		goto release;
7585	}
7586
7587	/* Skip task abort in case previous aborts failed and report failure */
7588	if (lrbp->req_abort_skip) {
7589		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7590		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7591		goto release;
7592	}
7593
7594	err = ufshcd_try_to_abort_task(hba, tag);
7595	if (err) {
7596		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7597		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7598		err = FAILED;
7599		goto release;
7600	}
7601
7602	/*
7603	 * Clear the corresponding bit from outstanding_reqs since the command
7604	 * has been aborted successfully.
7605	 */
7606	spin_lock_irqsave(&hba->outstanding_lock, flags);
7607	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7608	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7609
7610	if (outstanding)
7611		ufshcd_release_scsi_cmd(hba, lrbp);
7612
7613	err = SUCCESS;
7614
7615release:
7616	/* Matches the ufshcd_hold() call at the start of this function. */
7617	ufshcd_release(hba);
7618	return err;
7619}
7620
7621/**
7622 * ufshcd_host_reset_and_restore - reset and restore host controller
7623 * @hba: per-adapter instance
7624 *
7625 * Note that host controller reset may issue DME_RESET to
7626 * local and remote (device) Uni-Pro stack and the attributes
7627 * are reset to default state.
7628 *
7629 * Return: zero on success, non-zero on failure.
7630 */
7631static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7632{
7633	int err;
7634
7635	/*
7636	 * Stop the host controller and complete the requests
7637	 * cleared by h/w
7638	 */
7639	ufshcd_hba_stop(hba);
7640	hba->silence_err_logs = true;
7641	ufshcd_complete_requests(hba, true);
7642	hba->silence_err_logs = false;
7643
7644	/* scale up clocks to max frequency before full reinitialization */
7645	ufshcd_scale_clks(hba, true);
7646
7647	err = ufshcd_hba_enable(hba);
7648
7649	/* Establish the link again and restore the device */
7650	if (!err)
7651		err = ufshcd_probe_hba(hba, false);
7652
7653	if (err)
7654		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7655	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7656	return err;
7657}
7658
7659/**
7660 * ufshcd_reset_and_restore - reset and re-initialize host/device
7661 * @hba: per-adapter instance
7662 *
7663 * Reset and recover device, host and re-establish link. This
7664 * is helpful to recover the communication in fatal error conditions.
7665 *
7666 * Return: zero on success, non-zero on failure.
7667 */
7668static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7669{
7670	u32 saved_err = 0;
7671	u32 saved_uic_err = 0;
7672	int err = 0;
7673	unsigned long flags;
7674	int retries = MAX_HOST_RESET_RETRIES;
7675
7676	spin_lock_irqsave(hba->host->host_lock, flags);
7677	do {
7678		/*
7679		 * This is a fresh start, cache and clear saved error first,
7680		 * in case new error generated during reset and restore.
7681		 */
7682		saved_err |= hba->saved_err;
7683		saved_uic_err |= hba->saved_uic_err;
7684		hba->saved_err = 0;
7685		hba->saved_uic_err = 0;
7686		hba->force_reset = false;
7687		hba->ufshcd_state = UFSHCD_STATE_RESET;
7688		spin_unlock_irqrestore(hba->host->host_lock, flags);
7689
7690		/* Reset the attached device */
7691		ufshcd_device_reset(hba);
7692
7693		err = ufshcd_host_reset_and_restore(hba);
7694
7695		spin_lock_irqsave(hba->host->host_lock, flags);
7696		if (err)
7697			continue;
7698		/* Do not exit unless operational or dead */
7699		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7700		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7701		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7702			err = -EAGAIN;
7703	} while (err && --retries);
7704
7705	/*
7706	 * Inform scsi mid-layer that we did reset and allow to handle
7707	 * Unit Attention properly.
7708	 */
7709	scsi_report_bus_reset(hba->host, 0);
7710	if (err) {
7711		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7712		hba->saved_err |= saved_err;
7713		hba->saved_uic_err |= saved_uic_err;
7714	}
7715	spin_unlock_irqrestore(hba->host->host_lock, flags);
7716
7717	return err;
7718}
7719
7720/**
7721 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7722 * @cmd: SCSI command pointer
7723 *
7724 * Return: SUCCESS or FAILED.
7725 */
7726static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7727{
7728	int err = SUCCESS;
7729	unsigned long flags;
7730	struct ufs_hba *hba;
7731
7732	hba = shost_priv(cmd->device->host);
7733
7734	spin_lock_irqsave(hba->host->host_lock, flags);
7735	hba->force_reset = true;
7736	ufshcd_schedule_eh_work(hba);
7737	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7738	spin_unlock_irqrestore(hba->host->host_lock, flags);
7739
7740	flush_work(&hba->eh_work);
7741
7742	spin_lock_irqsave(hba->host->host_lock, flags);
7743	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7744		err = FAILED;
7745	spin_unlock_irqrestore(hba->host->host_lock, flags);
7746
7747	return err;
7748}
7749
7750/**
7751 * ufshcd_get_max_icc_level - calculate the ICC level
7752 * @sup_curr_uA: max. current supported by the regulator
7753 * @start_scan: row at the desc table to start scan from
7754 * @buff: power descriptor buffer
7755 *
7756 * Return: calculated max ICC level for specific regulator.
7757 */
7758static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7759				    const char *buff)
7760{
7761	int i;
7762	int curr_uA;
7763	u16 data;
7764	u16 unit;
7765
7766	for (i = start_scan; i >= 0; i--) {
7767		data = get_unaligned_be16(&buff[2 * i]);
7768		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7769						ATTR_ICC_LVL_UNIT_OFFSET;
7770		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7771		switch (unit) {
7772		case UFSHCD_NANO_AMP:
7773			curr_uA = curr_uA / 1000;
7774			break;
7775		case UFSHCD_MILI_AMP:
7776			curr_uA = curr_uA * 1000;
7777			break;
7778		case UFSHCD_AMP:
7779			curr_uA = curr_uA * 1000 * 1000;
7780			break;
7781		case UFSHCD_MICRO_AMP:
7782		default:
7783			break;
7784		}
7785		if (sup_curr_uA >= curr_uA)
7786			break;
7787	}
7788	if (i < 0) {
7789		i = 0;
7790		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7791	}
7792
7793	return (u32)i;
7794}
7795
7796/**
7797 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7798 * In case regulators are not initialized we'll return 0
7799 * @hba: per-adapter instance
7800 * @desc_buf: power descriptor buffer to extract ICC levels from.
7801 *
7802 * Return: calculated ICC level.
7803 */
7804static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7805						const u8 *desc_buf)
7806{
7807	u32 icc_level = 0;
7808
7809	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7810						!hba->vreg_info.vccq2) {
7811		/*
7812		 * Using dev_dbg to avoid messages during runtime PM to avoid
7813		 * never-ending cycles of messages written back to storage by
7814		 * user space causing runtime resume, causing more messages and
7815		 * so on.
7816		 */
7817		dev_dbg(hba->dev,
7818			"%s: Regulator capability was not set, actvIccLevel=%d",
7819							__func__, icc_level);
7820		goto out;
7821	}
7822
7823	if (hba->vreg_info.vcc->max_uA)
7824		icc_level = ufshcd_get_max_icc_level(
7825				hba->vreg_info.vcc->max_uA,
7826				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7827				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7828
7829	if (hba->vreg_info.vccq->max_uA)
7830		icc_level = ufshcd_get_max_icc_level(
7831				hba->vreg_info.vccq->max_uA,
7832				icc_level,
7833				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7834
7835	if (hba->vreg_info.vccq2->max_uA)
7836		icc_level = ufshcd_get_max_icc_level(
7837				hba->vreg_info.vccq2->max_uA,
7838				icc_level,
7839				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7840out:
7841	return icc_level;
7842}
7843
7844static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7845{
7846	int ret;
7847	u8 *desc_buf;
7848	u32 icc_level;
7849
7850	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7851	if (!desc_buf)
7852		return;
7853
7854	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7855				     desc_buf, QUERY_DESC_MAX_SIZE);
7856	if (ret) {
7857		dev_err(hba->dev,
7858			"%s: Failed reading power descriptor ret = %d",
7859			__func__, ret);
7860		goto out;
7861	}
7862
7863	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7864	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7865
7866	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7867		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7868
7869	if (ret)
7870		dev_err(hba->dev,
7871			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7872			__func__, icc_level, ret);
7873
7874out:
7875	kfree(desc_buf);
7876}
7877
7878static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7879{
7880	scsi_autopm_get_device(sdev);
7881	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7882	if (sdev->rpm_autosuspend)
7883		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7884						 RPM_AUTOSUSPEND_DELAY_MS);
7885	scsi_autopm_put_device(sdev);
7886}
7887
7888/**
7889 * ufshcd_scsi_add_wlus - Adds required W-LUs
7890 * @hba: per-adapter instance
7891 *
7892 * UFS device specification requires the UFS devices to support 4 well known
7893 * logical units:
7894 *	"REPORT_LUNS" (address: 01h)
7895 *	"UFS Device" (address: 50h)
7896 *	"RPMB" (address: 44h)
7897 *	"BOOT" (address: 30h)
7898 * UFS device's power management needs to be controlled by "POWER CONDITION"
7899 * field of SSU (START STOP UNIT) command. But this "power condition" field
7900 * will take effect only when its sent to "UFS device" well known logical unit
7901 * hence we require the scsi_device instance to represent this logical unit in
7902 * order for the UFS host driver to send the SSU command for power management.
7903 *
7904 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7905 * Block) LU so user space process can control this LU. User space may also
7906 * want to have access to BOOT LU.
7907 *
7908 * This function adds scsi device instances for each of all well known LUs
7909 * (except "REPORT LUNS" LU).
7910 *
7911 * Return: zero on success (all required W-LUs are added successfully),
7912 * non-zero error value on failure (if failed to add any of the required W-LU).
7913 */
7914static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7915{
7916	int ret = 0;
7917	struct scsi_device *sdev_boot, *sdev_rpmb;
7918
7919	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7920		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7921	if (IS_ERR(hba->ufs_device_wlun)) {
7922		ret = PTR_ERR(hba->ufs_device_wlun);
7923		hba->ufs_device_wlun = NULL;
7924		goto out;
7925	}
7926	scsi_device_put(hba->ufs_device_wlun);
7927
7928	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7929		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7930	if (IS_ERR(sdev_rpmb)) {
7931		ret = PTR_ERR(sdev_rpmb);
7932		goto remove_ufs_device_wlun;
7933	}
7934	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7935	scsi_device_put(sdev_rpmb);
7936
7937	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7938		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7939	if (IS_ERR(sdev_boot)) {
7940		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7941	} else {
7942		ufshcd_blk_pm_runtime_init(sdev_boot);
7943		scsi_device_put(sdev_boot);
7944	}
7945	goto out;
7946
7947remove_ufs_device_wlun:
7948	scsi_remove_device(hba->ufs_device_wlun);
7949out:
7950	return ret;
7951}
7952
7953static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7954{
7955	struct ufs_dev_info *dev_info = &hba->dev_info;
7956	u8 lun;
7957	u32 d_lu_wb_buf_alloc;
7958	u32 ext_ufs_feature;
7959
7960	if (!ufshcd_is_wb_allowed(hba))
7961		return;
7962
7963	/*
7964	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7965	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7966	 * enabled
7967	 */
7968	if (!(dev_info->wspecversion >= 0x310 ||
7969	      dev_info->wspecversion == 0x220 ||
7970	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7971		goto wb_disabled;
7972
7973	ext_ufs_feature = get_unaligned_be32(desc_buf +
7974					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7975
7976	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7977		goto wb_disabled;
7978
7979	/*
7980	 * WB may be supported but not configured while provisioning. The spec
7981	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7982	 * buffer configured.
7983	 */
7984	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7985
7986	dev_info->b_presrv_uspc_en =
7987		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7988
7989	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7990		if (!get_unaligned_be32(desc_buf +
7991				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7992			goto wb_disabled;
7993	} else {
7994		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7995			d_lu_wb_buf_alloc = 0;
7996			ufshcd_read_unit_desc_param(hba,
7997					lun,
7998					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7999					(u8 *)&d_lu_wb_buf_alloc,
8000					sizeof(d_lu_wb_buf_alloc));
8001			if (d_lu_wb_buf_alloc) {
8002				dev_info->wb_dedicated_lu = lun;
8003				break;
8004			}
8005		}
8006
8007		if (!d_lu_wb_buf_alloc)
8008			goto wb_disabled;
8009	}
8010
8011	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8012		goto wb_disabled;
8013
8014	return;
8015
8016wb_disabled:
8017	hba->caps &= ~UFSHCD_CAP_WB_EN;
8018}
8019
8020static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8021{
8022	struct ufs_dev_info *dev_info = &hba->dev_info;
8023	u32 ext_ufs_feature;
8024	u8 mask = 0;
8025
8026	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8027		return;
8028
8029	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8030
8031	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8032		mask |= MASK_EE_TOO_LOW_TEMP;
8033
8034	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8035		mask |= MASK_EE_TOO_HIGH_TEMP;
8036
8037	if (mask) {
8038		ufshcd_enable_ee(hba, mask);
8039		ufs_hwmon_probe(hba, mask);
8040	}
8041}
8042
8043static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8044{
8045	struct ufs_dev_info *dev_info = &hba->dev_info;
8046	u32 ext_ufs_feature;
8047	u32 ext_iid_en = 0;
8048	int err;
8049
8050	/* Only UFS-4.0 and above may support EXT_IID */
8051	if (dev_info->wspecversion < 0x400)
8052		goto out;
8053
8054	ext_ufs_feature = get_unaligned_be32(desc_buf +
8055				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8056	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8057		goto out;
8058
8059	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8060				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8061	if (err)
8062		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8063
8064out:
8065	dev_info->b_ext_iid_en = ext_iid_en;
8066}
8067
8068void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8069			     const struct ufs_dev_quirk *fixups)
8070{
8071	const struct ufs_dev_quirk *f;
8072	struct ufs_dev_info *dev_info = &hba->dev_info;
8073
8074	if (!fixups)
8075		return;
8076
8077	for (f = fixups; f->quirk; f++) {
8078		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8079		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8080		     ((dev_info->model &&
8081		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8082		      !strcmp(f->model, UFS_ANY_MODEL)))
8083			hba->dev_quirks |= f->quirk;
8084	}
8085}
8086EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8087
8088static void ufs_fixup_device_setup(struct ufs_hba *hba)
8089{
8090	/* fix by general quirk table */
8091	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8092
8093	/* allow vendors to fix quirks */
8094	ufshcd_vops_fixup_dev_quirks(hba);
8095}
8096
8097static int ufs_get_device_desc(struct ufs_hba *hba)
8098{
8099	int err;
8100	u8 model_index;
8101	u8 *desc_buf;
8102	struct ufs_dev_info *dev_info = &hba->dev_info;
8103
8104	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8105	if (!desc_buf) {
8106		err = -ENOMEM;
8107		goto out;
8108	}
8109
8110	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8111				     QUERY_DESC_MAX_SIZE);
8112	if (err) {
8113		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8114			__func__, err);
8115		goto out;
8116	}
8117
8118	/*
8119	 * getting vendor (manufacturerID) and Bank Index in big endian
8120	 * format
8121	 */
8122	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8123				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8124
8125	/* getting Specification Version in big endian format */
8126	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8127				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8128	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8129
8130	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8131
8132	err = ufshcd_read_string_desc(hba, model_index,
8133				      &dev_info->model, SD_ASCII_STD);
8134	if (err < 0) {
8135		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8136			__func__, err);
8137		goto out;
8138	}
8139
8140	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8141		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8142
8143	ufs_fixup_device_setup(hba);
8144
8145	ufshcd_wb_probe(hba, desc_buf);
8146
8147	ufshcd_temp_notif_probe(hba, desc_buf);
8148
8149	if (hba->ext_iid_sup)
8150		ufshcd_ext_iid_probe(hba, desc_buf);
8151
8152	/*
8153	 * ufshcd_read_string_desc returns size of the string
8154	 * reset the error value
8155	 */
8156	err = 0;
8157
8158out:
8159	kfree(desc_buf);
8160	return err;
8161}
8162
8163static void ufs_put_device_desc(struct ufs_hba *hba)
8164{
8165	struct ufs_dev_info *dev_info = &hba->dev_info;
8166
8167	kfree(dev_info->model);
8168	dev_info->model = NULL;
8169}
8170
8171/**
8172 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8173 * @hba: per-adapter instance
8174 *
8175 * PA_TActivate parameter can be tuned manually if UniPro version is less than
8176 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8177 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8178 * the hibern8 exit latency.
8179 *
8180 * Return: zero on success, non-zero error value on failure.
8181 */
8182static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8183{
8184	int ret = 0;
8185	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8186
8187	ret = ufshcd_dme_peer_get(hba,
8188				  UIC_ARG_MIB_SEL(
8189					RX_MIN_ACTIVATETIME_CAPABILITY,
8190					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8191				  &peer_rx_min_activatetime);
8192	if (ret)
8193		goto out;
8194
8195	/* make sure proper unit conversion is applied */
8196	tuned_pa_tactivate =
8197		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8198		 / PA_TACTIVATE_TIME_UNIT_US);
8199	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8200			     tuned_pa_tactivate);
8201
8202out:
8203	return ret;
8204}
8205
8206/**
8207 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8208 * @hba: per-adapter instance
8209 *
8210 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8211 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8212 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8213 * This optimal value can help reduce the hibern8 exit latency.
8214 *
8215 * Return: zero on success, non-zero error value on failure.
8216 */
8217static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8218{
8219	int ret = 0;
8220	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8221	u32 max_hibern8_time, tuned_pa_hibern8time;
8222
8223	ret = ufshcd_dme_get(hba,
8224			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8225					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8226				  &local_tx_hibern8_time_cap);
8227	if (ret)
8228		goto out;
8229
8230	ret = ufshcd_dme_peer_get(hba,
8231				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8232					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8233				  &peer_rx_hibern8_time_cap);
8234	if (ret)
8235		goto out;
8236
8237	max_hibern8_time = max(local_tx_hibern8_time_cap,
8238			       peer_rx_hibern8_time_cap);
8239	/* make sure proper unit conversion is applied */
8240	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8241				/ PA_HIBERN8_TIME_UNIT_US);
8242	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8243			     tuned_pa_hibern8time);
8244out:
8245	return ret;
8246}
8247
8248/**
8249 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8250 * less than device PA_TACTIVATE time.
8251 * @hba: per-adapter instance
8252 *
8253 * Some UFS devices require host PA_TACTIVATE to be lower than device
8254 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8255 * for such devices.
8256 *
8257 * Return: zero on success, non-zero error value on failure.
8258 */
8259static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8260{
8261	int ret = 0;
8262	u32 granularity, peer_granularity;
8263	u32 pa_tactivate, peer_pa_tactivate;
8264	u32 pa_tactivate_us, peer_pa_tactivate_us;
8265	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8266
8267	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8268				  &granularity);
8269	if (ret)
8270		goto out;
8271
8272	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8273				  &peer_granularity);
8274	if (ret)
8275		goto out;
8276
8277	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8278	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8279		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8280			__func__, granularity);
8281		return -EINVAL;
8282	}
8283
8284	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8285	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8286		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8287			__func__, peer_granularity);
8288		return -EINVAL;
8289	}
8290
8291	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8292	if (ret)
8293		goto out;
8294
8295	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8296				  &peer_pa_tactivate);
8297	if (ret)
8298		goto out;
8299
8300	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8301	peer_pa_tactivate_us = peer_pa_tactivate *
8302			     gran_to_us_table[peer_granularity - 1];
8303
8304	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8305		u32 new_peer_pa_tactivate;
8306
8307		new_peer_pa_tactivate = pa_tactivate_us /
8308				      gran_to_us_table[peer_granularity - 1];
8309		new_peer_pa_tactivate++;
8310		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8311					  new_peer_pa_tactivate);
8312	}
8313
8314out:
8315	return ret;
8316}
8317
8318static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8319{
8320	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8321		ufshcd_tune_pa_tactivate(hba);
8322		ufshcd_tune_pa_hibern8time(hba);
8323	}
8324
8325	ufshcd_vops_apply_dev_quirks(hba);
8326
8327	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8328		/* set 1ms timeout for PA_TACTIVATE */
8329		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8330
8331	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8332		ufshcd_quirk_tune_host_pa_tactivate(hba);
8333}
8334
8335static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8336{
8337	hba->ufs_stats.hibern8_exit_cnt = 0;
8338	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8339	hba->req_abort_count = 0;
8340}
8341
8342static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8343{
8344	int err;
8345	u8 *desc_buf;
8346
8347	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8348	if (!desc_buf) {
8349		err = -ENOMEM;
8350		goto out;
8351	}
8352
8353	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8354				     desc_buf, QUERY_DESC_MAX_SIZE);
8355	if (err) {
8356		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8357				__func__, err);
8358		goto out;
8359	}
8360
8361	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8362		hba->dev_info.max_lu_supported = 32;
8363	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8364		hba->dev_info.max_lu_supported = 8;
8365
8366out:
8367	kfree(desc_buf);
8368	return err;
8369}
8370
8371struct ufs_ref_clk {
8372	unsigned long freq_hz;
8373	enum ufs_ref_clk_freq val;
8374};
8375
8376static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8377	{19200000, REF_CLK_FREQ_19_2_MHZ},
8378	{26000000, REF_CLK_FREQ_26_MHZ},
8379	{38400000, REF_CLK_FREQ_38_4_MHZ},
8380	{52000000, REF_CLK_FREQ_52_MHZ},
8381	{0, REF_CLK_FREQ_INVAL},
8382};
8383
8384static enum ufs_ref_clk_freq
8385ufs_get_bref_clk_from_hz(unsigned long freq)
8386{
8387	int i;
8388
8389	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8390		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8391			return ufs_ref_clk_freqs[i].val;
8392
8393	return REF_CLK_FREQ_INVAL;
8394}
8395
8396void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8397{
8398	unsigned long freq;
8399
8400	freq = clk_get_rate(refclk);
8401
8402	hba->dev_ref_clk_freq =
8403		ufs_get_bref_clk_from_hz(freq);
8404
8405	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8406		dev_err(hba->dev,
8407		"invalid ref_clk setting = %ld\n", freq);
8408}
8409
8410static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8411{
8412	int err;
8413	u32 ref_clk;
8414	u32 freq = hba->dev_ref_clk_freq;
8415
8416	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8417			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8418
8419	if (err) {
8420		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8421			err);
8422		goto out;
8423	}
8424
8425	if (ref_clk == freq)
8426		goto out; /* nothing to update */
8427
8428	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8429			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8430
8431	if (err) {
8432		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8433			ufs_ref_clk_freqs[freq].freq_hz);
8434		goto out;
8435	}
8436
8437	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8438			ufs_ref_clk_freqs[freq].freq_hz);
8439
8440out:
8441	return err;
8442}
8443
8444static int ufshcd_device_params_init(struct ufs_hba *hba)
8445{
8446	bool flag;
8447	int ret;
8448
8449	/* Init UFS geometry descriptor related parameters */
8450	ret = ufshcd_device_geo_params_init(hba);
8451	if (ret)
8452		goto out;
8453
8454	/* Check and apply UFS device quirks */
8455	ret = ufs_get_device_desc(hba);
8456	if (ret) {
8457		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8458			__func__, ret);
8459		goto out;
8460	}
8461
8462	ufshcd_get_ref_clk_gating_wait(hba);
8463
8464	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8465			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8466		hba->dev_info.f_power_on_wp_en = flag;
8467
8468	/* Probe maximum power mode co-supported by both UFS host and device */
8469	if (ufshcd_get_max_pwr_mode(hba))
8470		dev_err(hba->dev,
8471			"%s: Failed getting max supported power mode\n",
8472			__func__);
8473out:
8474	return ret;
8475}
8476
8477static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8478{
8479	int err;
8480	struct ufs_query_req *request = NULL;
8481	struct ufs_query_res *response = NULL;
8482	struct ufs_dev_info *dev_info = &hba->dev_info;
8483	struct utp_upiu_query_v4_0 *upiu_data;
8484
8485	if (dev_info->wspecversion < 0x400)
8486		return;
8487
8488	ufshcd_hold(hba);
8489
8490	mutex_lock(&hba->dev_cmd.lock);
8491
8492	ufshcd_init_query(hba, &request, &response,
8493			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8494			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8495
8496	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8497
8498	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8499
8500	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8501
8502	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8503
8504	if (err)
8505		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8506			__func__, err);
8507
8508	mutex_unlock(&hba->dev_cmd.lock);
8509	ufshcd_release(hba);
8510}
8511
8512/**
8513 * ufshcd_add_lus - probe and add UFS logical units
8514 * @hba: per-adapter instance
8515 *
8516 * Return: 0 upon success; < 0 upon failure.
8517 */
8518static int ufshcd_add_lus(struct ufs_hba *hba)
8519{
8520	int ret;
8521
8522	/* Add required well known logical units to scsi mid layer */
8523	ret = ufshcd_scsi_add_wlus(hba);
8524	if (ret)
8525		goto out;
8526
8527	/* Initialize devfreq after UFS device is detected */
8528	if (ufshcd_is_clkscaling_supported(hba)) {
8529		memcpy(&hba->clk_scaling.saved_pwr_info,
8530			&hba->pwr_info,
8531			sizeof(struct ufs_pa_layer_attr));
8532		hba->clk_scaling.is_allowed = true;
8533
8534		ret = ufshcd_devfreq_init(hba);
8535		if (ret)
8536			goto out;
8537
8538		hba->clk_scaling.is_enabled = true;
8539		ufshcd_init_clk_scaling_sysfs(hba);
8540	}
8541
8542	ufs_bsg_probe(hba);
8543	scsi_scan_host(hba->host);
8544
8545out:
8546	return ret;
8547}
8548
8549/* SDB - Single Doorbell */
8550static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8551{
8552	size_t ucdl_size, utrdl_size;
8553
8554	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8555	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8556			   hba->ucdl_dma_addr);
8557
8558	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8559	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8560			   hba->utrdl_dma_addr);
8561
8562	devm_kfree(hba->dev, hba->lrb);
8563}
8564
8565static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8566{
8567	int ret;
8568	int old_nutrs = hba->nutrs;
8569
8570	ret = ufshcd_mcq_decide_queue_depth(hba);
8571	if (ret < 0)
8572		return ret;
8573
8574	hba->nutrs = ret;
8575	ret = ufshcd_mcq_init(hba);
8576	if (ret)
8577		goto err;
8578
8579	/*
8580	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8581	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8582	 */
8583	if (hba->nutrs != old_nutrs) {
8584		ufshcd_release_sdb_queue(hba, old_nutrs);
8585		ret = ufshcd_memory_alloc(hba);
8586		if (ret)
8587			goto err;
8588		ufshcd_host_memory_configure(hba);
8589	}
8590
8591	ret = ufshcd_mcq_memory_alloc(hba);
8592	if (ret)
8593		goto err;
8594
8595	return 0;
8596err:
8597	hba->nutrs = old_nutrs;
8598	return ret;
8599}
8600
8601static void ufshcd_config_mcq(struct ufs_hba *hba)
8602{
8603	int ret;
8604	u32 intrs;
8605
8606	ret = ufshcd_mcq_vops_config_esi(hba);
8607	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8608
8609	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8610	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8611		intrs &= ~MCQ_CQ_EVENT_STATUS;
8612	ufshcd_enable_intr(hba, intrs);
8613	ufshcd_mcq_make_queues_operational(hba);
8614	ufshcd_mcq_config_mac(hba, hba->nutrs);
8615
8616	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8617	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8618
8619	/* Select MCQ mode */
8620	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8621		      REG_UFS_MEM_CFG);
8622	hba->mcq_enabled = true;
8623
8624	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8625		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8626		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8627		 hba->nutrs);
8628}
8629
8630static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8631{
8632	int ret;
8633	struct Scsi_Host *host = hba->host;
8634
8635	hba->ufshcd_state = UFSHCD_STATE_RESET;
8636
8637	ret = ufshcd_link_startup(hba);
8638	if (ret)
8639		return ret;
8640
8641	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8642		return ret;
8643
8644	/* Debug counters initialization */
8645	ufshcd_clear_dbg_ufs_stats(hba);
8646
8647	/* UniPro link is active now */
8648	ufshcd_set_link_active(hba);
8649
8650	/* Reconfigure MCQ upon reset */
8651	if (is_mcq_enabled(hba) && !init_dev_params)
8652		ufshcd_config_mcq(hba);
8653
8654	/* Verify device initialization by sending NOP OUT UPIU */
8655	ret = ufshcd_verify_dev_init(hba);
8656	if (ret)
8657		return ret;
8658
8659	/* Initiate UFS initialization, and waiting until completion */
8660	ret = ufshcd_complete_dev_init(hba);
8661	if (ret)
8662		return ret;
8663
8664	/*
8665	 * Initialize UFS device parameters used by driver, these
8666	 * parameters are associated with UFS descriptors.
8667	 */
8668	if (init_dev_params) {
8669		ret = ufshcd_device_params_init(hba);
8670		if (ret)
8671			return ret;
8672		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8673			ret = ufshcd_alloc_mcq(hba);
8674			if (!ret) {
8675				ufshcd_config_mcq(hba);
8676			} else {
8677				/* Continue with SDB mode */
8678				use_mcq_mode = false;
8679				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8680					 ret);
8681			}
8682			ret = scsi_add_host(host, hba->dev);
8683			if (ret) {
8684				dev_err(hba->dev, "scsi_add_host failed\n");
8685				return ret;
8686			}
8687			hba->scsi_host_added = true;
8688		} else if (is_mcq_supported(hba)) {
8689			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8690			ufshcd_config_mcq(hba);
8691		}
8692	}
8693
8694	ufshcd_tune_unipro_params(hba);
8695
8696	/* UFS device is also active now */
8697	ufshcd_set_ufs_dev_active(hba);
8698	ufshcd_force_reset_auto_bkops(hba);
8699
8700	ufshcd_set_timestamp_attr(hba);
8701
8702	/* Gear up to HS gear if supported */
8703	if (hba->max_pwr_info.is_valid) {
8704		/*
8705		 * Set the right value to bRefClkFreq before attempting to
8706		 * switch to HS gears.
8707		 */
8708		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8709			ufshcd_set_dev_ref_clk(hba);
8710		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8711		if (ret) {
8712			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8713					__func__, ret);
8714			return ret;
8715		}
8716	}
8717
8718	return 0;
8719}
8720
8721/**
8722 * ufshcd_probe_hba - probe hba to detect device and initialize it
8723 * @hba: per-adapter instance
8724 * @init_dev_params: whether or not to call ufshcd_device_params_init().
8725 *
8726 * Execute link-startup and verify device initialization
8727 *
8728 * Return: 0 upon success; < 0 upon failure.
8729 */
8730static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8731{
8732	ktime_t start = ktime_get();
8733	unsigned long flags;
8734	int ret;
8735
8736	ret = ufshcd_device_init(hba, init_dev_params);
8737	if (ret)
8738		goto out;
8739
8740	if (!hba->pm_op_in_progress &&
8741	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8742		/* Reset the device and controller before doing reinit */
8743		ufshcd_device_reset(hba);
8744		ufshcd_hba_stop(hba);
8745		ufshcd_vops_reinit_notify(hba);
8746		ret = ufshcd_hba_enable(hba);
8747		if (ret) {
8748			dev_err(hba->dev, "Host controller enable failed\n");
8749			ufshcd_print_evt_hist(hba);
8750			ufshcd_print_host_state(hba);
8751			goto out;
8752		}
8753
8754		/* Reinit the device */
8755		ret = ufshcd_device_init(hba, init_dev_params);
8756		if (ret)
8757			goto out;
8758	}
8759
8760	ufshcd_print_pwr_info(hba);
8761
8762	/*
8763	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8764	 * and for removable UFS card as well, hence always set the parameter.
8765	 * Note: Error handler may issue the device reset hence resetting
8766	 * bActiveICCLevel as well so it is always safe to set this here.
8767	 */
8768	ufshcd_set_active_icc_lvl(hba);
8769
8770	/* Enable UFS Write Booster if supported */
8771	ufshcd_configure_wb(hba);
8772
8773	if (hba->ee_usr_mask)
8774		ufshcd_write_ee_control(hba);
8775	/* Enable Auto-Hibernate if configured */
8776	ufshcd_auto_hibern8_enable(hba);
8777
8778out:
8779	spin_lock_irqsave(hba->host->host_lock, flags);
8780	if (ret)
8781		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8782	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8783		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8784	spin_unlock_irqrestore(hba->host->host_lock, flags);
8785
8786	trace_ufshcd_init(dev_name(hba->dev), ret,
8787		ktime_to_us(ktime_sub(ktime_get(), start)),
8788		hba->curr_dev_pwr_mode, hba->uic_link_state);
8789	return ret;
8790}
8791
8792/**
8793 * ufshcd_async_scan - asynchronous execution for probing hba
8794 * @data: data pointer to pass to this function
8795 * @cookie: cookie data
8796 */
8797static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8798{
8799	struct ufs_hba *hba = (struct ufs_hba *)data;
8800	int ret;
8801
8802	down(&hba->host_sem);
8803	/* Initialize hba, detect and initialize UFS device */
8804	ret = ufshcd_probe_hba(hba, true);
8805	up(&hba->host_sem);
8806	if (ret)
8807		goto out;
8808
8809	/* Probe and add UFS logical units  */
8810	ret = ufshcd_add_lus(hba);
8811
8812out:
8813	pm_runtime_put_sync(hba->dev);
8814
8815	if (ret)
8816		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8817}
8818
8819static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8820{
8821	struct ufs_hba *hba = shost_priv(scmd->device->host);
8822
8823	if (!hba->system_suspending) {
8824		/* Activate the error handler in the SCSI core. */
8825		return SCSI_EH_NOT_HANDLED;
8826	}
8827
8828	/*
8829	 * If we get here we know that no TMFs are outstanding and also that
8830	 * the only pending command is a START STOP UNIT command. Handle the
8831	 * timeout of that command directly to prevent a deadlock between
8832	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8833	 */
8834	ufshcd_link_recovery(hba);
8835	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8836		 __func__, hba->outstanding_tasks);
8837
8838	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8839}
8840
8841static const struct attribute_group *ufshcd_driver_groups[] = {
8842	&ufs_sysfs_unit_descriptor_group,
8843	&ufs_sysfs_lun_attributes_group,
8844	NULL,
8845};
8846
8847static struct ufs_hba_variant_params ufs_hba_vps = {
8848	.hba_enable_delay_us		= 1000,
8849	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8850	.devfreq_profile.polling_ms	= 100,
8851	.devfreq_profile.target		= ufshcd_devfreq_target,
8852	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8853	.ondemand_data.upthreshold	= 70,
8854	.ondemand_data.downdifferential	= 5,
8855};
8856
8857static const struct scsi_host_template ufshcd_driver_template = {
8858	.module			= THIS_MODULE,
8859	.name			= UFSHCD,
8860	.proc_name		= UFSHCD,
8861	.map_queues		= ufshcd_map_queues,
8862	.queuecommand		= ufshcd_queuecommand,
8863	.mq_poll		= ufshcd_poll,
8864	.slave_alloc		= ufshcd_slave_alloc,
8865	.slave_configure	= ufshcd_slave_configure,
8866	.slave_destroy		= ufshcd_slave_destroy,
8867	.change_queue_depth	= ufshcd_change_queue_depth,
8868	.eh_abort_handler	= ufshcd_abort,
8869	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8870	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8871	.eh_timed_out		= ufshcd_eh_timed_out,
8872	.this_id		= -1,
8873	.sg_tablesize		= SG_ALL,
8874	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8875	.can_queue		= UFSHCD_CAN_QUEUE,
8876	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8877	.max_sectors		= SZ_1M / SECTOR_SIZE,
8878	.max_host_blocked	= 1,
8879	.track_queue_depth	= 1,
8880	.skip_settle_delay	= 1,
8881	.sdev_groups		= ufshcd_driver_groups,
8882	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8883};
8884
8885static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8886				   int ua)
8887{
8888	int ret;
8889
8890	if (!vreg)
8891		return 0;
8892
8893	/*
8894	 * "set_load" operation shall be required on those regulators
8895	 * which specifically configured current limitation. Otherwise
8896	 * zero max_uA may cause unexpected behavior when regulator is
8897	 * enabled or set as high power mode.
8898	 */
8899	if (!vreg->max_uA)
8900		return 0;
8901
8902	ret = regulator_set_load(vreg->reg, ua);
8903	if (ret < 0) {
8904		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8905				__func__, vreg->name, ua, ret);
8906	}
8907
8908	return ret;
8909}
8910
8911static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8912					 struct ufs_vreg *vreg)
8913{
8914	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8915}
8916
8917static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8918					 struct ufs_vreg *vreg)
8919{
8920	if (!vreg)
8921		return 0;
8922
8923	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8924}
8925
8926static int ufshcd_config_vreg(struct device *dev,
8927		struct ufs_vreg *vreg, bool on)
8928{
8929	if (regulator_count_voltages(vreg->reg) <= 0)
8930		return 0;
8931
8932	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8933}
8934
8935static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8936{
8937	int ret = 0;
8938
8939	if (!vreg || vreg->enabled)
8940		goto out;
8941
8942	ret = ufshcd_config_vreg(dev, vreg, true);
8943	if (!ret)
8944		ret = regulator_enable(vreg->reg);
8945
8946	if (!ret)
8947		vreg->enabled = true;
8948	else
8949		dev_err(dev, "%s: %s enable failed, err=%d\n",
8950				__func__, vreg->name, ret);
8951out:
8952	return ret;
8953}
8954
8955static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8956{
8957	int ret = 0;
8958
8959	if (!vreg || !vreg->enabled || vreg->always_on)
8960		goto out;
8961
8962	ret = regulator_disable(vreg->reg);
8963
8964	if (!ret) {
8965		/* ignore errors on applying disable config */
8966		ufshcd_config_vreg(dev, vreg, false);
8967		vreg->enabled = false;
8968	} else {
8969		dev_err(dev, "%s: %s disable failed, err=%d\n",
8970				__func__, vreg->name, ret);
8971	}
8972out:
8973	return ret;
8974}
8975
8976static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8977{
8978	int ret = 0;
8979	struct device *dev = hba->dev;
8980	struct ufs_vreg_info *info = &hba->vreg_info;
8981
8982	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8983	if (ret)
8984		goto out;
8985
8986	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8987	if (ret)
8988		goto out;
8989
8990	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8991
8992out:
8993	if (ret) {
8994		ufshcd_toggle_vreg(dev, info->vccq2, false);
8995		ufshcd_toggle_vreg(dev, info->vccq, false);
8996		ufshcd_toggle_vreg(dev, info->vcc, false);
8997	}
8998	return ret;
8999}
9000
9001static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9002{
9003	struct ufs_vreg_info *info = &hba->vreg_info;
9004
9005	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9006}
9007
9008int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9009{
9010	int ret = 0;
9011
9012	if (!vreg)
9013		goto out;
9014
9015	vreg->reg = devm_regulator_get(dev, vreg->name);
9016	if (IS_ERR(vreg->reg)) {
9017		ret = PTR_ERR(vreg->reg);
9018		dev_err(dev, "%s: %s get failed, err=%d\n",
9019				__func__, vreg->name, ret);
9020	}
9021out:
9022	return ret;
9023}
9024EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9025
9026static int ufshcd_init_vreg(struct ufs_hba *hba)
9027{
9028	int ret = 0;
9029	struct device *dev = hba->dev;
9030	struct ufs_vreg_info *info = &hba->vreg_info;
9031
9032	ret = ufshcd_get_vreg(dev, info->vcc);
9033	if (ret)
9034		goto out;
9035
9036	ret = ufshcd_get_vreg(dev, info->vccq);
9037	if (!ret)
9038		ret = ufshcd_get_vreg(dev, info->vccq2);
9039out:
9040	return ret;
9041}
9042
9043static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9044{
9045	struct ufs_vreg_info *info = &hba->vreg_info;
9046
9047	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9048}
9049
9050static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9051{
9052	int ret = 0;
9053	struct ufs_clk_info *clki;
9054	struct list_head *head = &hba->clk_list_head;
9055	unsigned long flags;
9056	ktime_t start = ktime_get();
9057	bool clk_state_changed = false;
9058
9059	if (list_empty(head))
9060		goto out;
9061
9062	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9063	if (ret)
9064		return ret;
9065
9066	list_for_each_entry(clki, head, list) {
9067		if (!IS_ERR_OR_NULL(clki->clk)) {
9068			/*
9069			 * Don't disable clocks which are needed
9070			 * to keep the link active.
9071			 */
9072			if (ufshcd_is_link_active(hba) &&
9073			    clki->keep_link_active)
9074				continue;
9075
9076			clk_state_changed = on ^ clki->enabled;
9077			if (on && !clki->enabled) {
9078				ret = clk_prepare_enable(clki->clk);
9079				if (ret) {
9080					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9081						__func__, clki->name, ret);
9082					goto out;
9083				}
9084			} else if (!on && clki->enabled) {
9085				clk_disable_unprepare(clki->clk);
9086			}
9087			clki->enabled = on;
9088			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9089					clki->name, on ? "en" : "dis");
9090		}
9091	}
9092
9093	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9094	if (ret)
9095		return ret;
9096
9097out:
9098	if (ret) {
9099		list_for_each_entry(clki, head, list) {
9100			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9101				clk_disable_unprepare(clki->clk);
9102		}
9103	} else if (!ret && on) {
9104		spin_lock_irqsave(hba->host->host_lock, flags);
9105		hba->clk_gating.state = CLKS_ON;
9106		trace_ufshcd_clk_gating(dev_name(hba->dev),
9107					hba->clk_gating.state);
9108		spin_unlock_irqrestore(hba->host->host_lock, flags);
9109	}
9110
9111	if (clk_state_changed)
9112		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9113			(on ? "on" : "off"),
9114			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9115	return ret;
9116}
9117
9118static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9119{
9120	u32 freq;
9121	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9122
9123	if (ret) {
9124		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9125		return REF_CLK_FREQ_INVAL;
9126	}
9127
9128	return ufs_get_bref_clk_from_hz(freq);
9129}
9130
9131static int ufshcd_init_clocks(struct ufs_hba *hba)
9132{
9133	int ret = 0;
9134	struct ufs_clk_info *clki;
9135	struct device *dev = hba->dev;
9136	struct list_head *head = &hba->clk_list_head;
9137
9138	if (list_empty(head))
9139		goto out;
9140
9141	list_for_each_entry(clki, head, list) {
9142		if (!clki->name)
9143			continue;
9144
9145		clki->clk = devm_clk_get(dev, clki->name);
9146		if (IS_ERR(clki->clk)) {
9147			ret = PTR_ERR(clki->clk);
9148			dev_err(dev, "%s: %s clk get failed, %d\n",
9149					__func__, clki->name, ret);
9150			goto out;
9151		}
9152
9153		/*
9154		 * Parse device ref clk freq as per device tree "ref_clk".
9155		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9156		 * in ufshcd_alloc_host().
9157		 */
9158		if (!strcmp(clki->name, "ref_clk"))
9159			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9160
9161		if (clki->max_freq) {
9162			ret = clk_set_rate(clki->clk, clki->max_freq);
9163			if (ret) {
9164				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9165					__func__, clki->name,
9166					clki->max_freq, ret);
9167				goto out;
9168			}
9169			clki->curr_freq = clki->max_freq;
9170		}
9171		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9172				clki->name, clk_get_rate(clki->clk));
9173	}
9174out:
9175	return ret;
9176}
9177
9178static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9179{
9180	int err = 0;
9181
9182	if (!hba->vops)
9183		goto out;
9184
9185	err = ufshcd_vops_init(hba);
9186	if (err)
9187		dev_err_probe(hba->dev, err,
9188			      "%s: variant %s init failed with err %d\n",
9189			      __func__, ufshcd_get_var_name(hba), err);
9190out:
9191	return err;
9192}
9193
9194static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9195{
9196	if (!hba->vops)
9197		return;
9198
9199	ufshcd_vops_exit(hba);
9200}
9201
9202static int ufshcd_hba_init(struct ufs_hba *hba)
9203{
9204	int err;
9205
9206	/*
9207	 * Handle host controller power separately from the UFS device power
9208	 * rails as it will help controlling the UFS host controller power
9209	 * collapse easily which is different than UFS device power collapse.
9210	 * Also, enable the host controller power before we go ahead with rest
9211	 * of the initialization here.
9212	 */
9213	err = ufshcd_init_hba_vreg(hba);
9214	if (err)
9215		goto out;
9216
9217	err = ufshcd_setup_hba_vreg(hba, true);
9218	if (err)
9219		goto out;
9220
9221	err = ufshcd_init_clocks(hba);
9222	if (err)
9223		goto out_disable_hba_vreg;
9224
9225	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9226		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9227
9228	err = ufshcd_setup_clocks(hba, true);
9229	if (err)
9230		goto out_disable_hba_vreg;
9231
9232	err = ufshcd_init_vreg(hba);
9233	if (err)
9234		goto out_disable_clks;
9235
9236	err = ufshcd_setup_vreg(hba, true);
9237	if (err)
9238		goto out_disable_clks;
9239
9240	err = ufshcd_variant_hba_init(hba);
9241	if (err)
9242		goto out_disable_vreg;
9243
9244	ufs_debugfs_hba_init(hba);
9245
9246	hba->is_powered = true;
9247	goto out;
9248
9249out_disable_vreg:
9250	ufshcd_setup_vreg(hba, false);
9251out_disable_clks:
9252	ufshcd_setup_clocks(hba, false);
9253out_disable_hba_vreg:
9254	ufshcd_setup_hba_vreg(hba, false);
9255out:
9256	return err;
9257}
9258
9259static void ufshcd_hba_exit(struct ufs_hba *hba)
9260{
9261	if (hba->is_powered) {
9262		ufshcd_exit_clk_scaling(hba);
9263		ufshcd_exit_clk_gating(hba);
9264		if (hba->eh_wq)
9265			destroy_workqueue(hba->eh_wq);
9266		ufs_debugfs_hba_exit(hba);
9267		ufshcd_variant_hba_exit(hba);
9268		ufshcd_setup_vreg(hba, false);
9269		ufshcd_setup_clocks(hba, false);
9270		ufshcd_setup_hba_vreg(hba, false);
9271		hba->is_powered = false;
9272		ufs_put_device_desc(hba);
9273	}
9274}
9275
9276static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9277				     enum ufs_dev_pwr_mode pwr_mode,
9278				     struct scsi_sense_hdr *sshdr)
9279{
9280	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9281	const struct scsi_exec_args args = {
9282		.sshdr = sshdr,
9283		.req_flags = BLK_MQ_REQ_PM,
9284		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9285	};
9286
9287	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9288			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9289			&args);
9290}
9291
9292/**
9293 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9294 *			     power mode
9295 * @hba: per adapter instance
9296 * @pwr_mode: device power mode to set
9297 *
9298 * Return: 0 if requested power mode is set successfully;
9299 *         < 0 if failed to set the requested power mode.
9300 */
9301static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9302				     enum ufs_dev_pwr_mode pwr_mode)
9303{
9304	struct scsi_sense_hdr sshdr;
9305	struct scsi_device *sdp;
9306	unsigned long flags;
9307	int ret, retries;
9308
9309	spin_lock_irqsave(hba->host->host_lock, flags);
9310	sdp = hba->ufs_device_wlun;
9311	if (sdp && scsi_device_online(sdp))
9312		ret = scsi_device_get(sdp);
9313	else
9314		ret = -ENODEV;
9315	spin_unlock_irqrestore(hba->host->host_lock, flags);
9316
9317	if (ret)
9318		return ret;
9319
9320	/*
9321	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9322	 * handling, which would wait for host to be resumed. Since we know
9323	 * we are functional while we are here, skip host resume in error
9324	 * handling context.
9325	 */
9326	hba->host->eh_noresume = 1;
9327
9328	/*
9329	 * Current function would be generally called from the power management
9330	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9331	 * already suspended childs.
9332	 */
9333	for (retries = 3; retries > 0; --retries) {
9334		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9335		/*
9336		 * scsi_execute() only returns a negative value if the request
9337		 * queue is dying.
9338		 */
9339		if (ret <= 0)
9340			break;
9341	}
9342	if (ret) {
9343		sdev_printk(KERN_WARNING, sdp,
9344			    "START_STOP failed for power mode: %d, result %x\n",
9345			    pwr_mode, ret);
9346		if (ret > 0) {
9347			if (scsi_sense_valid(&sshdr))
9348				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9349			ret = -EIO;
9350		}
9351	} else {
9352		hba->curr_dev_pwr_mode = pwr_mode;
9353	}
9354
9355	scsi_device_put(sdp);
9356	hba->host->eh_noresume = 0;
9357	return ret;
9358}
9359
9360static int ufshcd_link_state_transition(struct ufs_hba *hba,
9361					enum uic_link_state req_link_state,
9362					bool check_for_bkops)
9363{
9364	int ret = 0;
9365
9366	if (req_link_state == hba->uic_link_state)
9367		return 0;
9368
9369	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9370		ret = ufshcd_uic_hibern8_enter(hba);
9371		if (!ret) {
9372			ufshcd_set_link_hibern8(hba);
9373		} else {
9374			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9375					__func__, ret);
9376			goto out;
9377		}
9378	}
9379	/*
9380	 * If autobkops is enabled, link can't be turned off because
9381	 * turning off the link would also turn off the device, except in the
9382	 * case of DeepSleep where the device is expected to remain powered.
9383	 */
9384	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9385		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9386		/*
9387		 * Let's make sure that link is in low power mode, we are doing
9388		 * this currently by putting the link in Hibern8. Otherway to
9389		 * put the link in low power mode is to send the DME end point
9390		 * to device and then send the DME reset command to local
9391		 * unipro. But putting the link in hibern8 is much faster.
9392		 *
9393		 * Note also that putting the link in Hibern8 is a requirement
9394		 * for entering DeepSleep.
9395		 */
9396		ret = ufshcd_uic_hibern8_enter(hba);
9397		if (ret) {
9398			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9399					__func__, ret);
9400			goto out;
9401		}
9402		/*
9403		 * Change controller state to "reset state" which
9404		 * should also put the link in off/reset state
9405		 */
9406		ufshcd_hba_stop(hba);
9407		/*
9408		 * TODO: Check if we need any delay to make sure that
9409		 * controller is reset
9410		 */
9411		ufshcd_set_link_off(hba);
9412	}
9413
9414out:
9415	return ret;
9416}
9417
9418static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9419{
9420	bool vcc_off = false;
9421
9422	/*
9423	 * It seems some UFS devices may keep drawing more than sleep current
9424	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9425	 * To avoid this situation, add 2ms delay before putting these UFS
9426	 * rails in LPM mode.
9427	 */
9428	if (!ufshcd_is_link_active(hba) &&
9429	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9430		usleep_range(2000, 2100);
9431
9432	/*
9433	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9434	 * power.
9435	 *
9436	 * If UFS device and link is in OFF state, all power supplies (VCC,
9437	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9438	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9439	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9440	 *
9441	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9442	 * in low power state which would save some power.
9443	 *
9444	 * If Write Booster is enabled and the device needs to flush the WB
9445	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9446	 */
9447	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9448	    !hba->dev_info.is_lu_power_on_wp) {
9449		ufshcd_setup_vreg(hba, false);
9450		vcc_off = true;
9451	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9452		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9453		vcc_off = true;
9454		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9455			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9456			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9457		}
9458	}
9459
9460	/*
9461	 * Some UFS devices require delay after VCC power rail is turned-off.
9462	 */
9463	if (vcc_off && hba->vreg_info.vcc &&
9464		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9465		usleep_range(5000, 5100);
9466}
9467
9468#ifdef CONFIG_PM
9469static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9470{
9471	int ret = 0;
9472
9473	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9474	    !hba->dev_info.is_lu_power_on_wp) {
9475		ret = ufshcd_setup_vreg(hba, true);
9476	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9477		if (!ufshcd_is_link_active(hba)) {
9478			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9479			if (ret)
9480				goto vcc_disable;
9481			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9482			if (ret)
9483				goto vccq_lpm;
9484		}
9485		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9486	}
9487	goto out;
9488
9489vccq_lpm:
9490	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9491vcc_disable:
9492	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9493out:
9494	return ret;
9495}
9496#endif /* CONFIG_PM */
9497
9498static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9499{
9500	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9501		ufshcd_setup_hba_vreg(hba, false);
9502}
9503
9504static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9505{
9506	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9507		ufshcd_setup_hba_vreg(hba, true);
9508}
9509
9510static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9511{
9512	int ret = 0;
9513	bool check_for_bkops;
9514	enum ufs_pm_level pm_lvl;
9515	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9516	enum uic_link_state req_link_state;
9517
9518	hba->pm_op_in_progress = true;
9519	if (pm_op != UFS_SHUTDOWN_PM) {
9520		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9521			 hba->rpm_lvl : hba->spm_lvl;
9522		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9523		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9524	} else {
9525		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9526		req_link_state = UIC_LINK_OFF_STATE;
9527	}
9528
9529	/*
9530	 * If we can't transition into any of the low power modes
9531	 * just gate the clocks.
9532	 */
9533	ufshcd_hold(hba);
9534	hba->clk_gating.is_suspended = true;
9535
9536	if (ufshcd_is_clkscaling_supported(hba))
9537		ufshcd_clk_scaling_suspend(hba, true);
9538
9539	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9540			req_link_state == UIC_LINK_ACTIVE_STATE) {
9541		goto vops_suspend;
9542	}
9543
9544	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9545	    (req_link_state == hba->uic_link_state))
9546		goto enable_scaling;
9547
9548	/* UFS device & link must be active before we enter in this function */
9549	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9550		ret = -EINVAL;
9551		goto enable_scaling;
9552	}
9553
9554	if (pm_op == UFS_RUNTIME_PM) {
9555		if (ufshcd_can_autobkops_during_suspend(hba)) {
9556			/*
9557			 * The device is idle with no requests in the queue,
9558			 * allow background operations if bkops status shows
9559			 * that performance might be impacted.
9560			 */
9561			ret = ufshcd_urgent_bkops(hba);
9562			if (ret) {
9563				/*
9564				 * If return err in suspend flow, IO will hang.
9565				 * Trigger error handler and break suspend for
9566				 * error recovery.
9567				 */
9568				ufshcd_force_error_recovery(hba);
9569				ret = -EBUSY;
9570				goto enable_scaling;
9571			}
9572		} else {
9573			/* make sure that auto bkops is disabled */
9574			ufshcd_disable_auto_bkops(hba);
9575		}
9576		/*
9577		 * If device needs to do BKOP or WB buffer flush during
9578		 * Hibern8, keep device power mode as "active power mode"
9579		 * and VCC supply.
9580		 */
9581		hba->dev_info.b_rpm_dev_flush_capable =
9582			hba->auto_bkops_enabled ||
9583			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9584			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9585			ufshcd_is_auto_hibern8_enabled(hba))) &&
9586			ufshcd_wb_need_flush(hba));
9587	}
9588
9589	flush_work(&hba->eeh_work);
9590
9591	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9592	if (ret)
9593		goto enable_scaling;
9594
9595	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9596		if (pm_op != UFS_RUNTIME_PM)
9597			/* ensure that bkops is disabled */
9598			ufshcd_disable_auto_bkops(hba);
9599
9600		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9601			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9602			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9603				/*
9604				 * If return err in suspend flow, IO will hang.
9605				 * Trigger error handler and break suspend for
9606				 * error recovery.
9607				 */
9608				ufshcd_force_error_recovery(hba);
9609				ret = -EBUSY;
9610			}
9611			if (ret)
9612				goto enable_scaling;
9613		}
9614	}
9615
9616	/*
9617	 * In the case of DeepSleep, the device is expected to remain powered
9618	 * with the link off, so do not check for bkops.
9619	 */
9620	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9621	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9622	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9623		/*
9624		 * If return err in suspend flow, IO will hang.
9625		 * Trigger error handler and break suspend for
9626		 * error recovery.
9627		 */
9628		ufshcd_force_error_recovery(hba);
9629		ret = -EBUSY;
9630	}
9631	if (ret)
9632		goto set_dev_active;
9633
9634vops_suspend:
9635	/*
9636	 * Call vendor specific suspend callback. As these callbacks may access
9637	 * vendor specific host controller register space call them before the
9638	 * host clocks are ON.
9639	 */
9640	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9641	if (ret)
9642		goto set_link_active;
9643	goto out;
9644
9645set_link_active:
9646	/*
9647	 * Device hardware reset is required to exit DeepSleep. Also, for
9648	 * DeepSleep, the link is off so host reset and restore will be done
9649	 * further below.
9650	 */
9651	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9652		ufshcd_device_reset(hba);
9653		WARN_ON(!ufshcd_is_link_off(hba));
9654	}
9655	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9656		ufshcd_set_link_active(hba);
9657	else if (ufshcd_is_link_off(hba))
9658		ufshcd_host_reset_and_restore(hba);
9659set_dev_active:
9660	/* Can also get here needing to exit DeepSleep */
9661	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9662		ufshcd_device_reset(hba);
9663		ufshcd_host_reset_and_restore(hba);
9664	}
9665	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9666		ufshcd_disable_auto_bkops(hba);
9667enable_scaling:
9668	if (ufshcd_is_clkscaling_supported(hba))
9669		ufshcd_clk_scaling_suspend(hba, false);
9670
9671	hba->dev_info.b_rpm_dev_flush_capable = false;
9672out:
9673	if (hba->dev_info.b_rpm_dev_flush_capable) {
9674		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9675			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9676	}
9677
9678	if (ret) {
9679		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9680		hba->clk_gating.is_suspended = false;
9681		ufshcd_release(hba);
9682	}
9683	hba->pm_op_in_progress = false;
9684	return ret;
9685}
9686
9687#ifdef CONFIG_PM
9688static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9689{
9690	int ret;
9691	enum uic_link_state old_link_state = hba->uic_link_state;
9692
9693	hba->pm_op_in_progress = true;
9694
9695	/*
9696	 * Call vendor specific resume callback. As these callbacks may access
9697	 * vendor specific host controller register space call them when the
9698	 * host clocks are ON.
9699	 */
9700	ret = ufshcd_vops_resume(hba, pm_op);
9701	if (ret)
9702		goto out;
9703
9704	/* For DeepSleep, the only supported option is to have the link off */
9705	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9706
9707	if (ufshcd_is_link_hibern8(hba)) {
9708		ret = ufshcd_uic_hibern8_exit(hba);
9709		if (!ret) {
9710			ufshcd_set_link_active(hba);
9711		} else {
9712			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9713					__func__, ret);
9714			goto vendor_suspend;
9715		}
9716	} else if (ufshcd_is_link_off(hba)) {
9717		/*
9718		 * A full initialization of the host and the device is
9719		 * required since the link was put to off during suspend.
9720		 * Note, in the case of DeepSleep, the device will exit
9721		 * DeepSleep due to device reset.
9722		 */
9723		ret = ufshcd_reset_and_restore(hba);
9724		/*
9725		 * ufshcd_reset_and_restore() should have already
9726		 * set the link state as active
9727		 */
9728		if (ret || !ufshcd_is_link_active(hba))
9729			goto vendor_suspend;
9730	}
9731
9732	if (!ufshcd_is_ufs_dev_active(hba)) {
9733		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9734		if (ret)
9735			goto set_old_link_state;
9736		ufshcd_set_timestamp_attr(hba);
9737	}
9738
9739	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9740		ufshcd_enable_auto_bkops(hba);
9741	else
9742		/*
9743		 * If BKOPs operations are urgently needed at this moment then
9744		 * keep auto-bkops enabled or else disable it.
9745		 */
9746		ufshcd_urgent_bkops(hba);
9747
9748	if (hba->ee_usr_mask)
9749		ufshcd_write_ee_control(hba);
9750
9751	if (ufshcd_is_clkscaling_supported(hba))
9752		ufshcd_clk_scaling_suspend(hba, false);
9753
9754	if (hba->dev_info.b_rpm_dev_flush_capable) {
9755		hba->dev_info.b_rpm_dev_flush_capable = false;
9756		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9757	}
9758
9759	/* Enable Auto-Hibernate if configured */
9760	ufshcd_auto_hibern8_enable(hba);
9761
9762	goto out;
9763
9764set_old_link_state:
9765	ufshcd_link_state_transition(hba, old_link_state, 0);
9766vendor_suspend:
9767	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9768	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9769out:
9770	if (ret)
9771		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9772	hba->clk_gating.is_suspended = false;
9773	ufshcd_release(hba);
9774	hba->pm_op_in_progress = false;
9775	return ret;
9776}
9777
9778static int ufshcd_wl_runtime_suspend(struct device *dev)
9779{
9780	struct scsi_device *sdev = to_scsi_device(dev);
9781	struct ufs_hba *hba;
9782	int ret;
9783	ktime_t start = ktime_get();
9784
9785	hba = shost_priv(sdev->host);
9786
9787	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9788	if (ret)
9789		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9790
9791	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9792		ktime_to_us(ktime_sub(ktime_get(), start)),
9793		hba->curr_dev_pwr_mode, hba->uic_link_state);
9794
9795	return ret;
9796}
9797
9798static int ufshcd_wl_runtime_resume(struct device *dev)
9799{
9800	struct scsi_device *sdev = to_scsi_device(dev);
9801	struct ufs_hba *hba;
9802	int ret = 0;
9803	ktime_t start = ktime_get();
9804
9805	hba = shost_priv(sdev->host);
9806
9807	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9808	if (ret)
9809		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9810
9811	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9812		ktime_to_us(ktime_sub(ktime_get(), start)),
9813		hba->curr_dev_pwr_mode, hba->uic_link_state);
9814
9815	return ret;
9816}
9817#endif
9818
9819#ifdef CONFIG_PM_SLEEP
9820static int ufshcd_wl_suspend(struct device *dev)
9821{
9822	struct scsi_device *sdev = to_scsi_device(dev);
9823	struct ufs_hba *hba;
9824	int ret = 0;
9825	ktime_t start = ktime_get();
9826
9827	hba = shost_priv(sdev->host);
9828	down(&hba->host_sem);
9829	hba->system_suspending = true;
9830
9831	if (pm_runtime_suspended(dev))
9832		goto out;
9833
9834	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9835	if (ret) {
9836		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9837		up(&hba->host_sem);
9838	}
9839
9840out:
9841	if (!ret)
9842		hba->is_sys_suspended = true;
9843	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9844		ktime_to_us(ktime_sub(ktime_get(), start)),
9845		hba->curr_dev_pwr_mode, hba->uic_link_state);
9846
9847	return ret;
9848}
9849
9850static int ufshcd_wl_resume(struct device *dev)
9851{
9852	struct scsi_device *sdev = to_scsi_device(dev);
9853	struct ufs_hba *hba;
9854	int ret = 0;
9855	ktime_t start = ktime_get();
9856
9857	hba = shost_priv(sdev->host);
9858
9859	if (pm_runtime_suspended(dev))
9860		goto out;
9861
9862	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9863	if (ret)
9864		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9865out:
9866	trace_ufshcd_wl_resume(dev_name(dev), ret,
9867		ktime_to_us(ktime_sub(ktime_get(), start)),
9868		hba->curr_dev_pwr_mode, hba->uic_link_state);
9869	if (!ret)
9870		hba->is_sys_suspended = false;
9871	hba->system_suspending = false;
9872	up(&hba->host_sem);
9873	return ret;
9874}
9875#endif
9876
9877/**
9878 * ufshcd_suspend - helper function for suspend operations
9879 * @hba: per adapter instance
9880 *
9881 * This function will put disable irqs, turn off clocks
9882 * and set vreg and hba-vreg in lpm mode.
9883 *
9884 * Return: 0 upon success; < 0 upon failure.
9885 */
9886static int ufshcd_suspend(struct ufs_hba *hba)
9887{
9888	int ret;
9889
9890	if (!hba->is_powered)
9891		return 0;
9892	/*
9893	 * Disable the host irq as host controller as there won't be any
9894	 * host controller transaction expected till resume.
9895	 */
9896	ufshcd_disable_irq(hba);
9897	ret = ufshcd_setup_clocks(hba, false);
9898	if (ret) {
9899		ufshcd_enable_irq(hba);
9900		return ret;
9901	}
9902	if (ufshcd_is_clkgating_allowed(hba)) {
9903		hba->clk_gating.state = CLKS_OFF;
9904		trace_ufshcd_clk_gating(dev_name(hba->dev),
9905					hba->clk_gating.state);
9906	}
9907
9908	ufshcd_vreg_set_lpm(hba);
9909	/* Put the host controller in low power mode if possible */
9910	ufshcd_hba_vreg_set_lpm(hba);
9911	return ret;
9912}
9913
9914#ifdef CONFIG_PM
9915/**
9916 * ufshcd_resume - helper function for resume operations
9917 * @hba: per adapter instance
9918 *
9919 * This function basically turns on the regulators, clocks and
9920 * irqs of the hba.
9921 *
9922 * Return: 0 for success and non-zero for failure.
9923 */
9924static int ufshcd_resume(struct ufs_hba *hba)
9925{
9926	int ret;
9927
9928	if (!hba->is_powered)
9929		return 0;
9930
9931	ufshcd_hba_vreg_set_hpm(hba);
9932	ret = ufshcd_vreg_set_hpm(hba);
9933	if (ret)
9934		goto out;
9935
9936	/* Make sure clocks are enabled before accessing controller */
9937	ret = ufshcd_setup_clocks(hba, true);
9938	if (ret)
9939		goto disable_vreg;
9940
9941	/* enable the host irq as host controller would be active soon */
9942	ufshcd_enable_irq(hba);
9943
9944	goto out;
9945
9946disable_vreg:
9947	ufshcd_vreg_set_lpm(hba);
9948out:
9949	if (ret)
9950		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9951	return ret;
9952}
9953#endif /* CONFIG_PM */
9954
9955#ifdef CONFIG_PM_SLEEP
9956/**
9957 * ufshcd_system_suspend - system suspend callback
9958 * @dev: Device associated with the UFS controller.
9959 *
9960 * Executed before putting the system into a sleep state in which the contents
9961 * of main memory are preserved.
9962 *
9963 * Return: 0 for success and non-zero for failure.
9964 */
9965int ufshcd_system_suspend(struct device *dev)
9966{
9967	struct ufs_hba *hba = dev_get_drvdata(dev);
9968	int ret = 0;
9969	ktime_t start = ktime_get();
9970
9971	if (pm_runtime_suspended(hba->dev))
9972		goto out;
9973
9974	ret = ufshcd_suspend(hba);
9975out:
9976	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9977		ktime_to_us(ktime_sub(ktime_get(), start)),
9978		hba->curr_dev_pwr_mode, hba->uic_link_state);
9979	return ret;
9980}
9981EXPORT_SYMBOL(ufshcd_system_suspend);
9982
9983/**
9984 * ufshcd_system_resume - system resume callback
9985 * @dev: Device associated with the UFS controller.
9986 *
9987 * Executed after waking the system up from a sleep state in which the contents
9988 * of main memory were preserved.
9989 *
9990 * Return: 0 for success and non-zero for failure.
9991 */
9992int ufshcd_system_resume(struct device *dev)
9993{
9994	struct ufs_hba *hba = dev_get_drvdata(dev);
9995	ktime_t start = ktime_get();
9996	int ret = 0;
9997
9998	if (pm_runtime_suspended(hba->dev))
9999		goto out;
10000
10001	ret = ufshcd_resume(hba);
10002
10003out:
10004	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10005		ktime_to_us(ktime_sub(ktime_get(), start)),
10006		hba->curr_dev_pwr_mode, hba->uic_link_state);
10007
10008	return ret;
10009}
10010EXPORT_SYMBOL(ufshcd_system_resume);
10011#endif /* CONFIG_PM_SLEEP */
10012
10013#ifdef CONFIG_PM
10014/**
10015 * ufshcd_runtime_suspend - runtime suspend callback
10016 * @dev: Device associated with the UFS controller.
10017 *
10018 * Check the description of ufshcd_suspend() function for more details.
10019 *
10020 * Return: 0 for success and non-zero for failure.
10021 */
10022int ufshcd_runtime_suspend(struct device *dev)
10023{
10024	struct ufs_hba *hba = dev_get_drvdata(dev);
10025	int ret;
10026	ktime_t start = ktime_get();
10027
10028	ret = ufshcd_suspend(hba);
10029
10030	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10031		ktime_to_us(ktime_sub(ktime_get(), start)),
10032		hba->curr_dev_pwr_mode, hba->uic_link_state);
10033	return ret;
10034}
10035EXPORT_SYMBOL(ufshcd_runtime_suspend);
10036
10037/**
10038 * ufshcd_runtime_resume - runtime resume routine
10039 * @dev: Device associated with the UFS controller.
10040 *
10041 * This function basically brings controller
10042 * to active state. Following operations are done in this function:
10043 *
10044 * 1. Turn on all the controller related clocks
10045 * 2. Turn ON VCC rail
10046 *
10047 * Return: 0 upon success; < 0 upon failure.
10048 */
10049int ufshcd_runtime_resume(struct device *dev)
10050{
10051	struct ufs_hba *hba = dev_get_drvdata(dev);
10052	int ret;
10053	ktime_t start = ktime_get();
10054
10055	ret = ufshcd_resume(hba);
10056
10057	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10058		ktime_to_us(ktime_sub(ktime_get(), start)),
10059		hba->curr_dev_pwr_mode, hba->uic_link_state);
10060	return ret;
10061}
10062EXPORT_SYMBOL(ufshcd_runtime_resume);
10063#endif /* CONFIG_PM */
10064
10065static void ufshcd_wl_shutdown(struct device *dev)
10066{
10067	struct scsi_device *sdev = to_scsi_device(dev);
10068	struct ufs_hba *hba = shost_priv(sdev->host);
10069
10070	down(&hba->host_sem);
10071	hba->shutting_down = true;
10072	up(&hba->host_sem);
10073
10074	/* Turn on everything while shutting down */
10075	ufshcd_rpm_get_sync(hba);
10076	scsi_device_quiesce(sdev);
10077	shost_for_each_device(sdev, hba->host) {
10078		if (sdev == hba->ufs_device_wlun)
10079			continue;
10080		scsi_device_quiesce(sdev);
10081	}
10082	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10083
10084	/*
10085	 * Next, turn off the UFS controller and the UFS regulators. Disable
10086	 * clocks.
10087	 */
10088	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10089		ufshcd_suspend(hba);
10090
10091	hba->is_powered = false;
10092}
10093
10094/**
10095 * ufshcd_remove - de-allocate SCSI host and host memory space
10096 *		data structure memory
10097 * @hba: per adapter instance
10098 */
10099void ufshcd_remove(struct ufs_hba *hba)
10100{
10101	if (hba->ufs_device_wlun)
10102		ufshcd_rpm_get_sync(hba);
10103	ufs_hwmon_remove(hba);
10104	ufs_bsg_remove(hba);
10105	ufs_sysfs_remove_nodes(hba->dev);
10106	blk_mq_destroy_queue(hba->tmf_queue);
10107	blk_put_queue(hba->tmf_queue);
10108	blk_mq_free_tag_set(&hba->tmf_tag_set);
10109	scsi_remove_host(hba->host);
10110	/* disable interrupts */
10111	ufshcd_disable_intr(hba, hba->intr_mask);
10112	ufshcd_hba_stop(hba);
10113	ufshcd_hba_exit(hba);
10114}
10115EXPORT_SYMBOL_GPL(ufshcd_remove);
10116
10117#ifdef CONFIG_PM_SLEEP
10118int ufshcd_system_freeze(struct device *dev)
10119{
10120
10121	return ufshcd_system_suspend(dev);
10122
10123}
10124EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10125
10126int ufshcd_system_restore(struct device *dev)
10127{
10128
10129	struct ufs_hba *hba = dev_get_drvdata(dev);
10130	int ret;
10131
10132	ret = ufshcd_system_resume(dev);
10133	if (ret)
10134		return ret;
10135
10136	/* Configure UTRL and UTMRL base address registers */
10137	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10138			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10139	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10140			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10141	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10142			REG_UTP_TASK_REQ_LIST_BASE_L);
10143	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10144			REG_UTP_TASK_REQ_LIST_BASE_H);
10145	/*
10146	 * Make sure that UTRL and UTMRL base address registers
10147	 * are updated with the latest queue addresses. Only after
10148	 * updating these addresses, we can queue the new commands.
10149	 */
10150	mb();
10151
10152	/* Resuming from hibernate, assume that link was OFF */
10153	ufshcd_set_link_off(hba);
10154
10155	return 0;
10156
10157}
10158EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10159
10160int ufshcd_system_thaw(struct device *dev)
10161{
10162	return ufshcd_system_resume(dev);
10163}
10164EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10165#endif /* CONFIG_PM_SLEEP  */
10166
10167/**
10168 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10169 * @hba: pointer to Host Bus Adapter (HBA)
10170 */
10171void ufshcd_dealloc_host(struct ufs_hba *hba)
10172{
10173	scsi_host_put(hba->host);
10174}
10175EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10176
10177/**
10178 * ufshcd_set_dma_mask - Set dma mask based on the controller
10179 *			 addressing capability
10180 * @hba: per adapter instance
10181 *
10182 * Return: 0 for success, non-zero for failure.
10183 */
10184static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10185{
10186	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10187		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10188			return 0;
10189	}
10190	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10191}
10192
10193/**
10194 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10195 * @dev: pointer to device handle
10196 * @hba_handle: driver private handle
10197 *
10198 * Return: 0 on success, non-zero value on failure.
10199 */
10200int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10201{
10202	struct Scsi_Host *host;
10203	struct ufs_hba *hba;
10204	int err = 0;
10205
10206	if (!dev) {
10207		dev_err(dev,
10208		"Invalid memory reference for dev is NULL\n");
10209		err = -ENODEV;
10210		goto out_error;
10211	}
10212
10213	host = scsi_host_alloc(&ufshcd_driver_template,
10214				sizeof(struct ufs_hba));
10215	if (!host) {
10216		dev_err(dev, "scsi_host_alloc failed\n");
10217		err = -ENOMEM;
10218		goto out_error;
10219	}
10220	host->nr_maps = HCTX_TYPE_POLL + 1;
10221	hba = shost_priv(host);
10222	hba->host = host;
10223	hba->dev = dev;
10224	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10225	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10226	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10227	INIT_LIST_HEAD(&hba->clk_list_head);
10228	spin_lock_init(&hba->outstanding_lock);
10229
10230	*hba_handle = hba;
10231
10232out_error:
10233	return err;
10234}
10235EXPORT_SYMBOL(ufshcd_alloc_host);
10236
10237/* This function exists because blk_mq_alloc_tag_set() requires this. */
10238static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10239				     const struct blk_mq_queue_data *qd)
10240{
10241	WARN_ON_ONCE(true);
10242	return BLK_STS_NOTSUPP;
10243}
10244
10245static const struct blk_mq_ops ufshcd_tmf_ops = {
10246	.queue_rq = ufshcd_queue_tmf,
10247};
10248
10249/**
10250 * ufshcd_init - Driver initialization routine
10251 * @hba: per-adapter instance
10252 * @mmio_base: base register address
10253 * @irq: Interrupt line of device
10254 *
10255 * Return: 0 on success, non-zero value on failure.
10256 */
10257int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10258{
10259	int err;
10260	struct Scsi_Host *host = hba->host;
10261	struct device *dev = hba->dev;
10262	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10263
10264	/*
10265	 * dev_set_drvdata() must be called before any callbacks are registered
10266	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10267	 * sysfs).
10268	 */
10269	dev_set_drvdata(dev, hba);
10270
10271	if (!mmio_base) {
10272		dev_err(hba->dev,
10273		"Invalid memory reference for mmio_base is NULL\n");
10274		err = -ENODEV;
10275		goto out_error;
10276	}
10277
10278	hba->mmio_base = mmio_base;
10279	hba->irq = irq;
10280	hba->vps = &ufs_hba_vps;
10281
10282	err = ufshcd_hba_init(hba);
10283	if (err)
10284		goto out_error;
10285
10286	/* Read capabilities registers */
10287	err = ufshcd_hba_capabilities(hba);
10288	if (err)
10289		goto out_disable;
10290
10291	/* Get UFS version supported by the controller */
10292	hba->ufs_version = ufshcd_get_ufs_version(hba);
10293
10294	/* Get Interrupt bit mask per version */
10295	hba->intr_mask = ufshcd_get_intr_mask(hba);
10296
10297	err = ufshcd_set_dma_mask(hba);
10298	if (err) {
10299		dev_err(hba->dev, "set dma mask failed\n");
10300		goto out_disable;
10301	}
10302
10303	/* Allocate memory for host memory space */
10304	err = ufshcd_memory_alloc(hba);
10305	if (err) {
10306		dev_err(hba->dev, "Memory allocation failed\n");
10307		goto out_disable;
10308	}
10309
10310	/* Configure LRB */
10311	ufshcd_host_memory_configure(hba);
10312
10313	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10314	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10315	host->max_id = UFSHCD_MAX_ID;
10316	host->max_lun = UFS_MAX_LUNS;
10317	host->max_channel = UFSHCD_MAX_CHANNEL;
10318	host->unique_id = host->host_no;
10319	host->max_cmd_len = UFS_CDB_SIZE;
10320	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10321
10322	hba->max_pwr_info.is_valid = false;
10323
10324	/* Initialize work queues */
10325	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10326		 hba->host->host_no);
10327	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10328	if (!hba->eh_wq) {
10329		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10330			__func__);
10331		err = -ENOMEM;
10332		goto out_disable;
10333	}
10334	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10335	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10336
10337	sema_init(&hba->host_sem, 1);
10338
10339	/* Initialize UIC command mutex */
10340	mutex_init(&hba->uic_cmd_mutex);
10341
10342	/* Initialize mutex for device management commands */
10343	mutex_init(&hba->dev_cmd.lock);
10344
10345	/* Initialize mutex for exception event control */
10346	mutex_init(&hba->ee_ctrl_mutex);
10347
10348	mutex_init(&hba->wb_mutex);
10349	init_rwsem(&hba->clk_scaling_lock);
10350
10351	ufshcd_init_clk_gating(hba);
10352
10353	ufshcd_init_clk_scaling(hba);
10354
10355	/*
10356	 * In order to avoid any spurious interrupt immediately after
10357	 * registering UFS controller interrupt handler, clear any pending UFS
10358	 * interrupt status and disable all the UFS interrupts.
10359	 */
10360	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10361		      REG_INTERRUPT_STATUS);
10362	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10363	/*
10364	 * Make sure that UFS interrupts are disabled and any pending interrupt
10365	 * status is cleared before registering UFS interrupt handler.
10366	 */
10367	mb();
10368
10369	/* IRQ registration */
10370	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10371	if (err) {
10372		dev_err(hba->dev, "request irq failed\n");
10373		goto out_disable;
10374	} else {
10375		hba->is_irq_enabled = true;
10376	}
10377
10378	if (!is_mcq_supported(hba)) {
10379		err = scsi_add_host(host, hba->dev);
10380		if (err) {
10381			dev_err(hba->dev, "scsi_add_host failed\n");
10382			goto out_disable;
10383		}
10384	}
10385
10386	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10387		.nr_hw_queues	= 1,
10388		.queue_depth	= hba->nutmrs,
10389		.ops		= &ufshcd_tmf_ops,
10390		.flags		= BLK_MQ_F_NO_SCHED,
10391	};
10392	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10393	if (err < 0)
10394		goto out_remove_scsi_host;
10395	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10396	if (IS_ERR(hba->tmf_queue)) {
10397		err = PTR_ERR(hba->tmf_queue);
10398		goto free_tmf_tag_set;
10399	}
10400	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10401				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10402	if (!hba->tmf_rqs) {
10403		err = -ENOMEM;
10404		goto free_tmf_queue;
10405	}
10406
10407	/* Reset the attached device */
10408	ufshcd_device_reset(hba);
10409
10410	ufshcd_init_crypto(hba);
10411
10412	/* Host controller enable */
10413	err = ufshcd_hba_enable(hba);
10414	if (err) {
10415		dev_err(hba->dev, "Host controller enable failed\n");
10416		ufshcd_print_evt_hist(hba);
10417		ufshcd_print_host_state(hba);
10418		goto free_tmf_queue;
10419	}
10420
10421	/*
10422	 * Set the default power management level for runtime and system PM.
10423	 * Default power saving mode is to keep UFS link in Hibern8 state
10424	 * and UFS device in sleep state.
10425	 */
10426	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10427						UFS_SLEEP_PWR_MODE,
10428						UIC_LINK_HIBERN8_STATE);
10429	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10430						UFS_SLEEP_PWR_MODE,
10431						UIC_LINK_HIBERN8_STATE);
10432
10433	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10434			  ufshcd_rpm_dev_flush_recheck_work);
10435
10436	/* Set the default auto-hiberate idle timer value to 150 ms */
10437	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10438		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10439			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10440	}
10441
10442	/* Hold auto suspend until async scan completes */
10443	pm_runtime_get_sync(dev);
10444	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10445	/*
10446	 * We are assuming that device wasn't put in sleep/power-down
10447	 * state exclusively during the boot stage before kernel.
10448	 * This assumption helps avoid doing link startup twice during
10449	 * ufshcd_probe_hba().
10450	 */
10451	ufshcd_set_ufs_dev_active(hba);
10452
10453	async_schedule(ufshcd_async_scan, hba);
10454	ufs_sysfs_add_nodes(hba->dev);
10455
10456	device_enable_async_suspend(dev);
10457	return 0;
10458
10459free_tmf_queue:
10460	blk_mq_destroy_queue(hba->tmf_queue);
10461	blk_put_queue(hba->tmf_queue);
10462free_tmf_tag_set:
10463	blk_mq_free_tag_set(&hba->tmf_tag_set);
10464out_remove_scsi_host:
10465	scsi_remove_host(hba->host);
10466out_disable:
10467	hba->is_irq_enabled = false;
10468	ufshcd_hba_exit(hba);
10469out_error:
10470	return err;
10471}
10472EXPORT_SYMBOL_GPL(ufshcd_init);
10473
10474void ufshcd_resume_complete(struct device *dev)
10475{
10476	struct ufs_hba *hba = dev_get_drvdata(dev);
10477
10478	if (hba->complete_put) {
10479		ufshcd_rpm_put(hba);
10480		hba->complete_put = false;
10481	}
10482}
10483EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10484
10485static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10486{
10487	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10488	enum ufs_dev_pwr_mode dev_pwr_mode;
10489	enum uic_link_state link_state;
10490	unsigned long flags;
10491	bool res;
10492
10493	spin_lock_irqsave(&dev->power.lock, flags);
10494	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10495	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10496	res = pm_runtime_suspended(dev) &&
10497	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10498	      hba->uic_link_state == link_state &&
10499	      !hba->dev_info.b_rpm_dev_flush_capable;
10500	spin_unlock_irqrestore(&dev->power.lock, flags);
10501
10502	return res;
10503}
10504
10505int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10506{
10507	struct ufs_hba *hba = dev_get_drvdata(dev);
10508	int ret;
10509
10510	/*
10511	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10512	 * are same. And it doesn't wake up the device for system-suspend
10513	 * if it's runtime suspended. But ufs doesn't follow that.
10514	 * Refer ufshcd_resume_complete()
10515	 */
10516	if (hba->ufs_device_wlun) {
10517		/* Prevent runtime suspend */
10518		ufshcd_rpm_get_noresume(hba);
10519		/*
10520		 * Check if already runtime suspended in same state as system
10521		 * suspend would be.
10522		 */
10523		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10524			/* RPM state is not ok for SPM, so runtime resume */
10525			ret = ufshcd_rpm_resume(hba);
10526			if (ret < 0 && ret != -EACCES) {
10527				ufshcd_rpm_put(hba);
10528				return ret;
10529			}
10530		}
10531		hba->complete_put = true;
10532	}
10533	return 0;
10534}
10535EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10536
10537int ufshcd_suspend_prepare(struct device *dev)
10538{
10539	return __ufshcd_suspend_prepare(dev, true);
10540}
10541EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10542
10543#ifdef CONFIG_PM_SLEEP
10544static int ufshcd_wl_poweroff(struct device *dev)
10545{
10546	struct scsi_device *sdev = to_scsi_device(dev);
10547	struct ufs_hba *hba = shost_priv(sdev->host);
10548
10549	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10550	return 0;
10551}
10552#endif
10553
10554static int ufshcd_wl_probe(struct device *dev)
10555{
10556	struct scsi_device *sdev = to_scsi_device(dev);
10557
10558	if (!is_device_wlun(sdev))
10559		return -ENODEV;
10560
10561	blk_pm_runtime_init(sdev->request_queue, dev);
10562	pm_runtime_set_autosuspend_delay(dev, 0);
10563	pm_runtime_allow(dev);
10564
10565	return  0;
10566}
10567
10568static int ufshcd_wl_remove(struct device *dev)
10569{
10570	pm_runtime_forbid(dev);
10571	return 0;
10572}
10573
10574static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10575#ifdef CONFIG_PM_SLEEP
10576	.suspend = ufshcd_wl_suspend,
10577	.resume = ufshcd_wl_resume,
10578	.freeze = ufshcd_wl_suspend,
10579	.thaw = ufshcd_wl_resume,
10580	.poweroff = ufshcd_wl_poweroff,
10581	.restore = ufshcd_wl_resume,
10582#endif
10583	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10584};
10585
10586static void ufshcd_check_header_layout(void)
10587{
10588	/*
10589	 * gcc compilers before version 10 cannot do constant-folding for
10590	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10591	 * before.
10592	 */
10593	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10594		return;
10595
10596	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10597				.cci = 3})[0] != 3);
10598
10599	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10600				.ehs_length = 2})[1] != 2);
10601
10602	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10603				.enable_crypto = 1})[2]
10604		     != 0x80);
10605
10606	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10607					.command_type = 5,
10608					.data_direction = 3,
10609					.interrupt = 1,
10610				})[3]) != ((5 << 4) | (3 << 1) | 1));
10611
10612	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10613				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10614		cpu_to_le32(0xdeadbeef));
10615
10616	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10617				.ocs = 4})[8] != 4);
10618
10619	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10620				.cds = 5})[9] != 5);
10621
10622	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10623				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10624		cpu_to_le32(0xbadcafe));
10625
10626	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10627			     .iid = 0xf })[4] != 0xf0);
10628
10629	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10630			     .command_set_type = 0xf })[4] != 0xf);
10631}
10632
10633/*
10634 * ufs_dev_wlun_template - describes ufs device wlun
10635 * ufs-device wlun - used to send pm commands
10636 * All luns are consumers of ufs-device wlun.
10637 *
10638 * Currently, no sd driver is present for wluns.
10639 * Hence the no specific pm operations are performed.
10640 * With ufs design, SSU should be sent to ufs-device wlun.
10641 * Hence register a scsi driver for ufs wluns only.
10642 */
10643static struct scsi_driver ufs_dev_wlun_template = {
10644	.gendrv = {
10645		.name = "ufs_device_wlun",
10646		.owner = THIS_MODULE,
10647		.probe = ufshcd_wl_probe,
10648		.remove = ufshcd_wl_remove,
10649		.pm = &ufshcd_wl_pm_ops,
10650		.shutdown = ufshcd_wl_shutdown,
10651	},
10652};
10653
10654static int __init ufshcd_core_init(void)
10655{
10656	int ret;
10657
10658	ufshcd_check_header_layout();
10659
10660	ufs_debugfs_init();
10661
10662	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10663	if (ret)
10664		ufs_debugfs_exit();
10665	return ret;
10666}
10667
10668static void __exit ufshcd_core_exit(void)
10669{
10670	ufs_debugfs_exit();
10671	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10672}
10673
10674module_init(ufshcd_core_init);
10675module_exit(ufshcd_core_exit);
10676
10677MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10678MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10679MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10680MODULE_SOFTDEP("pre: governor_simpleondemand");
10681MODULE_LICENSE("GPL");
10682