xref: /kernel/linux/linux-6.6/drivers/tty/serial/zs.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * zs.c: Serial port driver for IOASIC DECstations.
4 *
5 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
6 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
7 *
8 * DECstation changes
9 * Copyright (C) 1998-2000 Harald Koerfgen
10 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
11 *
12 * For the rest of the code the original Copyright applies:
13 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
14 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
15 *
16 *
17 * Note: for IOASIC systems the wiring is as follows:
18 *
19 * mouse/keyboard:
20 * DIN-7 MJ-4  signal        SCC
21 * 2     1     TxD       <-  A.TxD
22 * 3     4     RxD       ->  A.RxD
23 *
24 * EIA-232/EIA-423:
25 * DB-25 MMJ-6 signal        SCC
26 * 2     2     TxD       <-  B.TxD
27 * 3     5     RxD       ->  B.RxD
28 * 4           RTS       <- ~A.RTS
29 * 5           CTS       -> ~B.CTS
30 * 6     6     DSR       -> ~A.SYNC
31 * 8           CD        -> ~B.DCD
32 * 12          DSRS(DCE) -> ~A.CTS  (*)
33 * 15          TxC       ->  B.TxC
34 * 17          RxC       ->  B.RxC
35 * 20    1     DTR       <- ~A.DTR
36 * 22          RI        -> ~A.DCD
37 * 23          DSRS(DTE) <- ~B.RTS
38 *
39 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
40 *     is shared with DSRS(DTE) at pin 23.
41 *
42 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
43 * is a bit odd.  This makes the handling of port B unnecessarily
44 * complicated and prevents the use of some automatic modes of operation.
45 */
46
47#include <linux/bug.h>
48#include <linux/console.h>
49#include <linux/delay.h>
50#include <linux/errno.h>
51#include <linux/init.h>
52#include <linux/interrupt.h>
53#include <linux/io.h>
54#include <linux/ioport.h>
55#include <linux/irqflags.h>
56#include <linux/kernel.h>
57#include <linux/module.h>
58#include <linux/major.h>
59#include <linux/serial.h>
60#include <linux/serial_core.h>
61#include <linux/spinlock.h>
62#include <linux/sysrq.h>
63#include <linux/tty.h>
64#include <linux/tty_flip.h>
65#include <linux/types.h>
66
67#include <linux/atomic.h>
68
69#include <asm/dec/interrupts.h>
70#include <asm/dec/ioasic_addrs.h>
71#include <asm/dec/system.h>
72
73#include "zs.h"
74
75
76MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
77MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
78MODULE_LICENSE("GPL");
79
80
81static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
82static char zs_version[] __initdata = "0.10";
83
84/*
85 * It would be nice to dynamically allocate everything that
86 * depends on ZS_NUM_SCCS, so we could support any number of
87 * Z85C30s, but for now...
88 */
89#define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
90#define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
91#define ZS_CHAN_A	0		/* Index of the channel A.  */
92#define ZS_CHAN_B	1		/* Index of the channel B.  */
93#define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
94#define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
95#define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
96					   of the 16-bit IOBUS.  */
97#define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
98
99#define to_zport(uport) container_of(uport, struct zs_port, port)
100
101struct zs_parms {
102	resource_size_t scc[ZS_NUM_SCCS];
103	int irq[ZS_NUM_SCCS];
104};
105
106static struct zs_scc zs_sccs[ZS_NUM_SCCS];
107
108static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
109	0,				/* write 0 */
110	PAR_SPEC,			/* write 1 */
111	0,				/* write 2 */
112	0,				/* write 3 */
113	X16CLK | SB1,			/* write 4 */
114	0,				/* write 5 */
115	0, 0, 0,			/* write 6, 7, 8 */
116	MIE | DLC | NV,			/* write 9 */
117	NRZ,				/* write 10 */
118	TCBR | RCBR,			/* write 11 */
119	0, 0,				/* BRG time constant, write 12 + 13 */
120	BRSRC | BRENABL,		/* write 14 */
121	0,				/* write 15 */
122};
123
124/*
125 * Debugging.
126 */
127#undef ZS_DEBUG_REGS
128
129
130/*
131 * Reading and writing Z85C30 registers.
132 */
133static void recovery_delay(void)
134{
135	udelay(2);
136}
137
138static u8 read_zsreg(struct zs_port *zport, int reg)
139{
140	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
141	u8 retval;
142
143	if (reg != 0) {
144		writeb(reg & 0xf, control);
145		fast_iob();
146		recovery_delay();
147	}
148	retval = readb(control);
149	recovery_delay();
150	return retval;
151}
152
153static void write_zsreg(struct zs_port *zport, int reg, u8 value)
154{
155	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
156
157	if (reg != 0) {
158		writeb(reg & 0xf, control);
159		fast_iob(); recovery_delay();
160	}
161	writeb(value, control);
162	fast_iob();
163	recovery_delay();
164	return;
165}
166
167static u8 read_zsdata(struct zs_port *zport)
168{
169	void __iomem *data = zport->port.membase +
170			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
171	u8 retval;
172
173	retval = readb(data);
174	recovery_delay();
175	return retval;
176}
177
178static void write_zsdata(struct zs_port *zport, u8 value)
179{
180	void __iomem *data = zport->port.membase +
181			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
182
183	writeb(value, data);
184	fast_iob();
185	recovery_delay();
186	return;
187}
188
189#ifdef ZS_DEBUG_REGS
190void zs_dump(void)
191{
192	struct zs_port *zport;
193	int i, j;
194
195	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
196		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
197
198		if (!zport->scc)
199			continue;
200
201		for (j = 0; j < 16; j++)
202			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
203		printk("\n");
204		for (j = 0; j < 16; j++)
205			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
206		printk("\n\n");
207	}
208}
209#endif
210
211
212static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
213{
214	if (irq)
215		spin_lock_irq(lock);
216	else
217		spin_lock(lock);
218}
219
220static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
221{
222	if (irq)
223		spin_unlock_irq(lock);
224	else
225		spin_unlock(lock);
226}
227
228static int zs_receive_drain(struct zs_port *zport)
229{
230	int loops = 10000;
231
232	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
233		read_zsdata(zport);
234	return loops;
235}
236
237static int zs_transmit_drain(struct zs_port *zport, int irq)
238{
239	struct zs_scc *scc = zport->scc;
240	int loops = 10000;
241
242	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
243		zs_spin_unlock_cond_irq(&scc->zlock, irq);
244		udelay(2);
245		zs_spin_lock_cond_irq(&scc->zlock, irq);
246	}
247	return loops;
248}
249
250static int zs_line_drain(struct zs_port *zport, int irq)
251{
252	struct zs_scc *scc = zport->scc;
253	int loops = 10000;
254
255	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
256		zs_spin_unlock_cond_irq(&scc->zlock, irq);
257		udelay(2);
258		zs_spin_lock_cond_irq(&scc->zlock, irq);
259	}
260	return loops;
261}
262
263
264static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
265{
266	/* Let the current transmission finish.  */
267	zs_line_drain(zport, irq);
268	/* Load 'em up.  */
269	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
270	write_zsreg(zport, R5, regs[5] & ~TxENAB);
271	write_zsreg(zport, R4, regs[4]);
272	write_zsreg(zport, R9, regs[9]);
273	write_zsreg(zport, R1, regs[1]);
274	write_zsreg(zport, R2, regs[2]);
275	write_zsreg(zport, R10, regs[10]);
276	write_zsreg(zport, R14, regs[14] & ~BRENABL);
277	write_zsreg(zport, R11, regs[11]);
278	write_zsreg(zport, R12, regs[12]);
279	write_zsreg(zport, R13, regs[13]);
280	write_zsreg(zport, R14, regs[14]);
281	write_zsreg(zport, R15, regs[15]);
282	if (regs[3] & RxENABLE)
283		write_zsreg(zport, R3, regs[3]);
284	if (regs[5] & TxENAB)
285		write_zsreg(zport, R5, regs[5]);
286	return;
287}
288
289
290/*
291 * Status handling routines.
292 */
293
294/*
295 * zs_tx_empty() -- get the transmitter empty status
296 *
297 * Purpose: Let user call ioctl() to get info when the UART physically
298 * 	    is emptied.  On bus types like RS485, the transmitter must
299 * 	    release the bus after transmitting.  This must be done when
300 * 	    the transmit shift register is empty, not be done when the
301 * 	    transmit holding register is empty.  This functionality
302 * 	    allows an RS485 driver to be written in user space.
303 */
304static unsigned int zs_tx_empty(struct uart_port *uport)
305{
306	struct zs_port *zport = to_zport(uport);
307	struct zs_scc *scc = zport->scc;
308	unsigned long flags;
309	u8 status;
310
311	spin_lock_irqsave(&scc->zlock, flags);
312	status = read_zsreg(zport, R1);
313	spin_unlock_irqrestore(&scc->zlock, flags);
314
315	return status & ALL_SNT ? TIOCSER_TEMT : 0;
316}
317
318static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
319					struct zs_port *zport_b)
320{
321	u8 status_a, status_b;
322	unsigned int mctrl;
323
324	status_a = read_zsreg(zport_a, R0);
325	status_b = read_zsreg(zport_b, R0);
326
327	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
328		((status_b & DCD) ? TIOCM_CAR : 0) |
329		((status_a & DCD) ? TIOCM_RNG : 0) |
330		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
331
332	return mctrl;
333}
334
335static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
336{
337	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
338
339	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
340}
341
342static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
343{
344	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
345	unsigned int mmask, mctrl, delta;
346	u8 mask_a, mask_b;
347
348	if (zport == zport_a)
349		return 0;
350
351	mask_a = zport_a->regs[15];
352	mask_b = zport->regs[15];
353
354	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
355		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
356		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
357		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
358
359	mctrl = zport->mctrl;
360	if (mmask) {
361		mctrl &= ~mmask;
362		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
363	}
364
365	delta = mctrl ^ zport->mctrl;
366	if (delta)
367		zport->mctrl = mctrl;
368
369	return delta;
370}
371
372static unsigned int zs_get_mctrl(struct uart_port *uport)
373{
374	struct zs_port *zport = to_zport(uport);
375	struct zs_scc *scc = zport->scc;
376	unsigned int mctrl;
377
378	spin_lock(&scc->zlock);
379	mctrl = zs_raw_get_mctrl(zport);
380	spin_unlock(&scc->zlock);
381
382	return mctrl;
383}
384
385static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
386{
387	struct zs_port *zport = to_zport(uport);
388	struct zs_scc *scc = zport->scc;
389	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
390	u8 oldloop, newloop;
391
392	spin_lock(&scc->zlock);
393	if (zport != zport_a) {
394		if (mctrl & TIOCM_DTR)
395			zport_a->regs[5] |= DTR;
396		else
397			zport_a->regs[5] &= ~DTR;
398		if (mctrl & TIOCM_RTS)
399			zport_a->regs[5] |= RTS;
400		else
401			zport_a->regs[5] &= ~RTS;
402		write_zsreg(zport_a, R5, zport_a->regs[5]);
403	}
404
405	/* Rarely modified, so don't poke at hardware unless necessary. */
406	oldloop = zport->regs[14];
407	newloop = oldloop;
408	if (mctrl & TIOCM_LOOP)
409		newloop |= LOOPBAK;
410	else
411		newloop &= ~LOOPBAK;
412	if (newloop != oldloop) {
413		zport->regs[14] = newloop;
414		write_zsreg(zport, R14, zport->regs[14]);
415	}
416	spin_unlock(&scc->zlock);
417}
418
419static void zs_raw_stop_tx(struct zs_port *zport)
420{
421	write_zsreg(zport, R0, RES_Tx_P);
422	zport->tx_stopped = 1;
423}
424
425static void zs_stop_tx(struct uart_port *uport)
426{
427	struct zs_port *zport = to_zport(uport);
428	struct zs_scc *scc = zport->scc;
429
430	spin_lock(&scc->zlock);
431	zs_raw_stop_tx(zport);
432	spin_unlock(&scc->zlock);
433}
434
435static void zs_raw_transmit_chars(struct zs_port *);
436
437static void zs_start_tx(struct uart_port *uport)
438{
439	struct zs_port *zport = to_zport(uport);
440	struct zs_scc *scc = zport->scc;
441
442	spin_lock(&scc->zlock);
443	if (zport->tx_stopped) {
444		zs_transmit_drain(zport, 0);
445		zport->tx_stopped = 0;
446		zs_raw_transmit_chars(zport);
447	}
448	spin_unlock(&scc->zlock);
449}
450
451static void zs_stop_rx(struct uart_port *uport)
452{
453	struct zs_port *zport = to_zport(uport);
454	struct zs_scc *scc = zport->scc;
455	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
456
457	spin_lock(&scc->zlock);
458	zport->regs[15] &= ~BRKIE;
459	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
460	zport->regs[1] |= RxINT_DISAB;
461
462	if (zport != zport_a) {
463		/* A-side DCD tracks RI and SYNC tracks DSR.  */
464		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
465		write_zsreg(zport_a, R15, zport_a->regs[15]);
466		if (!(zport_a->regs[15] & BRKIE)) {
467			zport_a->regs[1] &= ~EXT_INT_ENAB;
468			write_zsreg(zport_a, R1, zport_a->regs[1]);
469		}
470
471		/* This-side DCD tracks DCD and CTS tracks CTS.  */
472		zport->regs[15] &= ~(DCDIE | CTSIE);
473		zport->regs[1] &= ~EXT_INT_ENAB;
474	} else {
475		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
476		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
477			zport->regs[1] &= ~EXT_INT_ENAB;
478	}
479
480	write_zsreg(zport, R15, zport->regs[15]);
481	write_zsreg(zport, R1, zport->regs[1]);
482	spin_unlock(&scc->zlock);
483}
484
485static void zs_enable_ms(struct uart_port *uport)
486{
487	struct zs_port *zport = to_zport(uport);
488	struct zs_scc *scc = zport->scc;
489	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
490
491	if (zport == zport_a)
492		return;
493
494	spin_lock(&scc->zlock);
495
496	/* Clear Ext interrupts if not being handled already.  */
497	if (!(zport_a->regs[1] & EXT_INT_ENAB))
498		write_zsreg(zport_a, R0, RES_EXT_INT);
499
500	/* A-side DCD tracks RI and SYNC tracks DSR.  */
501	zport_a->regs[1] |= EXT_INT_ENAB;
502	zport_a->regs[15] |= DCDIE | SYNCIE;
503
504	/* This-side DCD tracks DCD and CTS tracks CTS.  */
505	zport->regs[15] |= DCDIE | CTSIE;
506
507	zs_raw_xor_mctrl(zport);
508
509	write_zsreg(zport_a, R1, zport_a->regs[1]);
510	write_zsreg(zport_a, R15, zport_a->regs[15]);
511	write_zsreg(zport, R15, zport->regs[15]);
512	spin_unlock(&scc->zlock);
513}
514
515static void zs_break_ctl(struct uart_port *uport, int break_state)
516{
517	struct zs_port *zport = to_zport(uport);
518	struct zs_scc *scc = zport->scc;
519	unsigned long flags;
520
521	spin_lock_irqsave(&scc->zlock, flags);
522	if (break_state == -1)
523		zport->regs[5] |= SND_BRK;
524	else
525		zport->regs[5] &= ~SND_BRK;
526	write_zsreg(zport, R5, zport->regs[5]);
527	spin_unlock_irqrestore(&scc->zlock, flags);
528}
529
530
531/*
532 * Interrupt handling routines.
533 */
534#define Rx_BRK 0x0100			/* BREAK event software flag.  */
535#define Rx_SYS 0x0200			/* SysRq event software flag.  */
536
537static void zs_receive_chars(struct zs_port *zport)
538{
539	struct uart_port *uport = &zport->port;
540	struct zs_scc *scc = zport->scc;
541	struct uart_icount *icount;
542	unsigned int avail, status;
543	int count;
544	u8 ch, flag;
545
546	for (count = 16; count; count--) {
547		spin_lock(&scc->zlock);
548		avail = read_zsreg(zport, R0) & Rx_CH_AV;
549		spin_unlock(&scc->zlock);
550		if (!avail)
551			break;
552
553		spin_lock(&scc->zlock);
554		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
555		ch = read_zsdata(zport);
556		spin_unlock(&scc->zlock);
557
558		flag = TTY_NORMAL;
559
560		icount = &uport->icount;
561		icount->rx++;
562
563		/* Handle the null char got when BREAK is removed.  */
564		if (!ch)
565			status |= zport->tty_break;
566		if (unlikely(status &
567			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
568			zport->tty_break = 0;
569
570			/* Reset the error indication.  */
571			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
572				spin_lock(&scc->zlock);
573				write_zsreg(zport, R0, ERR_RES);
574				spin_unlock(&scc->zlock);
575			}
576
577			if (status & (Rx_SYS | Rx_BRK)) {
578				icount->brk++;
579				/* SysRq discards the null char.  */
580				if (status & Rx_SYS)
581					continue;
582			} else if (status & FRM_ERR)
583				icount->frame++;
584			else if (status & PAR_ERR)
585				icount->parity++;
586			if (status & Rx_OVR)
587				icount->overrun++;
588
589			status &= uport->read_status_mask;
590			if (status & Rx_BRK)
591				flag = TTY_BREAK;
592			else if (status & FRM_ERR)
593				flag = TTY_FRAME;
594			else if (status & PAR_ERR)
595				flag = TTY_PARITY;
596		}
597
598		if (uart_handle_sysrq_char(uport, ch))
599			continue;
600
601		uart_insert_char(uport, status, Rx_OVR, ch, flag);
602	}
603
604	tty_flip_buffer_push(&uport->state->port);
605}
606
607static void zs_raw_transmit_chars(struct zs_port *zport)
608{
609	struct circ_buf *xmit = &zport->port.state->xmit;
610
611	/* XON/XOFF chars.  */
612	if (zport->port.x_char) {
613		write_zsdata(zport, zport->port.x_char);
614		zport->port.icount.tx++;
615		zport->port.x_char = 0;
616		return;
617	}
618
619	/* If nothing to do or stopped or hardware stopped.  */
620	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
621		zs_raw_stop_tx(zport);
622		return;
623	}
624
625	/* Send char.  */
626	write_zsdata(zport, xmit->buf[xmit->tail]);
627	uart_xmit_advance(&zport->port, 1);
628
629	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
630		uart_write_wakeup(&zport->port);
631
632	/* Are we are done?  */
633	if (uart_circ_empty(xmit))
634		zs_raw_stop_tx(zport);
635}
636
637static void zs_transmit_chars(struct zs_port *zport)
638{
639	struct zs_scc *scc = zport->scc;
640
641	spin_lock(&scc->zlock);
642	zs_raw_transmit_chars(zport);
643	spin_unlock(&scc->zlock);
644}
645
646static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
647{
648	struct uart_port *uport = &zport->port;
649	struct zs_scc *scc = zport->scc;
650	unsigned int delta;
651	u8 status, brk;
652
653	spin_lock(&scc->zlock);
654
655	/* Get status from Read Register 0.  */
656	status = read_zsreg(zport, R0);
657
658	if (zport->regs[15] & BRKIE) {
659		brk = status & BRK_ABRT;
660		if (brk && !zport->brk) {
661			spin_unlock(&scc->zlock);
662			if (uart_handle_break(uport))
663				zport->tty_break = Rx_SYS;
664			else
665				zport->tty_break = Rx_BRK;
666			spin_lock(&scc->zlock);
667		}
668		zport->brk = brk;
669	}
670
671	if (zport != zport_a) {
672		delta = zs_raw_xor_mctrl(zport);
673		spin_unlock(&scc->zlock);
674
675		if (delta & TIOCM_CTS)
676			uart_handle_cts_change(uport,
677					       zport->mctrl & TIOCM_CTS);
678		if (delta & TIOCM_CAR)
679			uart_handle_dcd_change(uport,
680					       zport->mctrl & TIOCM_CAR);
681		if (delta & TIOCM_RNG)
682			uport->icount.dsr++;
683		if (delta & TIOCM_DSR)
684			uport->icount.rng++;
685
686		if (delta)
687			wake_up_interruptible(&uport->state->port.delta_msr_wait);
688
689		spin_lock(&scc->zlock);
690	}
691
692	/* Clear the status condition...  */
693	write_zsreg(zport, R0, RES_EXT_INT);
694
695	spin_unlock(&scc->zlock);
696}
697
698/*
699 * This is the Z85C30 driver's generic interrupt routine.
700 */
701static irqreturn_t zs_interrupt(int irq, void *dev_id)
702{
703	struct zs_scc *scc = dev_id;
704	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
705	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
706	irqreturn_t status = IRQ_NONE;
707	u8 zs_intreg;
708	int count;
709
710	/*
711	 * NOTE: The read register 3, which holds the irq status,
712	 *       does so for both channels on each chip.  Although
713	 *       the status value itself must be read from the A
714	 *       channel and is only valid when read from channel A.
715	 *       Yes... broken hardware...
716	 */
717	for (count = 16; count; count--) {
718		spin_lock(&scc->zlock);
719		zs_intreg = read_zsreg(zport_a, R3);
720		spin_unlock(&scc->zlock);
721		if (!zs_intreg)
722			break;
723
724		/*
725		 * We do not like losing characters, so we prioritise
726		 * interrupt sources a little bit differently than
727		 * the SCC would, was it allowed to.
728		 */
729		if (zs_intreg & CHBRxIP)
730			zs_receive_chars(zport_b);
731		if (zs_intreg & CHARxIP)
732			zs_receive_chars(zport_a);
733		if (zs_intreg & CHBEXT)
734			zs_status_handle(zport_b, zport_a);
735		if (zs_intreg & CHAEXT)
736			zs_status_handle(zport_a, zport_a);
737		if (zs_intreg & CHBTxIP)
738			zs_transmit_chars(zport_b);
739		if (zs_intreg & CHATxIP)
740			zs_transmit_chars(zport_a);
741
742		status = IRQ_HANDLED;
743	}
744
745	return status;
746}
747
748
749/*
750 * Finally, routines used to initialize the serial port.
751 */
752static int zs_startup(struct uart_port *uport)
753{
754	struct zs_port *zport = to_zport(uport);
755	struct zs_scc *scc = zport->scc;
756	unsigned long flags;
757	int irq_guard;
758	int ret;
759
760	irq_guard = atomic_add_return(1, &scc->irq_guard);
761	if (irq_guard == 1) {
762		ret = request_irq(zport->port.irq, zs_interrupt,
763				  IRQF_SHARED, "scc", scc);
764		if (ret) {
765			atomic_add(-1, &scc->irq_guard);
766			printk(KERN_ERR "zs: can't get irq %d\n",
767			       zport->port.irq);
768			return ret;
769		}
770	}
771
772	spin_lock_irqsave(&scc->zlock, flags);
773
774	/* Clear the receive FIFO.  */
775	zs_receive_drain(zport);
776
777	/* Clear the interrupt registers.  */
778	write_zsreg(zport, R0, ERR_RES);
779	write_zsreg(zport, R0, RES_Tx_P);
780	/* But Ext only if not being handled already.  */
781	if (!(zport->regs[1] & EXT_INT_ENAB))
782		write_zsreg(zport, R0, RES_EXT_INT);
783
784	/* Finally, enable sequencing and interrupts.  */
785	zport->regs[1] &= ~RxINT_MASK;
786	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
787	zport->regs[3] |= RxENABLE;
788	zport->regs[15] |= BRKIE;
789	write_zsreg(zport, R1, zport->regs[1]);
790	write_zsreg(zport, R3, zport->regs[3]);
791	write_zsreg(zport, R5, zport->regs[5]);
792	write_zsreg(zport, R15, zport->regs[15]);
793
794	/* Record the current state of RR0.  */
795	zport->mctrl = zs_raw_get_mctrl(zport);
796	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
797
798	zport->tx_stopped = 1;
799
800	spin_unlock_irqrestore(&scc->zlock, flags);
801
802	return 0;
803}
804
805static void zs_shutdown(struct uart_port *uport)
806{
807	struct zs_port *zport = to_zport(uport);
808	struct zs_scc *scc = zport->scc;
809	unsigned long flags;
810	int irq_guard;
811
812	spin_lock_irqsave(&scc->zlock, flags);
813
814	zport->regs[3] &= ~RxENABLE;
815	write_zsreg(zport, R5, zport->regs[5]);
816	write_zsreg(zport, R3, zport->regs[3]);
817
818	spin_unlock_irqrestore(&scc->zlock, flags);
819
820	irq_guard = atomic_add_return(-1, &scc->irq_guard);
821	if (!irq_guard)
822		free_irq(zport->port.irq, scc);
823}
824
825
826static void zs_reset(struct zs_port *zport)
827{
828	struct zs_scc *scc = zport->scc;
829	int irq;
830	unsigned long flags;
831
832	spin_lock_irqsave(&scc->zlock, flags);
833	irq = !irqs_disabled_flags(flags);
834	if (!scc->initialised) {
835		/* Reset the pointer first, just in case...  */
836		read_zsreg(zport, R0);
837		/* And let the current transmission finish.  */
838		zs_line_drain(zport, irq);
839		write_zsreg(zport, R9, FHWRES);
840		udelay(10);
841		write_zsreg(zport, R9, 0);
842		scc->initialised = 1;
843	}
844	load_zsregs(zport, zport->regs, irq);
845	spin_unlock_irqrestore(&scc->zlock, flags);
846}
847
848static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
849			   const struct ktermios *old_termios)
850{
851	struct zs_port *zport = to_zport(uport);
852	struct zs_scc *scc = zport->scc;
853	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
854	int irq;
855	unsigned int baud, brg;
856	unsigned long flags;
857
858	spin_lock_irqsave(&scc->zlock, flags);
859	irq = !irqs_disabled_flags(flags);
860
861	/* Byte size.  */
862	zport->regs[3] &= ~RxNBITS_MASK;
863	zport->regs[5] &= ~TxNBITS_MASK;
864	switch (termios->c_cflag & CSIZE) {
865	case CS5:
866		zport->regs[3] |= Rx5;
867		zport->regs[5] |= Tx5;
868		break;
869	case CS6:
870		zport->regs[3] |= Rx6;
871		zport->regs[5] |= Tx6;
872		break;
873	case CS7:
874		zport->regs[3] |= Rx7;
875		zport->regs[5] |= Tx7;
876		break;
877	case CS8:
878	default:
879		zport->regs[3] |= Rx8;
880		zport->regs[5] |= Tx8;
881		break;
882	}
883
884	/* Parity and stop bits.  */
885	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
886	if (termios->c_cflag & CSTOPB)
887		zport->regs[4] |= SB2;
888	else
889		zport->regs[4] |= SB1;
890	if (termios->c_cflag & PARENB)
891		zport->regs[4] |= PAR_ENA;
892	if (!(termios->c_cflag & PARODD))
893		zport->regs[4] |= PAR_EVEN;
894	switch (zport->clk_mode) {
895	case 64:
896		zport->regs[4] |= X64CLK;
897		break;
898	case 32:
899		zport->regs[4] |= X32CLK;
900		break;
901	case 16:
902		zport->regs[4] |= X16CLK;
903		break;
904	case 1:
905		zport->regs[4] |= X1CLK;
906		break;
907	default:
908		BUG();
909	}
910
911	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
912				  uport->uartclk / zport->clk_mode / 4);
913
914	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
915	zport->regs[12] = brg & 0xff;
916	zport->regs[13] = (brg >> 8) & 0xff;
917
918	uart_update_timeout(uport, termios->c_cflag, baud);
919
920	uport->read_status_mask = Rx_OVR;
921	if (termios->c_iflag & INPCK)
922		uport->read_status_mask |= FRM_ERR | PAR_ERR;
923	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
924		uport->read_status_mask |= Rx_BRK;
925
926	uport->ignore_status_mask = 0;
927	if (termios->c_iflag & IGNPAR)
928		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
929	if (termios->c_iflag & IGNBRK) {
930		uport->ignore_status_mask |= Rx_BRK;
931		if (termios->c_iflag & IGNPAR)
932			uport->ignore_status_mask |= Rx_OVR;
933	}
934
935	if (termios->c_cflag & CREAD)
936		zport->regs[3] |= RxENABLE;
937	else
938		zport->regs[3] &= ~RxENABLE;
939
940	if (zport != zport_a) {
941		if (!(termios->c_cflag & CLOCAL)) {
942			zport->regs[15] |= DCDIE;
943		} else
944			zport->regs[15] &= ~DCDIE;
945		if (termios->c_cflag & CRTSCTS) {
946			zport->regs[15] |= CTSIE;
947		} else
948			zport->regs[15] &= ~CTSIE;
949		zs_raw_xor_mctrl(zport);
950	}
951
952	/* Load up the new values.  */
953	load_zsregs(zport, zport->regs, irq);
954
955	spin_unlock_irqrestore(&scc->zlock, flags);
956}
957
958/*
959 * Hack alert!
960 * Required solely so that the initial PROM-based console
961 * works undisturbed in parallel with this one.
962 */
963static void zs_pm(struct uart_port *uport, unsigned int state,
964		  unsigned int oldstate)
965{
966	struct zs_port *zport = to_zport(uport);
967
968	if (state < 3)
969		zport->regs[5] |= TxENAB;
970	else
971		zport->regs[5] &= ~TxENAB;
972	write_zsreg(zport, R5, zport->regs[5]);
973}
974
975
976static const char *zs_type(struct uart_port *uport)
977{
978	return "Z85C30 SCC";
979}
980
981static void zs_release_port(struct uart_port *uport)
982{
983	iounmap(uport->membase);
984	uport->membase = NULL;
985	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
986}
987
988static int zs_map_port(struct uart_port *uport)
989{
990	if (!uport->membase)
991		uport->membase = ioremap(uport->mapbase,
992						 ZS_CHAN_IO_SIZE);
993	if (!uport->membase) {
994		printk(KERN_ERR "zs: Cannot map MMIO\n");
995		return -ENOMEM;
996	}
997	return 0;
998}
999
1000static int zs_request_port(struct uart_port *uport)
1001{
1002	int ret;
1003
1004	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1005		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1006		return -EBUSY;
1007	}
1008	ret = zs_map_port(uport);
1009	if (ret) {
1010		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1011		return ret;
1012	}
1013	return 0;
1014}
1015
1016static void zs_config_port(struct uart_port *uport, int flags)
1017{
1018	struct zs_port *zport = to_zport(uport);
1019
1020	if (flags & UART_CONFIG_TYPE) {
1021		if (zs_request_port(uport))
1022			return;
1023
1024		uport->type = PORT_ZS;
1025
1026		zs_reset(zport);
1027	}
1028}
1029
1030static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1031{
1032	struct zs_port *zport = to_zport(uport);
1033	int ret = 0;
1034
1035	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1036		ret = -EINVAL;
1037	if (ser->irq != uport->irq)
1038		ret = -EINVAL;
1039	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1040		ret = -EINVAL;
1041	return ret;
1042}
1043
1044
1045static const struct uart_ops zs_ops = {
1046	.tx_empty	= zs_tx_empty,
1047	.set_mctrl	= zs_set_mctrl,
1048	.get_mctrl	= zs_get_mctrl,
1049	.stop_tx	= zs_stop_tx,
1050	.start_tx	= zs_start_tx,
1051	.stop_rx	= zs_stop_rx,
1052	.enable_ms	= zs_enable_ms,
1053	.break_ctl	= zs_break_ctl,
1054	.startup	= zs_startup,
1055	.shutdown	= zs_shutdown,
1056	.set_termios	= zs_set_termios,
1057	.pm		= zs_pm,
1058	.type		= zs_type,
1059	.release_port	= zs_release_port,
1060	.request_port	= zs_request_port,
1061	.config_port	= zs_config_port,
1062	.verify_port	= zs_verify_port,
1063};
1064
1065/*
1066 * Initialize Z85C30 port structures.
1067 */
1068static int __init zs_probe_sccs(void)
1069{
1070	static int probed;
1071	struct zs_parms zs_parms;
1072	int chip, side, irq;
1073	int n_chips = 0;
1074	int i;
1075
1076	if (probed)
1077		return 0;
1078
1079	irq = dec_interrupt[DEC_IRQ_SCC0];
1080	if (irq >= 0) {
1081		zs_parms.scc[n_chips] = IOASIC_SCC0;
1082		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1083		n_chips++;
1084	}
1085	irq = dec_interrupt[DEC_IRQ_SCC1];
1086	if (irq >= 0) {
1087		zs_parms.scc[n_chips] = IOASIC_SCC1;
1088		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1089		n_chips++;
1090	}
1091	if (!n_chips)
1092		return -ENXIO;
1093
1094	probed = 1;
1095
1096	for (chip = 0; chip < n_chips; chip++) {
1097		spin_lock_init(&zs_sccs[chip].zlock);
1098		for (side = 0; side < ZS_NUM_CHAN; side++) {
1099			struct zs_port *zport = &zs_sccs[chip].zport[side];
1100			struct uart_port *uport = &zport->port;
1101
1102			zport->scc	= &zs_sccs[chip];
1103			zport->clk_mode	= 16;
1104
1105			uport->has_sysrq = IS_ENABLED(CONFIG_SERIAL_ZS_CONSOLE);
1106			uport->irq	= zs_parms.irq[chip];
1107			uport->uartclk	= ZS_CLOCK;
1108			uport->fifosize	= 1;
1109			uport->iotype	= UPIO_MEM;
1110			uport->flags	= UPF_BOOT_AUTOCONF;
1111			uport->ops	= &zs_ops;
1112			uport->line	= chip * ZS_NUM_CHAN + side;
1113			uport->mapbase	= dec_kn_slot_base +
1114					  zs_parms.scc[chip] +
1115					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1116
1117			for (i = 0; i < ZS_NUM_REGS; i++)
1118				zport->regs[i] = zs_init_regs[i];
1119		}
1120	}
1121
1122	return 0;
1123}
1124
1125
1126#ifdef CONFIG_SERIAL_ZS_CONSOLE
1127static void zs_console_putchar(struct uart_port *uport, unsigned char ch)
1128{
1129	struct zs_port *zport = to_zport(uport);
1130	struct zs_scc *scc = zport->scc;
1131	int irq;
1132	unsigned long flags;
1133
1134	spin_lock_irqsave(&scc->zlock, flags);
1135	irq = !irqs_disabled_flags(flags);
1136	if (zs_transmit_drain(zport, irq))
1137		write_zsdata(zport, ch);
1138	spin_unlock_irqrestore(&scc->zlock, flags);
1139}
1140
1141/*
1142 * Print a string to the serial port trying not to disturb
1143 * any possible real use of the port...
1144 */
1145static void zs_console_write(struct console *co, const char *s,
1146			     unsigned int count)
1147{
1148	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1149	struct zs_port *zport = &zs_sccs[chip].zport[side];
1150	struct zs_scc *scc = zport->scc;
1151	unsigned long flags;
1152	u8 txint, txenb;
1153	int irq;
1154
1155	/* Disable transmit interrupts and enable the transmitter. */
1156	spin_lock_irqsave(&scc->zlock, flags);
1157	txint = zport->regs[1];
1158	txenb = zport->regs[5];
1159	if (txint & TxINT_ENAB) {
1160		zport->regs[1] = txint & ~TxINT_ENAB;
1161		write_zsreg(zport, R1, zport->regs[1]);
1162	}
1163	if (!(txenb & TxENAB)) {
1164		zport->regs[5] = txenb | TxENAB;
1165		write_zsreg(zport, R5, zport->regs[5]);
1166	}
1167	spin_unlock_irqrestore(&scc->zlock, flags);
1168
1169	uart_console_write(&zport->port, s, count, zs_console_putchar);
1170
1171	/* Restore transmit interrupts and the transmitter enable. */
1172	spin_lock_irqsave(&scc->zlock, flags);
1173	irq = !irqs_disabled_flags(flags);
1174	zs_line_drain(zport, irq);
1175	if (!(txenb & TxENAB)) {
1176		zport->regs[5] &= ~TxENAB;
1177		write_zsreg(zport, R5, zport->regs[5]);
1178	}
1179	if (txint & TxINT_ENAB) {
1180		zport->regs[1] |= TxINT_ENAB;
1181		write_zsreg(zport, R1, zport->regs[1]);
1182
1183		/* Resume any transmission as the TxIP bit won't be set.  */
1184		if (!zport->tx_stopped)
1185			zs_raw_transmit_chars(zport);
1186	}
1187	spin_unlock_irqrestore(&scc->zlock, flags);
1188}
1189
1190/*
1191 * Setup serial console baud/bits/parity.  We do two things here:
1192 * - construct a cflag setting for the first uart_open()
1193 * - initialise the serial port
1194 * Return non-zero if we didn't find a serial port.
1195 */
1196static int __init zs_console_setup(struct console *co, char *options)
1197{
1198	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1199	struct zs_port *zport = &zs_sccs[chip].zport[side];
1200	struct uart_port *uport = &zport->port;
1201	int baud = 9600;
1202	int bits = 8;
1203	int parity = 'n';
1204	int flow = 'n';
1205	int ret;
1206
1207	ret = zs_map_port(uport);
1208	if (ret)
1209		return ret;
1210
1211	zs_reset(zport);
1212	zs_pm(uport, 0, -1);
1213
1214	if (options)
1215		uart_parse_options(options, &baud, &parity, &bits, &flow);
1216	return uart_set_options(uport, co, baud, parity, bits, flow);
1217}
1218
1219static struct uart_driver zs_reg;
1220static struct console zs_console = {
1221	.name	= "ttyS",
1222	.write	= zs_console_write,
1223	.device	= uart_console_device,
1224	.setup	= zs_console_setup,
1225	.flags	= CON_PRINTBUFFER,
1226	.index	= -1,
1227	.data	= &zs_reg,
1228};
1229
1230/*
1231 *	Register console.
1232 */
1233static int __init zs_serial_console_init(void)
1234{
1235	int ret;
1236
1237	ret = zs_probe_sccs();
1238	if (ret)
1239		return ret;
1240	register_console(&zs_console);
1241
1242	return 0;
1243}
1244
1245console_initcall(zs_serial_console_init);
1246
1247#define SERIAL_ZS_CONSOLE	&zs_console
1248#else
1249#define SERIAL_ZS_CONSOLE	NULL
1250#endif /* CONFIG_SERIAL_ZS_CONSOLE */
1251
1252static struct uart_driver zs_reg = {
1253	.owner			= THIS_MODULE,
1254	.driver_name		= "serial",
1255	.dev_name		= "ttyS",
1256	.major			= TTY_MAJOR,
1257	.minor			= 64,
1258	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
1259	.cons			= SERIAL_ZS_CONSOLE,
1260};
1261
1262/* zs_init inits the driver. */
1263static int __init zs_init(void)
1264{
1265	int i, ret;
1266
1267	pr_info("%s%s\n", zs_name, zs_version);
1268
1269	/* Find out how many Z85C30 SCCs we have.  */
1270	ret = zs_probe_sccs();
1271	if (ret)
1272		return ret;
1273
1274	ret = uart_register_driver(&zs_reg);
1275	if (ret)
1276		return ret;
1277
1278	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1279		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1280		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1281		struct uart_port *uport = &zport->port;
1282
1283		if (zport->scc)
1284			uart_add_one_port(&zs_reg, uport);
1285	}
1286
1287	return 0;
1288}
1289
1290static void __exit zs_exit(void)
1291{
1292	int i;
1293
1294	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1295		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1296		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1297		struct uart_port *uport = &zport->port;
1298
1299		if (zport->scc)
1300			uart_remove_one_port(&zs_reg, uport);
1301	}
1302
1303	uart_unregister_driver(&zs_reg);
1304}
1305
1306module_init(zs_init);
1307module_exit(zs_exit);
1308