1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4 *
5 *  Copyright (C) 2002 - 2011  Paul Mundt
6 *  Copyright (C) 2015 Glider bvba
7 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8 *
9 * based off of the old drivers/char/sh-sci.c by:
10 *
11 *   Copyright (C) 1999, 2000  Niibe Yutaka
12 *   Copyright (C) 2000  Sugioka Toshinobu
13 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14 *   Modified to support SecureEdge. David McCullough (2002)
15 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16 *   Removed SH7300 support (Jul 2007).
17 */
18#undef DEBUG
19
20#include <linux/clk.h>
21#include <linux/console.h>
22#include <linux/ctype.h>
23#include <linux/cpufreq.h>
24#include <linux/delay.h>
25#include <linux/dmaengine.h>
26#include <linux/dma-mapping.h>
27#include <linux/err.h>
28#include <linux/errno.h>
29#include <linux/init.h>
30#include <linux/interrupt.h>
31#include <linux/ioport.h>
32#include <linux/ktime.h>
33#include <linux/major.h>
34#include <linux/minmax.h>
35#include <linux/module.h>
36#include <linux/mm.h>
37#include <linux/of.h>
38#include <linux/platform_device.h>
39#include <linux/pm_runtime.h>
40#include <linux/reset.h>
41#include <linux/scatterlist.h>
42#include <linux/serial.h>
43#include <linux/serial_sci.h>
44#include <linux/sh_dma.h>
45#include <linux/slab.h>
46#include <linux/string.h>
47#include <linux/sysrq.h>
48#include <linux/timer.h>
49#include <linux/tty.h>
50#include <linux/tty_flip.h>
51
52#ifdef CONFIG_SUPERH
53#include <asm/sh_bios.h>
54#include <asm/platform_early.h>
55#endif
56
57#include "serial_mctrl_gpio.h"
58#include "sh-sci.h"
59
60/* Offsets into the sci_port->irqs array */
61enum {
62	SCIx_ERI_IRQ,
63	SCIx_RXI_IRQ,
64	SCIx_TXI_IRQ,
65	SCIx_BRI_IRQ,
66	SCIx_DRI_IRQ,
67	SCIx_TEI_IRQ,
68	SCIx_NR_IRQS,
69
70	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71};
72
73#define SCIx_IRQ_IS_MUXED(port)			\
74	((port)->irqs[SCIx_ERI_IRQ] ==	\
75	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76	((port)->irqs[SCIx_ERI_IRQ] &&	\
77	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78
79enum SCI_CLKS {
80	SCI_FCK,		/* Functional Clock */
81	SCI_SCK,		/* Optional External Clock */
82	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
83	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
84	SCI_NUM_CLKS
85};
86
87/* Bit x set means sampling rate x + 1 is supported */
88#define SCI_SR(x)		BIT((x) - 1)
89#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
90
91#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93				SCI_SR(19) | SCI_SR(27)
94
95#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
96#define max_sr(_port)		fls((_port)->sampling_rate_mask)
97
98/* Iterate over all supported sampling rates, from high to low */
99#define for_each_sr(_sr, _port)						\
100	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
101		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102
103struct plat_sci_reg {
104	u8 offset, size;
105};
106
107struct sci_port_params {
108	const struct plat_sci_reg regs[SCIx_NR_REGS];
109	unsigned int fifosize;
110	unsigned int overrun_reg;
111	unsigned int overrun_mask;
112	unsigned int sampling_rate_mask;
113	unsigned int error_mask;
114	unsigned int error_clear;
115};
116
117struct sci_port {
118	struct uart_port	port;
119
120	/* Platform configuration */
121	const struct sci_port_params *params;
122	const struct plat_sci_port *cfg;
123	unsigned int		sampling_rate_mask;
124	resource_size_t		reg_size;
125	struct mctrl_gpios	*gpios;
126
127	/* Clocks */
128	struct clk		*clks[SCI_NUM_CLKS];
129	unsigned long		clk_rates[SCI_NUM_CLKS];
130
131	int			irqs[SCIx_NR_IRQS];
132	char			*irqstr[SCIx_NR_IRQS];
133
134	struct dma_chan			*chan_tx;
135	struct dma_chan			*chan_rx;
136
137#ifdef CONFIG_SERIAL_SH_SCI_DMA
138	struct dma_chan			*chan_tx_saved;
139	struct dma_chan			*chan_rx_saved;
140	dma_cookie_t			cookie_tx;
141	dma_cookie_t			cookie_rx[2];
142	dma_cookie_t			active_rx;
143	dma_addr_t			tx_dma_addr;
144	unsigned int			tx_dma_len;
145	struct scatterlist		sg_rx[2];
146	void				*rx_buf[2];
147	size_t				buf_len_rx;
148	struct work_struct		work_tx;
149	struct hrtimer			rx_timer;
150	unsigned int			rx_timeout;	/* microseconds */
151#endif
152	unsigned int			rx_frame;
153	int				rx_trigger;
154	struct timer_list		rx_fifo_timer;
155	int				rx_fifo_timeout;
156	u16				hscif_tot;
157
158	bool has_rtscts;
159	bool autorts;
160};
161
162#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
163
164static struct sci_port sci_ports[SCI_NPORTS];
165static unsigned long sci_ports_in_use;
166static struct uart_driver sci_uart_driver;
167
168static inline struct sci_port *
169to_sci_port(struct uart_port *uart)
170{
171	return container_of(uart, struct sci_port, port);
172}
173
174static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
175	/*
176	 * Common SCI definitions, dependent on the port's regshift
177	 * value.
178	 */
179	[SCIx_SCI_REGTYPE] = {
180		.regs = {
181			[SCSMR]		= { 0x00,  8 },
182			[SCBRR]		= { 0x01,  8 },
183			[SCSCR]		= { 0x02,  8 },
184			[SCxTDR]	= { 0x03,  8 },
185			[SCxSR]		= { 0x04,  8 },
186			[SCxRDR]	= { 0x05,  8 },
187		},
188		.fifosize = 1,
189		.overrun_reg = SCxSR,
190		.overrun_mask = SCI_ORER,
191		.sampling_rate_mask = SCI_SR(32),
192		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
193		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
194	},
195
196	/*
197	 * Common definitions for legacy IrDA ports.
198	 */
199	[SCIx_IRDA_REGTYPE] = {
200		.regs = {
201			[SCSMR]		= { 0x00,  8 },
202			[SCBRR]		= { 0x02,  8 },
203			[SCSCR]		= { 0x04,  8 },
204			[SCxTDR]	= { 0x06,  8 },
205			[SCxSR]		= { 0x08, 16 },
206			[SCxRDR]	= { 0x0a,  8 },
207			[SCFCR]		= { 0x0c,  8 },
208			[SCFDR]		= { 0x0e, 16 },
209		},
210		.fifosize = 1,
211		.overrun_reg = SCxSR,
212		.overrun_mask = SCI_ORER,
213		.sampling_rate_mask = SCI_SR(32),
214		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
215		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
216	},
217
218	/*
219	 * Common SCIFA definitions.
220	 */
221	[SCIx_SCIFA_REGTYPE] = {
222		.regs = {
223			[SCSMR]		= { 0x00, 16 },
224			[SCBRR]		= { 0x04,  8 },
225			[SCSCR]		= { 0x08, 16 },
226			[SCxTDR]	= { 0x20,  8 },
227			[SCxSR]		= { 0x14, 16 },
228			[SCxRDR]	= { 0x24,  8 },
229			[SCFCR]		= { 0x18, 16 },
230			[SCFDR]		= { 0x1c, 16 },
231			[SCPCR]		= { 0x30, 16 },
232			[SCPDR]		= { 0x34, 16 },
233		},
234		.fifosize = 64,
235		.overrun_reg = SCxSR,
236		.overrun_mask = SCIFA_ORER,
237		.sampling_rate_mask = SCI_SR_SCIFAB,
238		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
239		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
240	},
241
242	/*
243	 * Common SCIFB definitions.
244	 */
245	[SCIx_SCIFB_REGTYPE] = {
246		.regs = {
247			[SCSMR]		= { 0x00, 16 },
248			[SCBRR]		= { 0x04,  8 },
249			[SCSCR]		= { 0x08, 16 },
250			[SCxTDR]	= { 0x40,  8 },
251			[SCxSR]		= { 0x14, 16 },
252			[SCxRDR]	= { 0x60,  8 },
253			[SCFCR]		= { 0x18, 16 },
254			[SCTFDR]	= { 0x38, 16 },
255			[SCRFDR]	= { 0x3c, 16 },
256			[SCPCR]		= { 0x30, 16 },
257			[SCPDR]		= { 0x34, 16 },
258		},
259		.fifosize = 256,
260		.overrun_reg = SCxSR,
261		.overrun_mask = SCIFA_ORER,
262		.sampling_rate_mask = SCI_SR_SCIFAB,
263		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
264		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
265	},
266
267	/*
268	 * Common SH-2(A) SCIF definitions for ports with FIFO data
269	 * count registers.
270	 */
271	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
272		.regs = {
273			[SCSMR]		= { 0x00, 16 },
274			[SCBRR]		= { 0x04,  8 },
275			[SCSCR]		= { 0x08, 16 },
276			[SCxTDR]	= { 0x0c,  8 },
277			[SCxSR]		= { 0x10, 16 },
278			[SCxRDR]	= { 0x14,  8 },
279			[SCFCR]		= { 0x18, 16 },
280			[SCFDR]		= { 0x1c, 16 },
281			[SCSPTR]	= { 0x20, 16 },
282			[SCLSR]		= { 0x24, 16 },
283		},
284		.fifosize = 16,
285		.overrun_reg = SCLSR,
286		.overrun_mask = SCLSR_ORER,
287		.sampling_rate_mask = SCI_SR(32),
288		.error_mask = SCIF_DEFAULT_ERROR_MASK,
289		.error_clear = SCIF_ERROR_CLEAR,
290	},
291
292	/*
293	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
294	 * It looks like a normal SCIF with FIFO data, but with a
295	 * compressed address space. Also, the break out of interrupts
296	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
297	 */
298	[SCIx_RZ_SCIFA_REGTYPE] = {
299		.regs = {
300			[SCSMR]		= { 0x00, 16 },
301			[SCBRR]		= { 0x02,  8 },
302			[SCSCR]		= { 0x04, 16 },
303			[SCxTDR]	= { 0x06,  8 },
304			[SCxSR]		= { 0x08, 16 },
305			[SCxRDR]	= { 0x0A,  8 },
306			[SCFCR]		= { 0x0C, 16 },
307			[SCFDR]		= { 0x0E, 16 },
308			[SCSPTR]	= { 0x10, 16 },
309			[SCLSR]		= { 0x12, 16 },
310			[SEMR]		= { 0x14, 8 },
311		},
312		.fifosize = 16,
313		.overrun_reg = SCLSR,
314		.overrun_mask = SCLSR_ORER,
315		.sampling_rate_mask = SCI_SR(32),
316		.error_mask = SCIF_DEFAULT_ERROR_MASK,
317		.error_clear = SCIF_ERROR_CLEAR,
318	},
319
320	/*
321	 * Common SH-3 SCIF definitions.
322	 */
323	[SCIx_SH3_SCIF_REGTYPE] = {
324		.regs = {
325			[SCSMR]		= { 0x00,  8 },
326			[SCBRR]		= { 0x02,  8 },
327			[SCSCR]		= { 0x04,  8 },
328			[SCxTDR]	= { 0x06,  8 },
329			[SCxSR]		= { 0x08, 16 },
330			[SCxRDR]	= { 0x0a,  8 },
331			[SCFCR]		= { 0x0c,  8 },
332			[SCFDR]		= { 0x0e, 16 },
333		},
334		.fifosize = 16,
335		.overrun_reg = SCLSR,
336		.overrun_mask = SCLSR_ORER,
337		.sampling_rate_mask = SCI_SR(32),
338		.error_mask = SCIF_DEFAULT_ERROR_MASK,
339		.error_clear = SCIF_ERROR_CLEAR,
340	},
341
342	/*
343	 * Common SH-4(A) SCIF(B) definitions.
344	 */
345	[SCIx_SH4_SCIF_REGTYPE] = {
346		.regs = {
347			[SCSMR]		= { 0x00, 16 },
348			[SCBRR]		= { 0x04,  8 },
349			[SCSCR]		= { 0x08, 16 },
350			[SCxTDR]	= { 0x0c,  8 },
351			[SCxSR]		= { 0x10, 16 },
352			[SCxRDR]	= { 0x14,  8 },
353			[SCFCR]		= { 0x18, 16 },
354			[SCFDR]		= { 0x1c, 16 },
355			[SCSPTR]	= { 0x20, 16 },
356			[SCLSR]		= { 0x24, 16 },
357		},
358		.fifosize = 16,
359		.overrun_reg = SCLSR,
360		.overrun_mask = SCLSR_ORER,
361		.sampling_rate_mask = SCI_SR(32),
362		.error_mask = SCIF_DEFAULT_ERROR_MASK,
363		.error_clear = SCIF_ERROR_CLEAR,
364	},
365
366	/*
367	 * Common SCIF definitions for ports with a Baud Rate Generator for
368	 * External Clock (BRG).
369	 */
370	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
371		.regs = {
372			[SCSMR]		= { 0x00, 16 },
373			[SCBRR]		= { 0x04,  8 },
374			[SCSCR]		= { 0x08, 16 },
375			[SCxTDR]	= { 0x0c,  8 },
376			[SCxSR]		= { 0x10, 16 },
377			[SCxRDR]	= { 0x14,  8 },
378			[SCFCR]		= { 0x18, 16 },
379			[SCFDR]		= { 0x1c, 16 },
380			[SCSPTR]	= { 0x20, 16 },
381			[SCLSR]		= { 0x24, 16 },
382			[SCDL]		= { 0x30, 16 },
383			[SCCKS]		= { 0x34, 16 },
384		},
385		.fifosize = 16,
386		.overrun_reg = SCLSR,
387		.overrun_mask = SCLSR_ORER,
388		.sampling_rate_mask = SCI_SR(32),
389		.error_mask = SCIF_DEFAULT_ERROR_MASK,
390		.error_clear = SCIF_ERROR_CLEAR,
391	},
392
393	/*
394	 * Common HSCIF definitions.
395	 */
396	[SCIx_HSCIF_REGTYPE] = {
397		.regs = {
398			[SCSMR]		= { 0x00, 16 },
399			[SCBRR]		= { 0x04,  8 },
400			[SCSCR]		= { 0x08, 16 },
401			[SCxTDR]	= { 0x0c,  8 },
402			[SCxSR]		= { 0x10, 16 },
403			[SCxRDR]	= { 0x14,  8 },
404			[SCFCR]		= { 0x18, 16 },
405			[SCFDR]		= { 0x1c, 16 },
406			[SCSPTR]	= { 0x20, 16 },
407			[SCLSR]		= { 0x24, 16 },
408			[HSSRR]		= { 0x40, 16 },
409			[SCDL]		= { 0x30, 16 },
410			[SCCKS]		= { 0x34, 16 },
411			[HSRTRGR]	= { 0x54, 16 },
412			[HSTTRGR]	= { 0x58, 16 },
413		},
414		.fifosize = 128,
415		.overrun_reg = SCLSR,
416		.overrun_mask = SCLSR_ORER,
417		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
418		.error_mask = SCIF_DEFAULT_ERROR_MASK,
419		.error_clear = SCIF_ERROR_CLEAR,
420	},
421
422	/*
423	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
424	 * register.
425	 */
426	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
427		.regs = {
428			[SCSMR]		= { 0x00, 16 },
429			[SCBRR]		= { 0x04,  8 },
430			[SCSCR]		= { 0x08, 16 },
431			[SCxTDR]	= { 0x0c,  8 },
432			[SCxSR]		= { 0x10, 16 },
433			[SCxRDR]	= { 0x14,  8 },
434			[SCFCR]		= { 0x18, 16 },
435			[SCFDR]		= { 0x1c, 16 },
436			[SCLSR]		= { 0x24, 16 },
437		},
438		.fifosize = 16,
439		.overrun_reg = SCLSR,
440		.overrun_mask = SCLSR_ORER,
441		.sampling_rate_mask = SCI_SR(32),
442		.error_mask = SCIF_DEFAULT_ERROR_MASK,
443		.error_clear = SCIF_ERROR_CLEAR,
444	},
445
446	/*
447	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
448	 * count registers.
449	 */
450	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
451		.regs = {
452			[SCSMR]		= { 0x00, 16 },
453			[SCBRR]		= { 0x04,  8 },
454			[SCSCR]		= { 0x08, 16 },
455			[SCxTDR]	= { 0x0c,  8 },
456			[SCxSR]		= { 0x10, 16 },
457			[SCxRDR]	= { 0x14,  8 },
458			[SCFCR]		= { 0x18, 16 },
459			[SCFDR]		= { 0x1c, 16 },
460			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
461			[SCRFDR]	= { 0x20, 16 },
462			[SCSPTR]	= { 0x24, 16 },
463			[SCLSR]		= { 0x28, 16 },
464		},
465		.fifosize = 16,
466		.overrun_reg = SCLSR,
467		.overrun_mask = SCLSR_ORER,
468		.sampling_rate_mask = SCI_SR(32),
469		.error_mask = SCIF_DEFAULT_ERROR_MASK,
470		.error_clear = SCIF_ERROR_CLEAR,
471	},
472
473	/*
474	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
475	 * registers.
476	 */
477	[SCIx_SH7705_SCIF_REGTYPE] = {
478		.regs = {
479			[SCSMR]		= { 0x00, 16 },
480			[SCBRR]		= { 0x04,  8 },
481			[SCSCR]		= { 0x08, 16 },
482			[SCxTDR]	= { 0x20,  8 },
483			[SCxSR]		= { 0x14, 16 },
484			[SCxRDR]	= { 0x24,  8 },
485			[SCFCR]		= { 0x18, 16 },
486			[SCFDR]		= { 0x1c, 16 },
487		},
488		.fifosize = 64,
489		.overrun_reg = SCxSR,
490		.overrun_mask = SCIFA_ORER,
491		.sampling_rate_mask = SCI_SR(16),
492		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
493		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
494	},
495};
496
497#define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
498
499/*
500 * The "offset" here is rather misleading, in that it refers to an enum
501 * value relative to the port mapping rather than the fixed offset
502 * itself, which needs to be manually retrieved from the platform's
503 * register map for the given port.
504 */
505static unsigned int sci_serial_in(struct uart_port *p, int offset)
506{
507	const struct plat_sci_reg *reg = sci_getreg(p, offset);
508
509	if (reg->size == 8)
510		return ioread8(p->membase + (reg->offset << p->regshift));
511	else if (reg->size == 16)
512		return ioread16(p->membase + (reg->offset << p->regshift));
513	else
514		WARN(1, "Invalid register access\n");
515
516	return 0;
517}
518
519static void sci_serial_out(struct uart_port *p, int offset, int value)
520{
521	const struct plat_sci_reg *reg = sci_getreg(p, offset);
522
523	if (reg->size == 8)
524		iowrite8(value, p->membase + (reg->offset << p->regshift));
525	else if (reg->size == 16)
526		iowrite16(value, p->membase + (reg->offset << p->regshift));
527	else
528		WARN(1, "Invalid register access\n");
529}
530
531static void sci_port_enable(struct sci_port *sci_port)
532{
533	unsigned int i;
534
535	if (!sci_port->port.dev)
536		return;
537
538	pm_runtime_get_sync(sci_port->port.dev);
539
540	for (i = 0; i < SCI_NUM_CLKS; i++) {
541		clk_prepare_enable(sci_port->clks[i]);
542		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
543	}
544	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
545}
546
547static void sci_port_disable(struct sci_port *sci_port)
548{
549	unsigned int i;
550
551	if (!sci_port->port.dev)
552		return;
553
554	for (i = SCI_NUM_CLKS; i-- > 0; )
555		clk_disable_unprepare(sci_port->clks[i]);
556
557	pm_runtime_put_sync(sci_port->port.dev);
558}
559
560static inline unsigned long port_rx_irq_mask(struct uart_port *port)
561{
562	/*
563	 * Not all ports (such as SCIFA) will support REIE. Rather than
564	 * special-casing the port type, we check the port initialization
565	 * IRQ enable mask to see whether the IRQ is desired at all. If
566	 * it's unset, it's logically inferred that there's no point in
567	 * testing for it.
568	 */
569	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
570}
571
572static void sci_start_tx(struct uart_port *port)
573{
574	struct sci_port *s = to_sci_port(port);
575	unsigned short ctrl;
576
577#ifdef CONFIG_SERIAL_SH_SCI_DMA
578	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
579		u16 new, scr = serial_port_in(port, SCSCR);
580		if (s->chan_tx)
581			new = scr | SCSCR_TDRQE;
582		else
583			new = scr & ~SCSCR_TDRQE;
584		if (new != scr)
585			serial_port_out(port, SCSCR, new);
586	}
587
588	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
589	    dma_submit_error(s->cookie_tx)) {
590		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
591			/* Switch irq from SCIF to DMA */
592			disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
593
594		s->cookie_tx = 0;
595		schedule_work(&s->work_tx);
596	}
597#endif
598
599	if (!s->chan_tx || s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE ||
600	    port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
601		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
602		ctrl = serial_port_in(port, SCSCR);
603
604		/*
605		 * For SCI, TE (transmit enable) must be set after setting TIE
606		 * (transmit interrupt enable) or in the same instruction to start
607		 * the transmit process.
608		 */
609		if (port->type == PORT_SCI)
610			ctrl |= SCSCR_TE;
611
612		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
613	}
614}
615
616static void sci_stop_tx(struct uart_port *port)
617{
618	unsigned short ctrl;
619
620	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
621	ctrl = serial_port_in(port, SCSCR);
622
623	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
624		ctrl &= ~SCSCR_TDRQE;
625
626	ctrl &= ~SCSCR_TIE;
627
628	serial_port_out(port, SCSCR, ctrl);
629
630#ifdef CONFIG_SERIAL_SH_SCI_DMA
631	if (to_sci_port(port)->chan_tx &&
632	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
633		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
634		to_sci_port(port)->cookie_tx = -EINVAL;
635	}
636#endif
637}
638
639static void sci_start_rx(struct uart_port *port)
640{
641	unsigned short ctrl;
642
643	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
644
645	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
646		ctrl &= ~SCSCR_RDRQE;
647
648	serial_port_out(port, SCSCR, ctrl);
649}
650
651static void sci_stop_rx(struct uart_port *port)
652{
653	unsigned short ctrl;
654
655	ctrl = serial_port_in(port, SCSCR);
656
657	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
658		ctrl &= ~SCSCR_RDRQE;
659
660	ctrl &= ~port_rx_irq_mask(port);
661
662	serial_port_out(port, SCSCR, ctrl);
663}
664
665static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
666{
667	if (port->type == PORT_SCI) {
668		/* Just store the mask */
669		serial_port_out(port, SCxSR, mask);
670	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
671		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
672		/* Only clear the status bits we want to clear */
673		serial_port_out(port, SCxSR,
674				serial_port_in(port, SCxSR) & mask);
675	} else {
676		/* Store the mask, clear parity/framing errors */
677		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
678	}
679}
680
681#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
682    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
683
684#ifdef CONFIG_CONSOLE_POLL
685static int sci_poll_get_char(struct uart_port *port)
686{
687	unsigned short status;
688	int c;
689
690	do {
691		status = serial_port_in(port, SCxSR);
692		if (status & SCxSR_ERRORS(port)) {
693			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
694			continue;
695		}
696		break;
697	} while (1);
698
699	if (!(status & SCxSR_RDxF(port)))
700		return NO_POLL_CHAR;
701
702	c = serial_port_in(port, SCxRDR);
703
704	/* Dummy read */
705	serial_port_in(port, SCxSR);
706	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
707
708	return c;
709}
710#endif
711
712static void sci_poll_put_char(struct uart_port *port, unsigned char c)
713{
714	unsigned short status;
715
716	do {
717		status = serial_port_in(port, SCxSR);
718	} while (!(status & SCxSR_TDxE(port)));
719
720	serial_port_out(port, SCxTDR, c);
721	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
722}
723#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
724	  CONFIG_SERIAL_SH_SCI_EARLYCON */
725
726static void sci_init_pins(struct uart_port *port, unsigned int cflag)
727{
728	struct sci_port *s = to_sci_port(port);
729
730	/*
731	 * Use port-specific handler if provided.
732	 */
733	if (s->cfg->ops && s->cfg->ops->init_pins) {
734		s->cfg->ops->init_pins(port, cflag);
735		return;
736	}
737
738	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
739		u16 data = serial_port_in(port, SCPDR);
740		u16 ctrl = serial_port_in(port, SCPCR);
741
742		/* Enable RXD and TXD pin functions */
743		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
744		if (to_sci_port(port)->has_rtscts) {
745			/* RTS# is output, active low, unless autorts */
746			if (!(port->mctrl & TIOCM_RTS)) {
747				ctrl |= SCPCR_RTSC;
748				data |= SCPDR_RTSD;
749			} else if (!s->autorts) {
750				ctrl |= SCPCR_RTSC;
751				data &= ~SCPDR_RTSD;
752			} else {
753				/* Enable RTS# pin function */
754				ctrl &= ~SCPCR_RTSC;
755			}
756			/* Enable CTS# pin function */
757			ctrl &= ~SCPCR_CTSC;
758		}
759		serial_port_out(port, SCPDR, data);
760		serial_port_out(port, SCPCR, ctrl);
761	} else if (sci_getreg(port, SCSPTR)->size) {
762		u16 status = serial_port_in(port, SCSPTR);
763
764		/* RTS# is always output; and active low, unless autorts */
765		status |= SCSPTR_RTSIO;
766		if (!(port->mctrl & TIOCM_RTS))
767			status |= SCSPTR_RTSDT;
768		else if (!s->autorts)
769			status &= ~SCSPTR_RTSDT;
770		/* CTS# and SCK are inputs */
771		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
772		serial_port_out(port, SCSPTR, status);
773	}
774}
775
776static int sci_txfill(struct uart_port *port)
777{
778	struct sci_port *s = to_sci_port(port);
779	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
780	const struct plat_sci_reg *reg;
781
782	reg = sci_getreg(port, SCTFDR);
783	if (reg->size)
784		return serial_port_in(port, SCTFDR) & fifo_mask;
785
786	reg = sci_getreg(port, SCFDR);
787	if (reg->size)
788		return serial_port_in(port, SCFDR) >> 8;
789
790	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
791}
792
793static int sci_txroom(struct uart_port *port)
794{
795	return port->fifosize - sci_txfill(port);
796}
797
798static int sci_rxfill(struct uart_port *port)
799{
800	struct sci_port *s = to_sci_port(port);
801	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
802	const struct plat_sci_reg *reg;
803
804	reg = sci_getreg(port, SCRFDR);
805	if (reg->size)
806		return serial_port_in(port, SCRFDR) & fifo_mask;
807
808	reg = sci_getreg(port, SCFDR);
809	if (reg->size)
810		return serial_port_in(port, SCFDR) & fifo_mask;
811
812	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
813}
814
815/* ********************************************************************** *
816 *                   the interrupt related routines                       *
817 * ********************************************************************** */
818
819static void sci_transmit_chars(struct uart_port *port)
820{
821	struct circ_buf *xmit = &port->state->xmit;
822	unsigned int stopped = uart_tx_stopped(port);
823	unsigned short status;
824	unsigned short ctrl;
825	int count;
826
827	status = serial_port_in(port, SCxSR);
828	if (!(status & SCxSR_TDxE(port))) {
829		ctrl = serial_port_in(port, SCSCR);
830		if (uart_circ_empty(xmit))
831			ctrl &= ~SCSCR_TIE;
832		else
833			ctrl |= SCSCR_TIE;
834		serial_port_out(port, SCSCR, ctrl);
835		return;
836	}
837
838	count = sci_txroom(port);
839
840	do {
841		unsigned char c;
842
843		if (port->x_char) {
844			c = port->x_char;
845			port->x_char = 0;
846		} else if (!uart_circ_empty(xmit) && !stopped) {
847			c = xmit->buf[xmit->tail];
848			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
849		} else if (port->type == PORT_SCI && uart_circ_empty(xmit)) {
850			ctrl = serial_port_in(port, SCSCR);
851			ctrl &= ~SCSCR_TE;
852			serial_port_out(port, SCSCR, ctrl);
853			return;
854		} else {
855			break;
856		}
857
858		serial_port_out(port, SCxTDR, c);
859
860		port->icount.tx++;
861	} while (--count > 0);
862
863	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
864
865	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
866		uart_write_wakeup(port);
867	if (uart_circ_empty(xmit)) {
868		if (port->type == PORT_SCI) {
869			ctrl = serial_port_in(port, SCSCR);
870			ctrl &= ~SCSCR_TIE;
871			ctrl |= SCSCR_TEIE;
872			serial_port_out(port, SCSCR, ctrl);
873		}
874
875		sci_stop_tx(port);
876	}
877}
878
879static void sci_receive_chars(struct uart_port *port)
880{
881	struct tty_port *tport = &port->state->port;
882	int i, count, copied = 0;
883	unsigned short status;
884	unsigned char flag;
885
886	status = serial_port_in(port, SCxSR);
887	if (!(status & SCxSR_RDxF(port)))
888		return;
889
890	while (1) {
891		/* Don't copy more bytes than there is room for in the buffer */
892		count = tty_buffer_request_room(tport, sci_rxfill(port));
893
894		/* If for any reason we can't copy more data, we're done! */
895		if (count == 0)
896			break;
897
898		if (port->type == PORT_SCI) {
899			char c = serial_port_in(port, SCxRDR);
900			if (uart_handle_sysrq_char(port, c))
901				count = 0;
902			else
903				tty_insert_flip_char(tport, c, TTY_NORMAL);
904		} else {
905			for (i = 0; i < count; i++) {
906				char c;
907
908				if (port->type == PORT_SCIF ||
909				    port->type == PORT_HSCIF) {
910					status = serial_port_in(port, SCxSR);
911					c = serial_port_in(port, SCxRDR);
912				} else {
913					c = serial_port_in(port, SCxRDR);
914					status = serial_port_in(port, SCxSR);
915				}
916				if (uart_handle_sysrq_char(port, c)) {
917					count--; i--;
918					continue;
919				}
920
921				/* Store data and status */
922				if (status & SCxSR_FER(port)) {
923					flag = TTY_FRAME;
924					port->icount.frame++;
925				} else if (status & SCxSR_PER(port)) {
926					flag = TTY_PARITY;
927					port->icount.parity++;
928				} else
929					flag = TTY_NORMAL;
930
931				tty_insert_flip_char(tport, c, flag);
932			}
933		}
934
935		serial_port_in(port, SCxSR); /* dummy read */
936		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
937
938		copied += count;
939		port->icount.rx += count;
940	}
941
942	if (copied) {
943		/* Tell the rest of the system the news. New characters! */
944		tty_flip_buffer_push(tport);
945	} else {
946		/* TTY buffers full; read from RX reg to prevent lockup */
947		serial_port_in(port, SCxRDR);
948		serial_port_in(port, SCxSR); /* dummy read */
949		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
950	}
951}
952
953static int sci_handle_errors(struct uart_port *port)
954{
955	int copied = 0;
956	unsigned short status = serial_port_in(port, SCxSR);
957	struct tty_port *tport = &port->state->port;
958	struct sci_port *s = to_sci_port(port);
959
960	/* Handle overruns */
961	if (status & s->params->overrun_mask) {
962		port->icount.overrun++;
963
964		/* overrun error */
965		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
966			copied++;
967	}
968
969	if (status & SCxSR_FER(port)) {
970		/* frame error */
971		port->icount.frame++;
972
973		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
974			copied++;
975	}
976
977	if (status & SCxSR_PER(port)) {
978		/* parity error */
979		port->icount.parity++;
980
981		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
982			copied++;
983	}
984
985	if (copied)
986		tty_flip_buffer_push(tport);
987
988	return copied;
989}
990
991static int sci_handle_fifo_overrun(struct uart_port *port)
992{
993	struct tty_port *tport = &port->state->port;
994	struct sci_port *s = to_sci_port(port);
995	const struct plat_sci_reg *reg;
996	int copied = 0;
997	u16 status;
998
999	reg = sci_getreg(port, s->params->overrun_reg);
1000	if (!reg->size)
1001		return 0;
1002
1003	status = serial_port_in(port, s->params->overrun_reg);
1004	if (status & s->params->overrun_mask) {
1005		status &= ~s->params->overrun_mask;
1006		serial_port_out(port, s->params->overrun_reg, status);
1007
1008		port->icount.overrun++;
1009
1010		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1011		tty_flip_buffer_push(tport);
1012		copied++;
1013	}
1014
1015	return copied;
1016}
1017
1018static int sci_handle_breaks(struct uart_port *port)
1019{
1020	int copied = 0;
1021	unsigned short status = serial_port_in(port, SCxSR);
1022	struct tty_port *tport = &port->state->port;
1023
1024	if (uart_handle_break(port))
1025		return 0;
1026
1027	if (status & SCxSR_BRK(port)) {
1028		port->icount.brk++;
1029
1030		/* Notify of BREAK */
1031		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1032			copied++;
1033	}
1034
1035	if (copied)
1036		tty_flip_buffer_push(tport);
1037
1038	copied += sci_handle_fifo_overrun(port);
1039
1040	return copied;
1041}
1042
1043static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1044{
1045	unsigned int bits;
1046
1047	if (rx_trig >= port->fifosize)
1048		rx_trig = port->fifosize - 1;
1049	if (rx_trig < 1)
1050		rx_trig = 1;
1051
1052	/* HSCIF can be set to an arbitrary level. */
1053	if (sci_getreg(port, HSRTRGR)->size) {
1054		serial_port_out(port, HSRTRGR, rx_trig);
1055		return rx_trig;
1056	}
1057
1058	switch (port->type) {
1059	case PORT_SCIF:
1060		if (rx_trig < 4) {
1061			bits = 0;
1062			rx_trig = 1;
1063		} else if (rx_trig < 8) {
1064			bits = SCFCR_RTRG0;
1065			rx_trig = 4;
1066		} else if (rx_trig < 14) {
1067			bits = SCFCR_RTRG1;
1068			rx_trig = 8;
1069		} else {
1070			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1071			rx_trig = 14;
1072		}
1073		break;
1074	case PORT_SCIFA:
1075	case PORT_SCIFB:
1076		if (rx_trig < 16) {
1077			bits = 0;
1078			rx_trig = 1;
1079		} else if (rx_trig < 32) {
1080			bits = SCFCR_RTRG0;
1081			rx_trig = 16;
1082		} else if (rx_trig < 48) {
1083			bits = SCFCR_RTRG1;
1084			rx_trig = 32;
1085		} else {
1086			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1087			rx_trig = 48;
1088		}
1089		break;
1090	default:
1091		WARN(1, "unknown FIFO configuration");
1092		return 1;
1093	}
1094
1095	serial_port_out(port, SCFCR,
1096		(serial_port_in(port, SCFCR) &
1097		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1098
1099	return rx_trig;
1100}
1101
1102static int scif_rtrg_enabled(struct uart_port *port)
1103{
1104	if (sci_getreg(port, HSRTRGR)->size)
1105		return serial_port_in(port, HSRTRGR) != 0;
1106	else
1107		return (serial_port_in(port, SCFCR) &
1108			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1109}
1110
1111static void rx_fifo_timer_fn(struct timer_list *t)
1112{
1113	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1114	struct uart_port *port = &s->port;
1115
1116	dev_dbg(port->dev, "Rx timed out\n");
1117	scif_set_rtrg(port, 1);
1118}
1119
1120static ssize_t rx_fifo_trigger_show(struct device *dev,
1121				    struct device_attribute *attr, char *buf)
1122{
1123	struct uart_port *port = dev_get_drvdata(dev);
1124	struct sci_port *sci = to_sci_port(port);
1125
1126	return sprintf(buf, "%d\n", sci->rx_trigger);
1127}
1128
1129static ssize_t rx_fifo_trigger_store(struct device *dev,
1130				     struct device_attribute *attr,
1131				     const char *buf, size_t count)
1132{
1133	struct uart_port *port = dev_get_drvdata(dev);
1134	struct sci_port *sci = to_sci_port(port);
1135	int ret;
1136	long r;
1137
1138	ret = kstrtol(buf, 0, &r);
1139	if (ret)
1140		return ret;
1141
1142	sci->rx_trigger = scif_set_rtrg(port, r);
1143	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1144		scif_set_rtrg(port, 1);
1145
1146	return count;
1147}
1148
1149static DEVICE_ATTR_RW(rx_fifo_trigger);
1150
1151static ssize_t rx_fifo_timeout_show(struct device *dev,
1152			       struct device_attribute *attr,
1153			       char *buf)
1154{
1155	struct uart_port *port = dev_get_drvdata(dev);
1156	struct sci_port *sci = to_sci_port(port);
1157	int v;
1158
1159	if (port->type == PORT_HSCIF)
1160		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1161	else
1162		v = sci->rx_fifo_timeout;
1163
1164	return sprintf(buf, "%d\n", v);
1165}
1166
1167static ssize_t rx_fifo_timeout_store(struct device *dev,
1168				struct device_attribute *attr,
1169				const char *buf,
1170				size_t count)
1171{
1172	struct uart_port *port = dev_get_drvdata(dev);
1173	struct sci_port *sci = to_sci_port(port);
1174	int ret;
1175	long r;
1176
1177	ret = kstrtol(buf, 0, &r);
1178	if (ret)
1179		return ret;
1180
1181	if (port->type == PORT_HSCIF) {
1182		if (r < 0 || r > 3)
1183			return -EINVAL;
1184		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1185	} else {
1186		sci->rx_fifo_timeout = r;
1187		scif_set_rtrg(port, 1);
1188		if (r > 0)
1189			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1190	}
1191
1192	return count;
1193}
1194
1195static DEVICE_ATTR_RW(rx_fifo_timeout);
1196
1197
1198#ifdef CONFIG_SERIAL_SH_SCI_DMA
1199static void sci_dma_tx_complete(void *arg)
1200{
1201	struct sci_port *s = arg;
1202	struct uart_port *port = &s->port;
1203	struct circ_buf *xmit = &port->state->xmit;
1204	unsigned long flags;
1205
1206	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1207
1208	spin_lock_irqsave(&port->lock, flags);
1209
1210	uart_xmit_advance(port, s->tx_dma_len);
1211
1212	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1213		uart_write_wakeup(port);
1214
1215	if (!uart_circ_empty(xmit)) {
1216		s->cookie_tx = 0;
1217		schedule_work(&s->work_tx);
1218	} else {
1219		s->cookie_tx = -EINVAL;
1220		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1221		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1222			u16 ctrl = serial_port_in(port, SCSCR);
1223			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1224			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1225				/* Switch irq from DMA to SCIF */
1226				dmaengine_pause(s->chan_tx_saved);
1227				enable_irq(s->irqs[SCIx_TXI_IRQ]);
1228			}
1229		}
1230	}
1231
1232	spin_unlock_irqrestore(&port->lock, flags);
1233}
1234
1235/* Locking: called with port lock held */
1236static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1237{
1238	struct uart_port *port = &s->port;
1239	struct tty_port *tport = &port->state->port;
1240	int copied;
1241
1242	copied = tty_insert_flip_string(tport, buf, count);
1243	if (copied < count)
1244		port->icount.buf_overrun++;
1245
1246	port->icount.rx += copied;
1247
1248	return copied;
1249}
1250
1251static int sci_dma_rx_find_active(struct sci_port *s)
1252{
1253	unsigned int i;
1254
1255	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1256		if (s->active_rx == s->cookie_rx[i])
1257			return i;
1258
1259	return -1;
1260}
1261
1262static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1263{
1264	unsigned int i;
1265
1266	s->chan_rx = NULL;
1267	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1268		s->cookie_rx[i] = -EINVAL;
1269	s->active_rx = 0;
1270}
1271
1272static void sci_dma_rx_release(struct sci_port *s)
1273{
1274	struct dma_chan *chan = s->chan_rx_saved;
1275
1276	s->chan_rx_saved = NULL;
1277	sci_dma_rx_chan_invalidate(s);
1278	dmaengine_terminate_sync(chan);
1279	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1280			  sg_dma_address(&s->sg_rx[0]));
1281	dma_release_channel(chan);
1282}
1283
1284static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1285{
1286	long sec = usec / 1000000;
1287	long nsec = (usec % 1000000) * 1000;
1288	ktime_t t = ktime_set(sec, nsec);
1289
1290	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1291}
1292
1293static void sci_dma_rx_reenable_irq(struct sci_port *s)
1294{
1295	struct uart_port *port = &s->port;
1296	u16 scr;
1297
1298	/* Direct new serial port interrupts back to CPU */
1299	scr = serial_port_in(port, SCSCR);
1300	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1301	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1302		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1303		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1304			scif_set_rtrg(port, s->rx_trigger);
1305		else
1306			scr &= ~SCSCR_RDRQE;
1307	}
1308	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1309}
1310
1311static void sci_dma_rx_complete(void *arg)
1312{
1313	struct sci_port *s = arg;
1314	struct dma_chan *chan = s->chan_rx;
1315	struct uart_port *port = &s->port;
1316	struct dma_async_tx_descriptor *desc;
1317	unsigned long flags;
1318	int active, count = 0;
1319
1320	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1321		s->active_rx);
1322
1323	spin_lock_irqsave(&port->lock, flags);
1324
1325	active = sci_dma_rx_find_active(s);
1326	if (active >= 0)
1327		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1328
1329	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1330
1331	if (count)
1332		tty_flip_buffer_push(&port->state->port);
1333
1334	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1335				       DMA_DEV_TO_MEM,
1336				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1337	if (!desc)
1338		goto fail;
1339
1340	desc->callback = sci_dma_rx_complete;
1341	desc->callback_param = s;
1342	s->cookie_rx[active] = dmaengine_submit(desc);
1343	if (dma_submit_error(s->cookie_rx[active]))
1344		goto fail;
1345
1346	s->active_rx = s->cookie_rx[!active];
1347
1348	dma_async_issue_pending(chan);
1349
1350	spin_unlock_irqrestore(&port->lock, flags);
1351	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1352		__func__, s->cookie_rx[active], active, s->active_rx);
1353	return;
1354
1355fail:
1356	spin_unlock_irqrestore(&port->lock, flags);
1357	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1358	/* Switch to PIO */
1359	spin_lock_irqsave(&port->lock, flags);
1360	dmaengine_terminate_async(chan);
1361	sci_dma_rx_chan_invalidate(s);
1362	sci_dma_rx_reenable_irq(s);
1363	spin_unlock_irqrestore(&port->lock, flags);
1364}
1365
1366static void sci_dma_tx_release(struct sci_port *s)
1367{
1368	struct dma_chan *chan = s->chan_tx_saved;
1369
1370	cancel_work_sync(&s->work_tx);
1371	s->chan_tx_saved = s->chan_tx = NULL;
1372	s->cookie_tx = -EINVAL;
1373	dmaengine_terminate_sync(chan);
1374	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1375			 DMA_TO_DEVICE);
1376	dma_release_channel(chan);
1377}
1378
1379static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1380{
1381	struct dma_chan *chan = s->chan_rx;
1382	struct uart_port *port = &s->port;
1383	unsigned long flags;
1384	int i;
1385
1386	for (i = 0; i < 2; i++) {
1387		struct scatterlist *sg = &s->sg_rx[i];
1388		struct dma_async_tx_descriptor *desc;
1389
1390		desc = dmaengine_prep_slave_sg(chan,
1391			sg, 1, DMA_DEV_TO_MEM,
1392			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1393		if (!desc)
1394			goto fail;
1395
1396		desc->callback = sci_dma_rx_complete;
1397		desc->callback_param = s;
1398		s->cookie_rx[i] = dmaengine_submit(desc);
1399		if (dma_submit_error(s->cookie_rx[i]))
1400			goto fail;
1401
1402	}
1403
1404	s->active_rx = s->cookie_rx[0];
1405
1406	dma_async_issue_pending(chan);
1407	return 0;
1408
1409fail:
1410	/* Switch to PIO */
1411	if (!port_lock_held)
1412		spin_lock_irqsave(&port->lock, flags);
1413	if (i)
1414		dmaengine_terminate_async(chan);
1415	sci_dma_rx_chan_invalidate(s);
1416	sci_start_rx(port);
1417	if (!port_lock_held)
1418		spin_unlock_irqrestore(&port->lock, flags);
1419	return -EAGAIN;
1420}
1421
1422static void sci_dma_tx_work_fn(struct work_struct *work)
1423{
1424	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1425	struct dma_async_tx_descriptor *desc;
1426	struct dma_chan *chan = s->chan_tx;
1427	struct uart_port *port = &s->port;
1428	struct circ_buf *xmit = &port->state->xmit;
1429	unsigned long flags;
1430	dma_addr_t buf;
1431	int head, tail;
1432
1433	/*
1434	 * DMA is idle now.
1435	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1436	 * offsets and lengths. Since it is a circular buffer, we have to
1437	 * transmit till the end, and then the rest. Take the port lock to get a
1438	 * consistent xmit buffer state.
1439	 */
1440	spin_lock_irq(&port->lock);
1441	head = xmit->head;
1442	tail = xmit->tail;
1443	buf = s->tx_dma_addr + tail;
1444	s->tx_dma_len = CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE);
1445	if (!s->tx_dma_len) {
1446		/* Transmit buffer has been flushed */
1447		spin_unlock_irq(&port->lock);
1448		return;
1449	}
1450
1451	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1452					   DMA_MEM_TO_DEV,
1453					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1454	if (!desc) {
1455		spin_unlock_irq(&port->lock);
1456		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1457		goto switch_to_pio;
1458	}
1459
1460	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1461				   DMA_TO_DEVICE);
1462
1463	desc->callback = sci_dma_tx_complete;
1464	desc->callback_param = s;
1465	s->cookie_tx = dmaengine_submit(desc);
1466	if (dma_submit_error(s->cookie_tx)) {
1467		spin_unlock_irq(&port->lock);
1468		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1469		goto switch_to_pio;
1470	}
1471
1472	spin_unlock_irq(&port->lock);
1473	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1474		__func__, xmit->buf, tail, head, s->cookie_tx);
1475
1476	dma_async_issue_pending(chan);
1477	return;
1478
1479switch_to_pio:
1480	spin_lock_irqsave(&port->lock, flags);
1481	s->chan_tx = NULL;
1482	sci_start_tx(port);
1483	spin_unlock_irqrestore(&port->lock, flags);
1484	return;
1485}
1486
1487static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1488{
1489	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1490	struct dma_chan *chan = s->chan_rx;
1491	struct uart_port *port = &s->port;
1492	struct dma_tx_state state;
1493	enum dma_status status;
1494	unsigned long flags;
1495	unsigned int read;
1496	int active, count;
1497
1498	dev_dbg(port->dev, "DMA Rx timed out\n");
1499
1500	spin_lock_irqsave(&port->lock, flags);
1501
1502	active = sci_dma_rx_find_active(s);
1503	if (active < 0) {
1504		spin_unlock_irqrestore(&port->lock, flags);
1505		return HRTIMER_NORESTART;
1506	}
1507
1508	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1509	if (status == DMA_COMPLETE) {
1510		spin_unlock_irqrestore(&port->lock, flags);
1511		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1512			s->active_rx, active);
1513
1514		/* Let packet complete handler take care of the packet */
1515		return HRTIMER_NORESTART;
1516	}
1517
1518	dmaengine_pause(chan);
1519
1520	/*
1521	 * sometimes DMA transfer doesn't stop even if it is stopped and
1522	 * data keeps on coming until transaction is complete so check
1523	 * for DMA_COMPLETE again
1524	 * Let packet complete handler take care of the packet
1525	 */
1526	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1527	if (status == DMA_COMPLETE) {
1528		spin_unlock_irqrestore(&port->lock, flags);
1529		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1530		return HRTIMER_NORESTART;
1531	}
1532
1533	/* Handle incomplete DMA receive */
1534	dmaengine_terminate_async(s->chan_rx);
1535	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1536
1537	if (read) {
1538		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1539		if (count)
1540			tty_flip_buffer_push(&port->state->port);
1541	}
1542
1543	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1544	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1545		sci_dma_rx_submit(s, true);
1546
1547	sci_dma_rx_reenable_irq(s);
1548
1549	spin_unlock_irqrestore(&port->lock, flags);
1550
1551	return HRTIMER_NORESTART;
1552}
1553
1554static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1555					     enum dma_transfer_direction dir)
1556{
1557	struct dma_chan *chan;
1558	struct dma_slave_config cfg;
1559	int ret;
1560
1561	chan = dma_request_slave_channel(port->dev,
1562					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1563	if (!chan) {
1564		dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1565		return NULL;
1566	}
1567
1568	memset(&cfg, 0, sizeof(cfg));
1569	cfg.direction = dir;
1570	cfg.dst_addr = port->mapbase +
1571		(sci_getreg(port, SCxTDR)->offset << port->regshift);
1572	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1573	cfg.src_addr = port->mapbase +
1574		(sci_getreg(port, SCxRDR)->offset << port->regshift);
1575	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1576
1577	ret = dmaengine_slave_config(chan, &cfg);
1578	if (ret) {
1579		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1580		dma_release_channel(chan);
1581		return NULL;
1582	}
1583
1584	return chan;
1585}
1586
1587static void sci_request_dma(struct uart_port *port)
1588{
1589	struct sci_port *s = to_sci_port(port);
1590	struct dma_chan *chan;
1591
1592	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1593
1594	/*
1595	 * DMA on console may interfere with Kernel log messages which use
1596	 * plain putchar(). So, simply don't use it with a console.
1597	 */
1598	if (uart_console(port))
1599		return;
1600
1601	if (!port->dev->of_node)
1602		return;
1603
1604	s->cookie_tx = -EINVAL;
1605
1606	/*
1607	 * Don't request a dma channel if no channel was specified
1608	 * in the device tree.
1609	 */
1610	if (!of_property_present(port->dev->of_node, "dmas"))
1611		return;
1612
1613	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1614	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1615	if (chan) {
1616		/* UART circular tx buffer is an aligned page. */
1617		s->tx_dma_addr = dma_map_single(chan->device->dev,
1618						port->state->xmit.buf,
1619						UART_XMIT_SIZE,
1620						DMA_TO_DEVICE);
1621		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1622			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1623			dma_release_channel(chan);
1624		} else {
1625			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1626				__func__, UART_XMIT_SIZE,
1627				port->state->xmit.buf, &s->tx_dma_addr);
1628
1629			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1630			s->chan_tx_saved = s->chan_tx = chan;
1631		}
1632	}
1633
1634	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1635	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1636	if (chan) {
1637		unsigned int i;
1638		dma_addr_t dma;
1639		void *buf;
1640
1641		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1642		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1643					 &dma, GFP_KERNEL);
1644		if (!buf) {
1645			dev_warn(port->dev,
1646				 "Failed to allocate Rx dma buffer, using PIO\n");
1647			dma_release_channel(chan);
1648			return;
1649		}
1650
1651		for (i = 0; i < 2; i++) {
1652			struct scatterlist *sg = &s->sg_rx[i];
1653
1654			sg_init_table(sg, 1);
1655			s->rx_buf[i] = buf;
1656			sg_dma_address(sg) = dma;
1657			sg_dma_len(sg) = s->buf_len_rx;
1658
1659			buf += s->buf_len_rx;
1660			dma += s->buf_len_rx;
1661		}
1662
1663		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1664		s->rx_timer.function = sci_dma_rx_timer_fn;
1665
1666		s->chan_rx_saved = s->chan_rx = chan;
1667
1668		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1669		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1670			sci_dma_rx_submit(s, false);
1671	}
1672}
1673
1674static void sci_free_dma(struct uart_port *port)
1675{
1676	struct sci_port *s = to_sci_port(port);
1677
1678	if (s->chan_tx_saved)
1679		sci_dma_tx_release(s);
1680	if (s->chan_rx_saved)
1681		sci_dma_rx_release(s);
1682}
1683
1684static void sci_flush_buffer(struct uart_port *port)
1685{
1686	struct sci_port *s = to_sci_port(port);
1687
1688	/*
1689	 * In uart_flush_buffer(), the xmit circular buffer has just been
1690	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1691	 * pending transfers
1692	 */
1693	s->tx_dma_len = 0;
1694	if (s->chan_tx) {
1695		dmaengine_terminate_async(s->chan_tx);
1696		s->cookie_tx = -EINVAL;
1697	}
1698}
1699#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1700static inline void sci_request_dma(struct uart_port *port)
1701{
1702}
1703
1704static inline void sci_free_dma(struct uart_port *port)
1705{
1706}
1707
1708#define sci_flush_buffer	NULL
1709#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1710
1711static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1712{
1713	struct uart_port *port = ptr;
1714	struct sci_port *s = to_sci_port(port);
1715
1716#ifdef CONFIG_SERIAL_SH_SCI_DMA
1717	if (s->chan_rx) {
1718		u16 scr = serial_port_in(port, SCSCR);
1719		u16 ssr = serial_port_in(port, SCxSR);
1720
1721		/* Disable future Rx interrupts */
1722		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1723		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1724			disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
1725			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1726				scif_set_rtrg(port, 1);
1727				scr |= SCSCR_RIE;
1728			} else {
1729				scr |= SCSCR_RDRQE;
1730			}
1731		} else {
1732			if (sci_dma_rx_submit(s, false) < 0)
1733				goto handle_pio;
1734
1735			scr &= ~SCSCR_RIE;
1736		}
1737		serial_port_out(port, SCSCR, scr);
1738		/* Clear current interrupt */
1739		serial_port_out(port, SCxSR,
1740				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1741		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1742			jiffies, s->rx_timeout);
1743		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1744
1745		return IRQ_HANDLED;
1746	}
1747
1748handle_pio:
1749#endif
1750
1751	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1752		if (!scif_rtrg_enabled(port))
1753			scif_set_rtrg(port, s->rx_trigger);
1754
1755		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1756			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1757	}
1758
1759	/* I think sci_receive_chars has to be called irrespective
1760	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1761	 * to be disabled?
1762	 */
1763	sci_receive_chars(port);
1764
1765	return IRQ_HANDLED;
1766}
1767
1768static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1769{
1770	struct uart_port *port = ptr;
1771	unsigned long flags;
1772
1773	spin_lock_irqsave(&port->lock, flags);
1774	sci_transmit_chars(port);
1775	spin_unlock_irqrestore(&port->lock, flags);
1776
1777	return IRQ_HANDLED;
1778}
1779
1780static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
1781{
1782	struct uart_port *port = ptr;
1783	unsigned long flags;
1784	unsigned short ctrl;
1785
1786	if (port->type != PORT_SCI)
1787		return sci_tx_interrupt(irq, ptr);
1788
1789	spin_lock_irqsave(&port->lock, flags);
1790	ctrl = serial_port_in(port, SCSCR);
1791	ctrl &= ~(SCSCR_TE | SCSCR_TEIE);
1792	serial_port_out(port, SCSCR, ctrl);
1793	spin_unlock_irqrestore(&port->lock, flags);
1794
1795	return IRQ_HANDLED;
1796}
1797
1798static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1799{
1800	struct uart_port *port = ptr;
1801
1802	/* Handle BREAKs */
1803	sci_handle_breaks(port);
1804
1805	/* drop invalid character received before break was detected */
1806	serial_port_in(port, SCxRDR);
1807
1808	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1809
1810	return IRQ_HANDLED;
1811}
1812
1813static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1814{
1815	struct uart_port *port = ptr;
1816	struct sci_port *s = to_sci_port(port);
1817
1818	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1819		/* Break and Error interrupts are muxed */
1820		unsigned short ssr_status = serial_port_in(port, SCxSR);
1821
1822		/* Break Interrupt */
1823		if (ssr_status & SCxSR_BRK(port))
1824			sci_br_interrupt(irq, ptr);
1825
1826		/* Break only? */
1827		if (!(ssr_status & SCxSR_ERRORS(port)))
1828			return IRQ_HANDLED;
1829	}
1830
1831	/* Handle errors */
1832	if (port->type == PORT_SCI) {
1833		if (sci_handle_errors(port)) {
1834			/* discard character in rx buffer */
1835			serial_port_in(port, SCxSR);
1836			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1837		}
1838	} else {
1839		sci_handle_fifo_overrun(port);
1840		if (!s->chan_rx)
1841			sci_receive_chars(port);
1842	}
1843
1844	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1845
1846	/* Kick the transmission */
1847	if (!s->chan_tx)
1848		sci_tx_interrupt(irq, ptr);
1849
1850	return IRQ_HANDLED;
1851}
1852
1853static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1854{
1855	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1856	struct uart_port *port = ptr;
1857	struct sci_port *s = to_sci_port(port);
1858	irqreturn_t ret = IRQ_NONE;
1859
1860	ssr_status = serial_port_in(port, SCxSR);
1861	scr_status = serial_port_in(port, SCSCR);
1862	if (s->params->overrun_reg == SCxSR)
1863		orer_status = ssr_status;
1864	else if (sci_getreg(port, s->params->overrun_reg)->size)
1865		orer_status = serial_port_in(port, s->params->overrun_reg);
1866
1867	err_enabled = scr_status & port_rx_irq_mask(port);
1868
1869	/* Tx Interrupt */
1870	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1871	    !s->chan_tx)
1872		ret = sci_tx_interrupt(irq, ptr);
1873
1874	/*
1875	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1876	 * DR flags
1877	 */
1878	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1879	    (scr_status & SCSCR_RIE))
1880		ret = sci_rx_interrupt(irq, ptr);
1881
1882	/* Error Interrupt */
1883	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1884		ret = sci_er_interrupt(irq, ptr);
1885
1886	/* Break Interrupt */
1887	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1888	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1889		ret = sci_br_interrupt(irq, ptr);
1890
1891	/* Overrun Interrupt */
1892	if (orer_status & s->params->overrun_mask) {
1893		sci_handle_fifo_overrun(port);
1894		ret = IRQ_HANDLED;
1895	}
1896
1897	return ret;
1898}
1899
1900static const struct sci_irq_desc {
1901	const char	*desc;
1902	irq_handler_t	handler;
1903} sci_irq_desc[] = {
1904	/*
1905	 * Split out handlers, the default case.
1906	 */
1907	[SCIx_ERI_IRQ] = {
1908		.desc = "rx err",
1909		.handler = sci_er_interrupt,
1910	},
1911
1912	[SCIx_RXI_IRQ] = {
1913		.desc = "rx full",
1914		.handler = sci_rx_interrupt,
1915	},
1916
1917	[SCIx_TXI_IRQ] = {
1918		.desc = "tx empty",
1919		.handler = sci_tx_interrupt,
1920	},
1921
1922	[SCIx_BRI_IRQ] = {
1923		.desc = "break",
1924		.handler = sci_br_interrupt,
1925	},
1926
1927	[SCIx_DRI_IRQ] = {
1928		.desc = "rx ready",
1929		.handler = sci_rx_interrupt,
1930	},
1931
1932	[SCIx_TEI_IRQ] = {
1933		.desc = "tx end",
1934		.handler = sci_tx_end_interrupt,
1935	},
1936
1937	/*
1938	 * Special muxed handler.
1939	 */
1940	[SCIx_MUX_IRQ] = {
1941		.desc = "mux",
1942		.handler = sci_mpxed_interrupt,
1943	},
1944};
1945
1946static int sci_request_irq(struct sci_port *port)
1947{
1948	struct uart_port *up = &port->port;
1949	int i, j, w, ret = 0;
1950
1951	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1952		const struct sci_irq_desc *desc;
1953		int irq;
1954
1955		/* Check if already registered (muxed) */
1956		for (w = 0; w < i; w++)
1957			if (port->irqs[w] == port->irqs[i])
1958				w = i + 1;
1959		if (w > i)
1960			continue;
1961
1962		if (SCIx_IRQ_IS_MUXED(port)) {
1963			i = SCIx_MUX_IRQ;
1964			irq = up->irq;
1965		} else {
1966			irq = port->irqs[i];
1967
1968			/*
1969			 * Certain port types won't support all of the
1970			 * available interrupt sources.
1971			 */
1972			if (unlikely(irq < 0))
1973				continue;
1974		}
1975
1976		desc = sci_irq_desc + i;
1977		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1978					    dev_name(up->dev), desc->desc);
1979		if (!port->irqstr[j]) {
1980			ret = -ENOMEM;
1981			goto out_nomem;
1982		}
1983
1984		ret = request_irq(irq, desc->handler, up->irqflags,
1985				  port->irqstr[j], port);
1986		if (unlikely(ret)) {
1987			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1988			goto out_noirq;
1989		}
1990	}
1991
1992	return 0;
1993
1994out_noirq:
1995	while (--i >= 0)
1996		free_irq(port->irqs[i], port);
1997
1998out_nomem:
1999	while (--j >= 0)
2000		kfree(port->irqstr[j]);
2001
2002	return ret;
2003}
2004
2005static void sci_free_irq(struct sci_port *port)
2006{
2007	int i, j;
2008
2009	/*
2010	 * Intentionally in reverse order so we iterate over the muxed
2011	 * IRQ first.
2012	 */
2013	for (i = 0; i < SCIx_NR_IRQS; i++) {
2014		int irq = port->irqs[i];
2015
2016		/*
2017		 * Certain port types won't support all of the available
2018		 * interrupt sources.
2019		 */
2020		if (unlikely(irq < 0))
2021			continue;
2022
2023		/* Check if already freed (irq was muxed) */
2024		for (j = 0; j < i; j++)
2025			if (port->irqs[j] == irq)
2026				j = i + 1;
2027		if (j > i)
2028			continue;
2029
2030		free_irq(port->irqs[i], port);
2031		kfree(port->irqstr[i]);
2032
2033		if (SCIx_IRQ_IS_MUXED(port)) {
2034			/* If there's only one IRQ, we're done. */
2035			return;
2036		}
2037	}
2038}
2039
2040static unsigned int sci_tx_empty(struct uart_port *port)
2041{
2042	unsigned short status = serial_port_in(port, SCxSR);
2043	unsigned short in_tx_fifo = sci_txfill(port);
2044
2045	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2046}
2047
2048static void sci_set_rts(struct uart_port *port, bool state)
2049{
2050	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2051		u16 data = serial_port_in(port, SCPDR);
2052
2053		/* Active low */
2054		if (state)
2055			data &= ~SCPDR_RTSD;
2056		else
2057			data |= SCPDR_RTSD;
2058		serial_port_out(port, SCPDR, data);
2059
2060		/* RTS# is output */
2061		serial_port_out(port, SCPCR,
2062				serial_port_in(port, SCPCR) | SCPCR_RTSC);
2063	} else if (sci_getreg(port, SCSPTR)->size) {
2064		u16 ctrl = serial_port_in(port, SCSPTR);
2065
2066		/* Active low */
2067		if (state)
2068			ctrl &= ~SCSPTR_RTSDT;
2069		else
2070			ctrl |= SCSPTR_RTSDT;
2071		serial_port_out(port, SCSPTR, ctrl);
2072	}
2073}
2074
2075static bool sci_get_cts(struct uart_port *port)
2076{
2077	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2078		/* Active low */
2079		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2080	} else if (sci_getreg(port, SCSPTR)->size) {
2081		/* Active low */
2082		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2083	}
2084
2085	return true;
2086}
2087
2088/*
2089 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2090 * CTS/RTS is supported in hardware by at least one port and controlled
2091 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2092 * handled via the ->init_pins() op, which is a bit of a one-way street,
2093 * lacking any ability to defer pin control -- this will later be
2094 * converted over to the GPIO framework).
2095 *
2096 * Other modes (such as loopback) are supported generically on certain
2097 * port types, but not others. For these it's sufficient to test for the
2098 * existence of the support register and simply ignore the port type.
2099 */
2100static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2101{
2102	struct sci_port *s = to_sci_port(port);
2103
2104	if (mctrl & TIOCM_LOOP) {
2105		const struct plat_sci_reg *reg;
2106
2107		/*
2108		 * Standard loopback mode for SCFCR ports.
2109		 */
2110		reg = sci_getreg(port, SCFCR);
2111		if (reg->size)
2112			serial_port_out(port, SCFCR,
2113					serial_port_in(port, SCFCR) |
2114					SCFCR_LOOP);
2115	}
2116
2117	mctrl_gpio_set(s->gpios, mctrl);
2118
2119	if (!s->has_rtscts)
2120		return;
2121
2122	if (!(mctrl & TIOCM_RTS)) {
2123		/* Disable Auto RTS */
2124		serial_port_out(port, SCFCR,
2125				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2126
2127		/* Clear RTS */
2128		sci_set_rts(port, 0);
2129	} else if (s->autorts) {
2130		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2131			/* Enable RTS# pin function */
2132			serial_port_out(port, SCPCR,
2133				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2134		}
2135
2136		/* Enable Auto RTS */
2137		serial_port_out(port, SCFCR,
2138				serial_port_in(port, SCFCR) | SCFCR_MCE);
2139	} else {
2140		/* Set RTS */
2141		sci_set_rts(port, 1);
2142	}
2143}
2144
2145static unsigned int sci_get_mctrl(struct uart_port *port)
2146{
2147	struct sci_port *s = to_sci_port(port);
2148	struct mctrl_gpios *gpios = s->gpios;
2149	unsigned int mctrl = 0;
2150
2151	mctrl_gpio_get(gpios, &mctrl);
2152
2153	/*
2154	 * CTS/RTS is handled in hardware when supported, while nothing
2155	 * else is wired up.
2156	 */
2157	if (s->autorts) {
2158		if (sci_get_cts(port))
2159			mctrl |= TIOCM_CTS;
2160	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2161		mctrl |= TIOCM_CTS;
2162	}
2163	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2164		mctrl |= TIOCM_DSR;
2165	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2166		mctrl |= TIOCM_CAR;
2167
2168	return mctrl;
2169}
2170
2171static void sci_enable_ms(struct uart_port *port)
2172{
2173	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2174}
2175
2176static void sci_break_ctl(struct uart_port *port, int break_state)
2177{
2178	unsigned short scscr, scsptr;
2179	unsigned long flags;
2180
2181	/* check whether the port has SCSPTR */
2182	if (!sci_getreg(port, SCSPTR)->size) {
2183		/*
2184		 * Not supported by hardware. Most parts couple break and rx
2185		 * interrupts together, with break detection always enabled.
2186		 */
2187		return;
2188	}
2189
2190	spin_lock_irqsave(&port->lock, flags);
2191	scsptr = serial_port_in(port, SCSPTR);
2192	scscr = serial_port_in(port, SCSCR);
2193
2194	if (break_state == -1) {
2195		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2196		scscr &= ~SCSCR_TE;
2197	} else {
2198		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2199		scscr |= SCSCR_TE;
2200	}
2201
2202	serial_port_out(port, SCSPTR, scsptr);
2203	serial_port_out(port, SCSCR, scscr);
2204	spin_unlock_irqrestore(&port->lock, flags);
2205}
2206
2207static int sci_startup(struct uart_port *port)
2208{
2209	struct sci_port *s = to_sci_port(port);
2210	int ret;
2211
2212	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2213
2214	sci_request_dma(port);
2215
2216	ret = sci_request_irq(s);
2217	if (unlikely(ret < 0)) {
2218		sci_free_dma(port);
2219		return ret;
2220	}
2221
2222	return 0;
2223}
2224
2225static void sci_shutdown(struct uart_port *port)
2226{
2227	struct sci_port *s = to_sci_port(port);
2228	unsigned long flags;
2229	u16 scr;
2230
2231	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2232
2233	s->autorts = false;
2234	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2235
2236	spin_lock_irqsave(&port->lock, flags);
2237	sci_stop_rx(port);
2238	sci_stop_tx(port);
2239	/*
2240	 * Stop RX and TX, disable related interrupts, keep clock source
2241	 * and HSCIF TOT bits
2242	 */
2243	scr = serial_port_in(port, SCSCR);
2244	serial_port_out(port, SCSCR, scr &
2245			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2246	spin_unlock_irqrestore(&port->lock, flags);
2247
2248#ifdef CONFIG_SERIAL_SH_SCI_DMA
2249	if (s->chan_rx_saved) {
2250		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2251			port->line);
2252		hrtimer_cancel(&s->rx_timer);
2253	}
2254#endif
2255
2256	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2257		del_timer_sync(&s->rx_fifo_timer);
2258	sci_free_irq(s);
2259	sci_free_dma(port);
2260}
2261
2262static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2263			unsigned int *srr)
2264{
2265	unsigned long freq = s->clk_rates[SCI_SCK];
2266	int err, min_err = INT_MAX;
2267	unsigned int sr;
2268
2269	if (s->port.type != PORT_HSCIF)
2270		freq *= 2;
2271
2272	for_each_sr(sr, s) {
2273		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2274		if (abs(err) >= abs(min_err))
2275			continue;
2276
2277		min_err = err;
2278		*srr = sr - 1;
2279
2280		if (!err)
2281			break;
2282	}
2283
2284	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2285		*srr + 1);
2286	return min_err;
2287}
2288
2289static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2290			unsigned long freq, unsigned int *dlr,
2291			unsigned int *srr)
2292{
2293	int err, min_err = INT_MAX;
2294	unsigned int sr, dl;
2295
2296	if (s->port.type != PORT_HSCIF)
2297		freq *= 2;
2298
2299	for_each_sr(sr, s) {
2300		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2301		dl = clamp(dl, 1U, 65535U);
2302
2303		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2304		if (abs(err) >= abs(min_err))
2305			continue;
2306
2307		min_err = err;
2308		*dlr = dl;
2309		*srr = sr - 1;
2310
2311		if (!err)
2312			break;
2313	}
2314
2315	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2316		min_err, *dlr, *srr + 1);
2317	return min_err;
2318}
2319
2320/* calculate sample rate, BRR, and clock select */
2321static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2322			  unsigned int *brr, unsigned int *srr,
2323			  unsigned int *cks)
2324{
2325	unsigned long freq = s->clk_rates[SCI_FCK];
2326	unsigned int sr, br, prediv, scrate, c;
2327	int err, min_err = INT_MAX;
2328
2329	if (s->port.type != PORT_HSCIF)
2330		freq *= 2;
2331
2332	/*
2333	 * Find the combination of sample rate and clock select with the
2334	 * smallest deviation from the desired baud rate.
2335	 * Prefer high sample rates to maximise the receive margin.
2336	 *
2337	 * M: Receive margin (%)
2338	 * N: Ratio of bit rate to clock (N = sampling rate)
2339	 * D: Clock duty (D = 0 to 1.0)
2340	 * L: Frame length (L = 9 to 12)
2341	 * F: Absolute value of clock frequency deviation
2342	 *
2343	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2344	 *      (|D - 0.5| / N * (1 + F))|
2345	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2346	 */
2347	for_each_sr(sr, s) {
2348		for (c = 0; c <= 3; c++) {
2349			/* integerized formulas from HSCIF documentation */
2350			prediv = sr << (2 * c + 1);
2351
2352			/*
2353			 * We need to calculate:
2354			 *
2355			 *     br = freq / (prediv * bps) clamped to [1..256]
2356			 *     err = freq / (br * prediv) - bps
2357			 *
2358			 * Watch out for overflow when calculating the desired
2359			 * sampling clock rate!
2360			 */
2361			if (bps > UINT_MAX / prediv)
2362				break;
2363
2364			scrate = prediv * bps;
2365			br = DIV_ROUND_CLOSEST(freq, scrate);
2366			br = clamp(br, 1U, 256U);
2367
2368			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2369			if (abs(err) >= abs(min_err))
2370				continue;
2371
2372			min_err = err;
2373			*brr = br - 1;
2374			*srr = sr - 1;
2375			*cks = c;
2376
2377			if (!err)
2378				goto found;
2379		}
2380	}
2381
2382found:
2383	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2384		min_err, *brr, *srr + 1, *cks);
2385	return min_err;
2386}
2387
2388static void sci_reset(struct uart_port *port)
2389{
2390	const struct plat_sci_reg *reg;
2391	unsigned int status;
2392	struct sci_port *s = to_sci_port(port);
2393
2394	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2395
2396	reg = sci_getreg(port, SCFCR);
2397	if (reg->size)
2398		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2399
2400	sci_clear_SCxSR(port,
2401			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2402			SCxSR_BREAK_CLEAR(port));
2403	if (sci_getreg(port, SCLSR)->size) {
2404		status = serial_port_in(port, SCLSR);
2405		status &= ~(SCLSR_TO | SCLSR_ORER);
2406		serial_port_out(port, SCLSR, status);
2407	}
2408
2409	if (s->rx_trigger > 1) {
2410		if (s->rx_fifo_timeout) {
2411			scif_set_rtrg(port, 1);
2412			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2413		} else {
2414			if (port->type == PORT_SCIFA ||
2415			    port->type == PORT_SCIFB)
2416				scif_set_rtrg(port, 1);
2417			else
2418				scif_set_rtrg(port, s->rx_trigger);
2419		}
2420	}
2421}
2422
2423static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2424		            const struct ktermios *old)
2425{
2426	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2427	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2428	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2429	struct sci_port *s = to_sci_port(port);
2430	const struct plat_sci_reg *reg;
2431	int min_err = INT_MAX, err;
2432	unsigned long max_freq = 0;
2433	int best_clk = -1;
2434	unsigned long flags;
2435
2436	if ((termios->c_cflag & CSIZE) == CS7) {
2437		smr_val |= SCSMR_CHR;
2438	} else {
2439		termios->c_cflag &= ~CSIZE;
2440		termios->c_cflag |= CS8;
2441	}
2442	if (termios->c_cflag & PARENB)
2443		smr_val |= SCSMR_PE;
2444	if (termios->c_cflag & PARODD)
2445		smr_val |= SCSMR_PE | SCSMR_ODD;
2446	if (termios->c_cflag & CSTOPB)
2447		smr_val |= SCSMR_STOP;
2448
2449	/*
2450	 * earlyprintk comes here early on with port->uartclk set to zero.
2451	 * the clock framework is not up and running at this point so here
2452	 * we assume that 115200 is the maximum baud rate. please note that
2453	 * the baud rate is not programmed during earlyprintk - it is assumed
2454	 * that the previous boot loader has enabled required clocks and
2455	 * setup the baud rate generator hardware for us already.
2456	 */
2457	if (!port->uartclk) {
2458		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2459		goto done;
2460	}
2461
2462	for (i = 0; i < SCI_NUM_CLKS; i++)
2463		max_freq = max(max_freq, s->clk_rates[i]);
2464
2465	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2466	if (!baud)
2467		goto done;
2468
2469	/*
2470	 * There can be multiple sources for the sampling clock.  Find the one
2471	 * that gives us the smallest deviation from the desired baud rate.
2472	 */
2473
2474	/* Optional Undivided External Clock */
2475	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2476	    port->type != PORT_SCIFB) {
2477		err = sci_sck_calc(s, baud, &srr1);
2478		if (abs(err) < abs(min_err)) {
2479			best_clk = SCI_SCK;
2480			scr_val = SCSCR_CKE1;
2481			sccks = SCCKS_CKS;
2482			min_err = err;
2483			srr = srr1;
2484			if (!err)
2485				goto done;
2486		}
2487	}
2488
2489	/* Optional BRG Frequency Divided External Clock */
2490	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2491		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2492				   &srr1);
2493		if (abs(err) < abs(min_err)) {
2494			best_clk = SCI_SCIF_CLK;
2495			scr_val = SCSCR_CKE1;
2496			sccks = 0;
2497			min_err = err;
2498			dl = dl1;
2499			srr = srr1;
2500			if (!err)
2501				goto done;
2502		}
2503	}
2504
2505	/* Optional BRG Frequency Divided Internal Clock */
2506	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2507		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2508				   &srr1);
2509		if (abs(err) < abs(min_err)) {
2510			best_clk = SCI_BRG_INT;
2511			scr_val = SCSCR_CKE1;
2512			sccks = SCCKS_XIN;
2513			min_err = err;
2514			dl = dl1;
2515			srr = srr1;
2516			if (!min_err)
2517				goto done;
2518		}
2519	}
2520
2521	/* Divided Functional Clock using standard Bit Rate Register */
2522	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2523	if (abs(err) < abs(min_err)) {
2524		best_clk = SCI_FCK;
2525		scr_val = 0;
2526		min_err = err;
2527		brr = brr1;
2528		srr = srr1;
2529		cks = cks1;
2530	}
2531
2532done:
2533	if (best_clk >= 0)
2534		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2535			s->clks[best_clk], baud, min_err);
2536
2537	sci_port_enable(s);
2538
2539	/*
2540	 * Program the optional External Baud Rate Generator (BRG) first.
2541	 * It controls the mux to select (H)SCK or frequency divided clock.
2542	 */
2543	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2544		serial_port_out(port, SCDL, dl);
2545		serial_port_out(port, SCCKS, sccks);
2546	}
2547
2548	spin_lock_irqsave(&port->lock, flags);
2549
2550	sci_reset(port);
2551
2552	uart_update_timeout(port, termios->c_cflag, baud);
2553
2554	/* byte size and parity */
2555	bits = tty_get_frame_size(termios->c_cflag);
2556
2557	if (sci_getreg(port, SEMR)->size)
2558		serial_port_out(port, SEMR, 0);
2559
2560	if (best_clk >= 0) {
2561		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2562			switch (srr + 1) {
2563			case 5:  smr_val |= SCSMR_SRC_5;  break;
2564			case 7:  smr_val |= SCSMR_SRC_7;  break;
2565			case 11: smr_val |= SCSMR_SRC_11; break;
2566			case 13: smr_val |= SCSMR_SRC_13; break;
2567			case 16: smr_val |= SCSMR_SRC_16; break;
2568			case 17: smr_val |= SCSMR_SRC_17; break;
2569			case 19: smr_val |= SCSMR_SRC_19; break;
2570			case 27: smr_val |= SCSMR_SRC_27; break;
2571			}
2572		smr_val |= cks;
2573		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2574		serial_port_out(port, SCSMR, smr_val);
2575		serial_port_out(port, SCBRR, brr);
2576		if (sci_getreg(port, HSSRR)->size) {
2577			unsigned int hssrr = srr | HSCIF_SRE;
2578			/* Calculate deviation from intended rate at the
2579			 * center of the last stop bit in sampling clocks.
2580			 */
2581			int last_stop = bits * 2 - 1;
2582			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2583							  (int)(srr + 1),
2584							  2 * (int)baud);
2585
2586			if (abs(deviation) >= 2) {
2587				/* At least two sampling clocks off at the
2588				 * last stop bit; we can increase the error
2589				 * margin by shifting the sampling point.
2590				 */
2591				int shift = clamp(deviation / 2, -8, 7);
2592
2593				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2594					 HSCIF_SRHP_MASK;
2595				hssrr |= HSCIF_SRDE;
2596			}
2597			serial_port_out(port, HSSRR, hssrr);
2598		}
2599
2600		/* Wait one bit interval */
2601		udelay((1000000 + (baud - 1)) / baud);
2602	} else {
2603		/* Don't touch the bit rate configuration */
2604		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2605		smr_val |= serial_port_in(port, SCSMR) &
2606			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2607		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2608		serial_port_out(port, SCSMR, smr_val);
2609	}
2610
2611	sci_init_pins(port, termios->c_cflag);
2612
2613	port->status &= ~UPSTAT_AUTOCTS;
2614	s->autorts = false;
2615	reg = sci_getreg(port, SCFCR);
2616	if (reg->size) {
2617		unsigned short ctrl = serial_port_in(port, SCFCR);
2618
2619		if ((port->flags & UPF_HARD_FLOW) &&
2620		    (termios->c_cflag & CRTSCTS)) {
2621			/* There is no CTS interrupt to restart the hardware */
2622			port->status |= UPSTAT_AUTOCTS;
2623			/* MCE is enabled when RTS is raised */
2624			s->autorts = true;
2625		}
2626
2627		/*
2628		 * As we've done a sci_reset() above, ensure we don't
2629		 * interfere with the FIFOs while toggling MCE. As the
2630		 * reset values could still be set, simply mask them out.
2631		 */
2632		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2633
2634		serial_port_out(port, SCFCR, ctrl);
2635	}
2636	if (port->flags & UPF_HARD_FLOW) {
2637		/* Refresh (Auto) RTS */
2638		sci_set_mctrl(port, port->mctrl);
2639	}
2640
2641	/*
2642	 * For SCI, TE (transmit enable) must be set after setting TIE
2643	 * (transmit interrupt enable) or in the same instruction to
2644	 * start the transmitting process. So skip setting TE here for SCI.
2645	 */
2646	if (port->type != PORT_SCI)
2647		scr_val |= SCSCR_TE;
2648	scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2649	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2650	if ((srr + 1 == 5) &&
2651	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2652		/*
2653		 * In asynchronous mode, when the sampling rate is 1/5, first
2654		 * received data may become invalid on some SCIFA and SCIFB.
2655		 * To avoid this problem wait more than 1 serial data time (1
2656		 * bit time x serial data number) after setting SCSCR.RE = 1.
2657		 */
2658		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2659	}
2660
2661	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2662	s->rx_frame = (10000 * bits) / (baud / 100);
2663#ifdef CONFIG_SERIAL_SH_SCI_DMA
2664	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2665#endif
2666
2667	if ((termios->c_cflag & CREAD) != 0)
2668		sci_start_rx(port);
2669
2670	spin_unlock_irqrestore(&port->lock, flags);
2671
2672	sci_port_disable(s);
2673
2674	if (UART_ENABLE_MS(port, termios->c_cflag))
2675		sci_enable_ms(port);
2676}
2677
2678static void sci_pm(struct uart_port *port, unsigned int state,
2679		   unsigned int oldstate)
2680{
2681	struct sci_port *sci_port = to_sci_port(port);
2682
2683	switch (state) {
2684	case UART_PM_STATE_OFF:
2685		sci_port_disable(sci_port);
2686		break;
2687	default:
2688		sci_port_enable(sci_port);
2689		break;
2690	}
2691}
2692
2693static const char *sci_type(struct uart_port *port)
2694{
2695	switch (port->type) {
2696	case PORT_IRDA:
2697		return "irda";
2698	case PORT_SCI:
2699		return "sci";
2700	case PORT_SCIF:
2701		return "scif";
2702	case PORT_SCIFA:
2703		return "scifa";
2704	case PORT_SCIFB:
2705		return "scifb";
2706	case PORT_HSCIF:
2707		return "hscif";
2708	}
2709
2710	return NULL;
2711}
2712
2713static int sci_remap_port(struct uart_port *port)
2714{
2715	struct sci_port *sport = to_sci_port(port);
2716
2717	/*
2718	 * Nothing to do if there's already an established membase.
2719	 */
2720	if (port->membase)
2721		return 0;
2722
2723	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2724		port->membase = ioremap(port->mapbase, sport->reg_size);
2725		if (unlikely(!port->membase)) {
2726			dev_err(port->dev, "can't remap port#%d\n", port->line);
2727			return -ENXIO;
2728		}
2729	} else {
2730		/*
2731		 * For the simple (and majority of) cases where we don't
2732		 * need to do any remapping, just cast the cookie
2733		 * directly.
2734		 */
2735		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2736	}
2737
2738	return 0;
2739}
2740
2741static void sci_release_port(struct uart_port *port)
2742{
2743	struct sci_port *sport = to_sci_port(port);
2744
2745	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2746		iounmap(port->membase);
2747		port->membase = NULL;
2748	}
2749
2750	release_mem_region(port->mapbase, sport->reg_size);
2751}
2752
2753static int sci_request_port(struct uart_port *port)
2754{
2755	struct resource *res;
2756	struct sci_port *sport = to_sci_port(port);
2757	int ret;
2758
2759	res = request_mem_region(port->mapbase, sport->reg_size,
2760				 dev_name(port->dev));
2761	if (unlikely(res == NULL)) {
2762		dev_err(port->dev, "request_mem_region failed.");
2763		return -EBUSY;
2764	}
2765
2766	ret = sci_remap_port(port);
2767	if (unlikely(ret != 0)) {
2768		release_resource(res);
2769		return ret;
2770	}
2771
2772	return 0;
2773}
2774
2775static void sci_config_port(struct uart_port *port, int flags)
2776{
2777	if (flags & UART_CONFIG_TYPE) {
2778		struct sci_port *sport = to_sci_port(port);
2779
2780		port->type = sport->cfg->type;
2781		sci_request_port(port);
2782	}
2783}
2784
2785static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2786{
2787	if (ser->baud_base < 2400)
2788		/* No paper tape reader for Mitch.. */
2789		return -EINVAL;
2790
2791	return 0;
2792}
2793
2794static const struct uart_ops sci_uart_ops = {
2795	.tx_empty	= sci_tx_empty,
2796	.set_mctrl	= sci_set_mctrl,
2797	.get_mctrl	= sci_get_mctrl,
2798	.start_tx	= sci_start_tx,
2799	.stop_tx	= sci_stop_tx,
2800	.stop_rx	= sci_stop_rx,
2801	.enable_ms	= sci_enable_ms,
2802	.break_ctl	= sci_break_ctl,
2803	.startup	= sci_startup,
2804	.shutdown	= sci_shutdown,
2805	.flush_buffer	= sci_flush_buffer,
2806	.set_termios	= sci_set_termios,
2807	.pm		= sci_pm,
2808	.type		= sci_type,
2809	.release_port	= sci_release_port,
2810	.request_port	= sci_request_port,
2811	.config_port	= sci_config_port,
2812	.verify_port	= sci_verify_port,
2813#ifdef CONFIG_CONSOLE_POLL
2814	.poll_get_char	= sci_poll_get_char,
2815	.poll_put_char	= sci_poll_put_char,
2816#endif
2817};
2818
2819static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2820{
2821	const char *clk_names[] = {
2822		[SCI_FCK] = "fck",
2823		[SCI_SCK] = "sck",
2824		[SCI_BRG_INT] = "brg_int",
2825		[SCI_SCIF_CLK] = "scif_clk",
2826	};
2827	struct clk *clk;
2828	unsigned int i;
2829
2830	if (sci_port->cfg->type == PORT_HSCIF)
2831		clk_names[SCI_SCK] = "hsck";
2832
2833	for (i = 0; i < SCI_NUM_CLKS; i++) {
2834		clk = devm_clk_get_optional(dev, clk_names[i]);
2835		if (IS_ERR(clk))
2836			return PTR_ERR(clk);
2837
2838		if (!clk && i == SCI_FCK) {
2839			/*
2840			 * Not all SH platforms declare a clock lookup entry
2841			 * for SCI devices, in which case we need to get the
2842			 * global "peripheral_clk" clock.
2843			 */
2844			clk = devm_clk_get(dev, "peripheral_clk");
2845			if (IS_ERR(clk))
2846				return dev_err_probe(dev, PTR_ERR(clk),
2847						     "failed to get %s\n",
2848						     clk_names[i]);
2849		}
2850
2851		if (!clk)
2852			dev_dbg(dev, "failed to get %s\n", clk_names[i]);
2853		else
2854			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2855				clk, clk_get_rate(clk));
2856		sci_port->clks[i] = clk;
2857	}
2858	return 0;
2859}
2860
2861static const struct sci_port_params *
2862sci_probe_regmap(const struct plat_sci_port *cfg)
2863{
2864	unsigned int regtype;
2865
2866	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2867		return &sci_port_params[cfg->regtype];
2868
2869	switch (cfg->type) {
2870	case PORT_SCI:
2871		regtype = SCIx_SCI_REGTYPE;
2872		break;
2873	case PORT_IRDA:
2874		regtype = SCIx_IRDA_REGTYPE;
2875		break;
2876	case PORT_SCIFA:
2877		regtype = SCIx_SCIFA_REGTYPE;
2878		break;
2879	case PORT_SCIFB:
2880		regtype = SCIx_SCIFB_REGTYPE;
2881		break;
2882	case PORT_SCIF:
2883		/*
2884		 * The SH-4 is a bit of a misnomer here, although that's
2885		 * where this particular port layout originated. This
2886		 * configuration (or some slight variation thereof)
2887		 * remains the dominant model for all SCIFs.
2888		 */
2889		regtype = SCIx_SH4_SCIF_REGTYPE;
2890		break;
2891	case PORT_HSCIF:
2892		regtype = SCIx_HSCIF_REGTYPE;
2893		break;
2894	default:
2895		pr_err("Can't probe register map for given port\n");
2896		return NULL;
2897	}
2898
2899	return &sci_port_params[regtype];
2900}
2901
2902static int sci_init_single(struct platform_device *dev,
2903			   struct sci_port *sci_port, unsigned int index,
2904			   const struct plat_sci_port *p, bool early)
2905{
2906	struct uart_port *port = &sci_port->port;
2907	const struct resource *res;
2908	unsigned int i;
2909	int ret;
2910
2911	sci_port->cfg	= p;
2912
2913	port->ops	= &sci_uart_ops;
2914	port->iotype	= UPIO_MEM;
2915	port->line	= index;
2916	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2917
2918	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2919	if (res == NULL)
2920		return -ENOMEM;
2921
2922	port->mapbase = res->start;
2923	sci_port->reg_size = resource_size(res);
2924
2925	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2926		if (i)
2927			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2928		else
2929			sci_port->irqs[i] = platform_get_irq(dev, i);
2930	}
2931
2932	/*
2933	 * The fourth interrupt on SCI port is transmit end interrupt, so
2934	 * shuffle the interrupts.
2935	 */
2936	if (p->type == PORT_SCI)
2937		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
2938
2939	/* The SCI generates several interrupts. They can be muxed together or
2940	 * connected to different interrupt lines. In the muxed case only one
2941	 * interrupt resource is specified as there is only one interrupt ID.
2942	 * In the non-muxed case, up to 6 interrupt signals might be generated
2943	 * from the SCI, however those signals might have their own individual
2944	 * interrupt ID numbers, or muxed together with another interrupt.
2945	 */
2946	if (sci_port->irqs[0] < 0)
2947		return -ENXIO;
2948
2949	if (sci_port->irqs[1] < 0)
2950		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2951			sci_port->irqs[i] = sci_port->irqs[0];
2952
2953	sci_port->params = sci_probe_regmap(p);
2954	if (unlikely(sci_port->params == NULL))
2955		return -EINVAL;
2956
2957	switch (p->type) {
2958	case PORT_SCIFB:
2959		sci_port->rx_trigger = 48;
2960		break;
2961	case PORT_HSCIF:
2962		sci_port->rx_trigger = 64;
2963		break;
2964	case PORT_SCIFA:
2965		sci_port->rx_trigger = 32;
2966		break;
2967	case PORT_SCIF:
2968		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2969			/* RX triggering not implemented for this IP */
2970			sci_port->rx_trigger = 1;
2971		else
2972			sci_port->rx_trigger = 8;
2973		break;
2974	default:
2975		sci_port->rx_trigger = 1;
2976		break;
2977	}
2978
2979	sci_port->rx_fifo_timeout = 0;
2980	sci_port->hscif_tot = 0;
2981
2982	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2983	 * match the SoC datasheet, this should be investigated. Let platform
2984	 * data override the sampling rate for now.
2985	 */
2986	sci_port->sampling_rate_mask = p->sampling_rate
2987				     ? SCI_SR(p->sampling_rate)
2988				     : sci_port->params->sampling_rate_mask;
2989
2990	if (!early) {
2991		ret = sci_init_clocks(sci_port, &dev->dev);
2992		if (ret < 0)
2993			return ret;
2994
2995		port->dev = &dev->dev;
2996
2997		pm_runtime_enable(&dev->dev);
2998	}
2999
3000	port->type		= p->type;
3001	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3002	port->fifosize		= sci_port->params->fifosize;
3003
3004	if (port->type == PORT_SCI && !dev->dev.of_node) {
3005		if (sci_port->reg_size >= 0x20)
3006			port->regshift = 2;
3007		else
3008			port->regshift = 1;
3009	}
3010
3011	/*
3012	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3013	 * for the multi-IRQ ports, which is where we are primarily
3014	 * concerned with the shutdown path synchronization.
3015	 *
3016	 * For the muxed case there's nothing more to do.
3017	 */
3018	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3019	port->irqflags		= 0;
3020
3021	port->serial_in		= sci_serial_in;
3022	port->serial_out	= sci_serial_out;
3023
3024	return 0;
3025}
3026
3027static void sci_cleanup_single(struct sci_port *port)
3028{
3029	pm_runtime_disable(port->port.dev);
3030}
3031
3032#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3033    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
3034static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3035{
3036	sci_poll_put_char(port, ch);
3037}
3038
3039/*
3040 *	Print a string to the serial port trying not to disturb
3041 *	any possible real use of the port...
3042 */
3043static void serial_console_write(struct console *co, const char *s,
3044				 unsigned count)
3045{
3046	struct sci_port *sci_port = &sci_ports[co->index];
3047	struct uart_port *port = &sci_port->port;
3048	unsigned short bits, ctrl, ctrl_temp;
3049	unsigned long flags;
3050	int locked = 1;
3051
3052	if (port->sysrq)
3053		locked = 0;
3054	else if (oops_in_progress)
3055		locked = spin_trylock_irqsave(&port->lock, flags);
3056	else
3057		spin_lock_irqsave(&port->lock, flags);
3058
3059	/* first save SCSCR then disable interrupts, keep clock source */
3060	ctrl = serial_port_in(port, SCSCR);
3061	ctrl_temp = SCSCR_RE | SCSCR_TE |
3062		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3063		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3064	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3065
3066	uart_console_write(port, s, count, serial_console_putchar);
3067
3068	/* wait until fifo is empty and last bit has been transmitted */
3069	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3070	while ((serial_port_in(port, SCxSR) & bits) != bits)
3071		cpu_relax();
3072
3073	/* restore the SCSCR */
3074	serial_port_out(port, SCSCR, ctrl);
3075
3076	if (locked)
3077		spin_unlock_irqrestore(&port->lock, flags);
3078}
3079
3080static int serial_console_setup(struct console *co, char *options)
3081{
3082	struct sci_port *sci_port;
3083	struct uart_port *port;
3084	int baud = 115200;
3085	int bits = 8;
3086	int parity = 'n';
3087	int flow = 'n';
3088	int ret;
3089
3090	/*
3091	 * Refuse to handle any bogus ports.
3092	 */
3093	if (co->index < 0 || co->index >= SCI_NPORTS)
3094		return -ENODEV;
3095
3096	sci_port = &sci_ports[co->index];
3097	port = &sci_port->port;
3098
3099	/*
3100	 * Refuse to handle uninitialized ports.
3101	 */
3102	if (!port->ops)
3103		return -ENODEV;
3104
3105	ret = sci_remap_port(port);
3106	if (unlikely(ret != 0))
3107		return ret;
3108
3109	if (options)
3110		uart_parse_options(options, &baud, &parity, &bits, &flow);
3111
3112	return uart_set_options(port, co, baud, parity, bits, flow);
3113}
3114
3115static struct console serial_console = {
3116	.name		= "ttySC",
3117	.device		= uart_console_device,
3118	.write		= serial_console_write,
3119	.setup		= serial_console_setup,
3120	.flags		= CON_PRINTBUFFER,
3121	.index		= -1,
3122	.data		= &sci_uart_driver,
3123};
3124
3125#ifdef CONFIG_SUPERH
3126static char early_serial_buf[32];
3127
3128static int early_serial_console_setup(struct console *co, char *options)
3129{
3130	/*
3131	 * This early console is always registered using the earlyprintk=
3132	 * parameter, which does not call add_preferred_console(). Thus
3133	 * @options is always NULL and the options for this early console
3134	 * are passed using a custom buffer.
3135	 */
3136	WARN_ON(options);
3137
3138	return serial_console_setup(co, early_serial_buf);
3139}
3140
3141static struct console early_serial_console = {
3142	.name           = "early_ttySC",
3143	.write          = serial_console_write,
3144	.setup		= early_serial_console_setup,
3145	.flags          = CON_PRINTBUFFER,
3146	.index		= -1,
3147};
3148
3149static int sci_probe_earlyprintk(struct platform_device *pdev)
3150{
3151	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3152
3153	if (early_serial_console.data)
3154		return -EEXIST;
3155
3156	early_serial_console.index = pdev->id;
3157
3158	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3159
3160	if (!strstr(early_serial_buf, "keep"))
3161		early_serial_console.flags |= CON_BOOT;
3162
3163	register_console(&early_serial_console);
3164	return 0;
3165}
3166#endif
3167
3168#define SCI_CONSOLE	(&serial_console)
3169
3170#else
3171static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3172{
3173	return -EINVAL;
3174}
3175
3176#define SCI_CONSOLE	NULL
3177
3178#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3179
3180static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3181
3182static DEFINE_MUTEX(sci_uart_registration_lock);
3183static struct uart_driver sci_uart_driver = {
3184	.owner		= THIS_MODULE,
3185	.driver_name	= "sci",
3186	.dev_name	= "ttySC",
3187	.major		= SCI_MAJOR,
3188	.minor		= SCI_MINOR_START,
3189	.nr		= SCI_NPORTS,
3190	.cons		= SCI_CONSOLE,
3191};
3192
3193static int sci_remove(struct platform_device *dev)
3194{
3195	struct sci_port *port = platform_get_drvdata(dev);
3196	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3197
3198	sci_ports_in_use &= ~BIT(port->port.line);
3199	uart_remove_one_port(&sci_uart_driver, &port->port);
3200
3201	sci_cleanup_single(port);
3202
3203	if (port->port.fifosize > 1)
3204		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3205	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3206		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3207
3208	return 0;
3209}
3210
3211
3212#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3213#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3214#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3215
3216static const struct of_device_id of_sci_match[] __maybe_unused = {
3217	/* SoC-specific types */
3218	{
3219		.compatible = "renesas,scif-r7s72100",
3220		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3221	},
3222	{
3223		.compatible = "renesas,scif-r7s9210",
3224		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3225	},
3226	{
3227		.compatible = "renesas,scif-r9a07g044",
3228		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3229	},
3230	/* Family-specific types */
3231	{
3232		.compatible = "renesas,rcar-gen1-scif",
3233		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3234	}, {
3235		.compatible = "renesas,rcar-gen2-scif",
3236		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3237	}, {
3238		.compatible = "renesas,rcar-gen3-scif",
3239		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3240	}, {
3241		.compatible = "renesas,rcar-gen4-scif",
3242		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3243	},
3244	/* Generic types */
3245	{
3246		.compatible = "renesas,scif",
3247		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3248	}, {
3249		.compatible = "renesas,scifa",
3250		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3251	}, {
3252		.compatible = "renesas,scifb",
3253		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3254	}, {
3255		.compatible = "renesas,hscif",
3256		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3257	}, {
3258		.compatible = "renesas,sci",
3259		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3260	}, {
3261		/* Terminator */
3262	},
3263};
3264MODULE_DEVICE_TABLE(of, of_sci_match);
3265
3266static void sci_reset_control_assert(void *data)
3267{
3268	reset_control_assert(data);
3269}
3270
3271static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3272					  unsigned int *dev_id)
3273{
3274	struct device_node *np = pdev->dev.of_node;
3275	struct reset_control *rstc;
3276	struct plat_sci_port *p;
3277	struct sci_port *sp;
3278	const void *data;
3279	int id, ret;
3280
3281	if (!IS_ENABLED(CONFIG_OF) || !np)
3282		return ERR_PTR(-EINVAL);
3283
3284	data = of_device_get_match_data(&pdev->dev);
3285
3286	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
3287	if (IS_ERR(rstc))
3288		return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3289					     "failed to get reset ctrl\n"));
3290
3291	ret = reset_control_deassert(rstc);
3292	if (ret) {
3293		dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3294		return ERR_PTR(ret);
3295	}
3296
3297	ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3298	if (ret) {
3299		dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3300			ret);
3301		return ERR_PTR(ret);
3302	}
3303
3304	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3305	if (!p)
3306		return ERR_PTR(-ENOMEM);
3307
3308	/* Get the line number from the aliases node. */
3309	id = of_alias_get_id(np, "serial");
3310	if (id < 0 && ~sci_ports_in_use)
3311		id = ffz(sci_ports_in_use);
3312	if (id < 0) {
3313		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3314		return ERR_PTR(-EINVAL);
3315	}
3316	if (id >= ARRAY_SIZE(sci_ports)) {
3317		dev_err(&pdev->dev, "serial%d out of range\n", id);
3318		return ERR_PTR(-EINVAL);
3319	}
3320
3321	sp = &sci_ports[id];
3322	*dev_id = id;
3323
3324	p->type = SCI_OF_TYPE(data);
3325	p->regtype = SCI_OF_REGTYPE(data);
3326
3327	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3328
3329	return p;
3330}
3331
3332static int sci_probe_single(struct platform_device *dev,
3333				      unsigned int index,
3334				      struct plat_sci_port *p,
3335				      struct sci_port *sciport)
3336{
3337	int ret;
3338
3339	/* Sanity check */
3340	if (unlikely(index >= SCI_NPORTS)) {
3341		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3342			   index+1, SCI_NPORTS);
3343		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3344		return -EINVAL;
3345	}
3346	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3347	if (sci_ports_in_use & BIT(index))
3348		return -EBUSY;
3349
3350	mutex_lock(&sci_uart_registration_lock);
3351	if (!sci_uart_driver.state) {
3352		ret = uart_register_driver(&sci_uart_driver);
3353		if (ret) {
3354			mutex_unlock(&sci_uart_registration_lock);
3355			return ret;
3356		}
3357	}
3358	mutex_unlock(&sci_uart_registration_lock);
3359
3360	ret = sci_init_single(dev, sciport, index, p, false);
3361	if (ret)
3362		return ret;
3363
3364	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3365	if (IS_ERR(sciport->gpios))
3366		return PTR_ERR(sciport->gpios);
3367
3368	if (sciport->has_rtscts) {
3369		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3370		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3371			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3372			return -EINVAL;
3373		}
3374		sciport->port.flags |= UPF_HARD_FLOW;
3375	}
3376
3377	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3378	if (ret) {
3379		sci_cleanup_single(sciport);
3380		return ret;
3381	}
3382
3383	return 0;
3384}
3385
3386static int sci_probe(struct platform_device *dev)
3387{
3388	struct plat_sci_port *p;
3389	struct sci_port *sp;
3390	unsigned int dev_id;
3391	int ret;
3392
3393	/*
3394	 * If we've come here via earlyprintk initialization, head off to
3395	 * the special early probe. We don't have sufficient device state
3396	 * to make it beyond this yet.
3397	 */
3398#ifdef CONFIG_SUPERH
3399	if (is_sh_early_platform_device(dev))
3400		return sci_probe_earlyprintk(dev);
3401#endif
3402
3403	if (dev->dev.of_node) {
3404		p = sci_parse_dt(dev, &dev_id);
3405		if (IS_ERR(p))
3406			return PTR_ERR(p);
3407	} else {
3408		p = dev->dev.platform_data;
3409		if (p == NULL) {
3410			dev_err(&dev->dev, "no platform data supplied\n");
3411			return -EINVAL;
3412		}
3413
3414		dev_id = dev->id;
3415	}
3416
3417	sp = &sci_ports[dev_id];
3418	platform_set_drvdata(dev, sp);
3419
3420	ret = sci_probe_single(dev, dev_id, p, sp);
3421	if (ret)
3422		return ret;
3423
3424	if (sp->port.fifosize > 1) {
3425		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3426		if (ret)
3427			return ret;
3428	}
3429	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3430	    sp->port.type == PORT_HSCIF) {
3431		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3432		if (ret) {
3433			if (sp->port.fifosize > 1) {
3434				device_remove_file(&dev->dev,
3435						   &dev_attr_rx_fifo_trigger);
3436			}
3437			return ret;
3438		}
3439	}
3440
3441#ifdef CONFIG_SH_STANDARD_BIOS
3442	sh_bios_gdb_detach();
3443#endif
3444
3445	sci_ports_in_use |= BIT(dev_id);
3446	return 0;
3447}
3448
3449static __maybe_unused int sci_suspend(struct device *dev)
3450{
3451	struct sci_port *sport = dev_get_drvdata(dev);
3452
3453	if (sport)
3454		uart_suspend_port(&sci_uart_driver, &sport->port);
3455
3456	return 0;
3457}
3458
3459static __maybe_unused int sci_resume(struct device *dev)
3460{
3461	struct sci_port *sport = dev_get_drvdata(dev);
3462
3463	if (sport)
3464		uart_resume_port(&sci_uart_driver, &sport->port);
3465
3466	return 0;
3467}
3468
3469static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3470
3471static struct platform_driver sci_driver = {
3472	.probe		= sci_probe,
3473	.remove		= sci_remove,
3474	.driver		= {
3475		.name	= "sh-sci",
3476		.pm	= &sci_dev_pm_ops,
3477		.of_match_table = of_match_ptr(of_sci_match),
3478	},
3479};
3480
3481static int __init sci_init(void)
3482{
3483	pr_info("%s\n", banner);
3484
3485	return platform_driver_register(&sci_driver);
3486}
3487
3488static void __exit sci_exit(void)
3489{
3490	platform_driver_unregister(&sci_driver);
3491
3492	if (sci_uart_driver.state)
3493		uart_unregister_driver(&sci_uart_driver);
3494}
3495
3496#if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3497sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3498			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3499#endif
3500#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3501static struct plat_sci_port port_cfg __initdata;
3502
3503static int __init early_console_setup(struct earlycon_device *device,
3504				      int type)
3505{
3506	if (!device->port.membase)
3507		return -ENODEV;
3508
3509	device->port.serial_in = sci_serial_in;
3510	device->port.serial_out	= sci_serial_out;
3511	device->port.type = type;
3512	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3513	port_cfg.type = type;
3514	sci_ports[0].cfg = &port_cfg;
3515	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3516	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3517	sci_serial_out(&sci_ports[0].port, SCSCR,
3518		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3519
3520	device->con->write = serial_console_write;
3521	return 0;
3522}
3523static int __init sci_early_console_setup(struct earlycon_device *device,
3524					  const char *opt)
3525{
3526	return early_console_setup(device, PORT_SCI);
3527}
3528static int __init scif_early_console_setup(struct earlycon_device *device,
3529					  const char *opt)
3530{
3531	return early_console_setup(device, PORT_SCIF);
3532}
3533static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3534					  const char *opt)
3535{
3536	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3537	return early_console_setup(device, PORT_SCIF);
3538}
3539
3540static int __init scifa_early_console_setup(struct earlycon_device *device,
3541					  const char *opt)
3542{
3543	return early_console_setup(device, PORT_SCIFA);
3544}
3545static int __init scifb_early_console_setup(struct earlycon_device *device,
3546					  const char *opt)
3547{
3548	return early_console_setup(device, PORT_SCIFB);
3549}
3550static int __init hscif_early_console_setup(struct earlycon_device *device,
3551					  const char *opt)
3552{
3553	return early_console_setup(device, PORT_HSCIF);
3554}
3555
3556OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3557OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3558OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3559OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3560OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3561OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3562OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3563#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3564
3565module_init(sci_init);
3566module_exit(sci_exit);
3567
3568MODULE_LICENSE("GPL");
3569MODULE_ALIAS("platform:sh-sci");
3570MODULE_AUTHOR("Paul Mundt");
3571MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3572