xref: /kernel/linux/linux-6.6/drivers/tty/tty_io.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  Copyright (C) 1991, 1992  Linus Torvalds
4 */
5
6/*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures.  Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time.  Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c).  This
21 * makes for cleaner and more compact code.  -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling.  No delays, but all
32 * other bits should be there.
33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 *	-- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 *      -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 *	-- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 *      -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context.  Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68#include <linux/types.h>
69#include <linux/major.h>
70#include <linux/errno.h>
71#include <linux/signal.h>
72#include <linux/fcntl.h>
73#include <linux/sched/signal.h>
74#include <linux/sched/task.h>
75#include <linux/interrupt.h>
76#include <linux/tty.h>
77#include <linux/tty_driver.h>
78#include <linux/tty_flip.h>
79#include <linux/devpts_fs.h>
80#include <linux/file.h>
81#include <linux/fdtable.h>
82#include <linux/console.h>
83#include <linux/timer.h>
84#include <linux/ctype.h>
85#include <linux/kd.h>
86#include <linux/mm.h>
87#include <linux/string.h>
88#include <linux/slab.h>
89#include <linux/poll.h>
90#include <linux/ppp-ioctl.h>
91#include <linux/proc_fs.h>
92#include <linux/init.h>
93#include <linux/module.h>
94#include <linux/device.h>
95#include <linux/wait.h>
96#include <linux/bitops.h>
97#include <linux/delay.h>
98#include <linux/seq_file.h>
99#include <linux/serial.h>
100#include <linux/ratelimit.h>
101#include <linux/compat.h>
102#include <linux/uaccess.h>
103#include <linux/termios_internal.h>
104#include <linux/fs.h>
105
106#include <linux/kbd_kern.h>
107#include <linux/vt_kern.h>
108#include <linux/selection.h>
109
110#include <linux/kmod.h>
111#include <linux/nsproxy.h>
112#include "tty.h"
113
114#undef TTY_DEBUG_HANGUP
115#ifdef TTY_DEBUG_HANGUP
116# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
117#else
118# define tty_debug_hangup(tty, f, args...)	do { } while (0)
119#endif
120
121#define TTY_PARANOIA_CHECK 1
122#define CHECK_TTY_COUNT 1
123
124struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
125	.c_iflag = ICRNL | IXON,
126	.c_oflag = OPOST | ONLCR,
127	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
128	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
129		   ECHOCTL | ECHOKE | IEXTEN,
130	.c_cc = INIT_C_CC,
131	.c_ispeed = 38400,
132	.c_ospeed = 38400,
133	/* .c_line = N_TTY, */
134};
135EXPORT_SYMBOL(tty_std_termios);
136
137/* This list gets poked at by procfs and various bits of boot up code. This
138 * could do with some rationalisation such as pulling the tty proc function
139 * into this file.
140 */
141
142LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
143
144/* Mutex to protect creating and releasing a tty */
145DEFINE_MUTEX(tty_mutex);
146
147static ssize_t tty_read(struct kiocb *, struct iov_iter *);
148static ssize_t tty_write(struct kiocb *, struct iov_iter *);
149static __poll_t tty_poll(struct file *, poll_table *);
150static int tty_open(struct inode *, struct file *);
151#ifdef CONFIG_COMPAT
152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
153				unsigned long arg);
154#else
155#define tty_compat_ioctl NULL
156#endif
157static int __tty_fasync(int fd, struct file *filp, int on);
158static int tty_fasync(int fd, struct file *filp, int on);
159static void release_tty(struct tty_struct *tty, int idx);
160
161/**
162 * free_tty_struct	-	free a disused tty
163 * @tty: tty struct to free
164 *
165 * Free the write buffers, tty queue and tty memory itself.
166 *
167 * Locking: none. Must be called after tty is definitely unused
168 */
169static void free_tty_struct(struct tty_struct *tty)
170{
171	tty_ldisc_deinit(tty);
172	put_device(tty->dev);
173	kvfree(tty->write_buf);
174	kfree(tty);
175}
176
177static inline struct tty_struct *file_tty(struct file *file)
178{
179	return ((struct tty_file_private *)file->private_data)->tty;
180}
181
182int tty_alloc_file(struct file *file)
183{
184	struct tty_file_private *priv;
185
186	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187	if (!priv)
188		return -ENOMEM;
189
190	file->private_data = priv;
191
192	return 0;
193}
194
195/* Associate a new file with the tty structure */
196void tty_add_file(struct tty_struct *tty, struct file *file)
197{
198	struct tty_file_private *priv = file->private_data;
199
200	priv->tty = tty;
201	priv->file = file;
202
203	spin_lock(&tty->files_lock);
204	list_add(&priv->list, &tty->tty_files);
205	spin_unlock(&tty->files_lock);
206}
207
208/**
209 * tty_free_file - free file->private_data
210 * @file: to free private_data of
211 *
212 * This shall be used only for fail path handling when tty_add_file was not
213 * called yet.
214 */
215void tty_free_file(struct file *file)
216{
217	struct tty_file_private *priv = file->private_data;
218
219	file->private_data = NULL;
220	kfree(priv);
221}
222
223/* Delete file from its tty */
224static void tty_del_file(struct file *file)
225{
226	struct tty_file_private *priv = file->private_data;
227	struct tty_struct *tty = priv->tty;
228
229	spin_lock(&tty->files_lock);
230	list_del(&priv->list);
231	spin_unlock(&tty->files_lock);
232	tty_free_file(file);
233}
234
235/**
236 * tty_name	-	return tty naming
237 * @tty: tty structure
238 *
239 * Convert a tty structure into a name. The name reflects the kernel naming
240 * policy and if udev is in use may not reflect user space
241 *
242 * Locking: none
243 */
244const char *tty_name(const struct tty_struct *tty)
245{
246	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
247		return "NULL tty";
248	return tty->name;
249}
250EXPORT_SYMBOL(tty_name);
251
252const char *tty_driver_name(const struct tty_struct *tty)
253{
254	if (!tty || !tty->driver)
255		return "";
256	return tty->driver->name;
257}
258
259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260			      const char *routine)
261{
262#ifdef TTY_PARANOIA_CHECK
263	if (!tty) {
264		pr_warn("(%d:%d): %s: NULL tty\n",
265			imajor(inode), iminor(inode), routine);
266		return 1;
267	}
268#endif
269	return 0;
270}
271
272/* Caller must hold tty_lock */
273static void check_tty_count(struct tty_struct *tty, const char *routine)
274{
275#ifdef CHECK_TTY_COUNT
276	struct list_head *p;
277	int count = 0, kopen_count = 0;
278
279	spin_lock(&tty->files_lock);
280	list_for_each(p, &tty->tty_files) {
281		count++;
282	}
283	spin_unlock(&tty->files_lock);
284	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
285	    tty->driver->subtype == PTY_TYPE_SLAVE &&
286	    tty->link && tty->link->count)
287		count++;
288	if (tty_port_kopened(tty->port))
289		kopen_count++;
290	if (tty->count != (count + kopen_count)) {
291		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
292			 routine, tty->count, count, kopen_count);
293	}
294#endif
295}
296
297/**
298 * get_tty_driver		-	find device of a tty
299 * @device: device identifier
300 * @index: returns the index of the tty
301 *
302 * This routine returns a tty driver structure, given a device number and also
303 * passes back the index number.
304 *
305 * Locking: caller must hold tty_mutex
306 */
307static struct tty_driver *get_tty_driver(dev_t device, int *index)
308{
309	struct tty_driver *p;
310
311	list_for_each_entry(p, &tty_drivers, tty_drivers) {
312		dev_t base = MKDEV(p->major, p->minor_start);
313
314		if (device < base || device >= base + p->num)
315			continue;
316		*index = device - base;
317		return tty_driver_kref_get(p);
318	}
319	return NULL;
320}
321
322/**
323 * tty_dev_name_to_number	-	return dev_t for device name
324 * @name: user space name of device under /dev
325 * @number: pointer to dev_t that this function will populate
326 *
327 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
328 * (4, 64) or (188, 1). If no corresponding driver is registered then the
329 * function returns -%ENODEV.
330 *
331 * Locking: this acquires tty_mutex to protect the tty_drivers list from
332 *	being modified while we are traversing it, and makes sure to
333 *	release it before exiting.
334 */
335int tty_dev_name_to_number(const char *name, dev_t *number)
336{
337	struct tty_driver *p;
338	int ret;
339	int index, prefix_length = 0;
340	const char *str;
341
342	for (str = name; *str && !isdigit(*str); str++)
343		;
344
345	if (!*str)
346		return -EINVAL;
347
348	ret = kstrtoint(str, 10, &index);
349	if (ret)
350		return ret;
351
352	prefix_length = str - name;
353	mutex_lock(&tty_mutex);
354
355	list_for_each_entry(p, &tty_drivers, tty_drivers)
356		if (prefix_length == strlen(p->name) && strncmp(name,
357					p->name, prefix_length) == 0) {
358			if (index < p->num) {
359				*number = MKDEV(p->major, p->minor_start + index);
360				goto out;
361			}
362		}
363
364	/* if here then driver wasn't found */
365	ret = -ENODEV;
366out:
367	mutex_unlock(&tty_mutex);
368	return ret;
369}
370EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
371
372#ifdef CONFIG_CONSOLE_POLL
373
374/**
375 * tty_find_polling_driver	-	find device of a polled tty
376 * @name: name string to match
377 * @line: pointer to resulting tty line nr
378 *
379 * This routine returns a tty driver structure, given a name and the condition
380 * that the tty driver is capable of polled operation.
381 */
382struct tty_driver *tty_find_polling_driver(char *name, int *line)
383{
384	struct tty_driver *p, *res = NULL;
385	int tty_line = 0;
386	int len;
387	char *str, *stp;
388
389	for (str = name; *str; str++)
390		if ((*str >= '0' && *str <= '9') || *str == ',')
391			break;
392	if (!*str)
393		return NULL;
394
395	len = str - name;
396	tty_line = simple_strtoul(str, &str, 10);
397
398	mutex_lock(&tty_mutex);
399	/* Search through the tty devices to look for a match */
400	list_for_each_entry(p, &tty_drivers, tty_drivers) {
401		if (!len || strncmp(name, p->name, len) != 0)
402			continue;
403		stp = str;
404		if (*stp == ',')
405			stp++;
406		if (*stp == '\0')
407			stp = NULL;
408
409		if (tty_line >= 0 && tty_line < p->num && p->ops &&
410		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
411			res = tty_driver_kref_get(p);
412			*line = tty_line;
413			break;
414		}
415	}
416	mutex_unlock(&tty_mutex);
417
418	return res;
419}
420EXPORT_SYMBOL_GPL(tty_find_polling_driver);
421#endif
422
423static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
424{
425	return 0;
426}
427
428static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
429{
430	return -EIO;
431}
432
433/* No kernel lock held - none needed ;) */
434static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
435{
436	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
437}
438
439static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
440		unsigned long arg)
441{
442	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
443}
444
445static long hung_up_tty_compat_ioctl(struct file *file,
446				     unsigned int cmd, unsigned long arg)
447{
448	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
449}
450
451static int hung_up_tty_fasync(int fd, struct file *file, int on)
452{
453	return -ENOTTY;
454}
455
456static void tty_show_fdinfo(struct seq_file *m, struct file *file)
457{
458	struct tty_struct *tty = file_tty(file);
459
460	if (tty && tty->ops && tty->ops->show_fdinfo)
461		tty->ops->show_fdinfo(tty, m);
462}
463
464static const struct file_operations tty_fops = {
465	.llseek		= no_llseek,
466	.read_iter	= tty_read,
467	.write_iter	= tty_write,
468	.splice_read	= copy_splice_read,
469	.splice_write	= iter_file_splice_write,
470	.poll		= tty_poll,
471	.unlocked_ioctl	= tty_ioctl,
472	.compat_ioctl	= tty_compat_ioctl,
473	.open		= tty_open,
474	.release	= tty_release,
475	.fasync		= tty_fasync,
476	.show_fdinfo	= tty_show_fdinfo,
477};
478
479static const struct file_operations console_fops = {
480	.llseek		= no_llseek,
481	.read_iter	= tty_read,
482	.write_iter	= redirected_tty_write,
483	.splice_read	= copy_splice_read,
484	.splice_write	= iter_file_splice_write,
485	.poll		= tty_poll,
486	.unlocked_ioctl	= tty_ioctl,
487	.compat_ioctl	= tty_compat_ioctl,
488	.open		= tty_open,
489	.release	= tty_release,
490	.fasync		= tty_fasync,
491};
492
493static const struct file_operations hung_up_tty_fops = {
494	.llseek		= no_llseek,
495	.read_iter	= hung_up_tty_read,
496	.write_iter	= hung_up_tty_write,
497	.poll		= hung_up_tty_poll,
498	.unlocked_ioctl	= hung_up_tty_ioctl,
499	.compat_ioctl	= hung_up_tty_compat_ioctl,
500	.release	= tty_release,
501	.fasync		= hung_up_tty_fasync,
502};
503
504static DEFINE_SPINLOCK(redirect_lock);
505static struct file *redirect;
506
507/**
508 * tty_wakeup	-	request more data
509 * @tty: terminal
510 *
511 * Internal and external helper for wakeups of tty. This function informs the
512 * line discipline if present that the driver is ready to receive more output
513 * data.
514 */
515void tty_wakeup(struct tty_struct *tty)
516{
517	struct tty_ldisc *ld;
518
519	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
520		ld = tty_ldisc_ref(tty);
521		if (ld) {
522			if (ld->ops->write_wakeup)
523				ld->ops->write_wakeup(tty);
524			tty_ldisc_deref(ld);
525		}
526	}
527	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
528}
529EXPORT_SYMBOL_GPL(tty_wakeup);
530
531/**
532 * tty_release_redirect	-	Release a redirect on a pty if present
533 * @tty: tty device
534 *
535 * This is available to the pty code so if the master closes, if the slave is a
536 * redirect it can release the redirect.
537 */
538static struct file *tty_release_redirect(struct tty_struct *tty)
539{
540	struct file *f = NULL;
541
542	spin_lock(&redirect_lock);
543	if (redirect && file_tty(redirect) == tty) {
544		f = redirect;
545		redirect = NULL;
546	}
547	spin_unlock(&redirect_lock);
548
549	return f;
550}
551
552/**
553 * __tty_hangup		-	actual handler for hangup events
554 * @tty: tty device
555 * @exit_session: if non-zero, signal all foreground group processes
556 *
557 * This can be called by a "kworker" kernel thread. That is process synchronous
558 * but doesn't hold any locks, so we need to make sure we have the appropriate
559 * locks for what we're doing.
560 *
561 * The hangup event clears any pending redirections onto the hung up device. It
562 * ensures future writes will error and it does the needed line discipline
563 * hangup and signal delivery. The tty object itself remains intact.
564 *
565 * Locking:
566 *  * BTM
567 *
568 *   * redirect lock for undoing redirection
569 *   * file list lock for manipulating list of ttys
570 *   * tty_ldiscs_lock from called functions
571 *   * termios_rwsem resetting termios data
572 *   * tasklist_lock to walk task list for hangup event
573 *
574 *    * ->siglock to protect ->signal/->sighand
575 *
576 */
577static void __tty_hangup(struct tty_struct *tty, int exit_session)
578{
579	struct file *cons_filp = NULL;
580	struct file *filp, *f;
581	struct tty_file_private *priv;
582	int    closecount = 0, n;
583	int refs;
584
585	if (!tty)
586		return;
587
588	f = tty_release_redirect(tty);
589
590	tty_lock(tty);
591
592	if (test_bit(TTY_HUPPED, &tty->flags)) {
593		tty_unlock(tty);
594		return;
595	}
596
597	/*
598	 * Some console devices aren't actually hung up for technical and
599	 * historical reasons, which can lead to indefinite interruptible
600	 * sleep in n_tty_read().  The following explicitly tells
601	 * n_tty_read() to abort readers.
602	 */
603	set_bit(TTY_HUPPING, &tty->flags);
604
605	/* inuse_filps is protected by the single tty lock,
606	 * this really needs to change if we want to flush the
607	 * workqueue with the lock held.
608	 */
609	check_tty_count(tty, "tty_hangup");
610
611	spin_lock(&tty->files_lock);
612	/* This breaks for file handles being sent over AF_UNIX sockets ? */
613	list_for_each_entry(priv, &tty->tty_files, list) {
614		filp = priv->file;
615		if (filp->f_op->write_iter == redirected_tty_write)
616			cons_filp = filp;
617		if (filp->f_op->write_iter != tty_write)
618			continue;
619		closecount++;
620		__tty_fasync(-1, filp, 0);	/* can't block */
621		filp->f_op = &hung_up_tty_fops;
622	}
623	spin_unlock(&tty->files_lock);
624
625	refs = tty_signal_session_leader(tty, exit_session);
626	/* Account for the p->signal references we killed */
627	while (refs--)
628		tty_kref_put(tty);
629
630	tty_ldisc_hangup(tty, cons_filp != NULL);
631
632	spin_lock_irq(&tty->ctrl.lock);
633	clear_bit(TTY_THROTTLED, &tty->flags);
634	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
635	put_pid(tty->ctrl.session);
636	put_pid(tty->ctrl.pgrp);
637	tty->ctrl.session = NULL;
638	tty->ctrl.pgrp = NULL;
639	tty->ctrl.pktstatus = 0;
640	spin_unlock_irq(&tty->ctrl.lock);
641
642	/*
643	 * If one of the devices matches a console pointer, we
644	 * cannot just call hangup() because that will cause
645	 * tty->count and state->count to go out of sync.
646	 * So we just call close() the right number of times.
647	 */
648	if (cons_filp) {
649		if (tty->ops->close)
650			for (n = 0; n < closecount; n++)
651				tty->ops->close(tty, cons_filp);
652	} else if (tty->ops->hangup)
653		tty->ops->hangup(tty);
654	/*
655	 * We don't want to have driver/ldisc interactions beyond the ones
656	 * we did here. The driver layer expects no calls after ->hangup()
657	 * from the ldisc side, which is now guaranteed.
658	 */
659	set_bit(TTY_HUPPED, &tty->flags);
660	clear_bit(TTY_HUPPING, &tty->flags);
661	tty_unlock(tty);
662
663	if (f)
664		fput(f);
665}
666
667static void do_tty_hangup(struct work_struct *work)
668{
669	struct tty_struct *tty =
670		container_of(work, struct tty_struct, hangup_work);
671
672	__tty_hangup(tty, 0);
673}
674
675/**
676 * tty_hangup		-	trigger a hangup event
677 * @tty: tty to hangup
678 *
679 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
680 * hangup sequence to run after this event.
681 */
682void tty_hangup(struct tty_struct *tty)
683{
684	tty_debug_hangup(tty, "hangup\n");
685	schedule_work(&tty->hangup_work);
686}
687EXPORT_SYMBOL(tty_hangup);
688
689/**
690 * tty_vhangup		-	process vhangup
691 * @tty: tty to hangup
692 *
693 * The user has asked via system call for the terminal to be hung up. We do
694 * this synchronously so that when the syscall returns the process is complete.
695 * That guarantee is necessary for security reasons.
696 */
697void tty_vhangup(struct tty_struct *tty)
698{
699	tty_debug_hangup(tty, "vhangup\n");
700	__tty_hangup(tty, 0);
701}
702EXPORT_SYMBOL(tty_vhangup);
703
704
705/**
706 * tty_vhangup_self	-	process vhangup for own ctty
707 *
708 * Perform a vhangup on the current controlling tty
709 */
710void tty_vhangup_self(void)
711{
712	struct tty_struct *tty;
713
714	tty = get_current_tty();
715	if (tty) {
716		tty_vhangup(tty);
717		tty_kref_put(tty);
718	}
719}
720
721/**
722 * tty_vhangup_session	-	hangup session leader exit
723 * @tty: tty to hangup
724 *
725 * The session leader is exiting and hanging up its controlling terminal.
726 * Every process in the foreground process group is signalled %SIGHUP.
727 *
728 * We do this synchronously so that when the syscall returns the process is
729 * complete. That guarantee is necessary for security reasons.
730 */
731void tty_vhangup_session(struct tty_struct *tty)
732{
733	tty_debug_hangup(tty, "session hangup\n");
734	__tty_hangup(tty, 1);
735}
736
737/**
738 * tty_hung_up_p	-	was tty hung up
739 * @filp: file pointer of tty
740 *
741 * Return: true if the tty has been subject to a vhangup or a carrier loss
742 */
743int tty_hung_up_p(struct file *filp)
744{
745	return (filp && filp->f_op == &hung_up_tty_fops);
746}
747EXPORT_SYMBOL(tty_hung_up_p);
748
749void __stop_tty(struct tty_struct *tty)
750{
751	if (tty->flow.stopped)
752		return;
753	tty->flow.stopped = true;
754	if (tty->ops->stop)
755		tty->ops->stop(tty);
756}
757
758/**
759 * stop_tty	-	propagate flow control
760 * @tty: tty to stop
761 *
762 * Perform flow control to the driver. May be called on an already stopped
763 * device and will not re-call the &tty_driver->stop() method.
764 *
765 * This functionality is used by both the line disciplines for halting incoming
766 * flow and by the driver. It may therefore be called from any context, may be
767 * under the tty %atomic_write_lock but not always.
768 *
769 * Locking:
770 *	flow.lock
771 */
772void stop_tty(struct tty_struct *tty)
773{
774	unsigned long flags;
775
776	spin_lock_irqsave(&tty->flow.lock, flags);
777	__stop_tty(tty);
778	spin_unlock_irqrestore(&tty->flow.lock, flags);
779}
780EXPORT_SYMBOL(stop_tty);
781
782void __start_tty(struct tty_struct *tty)
783{
784	if (!tty->flow.stopped || tty->flow.tco_stopped)
785		return;
786	tty->flow.stopped = false;
787	if (tty->ops->start)
788		tty->ops->start(tty);
789	tty_wakeup(tty);
790}
791
792/**
793 * start_tty	-	propagate flow control
794 * @tty: tty to start
795 *
796 * Start a tty that has been stopped if at all possible. If @tty was previously
797 * stopped and is now being started, the &tty_driver->start() method is invoked
798 * and the line discipline woken.
799 *
800 * Locking:
801 *	flow.lock
802 */
803void start_tty(struct tty_struct *tty)
804{
805	unsigned long flags;
806
807	spin_lock_irqsave(&tty->flow.lock, flags);
808	__start_tty(tty);
809	spin_unlock_irqrestore(&tty->flow.lock, flags);
810}
811EXPORT_SYMBOL(start_tty);
812
813static void tty_update_time(struct tty_struct *tty, bool mtime)
814{
815	time64_t sec = ktime_get_real_seconds();
816	struct tty_file_private *priv;
817
818	spin_lock(&tty->files_lock);
819	list_for_each_entry(priv, &tty->tty_files, list) {
820		struct inode *inode = file_inode(priv->file);
821		struct timespec64 *time = mtime ? &inode->i_mtime : &inode->i_atime;
822
823		/*
824		 * We only care if the two values differ in anything other than the
825		 * lower three bits (i.e every 8 seconds).  If so, then we can update
826		 * the time of the tty device, otherwise it could be construded as a
827		 * security leak to let userspace know the exact timing of the tty.
828		 */
829		if ((sec ^ time->tv_sec) & ~7)
830			time->tv_sec = sec;
831	}
832	spin_unlock(&tty->files_lock);
833}
834
835/*
836 * Iterate on the ldisc ->read() function until we've gotten all
837 * the data the ldisc has for us.
838 *
839 * The "cookie" is something that the ldisc read function can fill
840 * in to let us know that there is more data to be had.
841 *
842 * We promise to continue to call the ldisc until it stops returning
843 * data or clears the cookie. The cookie may be something that the
844 * ldisc maintains state for and needs to free.
845 */
846static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
847				struct file *file, struct iov_iter *to)
848{
849	void *cookie = NULL;
850	unsigned long offset = 0;
851	char kernel_buf[64];
852	ssize_t retval = 0;
853	size_t copied, count = iov_iter_count(to);
854
855	do {
856		ssize_t size = min(count, sizeof(kernel_buf));
857
858		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
859		if (!size)
860			break;
861
862		if (size < 0) {
863			/* Did we have an earlier error (ie -EFAULT)? */
864			if (retval)
865				break;
866			retval = size;
867
868			/*
869			 * -EOVERFLOW means we didn't have enough space
870			 * for a whole packet, and we shouldn't return
871			 * a partial result.
872			 */
873			if (retval == -EOVERFLOW)
874				offset = 0;
875			break;
876		}
877
878		copied = copy_to_iter(kernel_buf, size, to);
879		offset += copied;
880		count -= copied;
881
882		/*
883		 * If the user copy failed, we still need to do another ->read()
884		 * call if we had a cookie to let the ldisc clear up.
885		 *
886		 * But make sure size is zeroed.
887		 */
888		if (unlikely(copied != size)) {
889			count = 0;
890			retval = -EFAULT;
891		}
892	} while (cookie);
893
894	/* We always clear tty buffer in case they contained passwords */
895	memzero_explicit(kernel_buf, sizeof(kernel_buf));
896	return offset ? offset : retval;
897}
898
899
900/**
901 * tty_read	-	read method for tty device files
902 * @iocb: kernel I/O control block
903 * @to: destination for the data read
904 *
905 * Perform the read system call function on this terminal device. Checks
906 * for hung up devices before calling the line discipline method.
907 *
908 * Locking:
909 *	Locks the line discipline internally while needed. Multiple read calls
910 *	may be outstanding in parallel.
911 */
912static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
913{
914	struct file *file = iocb->ki_filp;
915	struct inode *inode = file_inode(file);
916	struct tty_struct *tty = file_tty(file);
917	struct tty_ldisc *ld;
918	ssize_t ret;
919
920	if (tty_paranoia_check(tty, inode, "tty_read"))
921		return -EIO;
922	if (!tty || tty_io_error(tty))
923		return -EIO;
924
925	/* We want to wait for the line discipline to sort out in this
926	 * situation.
927	 */
928	ld = tty_ldisc_ref_wait(tty);
929	if (!ld)
930		return hung_up_tty_read(iocb, to);
931	ret = -EIO;
932	if (ld->ops->read)
933		ret = iterate_tty_read(ld, tty, file, to);
934	tty_ldisc_deref(ld);
935
936	if (ret > 0)
937		tty_update_time(tty, false);
938
939	return ret;
940}
941
942void tty_write_unlock(struct tty_struct *tty)
943{
944	mutex_unlock(&tty->atomic_write_lock);
945	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
946}
947
948int tty_write_lock(struct tty_struct *tty, bool ndelay)
949{
950	if (!mutex_trylock(&tty->atomic_write_lock)) {
951		if (ndelay)
952			return -EAGAIN;
953		if (mutex_lock_interruptible(&tty->atomic_write_lock))
954			return -ERESTARTSYS;
955	}
956	return 0;
957}
958
959/*
960 * Split writes up in sane blocksizes to avoid
961 * denial-of-service type attacks
962 */
963static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
964				 struct file *file, struct iov_iter *from)
965{
966	size_t chunk, count = iov_iter_count(from);
967	ssize_t ret, written = 0;
968
969	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
970	if (ret < 0)
971		return ret;
972
973	/*
974	 * We chunk up writes into a temporary buffer. This
975	 * simplifies low-level drivers immensely, since they
976	 * don't have locking issues and user mode accesses.
977	 *
978	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
979	 * big chunk-size..
980	 *
981	 * The default chunk-size is 2kB, because the NTTY
982	 * layer has problems with bigger chunks. It will
983	 * claim to be able to handle more characters than
984	 * it actually does.
985	 */
986	chunk = 2048;
987	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
988		chunk = 65536;
989	if (count < chunk)
990		chunk = count;
991
992	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
993	if (tty->write_cnt < chunk) {
994		unsigned char *buf_chunk;
995
996		if (chunk < 1024)
997			chunk = 1024;
998
999		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1000		if (!buf_chunk) {
1001			ret = -ENOMEM;
1002			goto out;
1003		}
1004		kvfree(tty->write_buf);
1005		tty->write_cnt = chunk;
1006		tty->write_buf = buf_chunk;
1007	}
1008
1009	/* Do the write .. */
1010	for (;;) {
1011		size_t size = min(chunk, count);
1012
1013		ret = -EFAULT;
1014		if (copy_from_iter(tty->write_buf, size, from) != size)
1015			break;
1016
1017		ret = ld->ops->write(tty, file, tty->write_buf, size);
1018		if (ret <= 0)
1019			break;
1020
1021		written += ret;
1022		if (ret > size)
1023			break;
1024
1025		/* FIXME! Have Al check this! */
1026		if (ret != size)
1027			iov_iter_revert(from, size-ret);
1028
1029		count -= ret;
1030		if (!count)
1031			break;
1032		ret = -ERESTARTSYS;
1033		if (signal_pending(current))
1034			break;
1035		cond_resched();
1036	}
1037	if (written) {
1038		tty_update_time(tty, true);
1039		ret = written;
1040	}
1041out:
1042	tty_write_unlock(tty);
1043	return ret;
1044}
1045
1046/**
1047 * tty_write_message - write a message to a certain tty, not just the console.
1048 * @tty: the destination tty_struct
1049 * @msg: the message to write
1050 *
1051 * This is used for messages that need to be redirected to a specific tty. We
1052 * don't put it into the syslog queue right now maybe in the future if really
1053 * needed.
1054 *
1055 * We must still hold the BTM and test the CLOSING flag for the moment.
1056 */
1057void tty_write_message(struct tty_struct *tty, char *msg)
1058{
1059	if (tty) {
1060		mutex_lock(&tty->atomic_write_lock);
1061		tty_lock(tty);
1062		if (tty->ops->write && tty->count > 0)
1063			tty->ops->write(tty, msg, strlen(msg));
1064		tty_unlock(tty);
1065		tty_write_unlock(tty);
1066	}
1067}
1068
1069static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1070{
1071	struct tty_struct *tty = file_tty(file);
1072	struct tty_ldisc *ld;
1073	ssize_t ret;
1074
1075	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1076		return -EIO;
1077	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1078		return -EIO;
1079	/* Short term debug to catch buggy drivers */
1080	if (tty->ops->write_room == NULL)
1081		tty_err(tty, "missing write_room method\n");
1082	ld = tty_ldisc_ref_wait(tty);
1083	if (!ld)
1084		return hung_up_tty_write(iocb, from);
1085	if (!ld->ops->write)
1086		ret = -EIO;
1087	else
1088		ret = iterate_tty_write(ld, tty, file, from);
1089	tty_ldisc_deref(ld);
1090	return ret;
1091}
1092
1093/**
1094 * tty_write		-	write method for tty device file
1095 * @iocb: kernel I/O control block
1096 * @from: iov_iter with data to write
1097 *
1098 * Write data to a tty device via the line discipline.
1099 *
1100 * Locking:
1101 *	Locks the line discipline as required
1102 *	Writes to the tty driver are serialized by the atomic_write_lock
1103 *	and are then processed in chunks to the device. The line
1104 *	discipline write method will not be invoked in parallel for
1105 *	each device.
1106 */
1107static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1108{
1109	return file_tty_write(iocb->ki_filp, iocb, from);
1110}
1111
1112ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1113{
1114	struct file *p = NULL;
1115
1116	spin_lock(&redirect_lock);
1117	if (redirect)
1118		p = get_file(redirect);
1119	spin_unlock(&redirect_lock);
1120
1121	/*
1122	 * We know the redirected tty is just another tty, we can
1123	 * call file_tty_write() directly with that file pointer.
1124	 */
1125	if (p) {
1126		ssize_t res;
1127
1128		res = file_tty_write(p, iocb, iter);
1129		fput(p);
1130		return res;
1131	}
1132	return tty_write(iocb, iter);
1133}
1134
1135/**
1136 * tty_send_xchar	-	send priority character
1137 * @tty: the tty to send to
1138 * @ch: xchar to send
1139 *
1140 * Send a high priority character to the tty even if stopped.
1141 *
1142 * Locking: none for xchar method, write ordering for write method.
1143 */
1144int tty_send_xchar(struct tty_struct *tty, char ch)
1145{
1146	bool was_stopped = tty->flow.stopped;
1147
1148	if (tty->ops->send_xchar) {
1149		down_read(&tty->termios_rwsem);
1150		tty->ops->send_xchar(tty, ch);
1151		up_read(&tty->termios_rwsem);
1152		return 0;
1153	}
1154
1155	if (tty_write_lock(tty, false) < 0)
1156		return -ERESTARTSYS;
1157
1158	down_read(&tty->termios_rwsem);
1159	if (was_stopped)
1160		start_tty(tty);
1161	tty->ops->write(tty, &ch, 1);
1162	if (was_stopped)
1163		stop_tty(tty);
1164	up_read(&tty->termios_rwsem);
1165	tty_write_unlock(tty);
1166	return 0;
1167}
1168
1169/**
1170 * pty_line_name	-	generate name for a pty
1171 * @driver: the tty driver in use
1172 * @index: the minor number
1173 * @p: output buffer of at least 6 bytes
1174 *
1175 * Generate a name from a @driver reference and write it to the output buffer
1176 * @p.
1177 *
1178 * Locking: None
1179 */
1180static void pty_line_name(struct tty_driver *driver, int index, char *p)
1181{
1182	static const char ptychar[] = "pqrstuvwxyzabcde";
1183	int i = index + driver->name_base;
1184	/* ->name is initialized to "ttyp", but "tty" is expected */
1185	sprintf(p, "%s%c%x",
1186		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1187		ptychar[i >> 4 & 0xf], i & 0xf);
1188}
1189
1190/**
1191 * tty_line_name	-	generate name for a tty
1192 * @driver: the tty driver in use
1193 * @index: the minor number
1194 * @p: output buffer of at least 7 bytes
1195 *
1196 * Generate a name from a @driver reference and write it to the output buffer
1197 * @p.
1198 *
1199 * Locking: None
1200 */
1201static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1202{
1203	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1204		return sprintf(p, "%s", driver->name);
1205	else
1206		return sprintf(p, "%s%d", driver->name,
1207			       index + driver->name_base);
1208}
1209
1210/**
1211 * tty_driver_lookup_tty() - find an existing tty, if any
1212 * @driver: the driver for the tty
1213 * @file: file object
1214 * @idx: the minor number
1215 *
1216 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1217 * driver lookup() method returns an error.
1218 *
1219 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1220 */
1221static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1222		struct file *file, int idx)
1223{
1224	struct tty_struct *tty;
1225
1226	if (driver->ops->lookup) {
1227		if (!file)
1228			tty = ERR_PTR(-EIO);
1229		else
1230			tty = driver->ops->lookup(driver, file, idx);
1231	} else {
1232		if (idx >= driver->num)
1233			return ERR_PTR(-EINVAL);
1234		tty = driver->ttys[idx];
1235	}
1236	if (!IS_ERR(tty))
1237		tty_kref_get(tty);
1238	return tty;
1239}
1240
1241/**
1242 * tty_init_termios	-  helper for termios setup
1243 * @tty: the tty to set up
1244 *
1245 * Initialise the termios structure for this tty. This runs under the
1246 * %tty_mutex currently so we can be relaxed about ordering.
1247 */
1248void tty_init_termios(struct tty_struct *tty)
1249{
1250	struct ktermios *tp;
1251	int idx = tty->index;
1252
1253	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1254		tty->termios = tty->driver->init_termios;
1255	else {
1256		/* Check for lazy saved data */
1257		tp = tty->driver->termios[idx];
1258		if (tp != NULL) {
1259			tty->termios = *tp;
1260			tty->termios.c_line  = tty->driver->init_termios.c_line;
1261		} else
1262			tty->termios = tty->driver->init_termios;
1263	}
1264	/* Compatibility until drivers always set this */
1265	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1266	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1267}
1268EXPORT_SYMBOL_GPL(tty_init_termios);
1269
1270/**
1271 * tty_standard_install - usual tty->ops->install
1272 * @driver: the driver for the tty
1273 * @tty: the tty
1274 *
1275 * If the @driver overrides @tty->ops->install, it still can call this function
1276 * to perform the standard install operations.
1277 */
1278int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1279{
1280	tty_init_termios(tty);
1281	tty_driver_kref_get(driver);
1282	tty->count++;
1283	driver->ttys[tty->index] = tty;
1284	return 0;
1285}
1286EXPORT_SYMBOL_GPL(tty_standard_install);
1287
1288/**
1289 * tty_driver_install_tty() - install a tty entry in the driver
1290 * @driver: the driver for the tty
1291 * @tty: the tty
1292 *
1293 * Install a tty object into the driver tables. The @tty->index field will be
1294 * set by the time this is called. This method is responsible for ensuring any
1295 * need additional structures are allocated and configured.
1296 *
1297 * Locking: tty_mutex for now
1298 */
1299static int tty_driver_install_tty(struct tty_driver *driver,
1300						struct tty_struct *tty)
1301{
1302	return driver->ops->install ? driver->ops->install(driver, tty) :
1303		tty_standard_install(driver, tty);
1304}
1305
1306/**
1307 * tty_driver_remove_tty() - remove a tty from the driver tables
1308 * @driver: the driver for the tty
1309 * @tty: tty to remove
1310 *
1311 * Remove a tty object from the driver tables. The tty->index field will be set
1312 * by the time this is called.
1313 *
1314 * Locking: tty_mutex for now
1315 */
1316static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1317{
1318	if (driver->ops->remove)
1319		driver->ops->remove(driver, tty);
1320	else
1321		driver->ttys[tty->index] = NULL;
1322}
1323
1324/**
1325 * tty_reopen()	- fast re-open of an open tty
1326 * @tty: the tty to open
1327 *
1328 * Re-opens on master ptys are not allowed and return -%EIO.
1329 *
1330 * Locking: Caller must hold tty_lock
1331 * Return: 0 on success, -errno on error.
1332 */
1333static int tty_reopen(struct tty_struct *tty)
1334{
1335	struct tty_driver *driver = tty->driver;
1336	struct tty_ldisc *ld;
1337	int retval = 0;
1338
1339	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340	    driver->subtype == PTY_TYPE_MASTER)
1341		return -EIO;
1342
1343	if (!tty->count)
1344		return -EAGAIN;
1345
1346	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1347		return -EBUSY;
1348
1349	ld = tty_ldisc_ref_wait(tty);
1350	if (ld) {
1351		tty_ldisc_deref(ld);
1352	} else {
1353		retval = tty_ldisc_lock(tty, 5 * HZ);
1354		if (retval)
1355			return retval;
1356
1357		if (!tty->ldisc)
1358			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1359		tty_ldisc_unlock(tty);
1360	}
1361
1362	if (retval == 0)
1363		tty->count++;
1364
1365	return retval;
1366}
1367
1368/**
1369 * tty_init_dev		-	initialise a tty device
1370 * @driver: tty driver we are opening a device on
1371 * @idx: device index
1372 *
1373 * Prepare a tty device. This may not be a "new" clean device but could also be
1374 * an active device. The pty drivers require special handling because of this.
1375 *
1376 * Locking:
1377 *	The function is called under the tty_mutex, which protects us from the
1378 *	tty struct or driver itself going away.
1379 *
1380 * On exit the tty device has the line discipline attached and a reference
1381 * count of 1. If a pair was created for pty/tty use and the other was a pty
1382 * master then it too has a reference count of 1.
1383 *
1384 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1385 * open. The new code protects the open with a mutex, so it's really quite
1386 * straightforward. The mutex locking can probably be relaxed for the (most
1387 * common) case of reopening a tty.
1388 *
1389 * Return: new tty structure
1390 */
1391struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1392{
1393	struct tty_struct *tty;
1394	int retval;
1395
1396	/*
1397	 * First time open is complex, especially for PTY devices.
1398	 * This code guarantees that either everything succeeds and the
1399	 * TTY is ready for operation, or else the table slots are vacated
1400	 * and the allocated memory released.  (Except that the termios
1401	 * may be retained.)
1402	 */
1403
1404	if (!try_module_get(driver->owner))
1405		return ERR_PTR(-ENODEV);
1406
1407	tty = alloc_tty_struct(driver, idx);
1408	if (!tty) {
1409		retval = -ENOMEM;
1410		goto err_module_put;
1411	}
1412
1413	tty_lock(tty);
1414	retval = tty_driver_install_tty(driver, tty);
1415	if (retval < 0)
1416		goto err_free_tty;
1417
1418	if (!tty->port)
1419		tty->port = driver->ports[idx];
1420
1421	if (WARN_RATELIMIT(!tty->port,
1422			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1423			__func__, tty->driver->name)) {
1424		retval = -EINVAL;
1425		goto err_release_lock;
1426	}
1427
1428	retval = tty_ldisc_lock(tty, 5 * HZ);
1429	if (retval)
1430		goto err_release_lock;
1431	tty->port->itty = tty;
1432
1433	/*
1434	 * Structures all installed ... call the ldisc open routines.
1435	 * If we fail here just call release_tty to clean up.  No need
1436	 * to decrement the use counts, as release_tty doesn't care.
1437	 */
1438	retval = tty_ldisc_setup(tty, tty->link);
1439	if (retval)
1440		goto err_release_tty;
1441	tty_ldisc_unlock(tty);
1442	/* Return the tty locked so that it cannot vanish under the caller */
1443	return tty;
1444
1445err_free_tty:
1446	tty_unlock(tty);
1447	free_tty_struct(tty);
1448err_module_put:
1449	module_put(driver->owner);
1450	return ERR_PTR(retval);
1451
1452	/* call the tty release_tty routine to clean out this slot */
1453err_release_tty:
1454	tty_ldisc_unlock(tty);
1455	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1456			     retval, idx);
1457err_release_lock:
1458	tty_unlock(tty);
1459	release_tty(tty, idx);
1460	return ERR_PTR(retval);
1461}
1462
1463/**
1464 * tty_save_termios() - save tty termios data in driver table
1465 * @tty: tty whose termios data to save
1466 *
1467 * Locking: Caller guarantees serialisation with tty_init_termios().
1468 */
1469void tty_save_termios(struct tty_struct *tty)
1470{
1471	struct ktermios *tp;
1472	int idx = tty->index;
1473
1474	/* If the port is going to reset then it has no termios to save */
1475	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1476		return;
1477
1478	/* Stash the termios data */
1479	tp = tty->driver->termios[idx];
1480	if (tp == NULL) {
1481		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1482		if (tp == NULL)
1483			return;
1484		tty->driver->termios[idx] = tp;
1485	}
1486	*tp = tty->termios;
1487}
1488EXPORT_SYMBOL_GPL(tty_save_termios);
1489
1490/**
1491 * tty_flush_works	-	flush all works of a tty/pty pair
1492 * @tty: tty device to flush works for (or either end of a pty pair)
1493 *
1494 * Sync flush all works belonging to @tty (and the 'other' tty).
1495 */
1496static void tty_flush_works(struct tty_struct *tty)
1497{
1498	flush_work(&tty->SAK_work);
1499	flush_work(&tty->hangup_work);
1500	if (tty->link) {
1501		flush_work(&tty->link->SAK_work);
1502		flush_work(&tty->link->hangup_work);
1503	}
1504}
1505
1506/**
1507 * release_one_tty	-	release tty structure memory
1508 * @work: work of tty we are obliterating
1509 *
1510 * Releases memory associated with a tty structure, and clears out the
1511 * driver table slots. This function is called when a device is no longer
1512 * in use. It also gets called when setup of a device fails.
1513 *
1514 * Locking:
1515 *	takes the file list lock internally when working on the list of ttys
1516 *	that the driver keeps.
1517 *
1518 * This method gets called from a work queue so that the driver private
1519 * cleanup ops can sleep (needed for USB at least)
1520 */
1521static void release_one_tty(struct work_struct *work)
1522{
1523	struct tty_struct *tty =
1524		container_of(work, struct tty_struct, hangup_work);
1525	struct tty_driver *driver = tty->driver;
1526	struct module *owner = driver->owner;
1527
1528	if (tty->ops->cleanup)
1529		tty->ops->cleanup(tty);
1530
1531	tty_driver_kref_put(driver);
1532	module_put(owner);
1533
1534	spin_lock(&tty->files_lock);
1535	list_del_init(&tty->tty_files);
1536	spin_unlock(&tty->files_lock);
1537
1538	put_pid(tty->ctrl.pgrp);
1539	put_pid(tty->ctrl.session);
1540	free_tty_struct(tty);
1541}
1542
1543static void queue_release_one_tty(struct kref *kref)
1544{
1545	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1546
1547	/* The hangup queue is now free so we can reuse it rather than
1548	 *  waste a chunk of memory for each port.
1549	 */
1550	INIT_WORK(&tty->hangup_work, release_one_tty);
1551	schedule_work(&tty->hangup_work);
1552}
1553
1554/**
1555 * tty_kref_put		-	release a tty kref
1556 * @tty: tty device
1557 *
1558 * Release a reference to the @tty device and if need be let the kref layer
1559 * destruct the object for us.
1560 */
1561void tty_kref_put(struct tty_struct *tty)
1562{
1563	if (tty)
1564		kref_put(&tty->kref, queue_release_one_tty);
1565}
1566EXPORT_SYMBOL(tty_kref_put);
1567
1568/**
1569 * release_tty		-	release tty structure memory
1570 * @tty: tty device release
1571 * @idx: index of the tty device release
1572 *
1573 * Release both @tty and a possible linked partner (think pty pair),
1574 * and decrement the refcount of the backing module.
1575 *
1576 * Locking:
1577 *	tty_mutex
1578 *	takes the file list lock internally when working on the list of ttys
1579 *	that the driver keeps.
1580 */
1581static void release_tty(struct tty_struct *tty, int idx)
1582{
1583	/* This should always be true but check for the moment */
1584	WARN_ON(tty->index != idx);
1585	WARN_ON(!mutex_is_locked(&tty_mutex));
1586	if (tty->ops->shutdown)
1587		tty->ops->shutdown(tty);
1588	tty_save_termios(tty);
1589	tty_driver_remove_tty(tty->driver, tty);
1590	if (tty->port)
1591		tty->port->itty = NULL;
1592	if (tty->link)
1593		tty->link->port->itty = NULL;
1594	if (tty->port)
1595		tty_buffer_cancel_work(tty->port);
1596	if (tty->link)
1597		tty_buffer_cancel_work(tty->link->port);
1598
1599	tty_kref_put(tty->link);
1600	tty_kref_put(tty);
1601}
1602
1603/**
1604 * tty_release_checks - check a tty before real release
1605 * @tty: tty to check
1606 * @idx: index of the tty
1607 *
1608 * Performs some paranoid checking before true release of the @tty. This is a
1609 * no-op unless %TTY_PARANOIA_CHECK is defined.
1610 */
1611static int tty_release_checks(struct tty_struct *tty, int idx)
1612{
1613#ifdef TTY_PARANOIA_CHECK
1614	if (idx < 0 || idx >= tty->driver->num) {
1615		tty_debug(tty, "bad idx %d\n", idx);
1616		return -1;
1617	}
1618
1619	/* not much to check for devpts */
1620	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1621		return 0;
1622
1623	if (tty != tty->driver->ttys[idx]) {
1624		tty_debug(tty, "bad driver table[%d] = %p\n",
1625			  idx, tty->driver->ttys[idx]);
1626		return -1;
1627	}
1628	if (tty->driver->other) {
1629		struct tty_struct *o_tty = tty->link;
1630
1631		if (o_tty != tty->driver->other->ttys[idx]) {
1632			tty_debug(tty, "bad other table[%d] = %p\n",
1633				  idx, tty->driver->other->ttys[idx]);
1634			return -1;
1635		}
1636		if (o_tty->link != tty) {
1637			tty_debug(tty, "bad link = %p\n", o_tty->link);
1638			return -1;
1639		}
1640	}
1641#endif
1642	return 0;
1643}
1644
1645/**
1646 * tty_kclose      -       closes tty opened by tty_kopen
1647 * @tty: tty device
1648 *
1649 * Performs the final steps to release and free a tty device. It is the same as
1650 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1651 * @tty->port.
1652 */
1653void tty_kclose(struct tty_struct *tty)
1654{
1655	/*
1656	 * Ask the line discipline code to release its structures
1657	 */
1658	tty_ldisc_release(tty);
1659
1660	/* Wait for pending work before tty destruction commences */
1661	tty_flush_works(tty);
1662
1663	tty_debug_hangup(tty, "freeing structure\n");
1664	/*
1665	 * The release_tty function takes care of the details of clearing
1666	 * the slots and preserving the termios structure.
1667	 */
1668	mutex_lock(&tty_mutex);
1669	tty_port_set_kopened(tty->port, 0);
1670	release_tty(tty, tty->index);
1671	mutex_unlock(&tty_mutex);
1672}
1673EXPORT_SYMBOL_GPL(tty_kclose);
1674
1675/**
1676 * tty_release_struct	-	release a tty struct
1677 * @tty: tty device
1678 * @idx: index of the tty
1679 *
1680 * Performs the final steps to release and free a tty device. It is roughly the
1681 * reverse of tty_init_dev().
1682 */
1683void tty_release_struct(struct tty_struct *tty, int idx)
1684{
1685	/*
1686	 * Ask the line discipline code to release its structures
1687	 */
1688	tty_ldisc_release(tty);
1689
1690	/* Wait for pending work before tty destruction commmences */
1691	tty_flush_works(tty);
1692
1693	tty_debug_hangup(tty, "freeing structure\n");
1694	/*
1695	 * The release_tty function takes care of the details of clearing
1696	 * the slots and preserving the termios structure.
1697	 */
1698	mutex_lock(&tty_mutex);
1699	release_tty(tty, idx);
1700	mutex_unlock(&tty_mutex);
1701}
1702EXPORT_SYMBOL_GPL(tty_release_struct);
1703
1704/**
1705 * tty_release		-	vfs callback for close
1706 * @inode: inode of tty
1707 * @filp: file pointer for handle to tty
1708 *
1709 * Called the last time each file handle is closed that references this tty.
1710 * There may however be several such references.
1711 *
1712 * Locking:
1713 *	Takes BKL. See tty_release_dev().
1714 *
1715 * Even releasing the tty structures is a tricky business. We have to be very
1716 * careful that the structures are all released at the same time, as interrupts
1717 * might otherwise get the wrong pointers.
1718 *
1719 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1720 * lead to double frees or releasing memory still in use.
1721 */
1722int tty_release(struct inode *inode, struct file *filp)
1723{
1724	struct tty_struct *tty = file_tty(filp);
1725	struct tty_struct *o_tty = NULL;
1726	int	do_sleep, final;
1727	int	idx;
1728	long	timeout = 0;
1729	int	once = 1;
1730
1731	if (tty_paranoia_check(tty, inode, __func__))
1732		return 0;
1733
1734	tty_lock(tty);
1735	check_tty_count(tty, __func__);
1736
1737	__tty_fasync(-1, filp, 0);
1738
1739	idx = tty->index;
1740	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1741	    tty->driver->subtype == PTY_TYPE_MASTER)
1742		o_tty = tty->link;
1743
1744	if (tty_release_checks(tty, idx)) {
1745		tty_unlock(tty);
1746		return 0;
1747	}
1748
1749	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1750
1751	if (tty->ops->close)
1752		tty->ops->close(tty, filp);
1753
1754	/* If tty is pty master, lock the slave pty (stable lock order) */
1755	tty_lock_slave(o_tty);
1756
1757	/*
1758	 * Sanity check: if tty->count is going to zero, there shouldn't be
1759	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1760	 * wait queues and kick everyone out _before_ actually starting to
1761	 * close.  This ensures that we won't block while releasing the tty
1762	 * structure.
1763	 *
1764	 * The test for the o_tty closing is necessary, since the master and
1765	 * slave sides may close in any order.  If the slave side closes out
1766	 * first, its count will be one, since the master side holds an open.
1767	 * Thus this test wouldn't be triggered at the time the slave closed,
1768	 * so we do it now.
1769	 */
1770	while (1) {
1771		do_sleep = 0;
1772
1773		if (tty->count <= 1) {
1774			if (waitqueue_active(&tty->read_wait)) {
1775				wake_up_poll(&tty->read_wait, EPOLLIN);
1776				do_sleep++;
1777			}
1778			if (waitqueue_active(&tty->write_wait)) {
1779				wake_up_poll(&tty->write_wait, EPOLLOUT);
1780				do_sleep++;
1781			}
1782		}
1783		if (o_tty && o_tty->count <= 1) {
1784			if (waitqueue_active(&o_tty->read_wait)) {
1785				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1786				do_sleep++;
1787			}
1788			if (waitqueue_active(&o_tty->write_wait)) {
1789				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1790				do_sleep++;
1791			}
1792		}
1793		if (!do_sleep)
1794			break;
1795
1796		if (once) {
1797			once = 0;
1798			tty_warn(tty, "read/write wait queue active!\n");
1799		}
1800		schedule_timeout_killable(timeout);
1801		if (timeout < 120 * HZ)
1802			timeout = 2 * timeout + 1;
1803		else
1804			timeout = MAX_SCHEDULE_TIMEOUT;
1805	}
1806
1807	if (o_tty) {
1808		if (--o_tty->count < 0) {
1809			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1810			o_tty->count = 0;
1811		}
1812	}
1813	if (--tty->count < 0) {
1814		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1815		tty->count = 0;
1816	}
1817
1818	/*
1819	 * We've decremented tty->count, so we need to remove this file
1820	 * descriptor off the tty->tty_files list; this serves two
1821	 * purposes:
1822	 *  - check_tty_count sees the correct number of file descriptors
1823	 *    associated with this tty.
1824	 *  - do_tty_hangup no longer sees this file descriptor as
1825	 *    something that needs to be handled for hangups.
1826	 */
1827	tty_del_file(filp);
1828
1829	/*
1830	 * Perform some housekeeping before deciding whether to return.
1831	 *
1832	 * If _either_ side is closing, make sure there aren't any
1833	 * processes that still think tty or o_tty is their controlling
1834	 * tty.
1835	 */
1836	if (!tty->count) {
1837		read_lock(&tasklist_lock);
1838		session_clear_tty(tty->ctrl.session);
1839		if (o_tty)
1840			session_clear_tty(o_tty->ctrl.session);
1841		read_unlock(&tasklist_lock);
1842	}
1843
1844	/* check whether both sides are closing ... */
1845	final = !tty->count && !(o_tty && o_tty->count);
1846
1847	tty_unlock_slave(o_tty);
1848	tty_unlock(tty);
1849
1850	/* At this point, the tty->count == 0 should ensure a dead tty
1851	 * cannot be re-opened by a racing opener.
1852	 */
1853
1854	if (!final)
1855		return 0;
1856
1857	tty_debug_hangup(tty, "final close\n");
1858
1859	tty_release_struct(tty, idx);
1860	return 0;
1861}
1862
1863/**
1864 * tty_open_current_tty - get locked tty of current task
1865 * @device: device number
1866 * @filp: file pointer to tty
1867 * @return: locked tty of the current task iff @device is /dev/tty
1868 *
1869 * Performs a re-open of the current task's controlling tty.
1870 *
1871 * We cannot return driver and index like for the other nodes because devpts
1872 * will not work then. It expects inodes to be from devpts FS.
1873 */
1874static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1875{
1876	struct tty_struct *tty;
1877	int retval;
1878
1879	if (device != MKDEV(TTYAUX_MAJOR, 0))
1880		return NULL;
1881
1882	tty = get_current_tty();
1883	if (!tty)
1884		return ERR_PTR(-ENXIO);
1885
1886	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1887	/* noctty = 1; */
1888	tty_lock(tty);
1889	tty_kref_put(tty);	/* safe to drop the kref now */
1890
1891	retval = tty_reopen(tty);
1892	if (retval < 0) {
1893		tty_unlock(tty);
1894		tty = ERR_PTR(retval);
1895	}
1896	return tty;
1897}
1898
1899/**
1900 * tty_lookup_driver - lookup a tty driver for a given device file
1901 * @device: device number
1902 * @filp: file pointer to tty
1903 * @index: index for the device in the @return driver
1904 *
1905 * If returned value is not erroneous, the caller is responsible to decrement
1906 * the refcount by tty_driver_kref_put().
1907 *
1908 * Locking: %tty_mutex protects get_tty_driver()
1909 *
1910 * Return: driver for this inode (with increased refcount)
1911 */
1912static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1913		int *index)
1914{
1915	struct tty_driver *driver = NULL;
1916
1917	switch (device) {
1918#ifdef CONFIG_VT
1919	case MKDEV(TTY_MAJOR, 0): {
1920		extern struct tty_driver *console_driver;
1921
1922		driver = tty_driver_kref_get(console_driver);
1923		*index = fg_console;
1924		break;
1925	}
1926#endif
1927	case MKDEV(TTYAUX_MAJOR, 1): {
1928		struct tty_driver *console_driver = console_device(index);
1929
1930		if (console_driver) {
1931			driver = tty_driver_kref_get(console_driver);
1932			if (driver && filp) {
1933				/* Don't let /dev/console block */
1934				filp->f_flags |= O_NONBLOCK;
1935				break;
1936			}
1937		}
1938		if (driver)
1939			tty_driver_kref_put(driver);
1940		return ERR_PTR(-ENODEV);
1941	}
1942	default:
1943		driver = get_tty_driver(device, index);
1944		if (!driver)
1945			return ERR_PTR(-ENODEV);
1946		break;
1947	}
1948	return driver;
1949}
1950
1951static struct tty_struct *tty_kopen(dev_t device, int shared)
1952{
1953	struct tty_struct *tty;
1954	struct tty_driver *driver;
1955	int index = -1;
1956
1957	mutex_lock(&tty_mutex);
1958	driver = tty_lookup_driver(device, NULL, &index);
1959	if (IS_ERR(driver)) {
1960		mutex_unlock(&tty_mutex);
1961		return ERR_CAST(driver);
1962	}
1963
1964	/* check whether we're reopening an existing tty */
1965	tty = tty_driver_lookup_tty(driver, NULL, index);
1966	if (IS_ERR(tty) || shared)
1967		goto out;
1968
1969	if (tty) {
1970		/* drop kref from tty_driver_lookup_tty() */
1971		tty_kref_put(tty);
1972		tty = ERR_PTR(-EBUSY);
1973	} else { /* tty_init_dev returns tty with the tty_lock held */
1974		tty = tty_init_dev(driver, index);
1975		if (IS_ERR(tty))
1976			goto out;
1977		tty_port_set_kopened(tty->port, 1);
1978	}
1979out:
1980	mutex_unlock(&tty_mutex);
1981	tty_driver_kref_put(driver);
1982	return tty;
1983}
1984
1985/**
1986 * tty_kopen_exclusive	-	open a tty device for kernel
1987 * @device: dev_t of device to open
1988 *
1989 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1990 * it's not already opened and performs the first-time tty initialization.
1991 *
1992 * Claims the global %tty_mutex to serialize:
1993 *  * concurrent first-time tty initialization
1994 *  * concurrent tty driver removal w/ lookup
1995 *  * concurrent tty removal from driver table
1996 *
1997 * Return: the locked initialized &tty_struct
1998 */
1999struct tty_struct *tty_kopen_exclusive(dev_t device)
2000{
2001	return tty_kopen(device, 0);
2002}
2003EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2004
2005/**
2006 * tty_kopen_shared	-	open a tty device for shared in-kernel use
2007 * @device: dev_t of device to open
2008 *
2009 * Opens an already existing tty for in-kernel use. Compared to
2010 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2011 *
2012 * Locking: identical to tty_kopen() above.
2013 */
2014struct tty_struct *tty_kopen_shared(dev_t device)
2015{
2016	return tty_kopen(device, 1);
2017}
2018EXPORT_SYMBOL_GPL(tty_kopen_shared);
2019
2020/**
2021 * tty_open_by_driver	-	open a tty device
2022 * @device: dev_t of device to open
2023 * @filp: file pointer to tty
2024 *
2025 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2026 * first-time tty initialization.
2027 *
2028 *
2029 * Claims the global tty_mutex to serialize:
2030 *  * concurrent first-time tty initialization
2031 *  * concurrent tty driver removal w/ lookup
2032 *  * concurrent tty removal from driver table
2033 *
2034 * Return: the locked initialized or re-opened &tty_struct
2035 */
2036static struct tty_struct *tty_open_by_driver(dev_t device,
2037					     struct file *filp)
2038{
2039	struct tty_struct *tty;
2040	struct tty_driver *driver = NULL;
2041	int index = -1;
2042	int retval;
2043
2044	mutex_lock(&tty_mutex);
2045	driver = tty_lookup_driver(device, filp, &index);
2046	if (IS_ERR(driver)) {
2047		mutex_unlock(&tty_mutex);
2048		return ERR_CAST(driver);
2049	}
2050
2051	/* check whether we're reopening an existing tty */
2052	tty = tty_driver_lookup_tty(driver, filp, index);
2053	if (IS_ERR(tty)) {
2054		mutex_unlock(&tty_mutex);
2055		goto out;
2056	}
2057
2058	if (tty) {
2059		if (tty_port_kopened(tty->port)) {
2060			tty_kref_put(tty);
2061			mutex_unlock(&tty_mutex);
2062			tty = ERR_PTR(-EBUSY);
2063			goto out;
2064		}
2065		mutex_unlock(&tty_mutex);
2066		retval = tty_lock_interruptible(tty);
2067		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2068		if (retval) {
2069			if (retval == -EINTR)
2070				retval = -ERESTARTSYS;
2071			tty = ERR_PTR(retval);
2072			goto out;
2073		}
2074		retval = tty_reopen(tty);
2075		if (retval < 0) {
2076			tty_unlock(tty);
2077			tty = ERR_PTR(retval);
2078		}
2079	} else { /* Returns with the tty_lock held for now */
2080		tty = tty_init_dev(driver, index);
2081		mutex_unlock(&tty_mutex);
2082	}
2083out:
2084	tty_driver_kref_put(driver);
2085	return tty;
2086}
2087
2088/**
2089 * tty_open	-	open a tty device
2090 * @inode: inode of device file
2091 * @filp: file pointer to tty
2092 *
2093 * tty_open() and tty_release() keep up the tty count that contains the number
2094 * of opens done on a tty. We cannot use the inode-count, as different inodes
2095 * might point to the same tty.
2096 *
2097 * Open-counting is needed for pty masters, as well as for keeping track of
2098 * serial lines: DTR is dropped when the last close happens.
2099 * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2100 *
2101 * The termios state of a pty is reset on the first open so that settings don't
2102 * persist across reuse.
2103 *
2104 * Locking:
2105 *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2106 *  * @tty->count should protect the rest.
2107 *  * ->siglock protects ->signal/->sighand
2108 *
2109 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2110 */
2111static int tty_open(struct inode *inode, struct file *filp)
2112{
2113	struct tty_struct *tty;
2114	int noctty, retval;
2115	dev_t device = inode->i_rdev;
2116	unsigned saved_flags = filp->f_flags;
2117
2118	nonseekable_open(inode, filp);
2119
2120retry_open:
2121	retval = tty_alloc_file(filp);
2122	if (retval)
2123		return -ENOMEM;
2124
2125	tty = tty_open_current_tty(device, filp);
2126	if (!tty)
2127		tty = tty_open_by_driver(device, filp);
2128
2129	if (IS_ERR(tty)) {
2130		tty_free_file(filp);
2131		retval = PTR_ERR(tty);
2132		if (retval != -EAGAIN || signal_pending(current))
2133			return retval;
2134		schedule();
2135		goto retry_open;
2136	}
2137
2138	tty_add_file(tty, filp);
2139
2140	check_tty_count(tty, __func__);
2141	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2142
2143	if (tty->ops->open)
2144		retval = tty->ops->open(tty, filp);
2145	else
2146		retval = -ENODEV;
2147	filp->f_flags = saved_flags;
2148
2149	if (retval) {
2150		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2151
2152		tty_unlock(tty); /* need to call tty_release without BTM */
2153		tty_release(inode, filp);
2154		if (retval != -ERESTARTSYS)
2155			return retval;
2156
2157		if (signal_pending(current))
2158			return retval;
2159
2160		schedule();
2161		/*
2162		 * Need to reset f_op in case a hangup happened.
2163		 */
2164		if (tty_hung_up_p(filp))
2165			filp->f_op = &tty_fops;
2166		goto retry_open;
2167	}
2168	clear_bit(TTY_HUPPED, &tty->flags);
2169
2170	noctty = (filp->f_flags & O_NOCTTY) ||
2171		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2172		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2173		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2174		  tty->driver->subtype == PTY_TYPE_MASTER);
2175	if (!noctty)
2176		tty_open_proc_set_tty(filp, tty);
2177	tty_unlock(tty);
2178	return 0;
2179}
2180
2181
2182/**
2183 * tty_poll	-	check tty status
2184 * @filp: file being polled
2185 * @wait: poll wait structures to update
2186 *
2187 * Call the line discipline polling method to obtain the poll status of the
2188 * device.
2189 *
2190 * Locking: locks called line discipline but ldisc poll method may be
2191 * re-entered freely by other callers.
2192 */
2193static __poll_t tty_poll(struct file *filp, poll_table *wait)
2194{
2195	struct tty_struct *tty = file_tty(filp);
2196	struct tty_ldisc *ld;
2197	__poll_t ret = 0;
2198
2199	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2200		return 0;
2201
2202	ld = tty_ldisc_ref_wait(tty);
2203	if (!ld)
2204		return hung_up_tty_poll(filp, wait);
2205	if (ld->ops->poll)
2206		ret = ld->ops->poll(tty, filp, wait);
2207	tty_ldisc_deref(ld);
2208	return ret;
2209}
2210
2211static int __tty_fasync(int fd, struct file *filp, int on)
2212{
2213	struct tty_struct *tty = file_tty(filp);
2214	unsigned long flags;
2215	int retval = 0;
2216
2217	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2218		goto out;
2219
2220	retval = fasync_helper(fd, filp, on, &tty->fasync);
2221	if (retval <= 0)
2222		goto out;
2223
2224	if (on) {
2225		enum pid_type type;
2226		struct pid *pid;
2227
2228		spin_lock_irqsave(&tty->ctrl.lock, flags);
2229		if (tty->ctrl.pgrp) {
2230			pid = tty->ctrl.pgrp;
2231			type = PIDTYPE_PGID;
2232		} else {
2233			pid = task_pid(current);
2234			type = PIDTYPE_TGID;
2235		}
2236		get_pid(pid);
2237		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2238		__f_setown(filp, pid, type, 0);
2239		put_pid(pid);
2240		retval = 0;
2241	}
2242out:
2243	return retval;
2244}
2245
2246static int tty_fasync(int fd, struct file *filp, int on)
2247{
2248	struct tty_struct *tty = file_tty(filp);
2249	int retval = -ENOTTY;
2250
2251	tty_lock(tty);
2252	if (!tty_hung_up_p(filp))
2253		retval = __tty_fasync(fd, filp, on);
2254	tty_unlock(tty);
2255
2256	return retval;
2257}
2258
2259static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2260/**
2261 * tiocsti		-	fake input character
2262 * @tty: tty to fake input into
2263 * @p: pointer to character
2264 *
2265 * Fake input to a tty device. Does the necessary locking and input management.
2266 *
2267 * FIXME: does not honour flow control ??
2268 *
2269 * Locking:
2270 *  * Called functions take tty_ldiscs_lock
2271 *  * current->signal->tty check is safe without locks
2272 */
2273static int tiocsti(struct tty_struct *tty, char __user *p)
2274{
2275	char ch, mbz = 0;
2276	struct tty_ldisc *ld;
2277
2278	if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2279		return -EIO;
2280
2281	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2282		return -EPERM;
2283	if (get_user(ch, p))
2284		return -EFAULT;
2285	tty_audit_tiocsti(tty, ch);
2286	ld = tty_ldisc_ref_wait(tty);
2287	if (!ld)
2288		return -EIO;
2289	tty_buffer_lock_exclusive(tty->port);
2290	if (ld->ops->receive_buf)
2291		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2292	tty_buffer_unlock_exclusive(tty->port);
2293	tty_ldisc_deref(ld);
2294	return 0;
2295}
2296
2297/**
2298 * tiocgwinsz		-	implement window query ioctl
2299 * @tty: tty
2300 * @arg: user buffer for result
2301 *
2302 * Copies the kernel idea of the window size into the user buffer.
2303 *
2304 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2305 * consistent.
2306 */
2307static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2308{
2309	int err;
2310
2311	mutex_lock(&tty->winsize_mutex);
2312	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2313	mutex_unlock(&tty->winsize_mutex);
2314
2315	return err ? -EFAULT : 0;
2316}
2317
2318/**
2319 * tty_do_resize	-	resize event
2320 * @tty: tty being resized
2321 * @ws: new dimensions
2322 *
2323 * Update the termios variables and send the necessary signals to peform a
2324 * terminal resize correctly.
2325 */
2326int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2327{
2328	struct pid *pgrp;
2329
2330	/* Lock the tty */
2331	mutex_lock(&tty->winsize_mutex);
2332	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2333		goto done;
2334
2335	/* Signal the foreground process group */
2336	pgrp = tty_get_pgrp(tty);
2337	if (pgrp)
2338		kill_pgrp(pgrp, SIGWINCH, 1);
2339	put_pid(pgrp);
2340
2341	tty->winsize = *ws;
2342done:
2343	mutex_unlock(&tty->winsize_mutex);
2344	return 0;
2345}
2346EXPORT_SYMBOL(tty_do_resize);
2347
2348/**
2349 * tiocswinsz		-	implement window size set ioctl
2350 * @tty: tty side of tty
2351 * @arg: user buffer for result
2352 *
2353 * Copies the user idea of the window size to the kernel. Traditionally this is
2354 * just advisory information but for the Linux console it actually has driver
2355 * level meaning and triggers a VC resize.
2356 *
2357 * Locking:
2358 *	Driver dependent. The default do_resize method takes the tty termios
2359 *	mutex and ctrl.lock. The console takes its own lock then calls into the
2360 *	default method.
2361 */
2362static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2363{
2364	struct winsize tmp_ws;
2365
2366	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2367		return -EFAULT;
2368
2369	if (tty->ops->resize)
2370		return tty->ops->resize(tty, &tmp_ws);
2371	else
2372		return tty_do_resize(tty, &tmp_ws);
2373}
2374
2375/**
2376 * tioccons	-	allow admin to move logical console
2377 * @file: the file to become console
2378 *
2379 * Allow the administrator to move the redirected console device.
2380 *
2381 * Locking: uses redirect_lock to guard the redirect information
2382 */
2383static int tioccons(struct file *file)
2384{
2385	if (!capable(CAP_SYS_ADMIN))
2386		return -EPERM;
2387	if (file->f_op->write_iter == redirected_tty_write) {
2388		struct file *f;
2389
2390		spin_lock(&redirect_lock);
2391		f = redirect;
2392		redirect = NULL;
2393		spin_unlock(&redirect_lock);
2394		if (f)
2395			fput(f);
2396		return 0;
2397	}
2398	if (file->f_op->write_iter != tty_write)
2399		return -ENOTTY;
2400	if (!(file->f_mode & FMODE_WRITE))
2401		return -EBADF;
2402	if (!(file->f_mode & FMODE_CAN_WRITE))
2403		return -EINVAL;
2404	spin_lock(&redirect_lock);
2405	if (redirect) {
2406		spin_unlock(&redirect_lock);
2407		return -EBUSY;
2408	}
2409	redirect = get_file(file);
2410	spin_unlock(&redirect_lock);
2411	return 0;
2412}
2413
2414/**
2415 * tiocsetd	-	set line discipline
2416 * @tty: tty device
2417 * @p: pointer to user data
2418 *
2419 * Set the line discipline according to user request.
2420 *
2421 * Locking: see tty_set_ldisc(), this function is just a helper
2422 */
2423static int tiocsetd(struct tty_struct *tty, int __user *p)
2424{
2425	int disc;
2426	int ret;
2427
2428	if (get_user(disc, p))
2429		return -EFAULT;
2430
2431	ret = tty_set_ldisc(tty, disc);
2432
2433	return ret;
2434}
2435
2436/**
2437 * tiocgetd	-	get line discipline
2438 * @tty: tty device
2439 * @p: pointer to user data
2440 *
2441 * Retrieves the line discipline id directly from the ldisc.
2442 *
2443 * Locking: waits for ldisc reference (in case the line discipline is changing
2444 * or the @tty is being hungup)
2445 */
2446static int tiocgetd(struct tty_struct *tty, int __user *p)
2447{
2448	struct tty_ldisc *ld;
2449	int ret;
2450
2451	ld = tty_ldisc_ref_wait(tty);
2452	if (!ld)
2453		return -EIO;
2454	ret = put_user(ld->ops->num, p);
2455	tty_ldisc_deref(ld);
2456	return ret;
2457}
2458
2459/**
2460 * send_break	-	performed time break
2461 * @tty: device to break on
2462 * @duration: timeout in mS
2463 *
2464 * Perform a timed break on hardware that lacks its own driver level timed
2465 * break functionality.
2466 *
2467 * Locking:
2468 *	@tty->atomic_write_lock serializes
2469 */
2470static int send_break(struct tty_struct *tty, unsigned int duration)
2471{
2472	int retval;
2473
2474	if (tty->ops->break_ctl == NULL)
2475		return 0;
2476
2477	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2478		return tty->ops->break_ctl(tty, duration);
2479
2480	/* Do the work ourselves */
2481	if (tty_write_lock(tty, false) < 0)
2482		return -EINTR;
2483
2484	retval = tty->ops->break_ctl(tty, -1);
2485	if (!retval) {
2486		msleep_interruptible(duration);
2487		retval = tty->ops->break_ctl(tty, 0);
2488	} else if (retval == -EOPNOTSUPP) {
2489		/* some drivers can tell only dynamically */
2490		retval = 0;
2491	}
2492	tty_write_unlock(tty);
2493
2494	if (signal_pending(current))
2495		retval = -EINTR;
2496
2497	return retval;
2498}
2499
2500/**
2501 * tty_tiocmget		-	get modem status
2502 * @tty: tty device
2503 * @p: pointer to result
2504 *
2505 * Obtain the modem status bits from the tty driver if the feature is
2506 * supported. Return -%ENOTTY if it is not available.
2507 *
2508 * Locking: none (up to the driver)
2509 */
2510static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2511{
2512	int retval = -ENOTTY;
2513
2514	if (tty->ops->tiocmget) {
2515		retval = tty->ops->tiocmget(tty);
2516
2517		if (retval >= 0)
2518			retval = put_user(retval, p);
2519	}
2520	return retval;
2521}
2522
2523/**
2524 * tty_tiocmset		-	set modem status
2525 * @tty: tty device
2526 * @cmd: command - clear bits, set bits or set all
2527 * @p: pointer to desired bits
2528 *
2529 * Set the modem status bits from the tty driver if the feature
2530 * is supported. Return -%ENOTTY if it is not available.
2531 *
2532 * Locking: none (up to the driver)
2533 */
2534static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2535	     unsigned __user *p)
2536{
2537	int retval;
2538	unsigned int set, clear, val;
2539
2540	if (tty->ops->tiocmset == NULL)
2541		return -ENOTTY;
2542
2543	retval = get_user(val, p);
2544	if (retval)
2545		return retval;
2546	set = clear = 0;
2547	switch (cmd) {
2548	case TIOCMBIS:
2549		set = val;
2550		break;
2551	case TIOCMBIC:
2552		clear = val;
2553		break;
2554	case TIOCMSET:
2555		set = val;
2556		clear = ~val;
2557		break;
2558	}
2559	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2560	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2561	return tty->ops->tiocmset(tty, set, clear);
2562}
2563
2564/**
2565 * tty_get_icount	-	get tty statistics
2566 * @tty: tty device
2567 * @icount: output parameter
2568 *
2569 * Gets a copy of the @tty's icount statistics.
2570 *
2571 * Locking: none (up to the driver)
2572 */
2573int tty_get_icount(struct tty_struct *tty,
2574		   struct serial_icounter_struct *icount)
2575{
2576	memset(icount, 0, sizeof(*icount));
2577
2578	if (tty->ops->get_icount)
2579		return tty->ops->get_icount(tty, icount);
2580	else
2581		return -ENOTTY;
2582}
2583EXPORT_SYMBOL_GPL(tty_get_icount);
2584
2585static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2586{
2587	struct serial_icounter_struct icount;
2588	int retval;
2589
2590	retval = tty_get_icount(tty, &icount);
2591	if (retval != 0)
2592		return retval;
2593
2594	if (copy_to_user(arg, &icount, sizeof(icount)))
2595		return -EFAULT;
2596	return 0;
2597}
2598
2599static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2600{
2601	char comm[TASK_COMM_LEN];
2602	int flags;
2603
2604	flags = ss->flags & ASYNC_DEPRECATED;
2605
2606	if (flags)
2607		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2608				__func__, get_task_comm(comm, current), flags);
2609
2610	if (!tty->ops->set_serial)
2611		return -ENOTTY;
2612
2613	return tty->ops->set_serial(tty, ss);
2614}
2615
2616static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2617{
2618	struct serial_struct v;
2619
2620	if (copy_from_user(&v, ss, sizeof(*ss)))
2621		return -EFAULT;
2622
2623	return tty_set_serial(tty, &v);
2624}
2625
2626static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2627{
2628	struct serial_struct v;
2629	int err;
2630
2631	memset(&v, 0, sizeof(v));
2632	if (!tty->ops->get_serial)
2633		return -ENOTTY;
2634	err = tty->ops->get_serial(tty, &v);
2635	if (!err && copy_to_user(ss, &v, sizeof(v)))
2636		err = -EFAULT;
2637	return err;
2638}
2639
2640/*
2641 * if pty, return the slave side (real_tty)
2642 * otherwise, return self
2643 */
2644static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2645{
2646	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2647	    tty->driver->subtype == PTY_TYPE_MASTER)
2648		tty = tty->link;
2649	return tty;
2650}
2651
2652/*
2653 * Split this up, as gcc can choke on it otherwise..
2654 */
2655long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2656{
2657	struct tty_struct *tty = file_tty(file);
2658	struct tty_struct *real_tty;
2659	void __user *p = (void __user *)arg;
2660	int retval;
2661	struct tty_ldisc *ld;
2662
2663	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2664		return -EINVAL;
2665
2666	real_tty = tty_pair_get_tty(tty);
2667
2668	/*
2669	 * Factor out some common prep work
2670	 */
2671	switch (cmd) {
2672	case TIOCSETD:
2673	case TIOCSBRK:
2674	case TIOCCBRK:
2675	case TCSBRK:
2676	case TCSBRKP:
2677		retval = tty_check_change(tty);
2678		if (retval)
2679			return retval;
2680		if (cmd != TIOCCBRK) {
2681			tty_wait_until_sent(tty, 0);
2682			if (signal_pending(current))
2683				return -EINTR;
2684		}
2685		break;
2686	}
2687
2688	/*
2689	 *	Now do the stuff.
2690	 */
2691	switch (cmd) {
2692	case TIOCSTI:
2693		return tiocsti(tty, p);
2694	case TIOCGWINSZ:
2695		return tiocgwinsz(real_tty, p);
2696	case TIOCSWINSZ:
2697		return tiocswinsz(real_tty, p);
2698	case TIOCCONS:
2699		return real_tty != tty ? -EINVAL : tioccons(file);
2700	case TIOCEXCL:
2701		set_bit(TTY_EXCLUSIVE, &tty->flags);
2702		return 0;
2703	case TIOCNXCL:
2704		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2705		return 0;
2706	case TIOCGEXCL:
2707	{
2708		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2709
2710		return put_user(excl, (int __user *)p);
2711	}
2712	case TIOCGETD:
2713		return tiocgetd(tty, p);
2714	case TIOCSETD:
2715		return tiocsetd(tty, p);
2716	case TIOCVHANGUP:
2717		if (!capable(CAP_SYS_ADMIN))
2718			return -EPERM;
2719		tty_vhangup(tty);
2720		return 0;
2721	case TIOCGDEV:
2722	{
2723		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2724
2725		return put_user(ret, (unsigned int __user *)p);
2726	}
2727	/*
2728	 * Break handling
2729	 */
2730	case TIOCSBRK:	/* Turn break on, unconditionally */
2731		if (tty->ops->break_ctl)
2732			return tty->ops->break_ctl(tty, -1);
2733		return 0;
2734	case TIOCCBRK:	/* Turn break off, unconditionally */
2735		if (tty->ops->break_ctl)
2736			return tty->ops->break_ctl(tty, 0);
2737		return 0;
2738	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2739		/* non-zero arg means wait for all output data
2740		 * to be sent (performed above) but don't send break.
2741		 * This is used by the tcdrain() termios function.
2742		 */
2743		if (!arg)
2744			return send_break(tty, 250);
2745		return 0;
2746	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2747		return send_break(tty, arg ? arg*100 : 250);
2748
2749	case TIOCMGET:
2750		return tty_tiocmget(tty, p);
2751	case TIOCMSET:
2752	case TIOCMBIC:
2753	case TIOCMBIS:
2754		return tty_tiocmset(tty, cmd, p);
2755	case TIOCGICOUNT:
2756		return tty_tiocgicount(tty, p);
2757	case TCFLSH:
2758		switch (arg) {
2759		case TCIFLUSH:
2760		case TCIOFLUSH:
2761		/* flush tty buffer and allow ldisc to process ioctl */
2762			tty_buffer_flush(tty, NULL);
2763			break;
2764		}
2765		break;
2766	case TIOCSSERIAL:
2767		return tty_tiocsserial(tty, p);
2768	case TIOCGSERIAL:
2769		return tty_tiocgserial(tty, p);
2770	case TIOCGPTPEER:
2771		/* Special because the struct file is needed */
2772		return ptm_open_peer(file, tty, (int)arg);
2773	default:
2774		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2775		if (retval != -ENOIOCTLCMD)
2776			return retval;
2777	}
2778	if (tty->ops->ioctl) {
2779		retval = tty->ops->ioctl(tty, cmd, arg);
2780		if (retval != -ENOIOCTLCMD)
2781			return retval;
2782	}
2783	ld = tty_ldisc_ref_wait(tty);
2784	if (!ld)
2785		return hung_up_tty_ioctl(file, cmd, arg);
2786	retval = -EINVAL;
2787	if (ld->ops->ioctl) {
2788		retval = ld->ops->ioctl(tty, cmd, arg);
2789		if (retval == -ENOIOCTLCMD)
2790			retval = -ENOTTY;
2791	}
2792	tty_ldisc_deref(ld);
2793	return retval;
2794}
2795
2796#ifdef CONFIG_COMPAT
2797
2798struct serial_struct32 {
2799	compat_int_t    type;
2800	compat_int_t    line;
2801	compat_uint_t   port;
2802	compat_int_t    irq;
2803	compat_int_t    flags;
2804	compat_int_t    xmit_fifo_size;
2805	compat_int_t    custom_divisor;
2806	compat_int_t    baud_base;
2807	unsigned short  close_delay;
2808	char    io_type;
2809	char    reserved_char;
2810	compat_int_t    hub6;
2811	unsigned short  closing_wait; /* time to wait before closing */
2812	unsigned short  closing_wait2; /* no longer used... */
2813	compat_uint_t   iomem_base;
2814	unsigned short  iomem_reg_shift;
2815	unsigned int    port_high;
2816	/* compat_ulong_t  iomap_base FIXME */
2817	compat_int_t    reserved;
2818};
2819
2820static int compat_tty_tiocsserial(struct tty_struct *tty,
2821		struct serial_struct32 __user *ss)
2822{
2823	struct serial_struct32 v32;
2824	struct serial_struct v;
2825
2826	if (copy_from_user(&v32, ss, sizeof(*ss)))
2827		return -EFAULT;
2828
2829	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2830	v.iomem_base = compat_ptr(v32.iomem_base);
2831	v.iomem_reg_shift = v32.iomem_reg_shift;
2832	v.port_high = v32.port_high;
2833	v.iomap_base = 0;
2834
2835	return tty_set_serial(tty, &v);
2836}
2837
2838static int compat_tty_tiocgserial(struct tty_struct *tty,
2839			struct serial_struct32 __user *ss)
2840{
2841	struct serial_struct32 v32;
2842	struct serial_struct v;
2843	int err;
2844
2845	memset(&v, 0, sizeof(v));
2846	memset(&v32, 0, sizeof(v32));
2847
2848	if (!tty->ops->get_serial)
2849		return -ENOTTY;
2850	err = tty->ops->get_serial(tty, &v);
2851	if (!err) {
2852		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2853		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2854			0xfffffff : ptr_to_compat(v.iomem_base);
2855		v32.iomem_reg_shift = v.iomem_reg_shift;
2856		v32.port_high = v.port_high;
2857		if (copy_to_user(ss, &v32, sizeof(v32)))
2858			err = -EFAULT;
2859	}
2860	return err;
2861}
2862static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2863				unsigned long arg)
2864{
2865	struct tty_struct *tty = file_tty(file);
2866	struct tty_ldisc *ld;
2867	int retval = -ENOIOCTLCMD;
2868
2869	switch (cmd) {
2870	case TIOCOUTQ:
2871	case TIOCSTI:
2872	case TIOCGWINSZ:
2873	case TIOCSWINSZ:
2874	case TIOCGEXCL:
2875	case TIOCGETD:
2876	case TIOCSETD:
2877	case TIOCGDEV:
2878	case TIOCMGET:
2879	case TIOCMSET:
2880	case TIOCMBIC:
2881	case TIOCMBIS:
2882	case TIOCGICOUNT:
2883	case TIOCGPGRP:
2884	case TIOCSPGRP:
2885	case TIOCGSID:
2886	case TIOCSERGETLSR:
2887	case TIOCGRS485:
2888	case TIOCSRS485:
2889#ifdef TIOCGETP
2890	case TIOCGETP:
2891	case TIOCSETP:
2892	case TIOCSETN:
2893#endif
2894#ifdef TIOCGETC
2895	case TIOCGETC:
2896	case TIOCSETC:
2897#endif
2898#ifdef TIOCGLTC
2899	case TIOCGLTC:
2900	case TIOCSLTC:
2901#endif
2902	case TCSETSF:
2903	case TCSETSW:
2904	case TCSETS:
2905	case TCGETS:
2906#ifdef TCGETS2
2907	case TCGETS2:
2908	case TCSETSF2:
2909	case TCSETSW2:
2910	case TCSETS2:
2911#endif
2912	case TCGETA:
2913	case TCSETAF:
2914	case TCSETAW:
2915	case TCSETA:
2916	case TIOCGLCKTRMIOS:
2917	case TIOCSLCKTRMIOS:
2918#ifdef TCGETX
2919	case TCGETX:
2920	case TCSETX:
2921	case TCSETXW:
2922	case TCSETXF:
2923#endif
2924	case TIOCGSOFTCAR:
2925	case TIOCSSOFTCAR:
2926
2927	case PPPIOCGCHAN:
2928	case PPPIOCGUNIT:
2929		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2930	case TIOCCONS:
2931	case TIOCEXCL:
2932	case TIOCNXCL:
2933	case TIOCVHANGUP:
2934	case TIOCSBRK:
2935	case TIOCCBRK:
2936	case TCSBRK:
2937	case TCSBRKP:
2938	case TCFLSH:
2939	case TIOCGPTPEER:
2940	case TIOCNOTTY:
2941	case TIOCSCTTY:
2942	case TCXONC:
2943	case TIOCMIWAIT:
2944	case TIOCSERCONFIG:
2945		return tty_ioctl(file, cmd, arg);
2946	}
2947
2948	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2949		return -EINVAL;
2950
2951	switch (cmd) {
2952	case TIOCSSERIAL:
2953		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2954	case TIOCGSERIAL:
2955		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2956	}
2957	if (tty->ops->compat_ioctl) {
2958		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2959		if (retval != -ENOIOCTLCMD)
2960			return retval;
2961	}
2962
2963	ld = tty_ldisc_ref_wait(tty);
2964	if (!ld)
2965		return hung_up_tty_compat_ioctl(file, cmd, arg);
2966	if (ld->ops->compat_ioctl)
2967		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2968	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2969		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2970				arg);
2971	tty_ldisc_deref(ld);
2972
2973	return retval;
2974}
2975#endif
2976
2977static int this_tty(const void *t, struct file *file, unsigned fd)
2978{
2979	if (likely(file->f_op->read_iter != tty_read))
2980		return 0;
2981	return file_tty(file) != t ? 0 : fd + 1;
2982}
2983
2984/*
2985 * This implements the "Secure Attention Key" ---  the idea is to
2986 * prevent trojan horses by killing all processes associated with this
2987 * tty when the user hits the "Secure Attention Key".  Required for
2988 * super-paranoid applications --- see the Orange Book for more details.
2989 *
2990 * This code could be nicer; ideally it should send a HUP, wait a few
2991 * seconds, then send a INT, and then a KILL signal.  But you then
2992 * have to coordinate with the init process, since all processes associated
2993 * with the current tty must be dead before the new getty is allowed
2994 * to spawn.
2995 *
2996 * Now, if it would be correct ;-/ The current code has a nasty hole -
2997 * it doesn't catch files in flight. We may send the descriptor to ourselves
2998 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2999 *
3000 * Nasty bug: do_SAK is being called in interrupt context.  This can
3001 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3002 */
3003void __do_SAK(struct tty_struct *tty)
3004{
3005	struct task_struct *g, *p;
3006	struct pid *session;
3007	int i;
3008	unsigned long flags;
3009
3010	spin_lock_irqsave(&tty->ctrl.lock, flags);
3011	session = get_pid(tty->ctrl.session);
3012	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3013
3014	tty_ldisc_flush(tty);
3015
3016	tty_driver_flush_buffer(tty);
3017
3018	read_lock(&tasklist_lock);
3019	/* Kill the entire session */
3020	do_each_pid_task(session, PIDTYPE_SID, p) {
3021		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3022			   task_pid_nr(p), p->comm);
3023		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3024	} while_each_pid_task(session, PIDTYPE_SID, p);
3025
3026	/* Now kill any processes that happen to have the tty open */
3027	for_each_process_thread(g, p) {
3028		if (p->signal->tty == tty) {
3029			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3030				   task_pid_nr(p), p->comm);
3031			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3032					PIDTYPE_SID);
3033			continue;
3034		}
3035		task_lock(p);
3036		i = iterate_fd(p->files, 0, this_tty, tty);
3037		if (i != 0) {
3038			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3039				   task_pid_nr(p), p->comm, i - 1);
3040			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3041					PIDTYPE_SID);
3042		}
3043		task_unlock(p);
3044	}
3045	read_unlock(&tasklist_lock);
3046	put_pid(session);
3047}
3048
3049static void do_SAK_work(struct work_struct *work)
3050{
3051	struct tty_struct *tty =
3052		container_of(work, struct tty_struct, SAK_work);
3053	__do_SAK(tty);
3054}
3055
3056/*
3057 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3058 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3059 * the values which we write to it will be identical to the values which it
3060 * already has. --akpm
3061 */
3062void do_SAK(struct tty_struct *tty)
3063{
3064	if (!tty)
3065		return;
3066	schedule_work(&tty->SAK_work);
3067}
3068EXPORT_SYMBOL(do_SAK);
3069
3070/* Must put_device() after it's unused! */
3071static struct device *tty_get_device(struct tty_struct *tty)
3072{
3073	dev_t devt = tty_devnum(tty);
3074
3075	return class_find_device_by_devt(&tty_class, devt);
3076}
3077
3078
3079/**
3080 * alloc_tty_struct - allocate a new tty
3081 * @driver: driver which will handle the returned tty
3082 * @idx: minor of the tty
3083 *
3084 * This subroutine allocates and initializes a tty structure.
3085 *
3086 * Locking: none - @tty in question is not exposed at this point
3087 */
3088struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3089{
3090	struct tty_struct *tty;
3091
3092	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3093	if (!tty)
3094		return NULL;
3095
3096	kref_init(&tty->kref);
3097	if (tty_ldisc_init(tty)) {
3098		kfree(tty);
3099		return NULL;
3100	}
3101	tty->ctrl.session = NULL;
3102	tty->ctrl.pgrp = NULL;
3103	mutex_init(&tty->legacy_mutex);
3104	mutex_init(&tty->throttle_mutex);
3105	init_rwsem(&tty->termios_rwsem);
3106	mutex_init(&tty->winsize_mutex);
3107	init_ldsem(&tty->ldisc_sem);
3108	init_waitqueue_head(&tty->write_wait);
3109	init_waitqueue_head(&tty->read_wait);
3110	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3111	mutex_init(&tty->atomic_write_lock);
3112	spin_lock_init(&tty->ctrl.lock);
3113	spin_lock_init(&tty->flow.lock);
3114	spin_lock_init(&tty->files_lock);
3115	INIT_LIST_HEAD(&tty->tty_files);
3116	INIT_WORK(&tty->SAK_work, do_SAK_work);
3117
3118	tty->driver = driver;
3119	tty->ops = driver->ops;
3120	tty->index = idx;
3121	tty_line_name(driver, idx, tty->name);
3122	tty->dev = tty_get_device(tty);
3123
3124	return tty;
3125}
3126
3127/**
3128 * tty_put_char	- write one character to a tty
3129 * @tty: tty
3130 * @ch: character to write
3131 *
3132 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3133 * if present.
3134 *
3135 * Note: the specific put_char operation in the driver layer may go
3136 * away soon. Don't call it directly, use this method
3137 *
3138 * Return: the number of characters successfully output.
3139 */
3140int tty_put_char(struct tty_struct *tty, unsigned char ch)
3141{
3142	if (tty->ops->put_char)
3143		return tty->ops->put_char(tty, ch);
3144	return tty->ops->write(tty, &ch, 1);
3145}
3146EXPORT_SYMBOL_GPL(tty_put_char);
3147
3148static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3149		unsigned int index, unsigned int count)
3150{
3151	int err;
3152
3153	/* init here, since reused cdevs cause crashes */
3154	driver->cdevs[index] = cdev_alloc();
3155	if (!driver->cdevs[index])
3156		return -ENOMEM;
3157	driver->cdevs[index]->ops = &tty_fops;
3158	driver->cdevs[index]->owner = driver->owner;
3159	err = cdev_add(driver->cdevs[index], dev, count);
3160	if (err)
3161		kobject_put(&driver->cdevs[index]->kobj);
3162	return err;
3163}
3164
3165/**
3166 * tty_register_device - register a tty device
3167 * @driver: the tty driver that describes the tty device
3168 * @index: the index in the tty driver for this tty device
3169 * @device: a struct device that is associated with this tty device.
3170 *	This field is optional, if there is no known struct device
3171 *	for this tty device it can be set to NULL safely.
3172 *
3173 * This call is required to be made to register an individual tty device
3174 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3175 * that bit is not set, this function should not be called by a tty
3176 * driver.
3177 *
3178 * Locking: ??
3179 *
3180 * Return: A pointer to the struct device for this tty device (or
3181 * ERR_PTR(-EFOO) on error).
3182 */
3183struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3184				   struct device *device)
3185{
3186	return tty_register_device_attr(driver, index, device, NULL, NULL);
3187}
3188EXPORT_SYMBOL(tty_register_device);
3189
3190static void tty_device_create_release(struct device *dev)
3191{
3192	dev_dbg(dev, "releasing...\n");
3193	kfree(dev);
3194}
3195
3196/**
3197 * tty_register_device_attr - register a tty device
3198 * @driver: the tty driver that describes the tty device
3199 * @index: the index in the tty driver for this tty device
3200 * @device: a struct device that is associated with this tty device.
3201 *	This field is optional, if there is no known struct device
3202 *	for this tty device it can be set to %NULL safely.
3203 * @drvdata: Driver data to be set to device.
3204 * @attr_grp: Attribute group to be set on device.
3205 *
3206 * This call is required to be made to register an individual tty device if the
3207 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3208 * not set, this function should not be called by a tty driver.
3209 *
3210 * Locking: ??
3211 *
3212 * Return: A pointer to the struct device for this tty device (or
3213 * ERR_PTR(-EFOO) on error).
3214 */
3215struct device *tty_register_device_attr(struct tty_driver *driver,
3216				   unsigned index, struct device *device,
3217				   void *drvdata,
3218				   const struct attribute_group **attr_grp)
3219{
3220	char name[64];
3221	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3222	struct ktermios *tp;
3223	struct device *dev;
3224	int retval;
3225
3226	if (index >= driver->num) {
3227		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3228		       driver->name, index);
3229		return ERR_PTR(-EINVAL);
3230	}
3231
3232	if (driver->type == TTY_DRIVER_TYPE_PTY)
3233		pty_line_name(driver, index, name);
3234	else
3235		tty_line_name(driver, index, name);
3236
3237	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3238	if (!dev)
3239		return ERR_PTR(-ENOMEM);
3240
3241	dev->devt = devt;
3242	dev->class = &tty_class;
3243	dev->parent = device;
3244	dev->release = tty_device_create_release;
3245	dev_set_name(dev, "%s", name);
3246	dev->groups = attr_grp;
3247	dev_set_drvdata(dev, drvdata);
3248
3249	dev_set_uevent_suppress(dev, 1);
3250
3251	retval = device_register(dev);
3252	if (retval)
3253		goto err_put;
3254
3255	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3256		/*
3257		 * Free any saved termios data so that the termios state is
3258		 * reset when reusing a minor number.
3259		 */
3260		tp = driver->termios[index];
3261		if (tp) {
3262			driver->termios[index] = NULL;
3263			kfree(tp);
3264		}
3265
3266		retval = tty_cdev_add(driver, devt, index, 1);
3267		if (retval)
3268			goto err_del;
3269	}
3270
3271	dev_set_uevent_suppress(dev, 0);
3272	kobject_uevent(&dev->kobj, KOBJ_ADD);
3273
3274	return dev;
3275
3276err_del:
3277	device_del(dev);
3278err_put:
3279	put_device(dev);
3280
3281	return ERR_PTR(retval);
3282}
3283EXPORT_SYMBOL_GPL(tty_register_device_attr);
3284
3285/**
3286 * tty_unregister_device - unregister a tty device
3287 * @driver: the tty driver that describes the tty device
3288 * @index: the index in the tty driver for this tty device
3289 *
3290 * If a tty device is registered with a call to tty_register_device() then
3291 * this function must be called when the tty device is gone.
3292 *
3293 * Locking: ??
3294 */
3295void tty_unregister_device(struct tty_driver *driver, unsigned index)
3296{
3297	device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
3298	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3299		cdev_del(driver->cdevs[index]);
3300		driver->cdevs[index] = NULL;
3301	}
3302}
3303EXPORT_SYMBOL(tty_unregister_device);
3304
3305/**
3306 * __tty_alloc_driver -- allocate tty driver
3307 * @lines: count of lines this driver can handle at most
3308 * @owner: module which is responsible for this driver
3309 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3310 *
3311 * This should not be called directly, some of the provided macros should be
3312 * used instead. Use IS_ERR() and friends on @retval.
3313 */
3314struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3315		unsigned long flags)
3316{
3317	struct tty_driver *driver;
3318	unsigned int cdevs = 1;
3319	int err;
3320
3321	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3322		return ERR_PTR(-EINVAL);
3323
3324	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3325	if (!driver)
3326		return ERR_PTR(-ENOMEM);
3327
3328	kref_init(&driver->kref);
3329	driver->num = lines;
3330	driver->owner = owner;
3331	driver->flags = flags;
3332
3333	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3334		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3335				GFP_KERNEL);
3336		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3337				GFP_KERNEL);
3338		if (!driver->ttys || !driver->termios) {
3339			err = -ENOMEM;
3340			goto err_free_all;
3341		}
3342	}
3343
3344	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3345		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3346				GFP_KERNEL);
3347		if (!driver->ports) {
3348			err = -ENOMEM;
3349			goto err_free_all;
3350		}
3351		cdevs = lines;
3352	}
3353
3354	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3355	if (!driver->cdevs) {
3356		err = -ENOMEM;
3357		goto err_free_all;
3358	}
3359
3360	return driver;
3361err_free_all:
3362	kfree(driver->ports);
3363	kfree(driver->ttys);
3364	kfree(driver->termios);
3365	kfree(driver->cdevs);
3366	kfree(driver);
3367	return ERR_PTR(err);
3368}
3369EXPORT_SYMBOL(__tty_alloc_driver);
3370
3371static void destruct_tty_driver(struct kref *kref)
3372{
3373	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3374	int i;
3375	struct ktermios *tp;
3376
3377	if (driver->flags & TTY_DRIVER_INSTALLED) {
3378		for (i = 0; i < driver->num; i++) {
3379			tp = driver->termios[i];
3380			if (tp) {
3381				driver->termios[i] = NULL;
3382				kfree(tp);
3383			}
3384			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3385				tty_unregister_device(driver, i);
3386		}
3387		proc_tty_unregister_driver(driver);
3388		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3389			cdev_del(driver->cdevs[0]);
3390	}
3391	kfree(driver->cdevs);
3392	kfree(driver->ports);
3393	kfree(driver->termios);
3394	kfree(driver->ttys);
3395	kfree(driver);
3396}
3397
3398/**
3399 * tty_driver_kref_put -- drop a reference to a tty driver
3400 * @driver: driver of which to drop the reference
3401 *
3402 * The final put will destroy and free up the driver.
3403 */
3404void tty_driver_kref_put(struct tty_driver *driver)
3405{
3406	kref_put(&driver->kref, destruct_tty_driver);
3407}
3408EXPORT_SYMBOL(tty_driver_kref_put);
3409
3410/**
3411 * tty_register_driver -- register a tty driver
3412 * @driver: driver to register
3413 *
3414 * Called by a tty driver to register itself.
3415 */
3416int tty_register_driver(struct tty_driver *driver)
3417{
3418	int error;
3419	int i;
3420	dev_t dev;
3421	struct device *d;
3422
3423	if (!driver->major) {
3424		error = alloc_chrdev_region(&dev, driver->minor_start,
3425						driver->num, driver->name);
3426		if (!error) {
3427			driver->major = MAJOR(dev);
3428			driver->minor_start = MINOR(dev);
3429		}
3430	} else {
3431		dev = MKDEV(driver->major, driver->minor_start);
3432		error = register_chrdev_region(dev, driver->num, driver->name);
3433	}
3434	if (error < 0)
3435		goto err;
3436
3437	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3438		error = tty_cdev_add(driver, dev, 0, driver->num);
3439		if (error)
3440			goto err_unreg_char;
3441	}
3442
3443	mutex_lock(&tty_mutex);
3444	list_add(&driver->tty_drivers, &tty_drivers);
3445	mutex_unlock(&tty_mutex);
3446
3447	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3448		for (i = 0; i < driver->num; i++) {
3449			d = tty_register_device(driver, i, NULL);
3450			if (IS_ERR(d)) {
3451				error = PTR_ERR(d);
3452				goto err_unreg_devs;
3453			}
3454		}
3455	}
3456	proc_tty_register_driver(driver);
3457	driver->flags |= TTY_DRIVER_INSTALLED;
3458	return 0;
3459
3460err_unreg_devs:
3461	for (i--; i >= 0; i--)
3462		tty_unregister_device(driver, i);
3463
3464	mutex_lock(&tty_mutex);
3465	list_del(&driver->tty_drivers);
3466	mutex_unlock(&tty_mutex);
3467
3468err_unreg_char:
3469	unregister_chrdev_region(dev, driver->num);
3470err:
3471	return error;
3472}
3473EXPORT_SYMBOL(tty_register_driver);
3474
3475/**
3476 * tty_unregister_driver -- unregister a tty driver
3477 * @driver: driver to unregister
3478 *
3479 * Called by a tty driver to unregister itself.
3480 */
3481void tty_unregister_driver(struct tty_driver *driver)
3482{
3483	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3484				driver->num);
3485	mutex_lock(&tty_mutex);
3486	list_del(&driver->tty_drivers);
3487	mutex_unlock(&tty_mutex);
3488}
3489EXPORT_SYMBOL(tty_unregister_driver);
3490
3491dev_t tty_devnum(struct tty_struct *tty)
3492{
3493	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3494}
3495EXPORT_SYMBOL(tty_devnum);
3496
3497void tty_default_fops(struct file_operations *fops)
3498{
3499	*fops = tty_fops;
3500}
3501
3502static char *tty_devnode(const struct device *dev, umode_t *mode)
3503{
3504	if (!mode)
3505		return NULL;
3506	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3507	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3508		*mode = 0666;
3509	return NULL;
3510}
3511
3512const struct class tty_class = {
3513	.name		= "tty",
3514	.devnode	= tty_devnode,
3515};
3516
3517static int __init tty_class_init(void)
3518{
3519	return class_register(&tty_class);
3520}
3521
3522postcore_initcall(tty_class_init);
3523
3524/* 3/2004 jmc: why do these devices exist? */
3525static struct cdev tty_cdev, console_cdev;
3526
3527static ssize_t show_cons_active(struct device *dev,
3528				struct device_attribute *attr, char *buf)
3529{
3530	struct console *cs[16];
3531	int i = 0;
3532	struct console *c;
3533	ssize_t count = 0;
3534
3535	/*
3536	 * Hold the console_list_lock to guarantee that no consoles are
3537	 * unregistered until all console processing is complete.
3538	 * This also allows safe traversal of the console list and
3539	 * race-free reading of @flags.
3540	 */
3541	console_list_lock();
3542
3543	for_each_console(c) {
3544		if (!c->device)
3545			continue;
3546		if (!c->write)
3547			continue;
3548		if ((c->flags & CON_ENABLED) == 0)
3549			continue;
3550		cs[i++] = c;
3551		if (i >= ARRAY_SIZE(cs))
3552			break;
3553	}
3554
3555	/*
3556	 * Take console_lock to serialize device() callback with
3557	 * other console operations. For example, fg_console is
3558	 * modified under console_lock when switching vt.
3559	 */
3560	console_lock();
3561	while (i--) {
3562		int index = cs[i]->index;
3563		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3564
3565		/* don't resolve tty0 as some programs depend on it */
3566		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3567			count += tty_line_name(drv, index, buf + count);
3568		else
3569			count += sprintf(buf + count, "%s%d",
3570					 cs[i]->name, cs[i]->index);
3571
3572		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3573	}
3574	console_unlock();
3575
3576	console_list_unlock();
3577
3578	return count;
3579}
3580static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3581
3582static struct attribute *cons_dev_attrs[] = {
3583	&dev_attr_active.attr,
3584	NULL
3585};
3586
3587ATTRIBUTE_GROUPS(cons_dev);
3588
3589static struct device *consdev;
3590
3591void console_sysfs_notify(void)
3592{
3593	if (consdev)
3594		sysfs_notify(&consdev->kobj, NULL, "active");
3595}
3596
3597static struct ctl_table tty_table[] = {
3598	{
3599		.procname	= "legacy_tiocsti",
3600		.data		= &tty_legacy_tiocsti,
3601		.maxlen		= sizeof(tty_legacy_tiocsti),
3602		.mode		= 0644,
3603		.proc_handler	= proc_dobool,
3604	},
3605	{
3606		.procname	= "ldisc_autoload",
3607		.data		= &tty_ldisc_autoload,
3608		.maxlen		= sizeof(tty_ldisc_autoload),
3609		.mode		= 0644,
3610		.proc_handler	= proc_dointvec,
3611		.extra1		= SYSCTL_ZERO,
3612		.extra2		= SYSCTL_ONE,
3613	},
3614	{ }
3615};
3616
3617/*
3618 * Ok, now we can initialize the rest of the tty devices and can count
3619 * on memory allocations, interrupts etc..
3620 */
3621int __init tty_init(void)
3622{
3623	register_sysctl_init("dev/tty", tty_table);
3624	cdev_init(&tty_cdev, &tty_fops);
3625	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3626	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3627		panic("Couldn't register /dev/tty driver\n");
3628	device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3629
3630	cdev_init(&console_cdev, &console_fops);
3631	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3632	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3633		panic("Couldn't register /dev/console driver\n");
3634	consdev = device_create_with_groups(&tty_class, NULL,
3635					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3636					    cons_dev_groups, "console");
3637	if (IS_ERR(consdev))
3638		consdev = NULL;
3639
3640#ifdef CONFIG_VT
3641	vty_init(&console_fops);
3642#endif
3643	return 0;
3644}
3645