xref: /kernel/linux/linux-6.6/drivers/tty/vt/vt_ioctl.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  Copyright (C) 1992 obz under the linux copyright
4 *
5 *  Dynamic diacritical handling - aeb@cwi.nl - Dec 1993
6 *  Dynamic keymap and string allocation - aeb@cwi.nl - May 1994
7 *  Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995
8 *  Some code moved for less code duplication - Andi Kleen - Mar 1997
9 *  Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001
10 */
11
12#include <linux/types.h>
13#include <linux/errno.h>
14#include <linux/sched/signal.h>
15#include <linux/tty.h>
16#include <linux/timer.h>
17#include <linux/kernel.h>
18#include <linux/compat.h>
19#include <linux/module.h>
20#include <linux/kd.h>
21#include <linux/vt.h>
22#include <linux/string.h>
23#include <linux/slab.h>
24#include <linux/major.h>
25#include <linux/fs.h>
26#include <linux/console.h>
27#include <linux/consolemap.h>
28#include <linux/signal.h>
29#include <linux/suspend.h>
30#include <linux/timex.h>
31
32#include <asm/io.h>
33#include <linux/uaccess.h>
34
35#include <linux/nospec.h>
36
37#include <linux/kbd_kern.h>
38#include <linux/vt_kern.h>
39#include <linux/kbd_diacr.h>
40#include <linux/selection.h>
41
42bool vt_dont_switch;
43
44static inline bool vt_in_use(unsigned int i)
45{
46	const struct vc_data *vc = vc_cons[i].d;
47
48	/*
49	 * console_lock must be held to prevent the vc from being deallocated
50	 * while we're checking whether it's in-use.
51	 */
52	WARN_CONSOLE_UNLOCKED();
53
54	return vc && kref_read(&vc->port.kref) > 1;
55}
56
57static inline bool vt_busy(int i)
58{
59	if (vt_in_use(i))
60		return true;
61	if (i == fg_console)
62		return true;
63	if (vc_is_sel(vc_cons[i].d))
64		return true;
65
66	return false;
67}
68
69/*
70 * Console (vt and kd) routines, as defined by USL SVR4 manual, and by
71 * experimentation and study of X386 SYSV handling.
72 *
73 * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and
74 * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console,
75 * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will
76 * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to
77 * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using
78 * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing
79 * to the current console is done by the main ioctl code.
80 */
81
82#ifdef CONFIG_X86
83#include <asm/syscalls.h>
84#endif
85
86static void complete_change_console(struct vc_data *vc);
87
88/*
89 *	User space VT_EVENT handlers
90 */
91
92struct vt_event_wait {
93	struct list_head list;
94	struct vt_event event;
95	int done;
96};
97
98static LIST_HEAD(vt_events);
99static DEFINE_SPINLOCK(vt_event_lock);
100static DECLARE_WAIT_QUEUE_HEAD(vt_event_waitqueue);
101
102/**
103 *	vt_event_post
104 *	@event: the event that occurred
105 *	@old: old console
106 *	@new: new console
107 *
108 *	Post an VT event to interested VT handlers
109 */
110
111void vt_event_post(unsigned int event, unsigned int old, unsigned int new)
112{
113	struct list_head *pos, *head;
114	unsigned long flags;
115	int wake = 0;
116
117	spin_lock_irqsave(&vt_event_lock, flags);
118	head = &vt_events;
119
120	list_for_each(pos, head) {
121		struct vt_event_wait *ve = list_entry(pos,
122						struct vt_event_wait, list);
123		if (!(ve->event.event & event))
124			continue;
125		ve->event.event = event;
126		/* kernel view is consoles 0..n-1, user space view is
127		   console 1..n with 0 meaning current, so we must bias */
128		ve->event.oldev = old + 1;
129		ve->event.newev = new + 1;
130		wake = 1;
131		ve->done = 1;
132	}
133	spin_unlock_irqrestore(&vt_event_lock, flags);
134	if (wake)
135		wake_up_interruptible(&vt_event_waitqueue);
136}
137
138static void __vt_event_queue(struct vt_event_wait *vw)
139{
140	unsigned long flags;
141	/* Prepare the event */
142	INIT_LIST_HEAD(&vw->list);
143	vw->done = 0;
144	/* Queue our event */
145	spin_lock_irqsave(&vt_event_lock, flags);
146	list_add(&vw->list, &vt_events);
147	spin_unlock_irqrestore(&vt_event_lock, flags);
148}
149
150static void __vt_event_wait(struct vt_event_wait *vw)
151{
152	/* Wait for it to pass */
153	wait_event_interruptible(vt_event_waitqueue, vw->done);
154}
155
156static void __vt_event_dequeue(struct vt_event_wait *vw)
157{
158	unsigned long flags;
159
160	/* Dequeue it */
161	spin_lock_irqsave(&vt_event_lock, flags);
162	list_del(&vw->list);
163	spin_unlock_irqrestore(&vt_event_lock, flags);
164}
165
166/**
167 *	vt_event_wait		-	wait for an event
168 *	@vw: our event
169 *
170 *	Waits for an event to occur which completes our vt_event_wait
171 *	structure. On return the structure has wv->done set to 1 for success
172 *	or 0 if some event such as a signal ended the wait.
173 */
174
175static void vt_event_wait(struct vt_event_wait *vw)
176{
177	__vt_event_queue(vw);
178	__vt_event_wait(vw);
179	__vt_event_dequeue(vw);
180}
181
182/**
183 *	vt_event_wait_ioctl	-	event ioctl handler
184 *	@event: argument to ioctl (the event)
185 *
186 *	Implement the VT_WAITEVENT ioctl using the VT event interface
187 */
188
189static int vt_event_wait_ioctl(struct vt_event __user *event)
190{
191	struct vt_event_wait vw;
192
193	if (copy_from_user(&vw.event, event, sizeof(struct vt_event)))
194		return -EFAULT;
195	/* Highest supported event for now */
196	if (vw.event.event & ~VT_MAX_EVENT)
197		return -EINVAL;
198
199	vt_event_wait(&vw);
200	/* If it occurred report it */
201	if (vw.done) {
202		if (copy_to_user(event, &vw.event, sizeof(struct vt_event)))
203			return -EFAULT;
204		return 0;
205	}
206	return -EINTR;
207}
208
209/**
210 *	vt_waitactive	-	active console wait
211 *	@n: new console
212 *
213 *	Helper for event waits. Used to implement the legacy
214 *	event waiting ioctls in terms of events
215 */
216
217int vt_waitactive(int n)
218{
219	struct vt_event_wait vw;
220	do {
221		vw.event.event = VT_EVENT_SWITCH;
222		__vt_event_queue(&vw);
223		if (n == fg_console + 1) {
224			__vt_event_dequeue(&vw);
225			break;
226		}
227		__vt_event_wait(&vw);
228		__vt_event_dequeue(&vw);
229		if (vw.done == 0)
230			return -EINTR;
231	} while (vw.event.newev != n);
232	return 0;
233}
234
235/*
236 * these are the valid i/o ports we're allowed to change. they map all the
237 * video ports
238 */
239#define GPFIRST 0x3b4
240#define GPLAST 0x3df
241#define GPNUM (GPLAST - GPFIRST + 1)
242
243/*
244 * currently, setting the mode from KD_TEXT to KD_GRAPHICS doesn't do a whole
245 * lot. i'm not sure if it should do any restoration of modes or what...
246 *
247 * XXX It should at least call into the driver, fbdev's definitely need to
248 * restore their engine state. --BenH
249 *
250 * Called with the console lock held.
251 */
252static int vt_kdsetmode(struct vc_data *vc, unsigned long mode)
253{
254	switch (mode) {
255	case KD_GRAPHICS:
256		break;
257	case KD_TEXT0:
258	case KD_TEXT1:
259		mode = KD_TEXT;
260		fallthrough;
261	case KD_TEXT:
262		break;
263	default:
264		return -EINVAL;
265	}
266
267	if (vc->vc_mode == mode)
268		return 0;
269
270	vc->vc_mode = mode;
271	if (vc->vc_num != fg_console)
272		return 0;
273
274	/* explicitly blank/unblank the screen if switching modes */
275	if (mode == KD_TEXT)
276		do_unblank_screen(1);
277	else
278		do_blank_screen(1);
279
280	return 0;
281}
282
283static int vt_k_ioctl(struct tty_struct *tty, unsigned int cmd,
284		unsigned long arg, bool perm)
285{
286	struct vc_data *vc = tty->driver_data;
287	void __user *up = (void __user *)arg;
288	unsigned int console = vc->vc_num;
289	int ret;
290
291	switch (cmd) {
292	case KIOCSOUND:
293		if (!perm)
294			return -EPERM;
295		/*
296		 * The use of PIT_TICK_RATE is historic, it used to be
297		 * the platform-dependent CLOCK_TICK_RATE between 2.6.12
298		 * and 2.6.36, which was a minor but unfortunate ABI
299		 * change. kd_mksound is locked by the input layer.
300		 */
301		if (arg)
302			arg = PIT_TICK_RATE / arg;
303		kd_mksound(arg, 0);
304		break;
305
306	case KDMKTONE:
307		if (!perm)
308			return -EPERM;
309	{
310		unsigned int ticks, count;
311
312		/*
313		 * Generate the tone for the appropriate number of ticks.
314		 * If the time is zero, turn off sound ourselves.
315		 */
316		ticks = msecs_to_jiffies((arg >> 16) & 0xffff);
317		count = ticks ? (arg & 0xffff) : 0;
318		if (count)
319			count = PIT_TICK_RATE / count;
320		kd_mksound(count, ticks);
321		break;
322	}
323
324	case KDGKBTYPE:
325		/*
326		 * this is naïve.
327		 */
328		return put_user(KB_101, (char __user *)arg);
329
330		/*
331		 * These cannot be implemented on any machine that implements
332		 * ioperm() in user level (such as Alpha PCs) or not at all.
333		 *
334		 * XXX: you should never use these, just call ioperm directly..
335		 */
336#ifdef CONFIG_X86
337	case KDADDIO:
338	case KDDELIO:
339		/*
340		 * KDADDIO and KDDELIO may be able to add ports beyond what
341		 * we reject here, but to be safe...
342		 *
343		 * These are locked internally via sys_ioperm
344		 */
345		if (arg < GPFIRST || arg > GPLAST)
346			return -EINVAL;
347
348		return ksys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0;
349
350	case KDENABIO:
351	case KDDISABIO:
352		return ksys_ioperm(GPFIRST, GPNUM,
353				  (cmd == KDENABIO)) ? -ENXIO : 0;
354#endif
355
356	/* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */
357
358	case KDKBDREP:
359	{
360		struct kbd_repeat kbrep;
361
362		if (!capable(CAP_SYS_TTY_CONFIG))
363			return -EPERM;
364
365		if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat)))
366			return -EFAULT;
367
368		ret = kbd_rate(&kbrep);
369		if (ret)
370			return ret;
371		if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat)))
372			return -EFAULT;
373		break;
374	}
375
376	case KDSETMODE:
377		if (!perm)
378			return -EPERM;
379
380		console_lock();
381		ret = vt_kdsetmode(vc, arg);
382		console_unlock();
383		return ret;
384
385	case KDGETMODE:
386		return put_user(vc->vc_mode, (int __user *)arg);
387
388	case KDMAPDISP:
389	case KDUNMAPDISP:
390		/*
391		 * these work like a combination of mmap and KDENABIO.
392		 * this could be easily finished.
393		 */
394		return -EINVAL;
395
396	case KDSKBMODE:
397		if (!perm)
398			return -EPERM;
399		ret = vt_do_kdskbmode(console, arg);
400		if (ret)
401			return ret;
402		tty_ldisc_flush(tty);
403		break;
404
405	case KDGKBMODE:
406		return put_user(vt_do_kdgkbmode(console), (int __user *)arg);
407
408	/* this could be folded into KDSKBMODE, but for compatibility
409	   reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */
410	case KDSKBMETA:
411		return vt_do_kdskbmeta(console, arg);
412
413	case KDGKBMETA:
414		/* FIXME: should review whether this is worth locking */
415		return put_user(vt_do_kdgkbmeta(console), (int __user *)arg);
416
417	case KDGETKEYCODE:
418	case KDSETKEYCODE:
419		if(!capable(CAP_SYS_TTY_CONFIG))
420			perm = 0;
421		return vt_do_kbkeycode_ioctl(cmd, up, perm);
422
423	case KDGKBENT:
424	case KDSKBENT:
425		return vt_do_kdsk_ioctl(cmd, up, perm, console);
426
427	case KDGKBSENT:
428	case KDSKBSENT:
429		return vt_do_kdgkb_ioctl(cmd, up, perm);
430
431	/* Diacritical processing. Handled in keyboard.c as it has
432	   to operate on the keyboard locks and structures */
433	case KDGKBDIACR:
434	case KDGKBDIACRUC:
435	case KDSKBDIACR:
436	case KDSKBDIACRUC:
437		return vt_do_diacrit(cmd, up, perm);
438
439	/* the ioctls below read/set the flags usually shown in the leds */
440	/* don't use them - they will go away without warning */
441	case KDGKBLED:
442	case KDSKBLED:
443	case KDGETLED:
444	case KDSETLED:
445		return vt_do_kdskled(console, cmd, arg, perm);
446
447	/*
448	 * A process can indicate its willingness to accept signals
449	 * generated by pressing an appropriate key combination.
450	 * Thus, one can have a daemon that e.g. spawns a new console
451	 * upon a keypress and then changes to it.
452	 * See also the kbrequest field of inittab(5).
453	 */
454	case KDSIGACCEPT:
455		if (!perm || !capable(CAP_KILL))
456			return -EPERM;
457		if (!valid_signal(arg) || arg < 1 || arg == SIGKILL)
458			return -EINVAL;
459
460		spin_lock_irq(&vt_spawn_con.lock);
461		put_pid(vt_spawn_con.pid);
462		vt_spawn_con.pid = get_pid(task_pid(current));
463		vt_spawn_con.sig = arg;
464		spin_unlock_irq(&vt_spawn_con.lock);
465		break;
466
467	case KDFONTOP: {
468		struct console_font_op op;
469
470		if (copy_from_user(&op, up, sizeof(op)))
471			return -EFAULT;
472		if (!perm && op.op != KD_FONT_OP_GET)
473			return -EPERM;
474		ret = con_font_op(vc, &op);
475		if (ret)
476			return ret;
477		if (copy_to_user(up, &op, sizeof(op)))
478			return -EFAULT;
479		break;
480	}
481
482	default:
483		return -ENOIOCTLCMD;
484	}
485
486	return 0;
487}
488
489static inline int do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud,
490		bool perm, struct vc_data *vc)
491{
492	struct unimapdesc tmp;
493
494	if (copy_from_user(&tmp, user_ud, sizeof tmp))
495		return -EFAULT;
496	switch (cmd) {
497	case PIO_UNIMAP:
498		if (!perm)
499			return -EPERM;
500		return con_set_unimap(vc, tmp.entry_ct, tmp.entries);
501	case GIO_UNIMAP:
502		if (!perm && fg_console != vc->vc_num)
503			return -EPERM;
504		return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct),
505				tmp.entries);
506	}
507	return 0;
508}
509
510static int vt_io_ioctl(struct vc_data *vc, unsigned int cmd, void __user *up,
511		bool perm)
512{
513	switch (cmd) {
514	case PIO_CMAP:
515		if (!perm)
516			return -EPERM;
517		return con_set_cmap(up);
518
519	case GIO_CMAP:
520		return con_get_cmap(up);
521
522	case PIO_SCRNMAP:
523		if (!perm)
524			return -EPERM;
525		return con_set_trans_old(up);
526
527	case GIO_SCRNMAP:
528		return con_get_trans_old(up);
529
530	case PIO_UNISCRNMAP:
531		if (!perm)
532			return -EPERM;
533		return con_set_trans_new(up);
534
535	case GIO_UNISCRNMAP:
536		return con_get_trans_new(up);
537
538	case PIO_UNIMAPCLR:
539		if (!perm)
540			return -EPERM;
541		con_clear_unimap(vc);
542		break;
543
544	case PIO_UNIMAP:
545	case GIO_UNIMAP:
546		return do_unimap_ioctl(cmd, up, perm, vc);
547
548	default:
549		return -ENOIOCTLCMD;
550	}
551
552	return 0;
553}
554
555static int vt_reldisp(struct vc_data *vc, unsigned int swtch)
556{
557	int newvt, ret;
558
559	if (vc->vt_mode.mode != VT_PROCESS)
560		return -EINVAL;
561
562	/* Switched-to response */
563	if (vc->vt_newvt < 0) {
564		 /* If it's just an ACK, ignore it */
565		return swtch == VT_ACKACQ ? 0 : -EINVAL;
566	}
567
568	/* Switching-from response */
569	if (swtch == 0) {
570		/* Switch disallowed, so forget we were trying to do it. */
571		vc->vt_newvt = -1;
572		return 0;
573	}
574
575	/* The current vt has been released, so complete the switch. */
576	newvt = vc->vt_newvt;
577	vc->vt_newvt = -1;
578	ret = vc_allocate(newvt);
579	if (ret)
580		return ret;
581
582	/*
583	 * When we actually do the console switch, make sure we are atomic with
584	 * respect to other console switches..
585	 */
586	complete_change_console(vc_cons[newvt].d);
587
588	return 0;
589}
590
591static int vt_setactivate(struct vt_setactivate __user *sa)
592{
593	struct vt_setactivate vsa;
594	struct vc_data *nvc;
595	int ret;
596
597	if (copy_from_user(&vsa, sa, sizeof(vsa)))
598		return -EFAULT;
599	if (vsa.console == 0 || vsa.console > MAX_NR_CONSOLES)
600		return -ENXIO;
601
602	vsa.console--;
603	vsa.console = array_index_nospec(vsa.console, MAX_NR_CONSOLES);
604	console_lock();
605	ret = vc_allocate(vsa.console);
606	if (ret) {
607		console_unlock();
608		return ret;
609	}
610
611	/*
612	 * This is safe providing we don't drop the console sem between
613	 * vc_allocate and finishing referencing nvc.
614	 */
615	nvc = vc_cons[vsa.console].d;
616	nvc->vt_mode = vsa.mode;
617	nvc->vt_mode.frsig = 0;
618	put_pid(nvc->vt_pid);
619	nvc->vt_pid = get_pid(task_pid(current));
620	console_unlock();
621
622	/* Commence switch and lock */
623	/* Review set_console locks */
624	set_console(vsa.console);
625
626	return 0;
627}
628
629/* deallocate a single console, if possible (leave 0) */
630static int vt_disallocate(unsigned int vc_num)
631{
632	struct vc_data *vc = NULL;
633	int ret = 0;
634
635	console_lock();
636	if (vt_busy(vc_num))
637		ret = -EBUSY;
638	else if (vc_num)
639		vc = vc_deallocate(vc_num);
640	console_unlock();
641
642	if (vc && vc_num >= MIN_NR_CONSOLES)
643		tty_port_put(&vc->port);
644
645	return ret;
646}
647
648/* deallocate all unused consoles, but leave 0 */
649static void vt_disallocate_all(void)
650{
651	struct vc_data *vc[MAX_NR_CONSOLES];
652	int i;
653
654	console_lock();
655	for (i = 1; i < MAX_NR_CONSOLES; i++)
656		if (!vt_busy(i))
657			vc[i] = vc_deallocate(i);
658		else
659			vc[i] = NULL;
660	console_unlock();
661
662	for (i = 1; i < MAX_NR_CONSOLES; i++) {
663		if (vc[i] && i >= MIN_NR_CONSOLES)
664			tty_port_put(&vc[i]->port);
665	}
666}
667
668static int vt_resizex(struct vc_data *vc, struct vt_consize __user *cs)
669{
670	struct vt_consize v;
671	int i;
672
673	if (copy_from_user(&v, cs, sizeof(struct vt_consize)))
674		return -EFAULT;
675
676	/* FIXME: Should check the copies properly */
677	if (!v.v_vlin)
678		v.v_vlin = vc->vc_scan_lines;
679
680	if (v.v_clin) {
681		int rows = v.v_vlin / v.v_clin;
682		if (v.v_rows != rows) {
683			if (v.v_rows) /* Parameters don't add up */
684				return -EINVAL;
685			v.v_rows = rows;
686		}
687	}
688
689	if (v.v_vcol && v.v_ccol) {
690		int cols = v.v_vcol / v.v_ccol;
691		if (v.v_cols != cols) {
692			if (v.v_cols)
693				return -EINVAL;
694			v.v_cols = cols;
695		}
696	}
697
698	if (v.v_clin > 32)
699		return -EINVAL;
700
701	for (i = 0; i < MAX_NR_CONSOLES; i++) {
702		struct vc_data *vcp;
703
704		if (!vc_cons[i].d)
705			continue;
706		console_lock();
707		vcp = vc_cons[i].d;
708		if (vcp) {
709			int ret;
710			int save_scan_lines = vcp->vc_scan_lines;
711			int save_cell_height = vcp->vc_cell_height;
712
713			if (v.v_vlin)
714				vcp->vc_scan_lines = v.v_vlin;
715			if (v.v_clin)
716				vcp->vc_cell_height = v.v_clin;
717			vcp->vc_resize_user = 1;
718			ret = vc_resize(vcp, v.v_cols, v.v_rows);
719			if (ret) {
720				vcp->vc_scan_lines = save_scan_lines;
721				vcp->vc_cell_height = save_cell_height;
722				console_unlock();
723				return ret;
724			}
725		}
726		console_unlock();
727	}
728
729	return 0;
730}
731
732/*
733 * We handle the console-specific ioctl's here.  We allow the
734 * capability to modify any console, not just the fg_console.
735 */
736int vt_ioctl(struct tty_struct *tty,
737	     unsigned int cmd, unsigned long arg)
738{
739	struct vc_data *vc = tty->driver_data;
740	void __user *up = (void __user *)arg;
741	int i, perm;
742	int ret;
743
744	/*
745	 * To have permissions to do most of the vt ioctls, we either have
746	 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
747	 */
748	perm = 0;
749	if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
750		perm = 1;
751
752	ret = vt_k_ioctl(tty, cmd, arg, perm);
753	if (ret != -ENOIOCTLCMD)
754		return ret;
755
756	ret = vt_io_ioctl(vc, cmd, up, perm);
757	if (ret != -ENOIOCTLCMD)
758		return ret;
759
760	switch (cmd) {
761	case TIOCLINUX:
762		return tioclinux(tty, arg);
763	case VT_SETMODE:
764	{
765		struct vt_mode tmp;
766
767		if (!perm)
768			return -EPERM;
769		if (copy_from_user(&tmp, up, sizeof(struct vt_mode)))
770			return -EFAULT;
771		if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS)
772			return -EINVAL;
773
774		console_lock();
775		vc->vt_mode = tmp;
776		/* the frsig is ignored, so we set it to 0 */
777		vc->vt_mode.frsig = 0;
778		put_pid(vc->vt_pid);
779		vc->vt_pid = get_pid(task_pid(current));
780		/* no switch is required -- saw@shade.msu.ru */
781		vc->vt_newvt = -1;
782		console_unlock();
783		break;
784	}
785
786	case VT_GETMODE:
787	{
788		struct vt_mode tmp;
789		int rc;
790
791		console_lock();
792		memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode));
793		console_unlock();
794
795		rc = copy_to_user(up, &tmp, sizeof(struct vt_mode));
796		if (rc)
797			return -EFAULT;
798		break;
799	}
800
801	/*
802	 * Returns global vt state. Note that VT 0 is always open, since
803	 * it's an alias for the current VT, and people can't use it here.
804	 * We cannot return state for more than 16 VTs, since v_state is short.
805	 */
806	case VT_GETSTATE:
807	{
808		struct vt_stat __user *vtstat = up;
809		unsigned short state, mask;
810
811		if (put_user(fg_console + 1, &vtstat->v_active))
812			return -EFAULT;
813
814		state = 1;	/* /dev/tty0 is always open */
815		console_lock(); /* required by vt_in_use() */
816		for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask;
817				++i, mask <<= 1)
818			if (vt_in_use(i))
819				state |= mask;
820		console_unlock();
821		return put_user(state, &vtstat->v_state);
822	}
823
824	/*
825	 * Returns the first available (non-opened) console.
826	 */
827	case VT_OPENQRY:
828		console_lock(); /* required by vt_in_use() */
829		for (i = 0; i < MAX_NR_CONSOLES; ++i)
830			if (!vt_in_use(i))
831				break;
832		console_unlock();
833		i = i < MAX_NR_CONSOLES ? (i+1) : -1;
834		return put_user(i, (int __user *)arg);
835
836	/*
837	 * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num,
838	 * with num >= 1 (switches to vt 0, our console, are not allowed, just
839	 * to preserve sanity).
840	 */
841	case VT_ACTIVATE:
842		if (!perm)
843			return -EPERM;
844		if (arg == 0 || arg > MAX_NR_CONSOLES)
845			return -ENXIO;
846
847		arg--;
848		arg = array_index_nospec(arg, MAX_NR_CONSOLES);
849		console_lock();
850		ret = vc_allocate(arg);
851		console_unlock();
852		if (ret)
853			return ret;
854		set_console(arg);
855		break;
856
857	case VT_SETACTIVATE:
858		if (!perm)
859			return -EPERM;
860
861		return vt_setactivate(up);
862
863	/*
864	 * wait until the specified VT has been activated
865	 */
866	case VT_WAITACTIVE:
867		if (!perm)
868			return -EPERM;
869		if (arg == 0 || arg > MAX_NR_CONSOLES)
870			return -ENXIO;
871		return vt_waitactive(arg);
872
873	/*
874	 * If a vt is under process control, the kernel will not switch to it
875	 * immediately, but postpone the operation until the process calls this
876	 * ioctl, allowing the switch to complete.
877	 *
878	 * According to the X sources this is the behavior:
879	 *	0:	pending switch-from not OK
880	 *	1:	pending switch-from OK
881	 *	2:	completed switch-to OK
882	 */
883	case VT_RELDISP:
884		if (!perm)
885			return -EPERM;
886
887		console_lock();
888		ret = vt_reldisp(vc, arg);
889		console_unlock();
890
891		return ret;
892
893
894	 /*
895	  * Disallocate memory associated to VT (but leave VT1)
896	  */
897	 case VT_DISALLOCATE:
898		if (arg > MAX_NR_CONSOLES)
899			return -ENXIO;
900
901		if (arg == 0) {
902			vt_disallocate_all();
903			break;
904		}
905
906		arg = array_index_nospec(arg - 1, MAX_NR_CONSOLES);
907		return vt_disallocate(arg);
908
909	case VT_RESIZE:
910	{
911		struct vt_sizes __user *vtsizes = up;
912		struct vc_data *vc;
913		ushort ll,cc;
914
915		if (!perm)
916			return -EPERM;
917		if (get_user(ll, &vtsizes->v_rows) ||
918		    get_user(cc, &vtsizes->v_cols))
919			return -EFAULT;
920
921		console_lock();
922		for (i = 0; i < MAX_NR_CONSOLES; i++) {
923			vc = vc_cons[i].d;
924
925			if (vc) {
926				vc->vc_resize_user = 1;
927				/* FIXME: review v tty lock */
928				vc_resize(vc_cons[i].d, cc, ll);
929			}
930		}
931		console_unlock();
932		break;
933	}
934
935	case VT_RESIZEX:
936		if (!perm)
937			return -EPERM;
938
939		return vt_resizex(vc, up);
940
941	case VT_LOCKSWITCH:
942		if (!capable(CAP_SYS_TTY_CONFIG))
943			return -EPERM;
944		vt_dont_switch = true;
945		break;
946	case VT_UNLOCKSWITCH:
947		if (!capable(CAP_SYS_TTY_CONFIG))
948			return -EPERM;
949		vt_dont_switch = false;
950		break;
951	case VT_GETHIFONTMASK:
952		return put_user(vc->vc_hi_font_mask,
953					(unsigned short __user *)arg);
954	case VT_WAITEVENT:
955		return vt_event_wait_ioctl((struct vt_event __user *)arg);
956	default:
957		return -ENOIOCTLCMD;
958	}
959
960	return 0;
961}
962
963void reset_vc(struct vc_data *vc)
964{
965	vc->vc_mode = KD_TEXT;
966	vt_reset_unicode(vc->vc_num);
967	vc->vt_mode.mode = VT_AUTO;
968	vc->vt_mode.waitv = 0;
969	vc->vt_mode.relsig = 0;
970	vc->vt_mode.acqsig = 0;
971	vc->vt_mode.frsig = 0;
972	put_pid(vc->vt_pid);
973	vc->vt_pid = NULL;
974	vc->vt_newvt = -1;
975	reset_palette(vc);
976}
977
978void vc_SAK(struct work_struct *work)
979{
980	struct vc *vc_con =
981		container_of(work, struct vc, SAK_work);
982	struct vc_data *vc;
983	struct tty_struct *tty;
984
985	console_lock();
986	vc = vc_con->d;
987	if (vc) {
988		/* FIXME: review tty ref counting */
989		tty = vc->port.tty;
990		/*
991		 * SAK should also work in all raw modes and reset
992		 * them properly.
993		 */
994		if (tty)
995			__do_SAK(tty);
996		reset_vc(vc);
997	}
998	console_unlock();
999}
1000
1001#ifdef CONFIG_COMPAT
1002
1003struct compat_console_font_op {
1004	compat_uint_t op;        /* operation code KD_FONT_OP_* */
1005	compat_uint_t flags;     /* KD_FONT_FLAG_* */
1006	compat_uint_t width, height;     /* font size */
1007	compat_uint_t charcount;
1008	compat_caddr_t data;    /* font data with height fixed to 32 */
1009};
1010
1011static inline int
1012compat_kdfontop_ioctl(struct compat_console_font_op __user *fontop,
1013			 int perm, struct console_font_op *op, struct vc_data *vc)
1014{
1015	int i;
1016
1017	if (copy_from_user(op, fontop, sizeof(struct compat_console_font_op)))
1018		return -EFAULT;
1019	if (!perm && op->op != KD_FONT_OP_GET)
1020		return -EPERM;
1021	op->data = compat_ptr(((struct compat_console_font_op *)op)->data);
1022	i = con_font_op(vc, op);
1023	if (i)
1024		return i;
1025	((struct compat_console_font_op *)op)->data = (unsigned long)op->data;
1026	if (copy_to_user(fontop, op, sizeof(struct compat_console_font_op)))
1027		return -EFAULT;
1028	return 0;
1029}
1030
1031struct compat_unimapdesc {
1032	unsigned short entry_ct;
1033	compat_caddr_t entries;
1034};
1035
1036static inline int
1037compat_unimap_ioctl(unsigned int cmd, struct compat_unimapdesc __user *user_ud,
1038			 int perm, struct vc_data *vc)
1039{
1040	struct compat_unimapdesc tmp;
1041	struct unipair __user *tmp_entries;
1042
1043	if (copy_from_user(&tmp, user_ud, sizeof tmp))
1044		return -EFAULT;
1045	tmp_entries = compat_ptr(tmp.entries);
1046	switch (cmd) {
1047	case PIO_UNIMAP:
1048		if (!perm)
1049			return -EPERM;
1050		return con_set_unimap(vc, tmp.entry_ct, tmp_entries);
1051	case GIO_UNIMAP:
1052		if (!perm && fg_console != vc->vc_num)
1053			return -EPERM;
1054		return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp_entries);
1055	}
1056	return 0;
1057}
1058
1059long vt_compat_ioctl(struct tty_struct *tty,
1060	     unsigned int cmd, unsigned long arg)
1061{
1062	struct vc_data *vc = tty->driver_data;
1063	struct console_font_op op;	/* used in multiple places here */
1064	void __user *up = compat_ptr(arg);
1065	int perm;
1066
1067	/*
1068	 * To have permissions to do most of the vt ioctls, we either have
1069	 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
1070	 */
1071	perm = 0;
1072	if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
1073		perm = 1;
1074
1075	switch (cmd) {
1076	/*
1077	 * these need special handlers for incompatible data structures
1078	 */
1079
1080	case KDFONTOP:
1081		return compat_kdfontop_ioctl(up, perm, &op, vc);
1082
1083	case PIO_UNIMAP:
1084	case GIO_UNIMAP:
1085		return compat_unimap_ioctl(cmd, up, perm, vc);
1086
1087	/*
1088	 * all these treat 'arg' as an integer
1089	 */
1090	case KIOCSOUND:
1091	case KDMKTONE:
1092#ifdef CONFIG_X86
1093	case KDADDIO:
1094	case KDDELIO:
1095#endif
1096	case KDSETMODE:
1097	case KDMAPDISP:
1098	case KDUNMAPDISP:
1099	case KDSKBMODE:
1100	case KDSKBMETA:
1101	case KDSKBLED:
1102	case KDSETLED:
1103	case KDSIGACCEPT:
1104	case VT_ACTIVATE:
1105	case VT_WAITACTIVE:
1106	case VT_RELDISP:
1107	case VT_DISALLOCATE:
1108	case VT_RESIZE:
1109	case VT_RESIZEX:
1110		return vt_ioctl(tty, cmd, arg);
1111
1112	/*
1113	 * the rest has a compatible data structure behind arg,
1114	 * but we have to convert it to a proper 64 bit pointer.
1115	 */
1116	default:
1117		return vt_ioctl(tty, cmd, (unsigned long)up);
1118	}
1119}
1120
1121
1122#endif /* CONFIG_COMPAT */
1123
1124
1125/*
1126 * Performs the back end of a vt switch. Called under the console
1127 * semaphore.
1128 */
1129static void complete_change_console(struct vc_data *vc)
1130{
1131	unsigned char old_vc_mode;
1132	int old = fg_console;
1133
1134	last_console = fg_console;
1135
1136	/*
1137	 * If we're switching, we could be going from KD_GRAPHICS to
1138	 * KD_TEXT mode or vice versa, which means we need to blank or
1139	 * unblank the screen later.
1140	 */
1141	old_vc_mode = vc_cons[fg_console].d->vc_mode;
1142	switch_screen(vc);
1143
1144	/*
1145	 * This can't appear below a successful kill_pid().  If it did,
1146	 * then the *blank_screen operation could occur while X, having
1147	 * received acqsig, is waking up on another processor.  This
1148	 * condition can lead to overlapping accesses to the VGA range
1149	 * and the framebuffer (causing system lockups).
1150	 *
1151	 * To account for this we duplicate this code below only if the
1152	 * controlling process is gone and we've called reset_vc.
1153	 */
1154	if (old_vc_mode != vc->vc_mode) {
1155		if (vc->vc_mode == KD_TEXT)
1156			do_unblank_screen(1);
1157		else
1158			do_blank_screen(1);
1159	}
1160
1161	/*
1162	 * If this new console is under process control, send it a signal
1163	 * telling it that it has acquired. Also check if it has died and
1164	 * clean up (similar to logic employed in change_console())
1165	 */
1166	if (vc->vt_mode.mode == VT_PROCESS) {
1167		/*
1168		 * Send the signal as privileged - kill_pid() will
1169		 * tell us if the process has gone or something else
1170		 * is awry
1171		 */
1172		if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) {
1173		/*
1174		 * The controlling process has died, so we revert back to
1175		 * normal operation. In this case, we'll also change back
1176		 * to KD_TEXT mode. I'm not sure if this is strictly correct
1177		 * but it saves the agony when the X server dies and the screen
1178		 * remains blanked due to KD_GRAPHICS! It would be nice to do
1179		 * this outside of VT_PROCESS but there is no single process
1180		 * to account for and tracking tty count may be undesirable.
1181		 */
1182			reset_vc(vc);
1183
1184			if (old_vc_mode != vc->vc_mode) {
1185				if (vc->vc_mode == KD_TEXT)
1186					do_unblank_screen(1);
1187				else
1188					do_blank_screen(1);
1189			}
1190		}
1191	}
1192
1193	/*
1194	 * Wake anyone waiting for their VT to activate
1195	 */
1196	vt_event_post(VT_EVENT_SWITCH, old, vc->vc_num);
1197	return;
1198}
1199
1200/*
1201 * Performs the front-end of a vt switch
1202 */
1203void change_console(struct vc_data *new_vc)
1204{
1205	struct vc_data *vc;
1206
1207	if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch)
1208		return;
1209
1210	/*
1211	 * If this vt is in process mode, then we need to handshake with
1212	 * that process before switching. Essentially, we store where that
1213	 * vt wants to switch to and wait for it to tell us when it's done
1214	 * (via VT_RELDISP ioctl).
1215	 *
1216	 * We also check to see if the controlling process still exists.
1217	 * If it doesn't, we reset this vt to auto mode and continue.
1218	 * This is a cheap way to track process control. The worst thing
1219	 * that can happen is: we send a signal to a process, it dies, and
1220	 * the switch gets "lost" waiting for a response; hopefully, the
1221	 * user will try again, we'll detect the process is gone (unless
1222	 * the user waits just the right amount of time :-) and revert the
1223	 * vt to auto control.
1224	 */
1225	vc = vc_cons[fg_console].d;
1226	if (vc->vt_mode.mode == VT_PROCESS) {
1227		/*
1228		 * Send the signal as privileged - kill_pid() will
1229		 * tell us if the process has gone or something else
1230		 * is awry.
1231		 *
1232		 * We need to set vt_newvt *before* sending the signal or we
1233		 * have a race.
1234		 */
1235		vc->vt_newvt = new_vc->vc_num;
1236		if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) {
1237			/*
1238			 * It worked. Mark the vt to switch to and
1239			 * return. The process needs to send us a
1240			 * VT_RELDISP ioctl to complete the switch.
1241			 */
1242			return;
1243		}
1244
1245		/*
1246		 * The controlling process has died, so we revert back to
1247		 * normal operation. In this case, we'll also change back
1248		 * to KD_TEXT mode. I'm not sure if this is strictly correct
1249		 * but it saves the agony when the X server dies and the screen
1250		 * remains blanked due to KD_GRAPHICS! It would be nice to do
1251		 * this outside of VT_PROCESS but there is no single process
1252		 * to account for and tracking tty count may be undesirable.
1253		 */
1254		reset_vc(vc);
1255
1256		/*
1257		 * Fall through to normal (VT_AUTO) handling of the switch...
1258		 */
1259	}
1260
1261	/*
1262	 * Ignore all switches in KD_GRAPHICS+VT_AUTO mode
1263	 */
1264	if (vc->vc_mode == KD_GRAPHICS)
1265		return;
1266
1267	complete_change_console(new_vc);
1268}
1269
1270/* Perform a kernel triggered VT switch for suspend/resume */
1271
1272static int disable_vt_switch;
1273
1274int vt_move_to_console(unsigned int vt, int alloc)
1275{
1276	int prev;
1277
1278	console_lock();
1279	/* Graphics mode - up to X */
1280	if (disable_vt_switch) {
1281		console_unlock();
1282		return 0;
1283	}
1284	prev = fg_console;
1285
1286	if (alloc && vc_allocate(vt)) {
1287		/* we can't have a free VC for now. Too bad,
1288		 * we don't want to mess the screen for now. */
1289		console_unlock();
1290		return -ENOSPC;
1291	}
1292
1293	if (set_console(vt)) {
1294		/*
1295		 * We're unable to switch to the SUSPEND_CONSOLE.
1296		 * Let the calling function know so it can decide
1297		 * what to do.
1298		 */
1299		console_unlock();
1300		return -EIO;
1301	}
1302	console_unlock();
1303	if (vt_waitactive(vt + 1)) {
1304		pr_debug("Suspend: Can't switch VCs.");
1305		return -EINTR;
1306	}
1307	return prev;
1308}
1309
1310/*
1311 * Normally during a suspend, we allocate a new console and switch to it.
1312 * When we resume, we switch back to the original console.  This switch
1313 * can be slow, so on systems where the framebuffer can handle restoration
1314 * of video registers anyways, there's little point in doing the console
1315 * switch.  This function allows you to disable it by passing it '0'.
1316 */
1317void pm_set_vt_switch(int do_switch)
1318{
1319	console_lock();
1320	disable_vt_switch = !do_switch;
1321	console_unlock();
1322}
1323EXPORT_SYMBOL(pm_set_vt_switch);
1324