1// SPDX-License-Identifier: GPL-2.0+
2/*
3* ***************************************************************************
4* Marvell Armada-3700 Serial Driver
5* Author: Wilson Ding <dingwei@marvell.com>
6* Copyright (C) 2015 Marvell International Ltd.
7* ***************************************************************************
8*/
9
10#include <linux/clk.h>
11#include <linux/clk-provider.h>
12#include <linux/console.h>
13#include <linux/delay.h>
14#include <linux/device.h>
15#include <linux/init.h>
16#include <linux/io.h>
17#include <linux/iopoll.h>
18#include <linux/math64.h>
19#include <linux/of.h>
20#include <linux/of_address.h>
21#include <linux/of_device.h>
22#include <linux/of_irq.h>
23#include <linux/of_platform.h>
24#include <linux/platform_device.h>
25#include <linux/serial.h>
26#include <linux/serial_core.h>
27#include <linux/slab.h>
28#include <linux/tty.h>
29#include <linux/tty_flip.h>
30
31/* Register Map */
32#define UART_STD_RBR		0x00
33#define UART_EXT_RBR		0x18
34
35#define UART_STD_TSH		0x04
36#define UART_EXT_TSH		0x1C
37
38#define UART_STD_CTRL1		0x08
39#define UART_EXT_CTRL1		0x04
40#define  CTRL_SOFT_RST		BIT(31)
41#define  CTRL_TXFIFO_RST	BIT(15)
42#define  CTRL_RXFIFO_RST	BIT(14)
43#define  CTRL_SND_BRK_SEQ	BIT(11)
44#define  CTRL_BRK_DET_INT	BIT(3)
45#define  CTRL_FRM_ERR_INT	BIT(2)
46#define  CTRL_PAR_ERR_INT	BIT(1)
47#define  CTRL_OVR_ERR_INT	BIT(0)
48#define  CTRL_BRK_INT		(CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \
49				CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT)
50
51#define UART_STD_CTRL2		UART_STD_CTRL1
52#define UART_EXT_CTRL2		0x20
53#define  CTRL_STD_TX_RDY_INT	BIT(5)
54#define  CTRL_EXT_TX_RDY_INT	BIT(6)
55#define  CTRL_STD_RX_RDY_INT	BIT(4)
56#define  CTRL_EXT_RX_RDY_INT	BIT(5)
57
58#define UART_STAT		0x0C
59#define  STAT_TX_FIFO_EMP	BIT(13)
60#define  STAT_TX_FIFO_FUL	BIT(11)
61#define  STAT_TX_EMP		BIT(6)
62#define  STAT_STD_TX_RDY	BIT(5)
63#define  STAT_EXT_TX_RDY	BIT(15)
64#define  STAT_STD_RX_RDY	BIT(4)
65#define  STAT_EXT_RX_RDY	BIT(14)
66#define  STAT_BRK_DET		BIT(3)
67#define  STAT_FRM_ERR		BIT(2)
68#define  STAT_PAR_ERR		BIT(1)
69#define  STAT_OVR_ERR		BIT(0)
70#define  STAT_BRK_ERR		(STAT_BRK_DET | STAT_FRM_ERR \
71				 | STAT_PAR_ERR | STAT_OVR_ERR)
72
73/*
74 * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART
75 * Clock Control register controls UART1 and bit 20 controls UART2. But in
76 * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an
77 * error in Marvell's documentation. Hence following CLK_DIS macros are swapped.
78 */
79
80#define UART_BRDV		0x10
81/* These bits are located in UART1 address space and control UART2 */
82#define  UART2_CLK_DIS		BIT(21)
83/* These bits are located in UART1 address space and control UART1 */
84#define  UART1_CLK_DIS		BIT(20)
85/* These bits are located in UART1 address space and control both UARTs */
86#define  CLK_NO_XTAL		BIT(19)
87#define  CLK_TBG_DIV1_SHIFT	15
88#define  CLK_TBG_DIV1_MASK	0x7
89#define  CLK_TBG_DIV1_MAX	6
90#define  CLK_TBG_DIV2_SHIFT	12
91#define  CLK_TBG_DIV2_MASK	0x7
92#define  CLK_TBG_DIV2_MAX	6
93#define  CLK_TBG_SEL_SHIFT	10
94#define  CLK_TBG_SEL_MASK	0x3
95/* These bits are located in both UARTs address space */
96#define  BRDV_BAUD_MASK         0x3FF
97#define  BRDV_BAUD_MAX		BRDV_BAUD_MASK
98
99#define UART_OSAMP		0x14
100#define  OSAMP_DEFAULT_DIVISOR	16
101#define  OSAMP_DIVISORS_MASK	0x3F3F3F3F
102#define  OSAMP_MAX_DIVISOR	63
103
104#define MVEBU_NR_UARTS		2
105
106#define MVEBU_UART_TYPE		"mvebu-uart"
107#define DRIVER_NAME		"mvebu_serial"
108
109enum {
110	/* Either there is only one summed IRQ... */
111	UART_IRQ_SUM = 0,
112	/* ...or there are two separate IRQ for RX and TX */
113	UART_RX_IRQ = 0,
114	UART_TX_IRQ,
115	UART_IRQ_COUNT
116};
117
118/* Diverging register offsets */
119struct uart_regs_layout {
120	unsigned int rbr;
121	unsigned int tsh;
122	unsigned int ctrl;
123	unsigned int intr;
124};
125
126/* Diverging flags */
127struct uart_flags {
128	unsigned int ctrl_tx_rdy_int;
129	unsigned int ctrl_rx_rdy_int;
130	unsigned int stat_tx_rdy;
131	unsigned int stat_rx_rdy;
132};
133
134/* Driver data, a structure for each UART port */
135struct mvebu_uart_driver_data {
136	bool is_ext;
137	struct uart_regs_layout regs;
138	struct uart_flags flags;
139};
140
141/* Saved registers during suspend */
142struct mvebu_uart_pm_regs {
143	unsigned int rbr;
144	unsigned int tsh;
145	unsigned int ctrl;
146	unsigned int intr;
147	unsigned int stat;
148	unsigned int brdv;
149	unsigned int osamp;
150};
151
152/* MVEBU UART driver structure */
153struct mvebu_uart {
154	struct uart_port *port;
155	struct clk *clk;
156	int irq[UART_IRQ_COUNT];
157	struct mvebu_uart_driver_data *data;
158#if defined(CONFIG_PM)
159	struct mvebu_uart_pm_regs pm_regs;
160#endif /* CONFIG_PM */
161};
162
163static struct mvebu_uart *to_mvuart(struct uart_port *port)
164{
165	return (struct mvebu_uart *)port->private_data;
166}
167
168#define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext)
169
170#define UART_RBR(port) (to_mvuart(port)->data->regs.rbr)
171#define UART_TSH(port) (to_mvuart(port)->data->regs.tsh)
172#define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl)
173#define UART_INTR(port) (to_mvuart(port)->data->regs.intr)
174
175#define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int)
176#define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int)
177#define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy)
178#define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy)
179
180static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS];
181
182static DEFINE_SPINLOCK(mvebu_uart_lock);
183
184/* Core UART Driver Operations */
185static unsigned int mvebu_uart_tx_empty(struct uart_port *port)
186{
187	unsigned long flags;
188	unsigned int st;
189
190	spin_lock_irqsave(&port->lock, flags);
191	st = readl(port->membase + UART_STAT);
192	spin_unlock_irqrestore(&port->lock, flags);
193
194	return (st & STAT_TX_EMP) ? TIOCSER_TEMT : 0;
195}
196
197static unsigned int mvebu_uart_get_mctrl(struct uart_port *port)
198{
199	return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR;
200}
201
202static void mvebu_uart_set_mctrl(struct uart_port *port,
203				 unsigned int mctrl)
204{
205/*
206 * Even if we do not support configuring the modem control lines, this
207 * function must be proided to the serial core
208 */
209}
210
211static void mvebu_uart_stop_tx(struct uart_port *port)
212{
213	unsigned int ctl = readl(port->membase + UART_INTR(port));
214
215	ctl &= ~CTRL_TX_RDY_INT(port);
216	writel(ctl, port->membase + UART_INTR(port));
217}
218
219static void mvebu_uart_start_tx(struct uart_port *port)
220{
221	unsigned int ctl;
222	struct circ_buf *xmit = &port->state->xmit;
223
224	if (IS_EXTENDED(port) && !uart_circ_empty(xmit)) {
225		writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port));
226		uart_xmit_advance(port, 1);
227	}
228
229	ctl = readl(port->membase + UART_INTR(port));
230	ctl |= CTRL_TX_RDY_INT(port);
231	writel(ctl, port->membase + UART_INTR(port));
232}
233
234static void mvebu_uart_stop_rx(struct uart_port *port)
235{
236	unsigned int ctl;
237
238	ctl = readl(port->membase + UART_CTRL(port));
239	ctl &= ~CTRL_BRK_INT;
240	writel(ctl, port->membase + UART_CTRL(port));
241
242	ctl = readl(port->membase + UART_INTR(port));
243	ctl &= ~CTRL_RX_RDY_INT(port);
244	writel(ctl, port->membase + UART_INTR(port));
245}
246
247static void mvebu_uart_break_ctl(struct uart_port *port, int brk)
248{
249	unsigned int ctl;
250	unsigned long flags;
251
252	spin_lock_irqsave(&port->lock, flags);
253	ctl = readl(port->membase + UART_CTRL(port));
254	if (brk == -1)
255		ctl |= CTRL_SND_BRK_SEQ;
256	else
257		ctl &= ~CTRL_SND_BRK_SEQ;
258	writel(ctl, port->membase + UART_CTRL(port));
259	spin_unlock_irqrestore(&port->lock, flags);
260}
261
262static void mvebu_uart_rx_chars(struct uart_port *port, unsigned int status)
263{
264	struct tty_port *tport = &port->state->port;
265	unsigned char ch = 0;
266	char flag = 0;
267	int ret;
268
269	do {
270		if (status & STAT_RX_RDY(port)) {
271			ch = readl(port->membase + UART_RBR(port));
272			ch &= 0xff;
273			flag = TTY_NORMAL;
274			port->icount.rx++;
275
276			if (status & STAT_PAR_ERR)
277				port->icount.parity++;
278		}
279
280		/*
281		 * For UART2, error bits are not cleared on buffer read.
282		 * This causes interrupt loop and system hang.
283		 */
284		if (IS_EXTENDED(port) && (status & STAT_BRK_ERR)) {
285			ret = readl(port->membase + UART_STAT);
286			ret |= STAT_BRK_ERR;
287			writel(ret, port->membase + UART_STAT);
288		}
289
290		if (status & STAT_BRK_DET) {
291			port->icount.brk++;
292			status &= ~(STAT_FRM_ERR | STAT_PAR_ERR);
293			if (uart_handle_break(port))
294				goto ignore_char;
295		}
296
297		if (status & STAT_OVR_ERR)
298			port->icount.overrun++;
299
300		if (status & STAT_FRM_ERR)
301			port->icount.frame++;
302
303		if (uart_handle_sysrq_char(port, ch))
304			goto ignore_char;
305
306		if (status & port->ignore_status_mask & STAT_PAR_ERR)
307			status &= ~STAT_RX_RDY(port);
308
309		status &= port->read_status_mask;
310
311		if (status & STAT_PAR_ERR)
312			flag = TTY_PARITY;
313
314		status &= ~port->ignore_status_mask;
315
316		if (status & STAT_RX_RDY(port))
317			tty_insert_flip_char(tport, ch, flag);
318
319		if (status & STAT_BRK_DET)
320			tty_insert_flip_char(tport, 0, TTY_BREAK);
321
322		if (status & STAT_FRM_ERR)
323			tty_insert_flip_char(tport, 0, TTY_FRAME);
324
325		if (status & STAT_OVR_ERR)
326			tty_insert_flip_char(tport, 0, TTY_OVERRUN);
327
328ignore_char:
329		status = readl(port->membase + UART_STAT);
330	} while (status & (STAT_RX_RDY(port) | STAT_BRK_DET));
331
332	tty_flip_buffer_push(tport);
333}
334
335static void mvebu_uart_tx_chars(struct uart_port *port, unsigned int status)
336{
337	u8 ch;
338
339	uart_port_tx_limited(port, ch, port->fifosize,
340		!(readl(port->membase + UART_STAT) & STAT_TX_FIFO_FUL),
341		writel(ch, port->membase + UART_TSH(port)),
342		({}));
343}
344
345static irqreturn_t mvebu_uart_isr(int irq, void *dev_id)
346{
347	struct uart_port *port = (struct uart_port *)dev_id;
348	unsigned int st = readl(port->membase + UART_STAT);
349
350	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
351		  STAT_BRK_DET))
352		mvebu_uart_rx_chars(port, st);
353
354	if (st & STAT_TX_RDY(port))
355		mvebu_uart_tx_chars(port, st);
356
357	return IRQ_HANDLED;
358}
359
360static irqreturn_t mvebu_uart_rx_isr(int irq, void *dev_id)
361{
362	struct uart_port *port = (struct uart_port *)dev_id;
363	unsigned int st = readl(port->membase + UART_STAT);
364
365	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
366			STAT_BRK_DET))
367		mvebu_uart_rx_chars(port, st);
368
369	return IRQ_HANDLED;
370}
371
372static irqreturn_t mvebu_uart_tx_isr(int irq, void *dev_id)
373{
374	struct uart_port *port = (struct uart_port *)dev_id;
375	unsigned int st = readl(port->membase + UART_STAT);
376
377	if (st & STAT_TX_RDY(port))
378		mvebu_uart_tx_chars(port, st);
379
380	return IRQ_HANDLED;
381}
382
383static int mvebu_uart_startup(struct uart_port *port)
384{
385	struct mvebu_uart *mvuart = to_mvuart(port);
386	unsigned int ctl;
387	int ret;
388
389	writel(CTRL_TXFIFO_RST | CTRL_RXFIFO_RST,
390	       port->membase + UART_CTRL(port));
391	udelay(1);
392
393	/* Clear the error bits of state register before IRQ request */
394	ret = readl(port->membase + UART_STAT);
395	ret |= STAT_BRK_ERR;
396	writel(ret, port->membase + UART_STAT);
397
398	writel(CTRL_BRK_INT, port->membase + UART_CTRL(port));
399
400	ctl = readl(port->membase + UART_INTR(port));
401	ctl |= CTRL_RX_RDY_INT(port);
402	writel(ctl, port->membase + UART_INTR(port));
403
404	if (!mvuart->irq[UART_TX_IRQ]) {
405		/* Old bindings with just one interrupt (UART0 only) */
406		ret = devm_request_irq(port->dev, mvuart->irq[UART_IRQ_SUM],
407				       mvebu_uart_isr, port->irqflags,
408				       dev_name(port->dev), port);
409		if (ret) {
410			dev_err(port->dev, "unable to request IRQ %d\n",
411				mvuart->irq[UART_IRQ_SUM]);
412			return ret;
413		}
414	} else {
415		/* New bindings with an IRQ for RX and TX (both UART) */
416		ret = devm_request_irq(port->dev, mvuart->irq[UART_RX_IRQ],
417				       mvebu_uart_rx_isr, port->irqflags,
418				       dev_name(port->dev), port);
419		if (ret) {
420			dev_err(port->dev, "unable to request IRQ %d\n",
421				mvuart->irq[UART_RX_IRQ]);
422			return ret;
423		}
424
425		ret = devm_request_irq(port->dev, mvuart->irq[UART_TX_IRQ],
426				       mvebu_uart_tx_isr, port->irqflags,
427				       dev_name(port->dev),
428				       port);
429		if (ret) {
430			dev_err(port->dev, "unable to request IRQ %d\n",
431				mvuart->irq[UART_TX_IRQ]);
432			devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ],
433				      port);
434			return ret;
435		}
436	}
437
438	return 0;
439}
440
441static void mvebu_uart_shutdown(struct uart_port *port)
442{
443	struct mvebu_uart *mvuart = to_mvuart(port);
444
445	writel(0, port->membase + UART_INTR(port));
446
447	if (!mvuart->irq[UART_TX_IRQ]) {
448		devm_free_irq(port->dev, mvuart->irq[UART_IRQ_SUM], port);
449	} else {
450		devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], port);
451		devm_free_irq(port->dev, mvuart->irq[UART_TX_IRQ], port);
452	}
453}
454
455static unsigned int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud)
456{
457	unsigned int d_divisor, m_divisor;
458	unsigned long flags;
459	u32 brdv, osamp;
460
461	if (!port->uartclk)
462		return 0;
463
464	/*
465	 * The baudrate is derived from the UART clock thanks to divisors:
466	 *   > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6
467	 *   > D ("baud generator"): can divide the clock from 1 to 1023
468	 *   > M ("fractional divisor"): allows a better accuracy (from 1 to 63)
469	 *
470	 * Exact formulas for calculating baudrate:
471	 *
472	 * with default x16 scheme:
473	 *   baudrate = xtal / (d * 16)
474	 *   baudrate = tbg / (d1 * d2 * d * 16)
475	 *
476	 * with fractional divisor:
477	 *   baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4)))
478	 *   baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4)))
479	 *
480	 * Oversampling value:
481	 *   osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24);
482	 *
483	 * Where m1 controls number of clock cycles per bit for bits 1,2,3;
484	 * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10.
485	 *
486	 * To simplify baudrate setup set all the M prescalers to the same
487	 * value. For baudrates 9600 Bd and higher, it is enough to use the
488	 * default (x16) divisor or fractional divisor with M = 63, so there
489	 * is no need to use real fractional support (where the M prescalers
490	 * are not equal).
491	 *
492	 * When all the M prescalers are zeroed then default (x16) divisor is
493	 * used. Default x16 scheme is more stable than M (fractional divisor),
494	 * so use M only when D divisor is not enough to derive baudrate.
495	 *
496	 * Member port->uartclk is either xtal clock rate or TBG clock rate
497	 * divided by (d1 * d2). So d1 and d2 are already set by the UART clock
498	 * driver (and UART driver itself cannot change them). Moreover they are
499	 * shared between both UARTs.
500	 */
501
502	m_divisor = OSAMP_DEFAULT_DIVISOR;
503	d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
504
505	if (d_divisor > BRDV_BAUD_MAX) {
506		/*
507		 * Experiments show that small M divisors are unstable.
508		 * Use maximal possible M = 63 and calculate D divisor.
509		 */
510		m_divisor = OSAMP_MAX_DIVISOR;
511		d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
512	}
513
514	if (d_divisor < 1)
515		d_divisor = 1;
516	else if (d_divisor > BRDV_BAUD_MAX)
517		d_divisor = BRDV_BAUD_MAX;
518
519	spin_lock_irqsave(&mvebu_uart_lock, flags);
520	brdv = readl(port->membase + UART_BRDV);
521	brdv &= ~BRDV_BAUD_MASK;
522	brdv |= d_divisor;
523	writel(brdv, port->membase + UART_BRDV);
524	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
525
526	osamp = readl(port->membase + UART_OSAMP);
527	osamp &= ~OSAMP_DIVISORS_MASK;
528	if (m_divisor != OSAMP_DEFAULT_DIVISOR)
529		osamp |= (m_divisor << 0) | (m_divisor << 8) |
530			(m_divisor << 16) | (m_divisor << 24);
531	writel(osamp, port->membase + UART_OSAMP);
532
533	return DIV_ROUND_CLOSEST(port->uartclk, d_divisor * m_divisor);
534}
535
536static void mvebu_uart_set_termios(struct uart_port *port,
537				   struct ktermios *termios,
538				   const struct ktermios *old)
539{
540	unsigned long flags;
541	unsigned int baud, min_baud, max_baud;
542
543	spin_lock_irqsave(&port->lock, flags);
544
545	port->read_status_mask = STAT_RX_RDY(port) | STAT_OVR_ERR |
546		STAT_TX_RDY(port) | STAT_TX_FIFO_FUL;
547
548	if (termios->c_iflag & INPCK)
549		port->read_status_mask |= STAT_FRM_ERR | STAT_PAR_ERR;
550
551	port->ignore_status_mask = 0;
552	if (termios->c_iflag & IGNPAR)
553		port->ignore_status_mask |=
554			STAT_FRM_ERR | STAT_PAR_ERR | STAT_OVR_ERR;
555
556	if ((termios->c_cflag & CREAD) == 0)
557		port->ignore_status_mask |= STAT_RX_RDY(port) | STAT_BRK_ERR;
558
559	/*
560	 * Maximal divisor is 1023 and maximal fractional divisor is 63. And
561	 * experiments show that baudrates above 1/80 of parent clock rate are
562	 * not stable. So disallow baudrates above 1/80 of the parent clock
563	 * rate. If port->uartclk is not available, then
564	 * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud
565	 * in this case do not matter.
566	 */
567	min_baud = DIV_ROUND_UP(port->uartclk, BRDV_BAUD_MAX *
568				OSAMP_MAX_DIVISOR);
569	max_baud = port->uartclk / 80;
570
571	baud = uart_get_baud_rate(port, termios, old, min_baud, max_baud);
572	baud = mvebu_uart_baud_rate_set(port, baud);
573
574	/* In case baudrate cannot be changed, report previous old value */
575	if (baud == 0 && old)
576		baud = tty_termios_baud_rate(old);
577
578	/* Only the following flag changes are supported */
579	if (old) {
580		termios->c_iflag &= INPCK | IGNPAR;
581		termios->c_iflag |= old->c_iflag & ~(INPCK | IGNPAR);
582		termios->c_cflag &= CREAD | CBAUD;
583		termios->c_cflag |= old->c_cflag & ~(CREAD | CBAUD);
584		termios->c_cflag |= CS8;
585	}
586
587	if (baud != 0) {
588		tty_termios_encode_baud_rate(termios, baud, baud);
589		uart_update_timeout(port, termios->c_cflag, baud);
590	}
591
592	spin_unlock_irqrestore(&port->lock, flags);
593}
594
595static const char *mvebu_uart_type(struct uart_port *port)
596{
597	return MVEBU_UART_TYPE;
598}
599
600static void mvebu_uart_release_port(struct uart_port *port)
601{
602	/* Nothing to do here */
603}
604
605static int mvebu_uart_request_port(struct uart_port *port)
606{
607	return 0;
608}
609
610#ifdef CONFIG_CONSOLE_POLL
611static int mvebu_uart_get_poll_char(struct uart_port *port)
612{
613	unsigned int st = readl(port->membase + UART_STAT);
614
615	if (!(st & STAT_RX_RDY(port)))
616		return NO_POLL_CHAR;
617
618	return readl(port->membase + UART_RBR(port));
619}
620
621static void mvebu_uart_put_poll_char(struct uart_port *port, unsigned char c)
622{
623	unsigned int st;
624
625	for (;;) {
626		st = readl(port->membase + UART_STAT);
627
628		if (!(st & STAT_TX_FIFO_FUL))
629			break;
630
631		udelay(1);
632	}
633
634	writel(c, port->membase + UART_TSH(port));
635}
636#endif
637
638static const struct uart_ops mvebu_uart_ops = {
639	.tx_empty	= mvebu_uart_tx_empty,
640	.set_mctrl	= mvebu_uart_set_mctrl,
641	.get_mctrl	= mvebu_uart_get_mctrl,
642	.stop_tx	= mvebu_uart_stop_tx,
643	.start_tx	= mvebu_uart_start_tx,
644	.stop_rx	= mvebu_uart_stop_rx,
645	.break_ctl	= mvebu_uart_break_ctl,
646	.startup	= mvebu_uart_startup,
647	.shutdown	= mvebu_uart_shutdown,
648	.set_termios	= mvebu_uart_set_termios,
649	.type		= mvebu_uart_type,
650	.release_port	= mvebu_uart_release_port,
651	.request_port	= mvebu_uart_request_port,
652#ifdef CONFIG_CONSOLE_POLL
653	.poll_get_char	= mvebu_uart_get_poll_char,
654	.poll_put_char	= mvebu_uart_put_poll_char,
655#endif
656};
657
658/* Console Driver Operations  */
659
660#ifdef CONFIG_SERIAL_MVEBU_CONSOLE
661/* Early Console */
662static void mvebu_uart_putc(struct uart_port *port, unsigned char c)
663{
664	unsigned int st;
665
666	for (;;) {
667		st = readl(port->membase + UART_STAT);
668		if (!(st & STAT_TX_FIFO_FUL))
669			break;
670	}
671
672	/* At early stage, DT is not parsed yet, only use UART0 */
673	writel(c, port->membase + UART_STD_TSH);
674
675	for (;;) {
676		st = readl(port->membase + UART_STAT);
677		if (st & STAT_TX_FIFO_EMP)
678			break;
679	}
680}
681
682static void mvebu_uart_putc_early_write(struct console *con,
683					const char *s,
684					unsigned int n)
685{
686	struct earlycon_device *dev = con->data;
687
688	uart_console_write(&dev->port, s, n, mvebu_uart_putc);
689}
690
691static int __init
692mvebu_uart_early_console_setup(struct earlycon_device *device,
693			       const char *opt)
694{
695	if (!device->port.membase)
696		return -ENODEV;
697
698	device->con->write = mvebu_uart_putc_early_write;
699
700	return 0;
701}
702
703EARLYCON_DECLARE(ar3700_uart, mvebu_uart_early_console_setup);
704OF_EARLYCON_DECLARE(ar3700_uart, "marvell,armada-3700-uart",
705		    mvebu_uart_early_console_setup);
706
707static void wait_for_xmitr(struct uart_port *port)
708{
709	u32 val;
710
711	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
712				  (val & STAT_TX_RDY(port)), 1, 10000);
713}
714
715static void wait_for_xmite(struct uart_port *port)
716{
717	u32 val;
718
719	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
720				  (val & STAT_TX_EMP), 1, 10000);
721}
722
723static void mvebu_uart_console_putchar(struct uart_port *port, unsigned char ch)
724{
725	wait_for_xmitr(port);
726	writel(ch, port->membase + UART_TSH(port));
727}
728
729static void mvebu_uart_console_write(struct console *co, const char *s,
730				     unsigned int count)
731{
732	struct uart_port *port = &mvebu_uart_ports[co->index];
733	unsigned long flags;
734	unsigned int ier, intr, ctl;
735	int locked = 1;
736
737	if (oops_in_progress)
738		locked = spin_trylock_irqsave(&port->lock, flags);
739	else
740		spin_lock_irqsave(&port->lock, flags);
741
742	ier = readl(port->membase + UART_CTRL(port)) & CTRL_BRK_INT;
743	intr = readl(port->membase + UART_INTR(port)) &
744		(CTRL_RX_RDY_INT(port) | CTRL_TX_RDY_INT(port));
745	writel(0, port->membase + UART_CTRL(port));
746	writel(0, port->membase + UART_INTR(port));
747
748	uart_console_write(port, s, count, mvebu_uart_console_putchar);
749
750	wait_for_xmite(port);
751
752	if (ier)
753		writel(ier, port->membase + UART_CTRL(port));
754
755	if (intr) {
756		ctl = intr | readl(port->membase + UART_INTR(port));
757		writel(ctl, port->membase + UART_INTR(port));
758	}
759
760	if (locked)
761		spin_unlock_irqrestore(&port->lock, flags);
762}
763
764static int mvebu_uart_console_setup(struct console *co, char *options)
765{
766	struct uart_port *port;
767	int baud = 9600;
768	int bits = 8;
769	int parity = 'n';
770	int flow = 'n';
771
772	if (co->index < 0 || co->index >= MVEBU_NR_UARTS)
773		return -EINVAL;
774
775	port = &mvebu_uart_ports[co->index];
776
777	if (!port->mapbase || !port->membase) {
778		pr_debug("console on ttyMV%i not present\n", co->index);
779		return -ENODEV;
780	}
781
782	if (options)
783		uart_parse_options(options, &baud, &parity, &bits, &flow);
784
785	return uart_set_options(port, co, baud, parity, bits, flow);
786}
787
788static struct uart_driver mvebu_uart_driver;
789
790static struct console mvebu_uart_console = {
791	.name	= "ttyMV",
792	.write	= mvebu_uart_console_write,
793	.device	= uart_console_device,
794	.setup	= mvebu_uart_console_setup,
795	.flags	= CON_PRINTBUFFER,
796	.index	= -1,
797	.data	= &mvebu_uart_driver,
798};
799
800static int __init mvebu_uart_console_init(void)
801{
802	register_console(&mvebu_uart_console);
803	return 0;
804}
805
806console_initcall(mvebu_uart_console_init);
807
808
809#endif /* CONFIG_SERIAL_MVEBU_CONSOLE */
810
811static struct uart_driver mvebu_uart_driver = {
812	.owner			= THIS_MODULE,
813	.driver_name		= DRIVER_NAME,
814	.dev_name		= "ttyMV",
815	.nr			= MVEBU_NR_UARTS,
816#ifdef CONFIG_SERIAL_MVEBU_CONSOLE
817	.cons			= &mvebu_uart_console,
818#endif
819};
820
821#if defined(CONFIG_PM)
822static int mvebu_uart_suspend(struct device *dev)
823{
824	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
825	struct uart_port *port = mvuart->port;
826	unsigned long flags;
827
828	uart_suspend_port(&mvebu_uart_driver, port);
829
830	mvuart->pm_regs.rbr = readl(port->membase + UART_RBR(port));
831	mvuart->pm_regs.tsh = readl(port->membase + UART_TSH(port));
832	mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port));
833	mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port));
834	mvuart->pm_regs.stat = readl(port->membase + UART_STAT);
835	spin_lock_irqsave(&mvebu_uart_lock, flags);
836	mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV);
837	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
838	mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP);
839
840	device_set_wakeup_enable(dev, true);
841
842	return 0;
843}
844
845static int mvebu_uart_resume(struct device *dev)
846{
847	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
848	struct uart_port *port = mvuart->port;
849	unsigned long flags;
850
851	writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port));
852	writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port));
853	writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port));
854	writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port));
855	writel(mvuart->pm_regs.stat, port->membase + UART_STAT);
856	spin_lock_irqsave(&mvebu_uart_lock, flags);
857	writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV);
858	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
859	writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP);
860
861	uart_resume_port(&mvebu_uart_driver, port);
862
863	return 0;
864}
865
866static const struct dev_pm_ops mvebu_uart_pm_ops = {
867	.suspend        = mvebu_uart_suspend,
868	.resume         = mvebu_uart_resume,
869};
870#endif /* CONFIG_PM */
871
872static const struct of_device_id mvebu_uart_of_match[];
873
874/* Counter to keep track of each UART port id when not using CONFIG_OF */
875static int uart_num_counter;
876
877static int mvebu_uart_probe(struct platform_device *pdev)
878{
879	const struct of_device_id *match = of_match_device(mvebu_uart_of_match,
880							   &pdev->dev);
881	struct uart_port *port;
882	struct mvebu_uart *mvuart;
883	struct resource *reg;
884	int id, irq;
885
886	/* Assume that all UART ports have a DT alias or none has */
887	id = of_alias_get_id(pdev->dev.of_node, "serial");
888	if (!pdev->dev.of_node || id < 0)
889		pdev->id = uart_num_counter++;
890	else
891		pdev->id = id;
892
893	if (pdev->id >= MVEBU_NR_UARTS) {
894		dev_err(&pdev->dev, "cannot have more than %d UART ports\n",
895			MVEBU_NR_UARTS);
896		return -EINVAL;
897	}
898
899	port = &mvebu_uart_ports[pdev->id];
900
901	spin_lock_init(&port->lock);
902
903	port->dev        = &pdev->dev;
904	port->type       = PORT_MVEBU;
905	port->ops        = &mvebu_uart_ops;
906	port->regshift   = 0;
907
908	port->fifosize   = 32;
909	port->iotype     = UPIO_MEM32;
910	port->flags      = UPF_FIXED_PORT;
911	port->line       = pdev->id;
912
913	/*
914	 * IRQ number is not stored in this structure because we may have two of
915	 * them per port (RX and TX). Instead, use the driver UART structure
916	 * array so called ->irq[].
917	 */
918	port->irq        = 0;
919	port->irqflags   = 0;
920
921	port->membase = devm_platform_get_and_ioremap_resource(pdev, 0, &reg);
922	if (IS_ERR(port->membase))
923		return PTR_ERR(port->membase);
924	port->mapbase    = reg->start;
925
926	mvuart = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_uart),
927			      GFP_KERNEL);
928	if (!mvuart)
929		return -ENOMEM;
930
931	/* Get controller data depending on the compatible string */
932	mvuart->data = (struct mvebu_uart_driver_data *)match->data;
933	mvuart->port = port;
934
935	port->private_data = mvuart;
936	platform_set_drvdata(pdev, mvuart);
937
938	/* Get fixed clock frequency */
939	mvuart->clk = devm_clk_get(&pdev->dev, NULL);
940	if (IS_ERR(mvuart->clk)) {
941		if (PTR_ERR(mvuart->clk) == -EPROBE_DEFER)
942			return PTR_ERR(mvuart->clk);
943
944		if (IS_EXTENDED(port)) {
945			dev_err(&pdev->dev, "unable to get UART clock\n");
946			return PTR_ERR(mvuart->clk);
947		}
948	} else {
949		if (!clk_prepare_enable(mvuart->clk))
950			port->uartclk = clk_get_rate(mvuart->clk);
951	}
952
953	/* Manage interrupts */
954	if (platform_irq_count(pdev) == 1) {
955		/* Old bindings: no name on the single unamed UART0 IRQ */
956		irq = platform_get_irq(pdev, 0);
957		if (irq < 0)
958			return irq;
959
960		mvuart->irq[UART_IRQ_SUM] = irq;
961	} else {
962		/*
963		 * New bindings: named interrupts (RX, TX) for both UARTS,
964		 * only make use of uart-rx and uart-tx interrupts, do not use
965		 * uart-sum of UART0 port.
966		 */
967		irq = platform_get_irq_byname(pdev, "uart-rx");
968		if (irq < 0)
969			return irq;
970
971		mvuart->irq[UART_RX_IRQ] = irq;
972
973		irq = platform_get_irq_byname(pdev, "uart-tx");
974		if (irq < 0)
975			return irq;
976
977		mvuart->irq[UART_TX_IRQ] = irq;
978	}
979
980	/* UART Soft Reset*/
981	writel(CTRL_SOFT_RST, port->membase + UART_CTRL(port));
982	udelay(1);
983	writel(0, port->membase + UART_CTRL(port));
984
985	return uart_add_one_port(&mvebu_uart_driver, port);
986}
987
988static struct mvebu_uart_driver_data uart_std_driver_data = {
989	.is_ext = false,
990	.regs.rbr = UART_STD_RBR,
991	.regs.tsh = UART_STD_TSH,
992	.regs.ctrl = UART_STD_CTRL1,
993	.regs.intr = UART_STD_CTRL2,
994	.flags.ctrl_tx_rdy_int = CTRL_STD_TX_RDY_INT,
995	.flags.ctrl_rx_rdy_int = CTRL_STD_RX_RDY_INT,
996	.flags.stat_tx_rdy = STAT_STD_TX_RDY,
997	.flags.stat_rx_rdy = STAT_STD_RX_RDY,
998};
999
1000static struct mvebu_uart_driver_data uart_ext_driver_data = {
1001	.is_ext = true,
1002	.regs.rbr = UART_EXT_RBR,
1003	.regs.tsh = UART_EXT_TSH,
1004	.regs.ctrl = UART_EXT_CTRL1,
1005	.regs.intr = UART_EXT_CTRL2,
1006	.flags.ctrl_tx_rdy_int = CTRL_EXT_TX_RDY_INT,
1007	.flags.ctrl_rx_rdy_int = CTRL_EXT_RX_RDY_INT,
1008	.flags.stat_tx_rdy = STAT_EXT_TX_RDY,
1009	.flags.stat_rx_rdy = STAT_EXT_RX_RDY,
1010};
1011
1012/* Match table for of_platform binding */
1013static const struct of_device_id mvebu_uart_of_match[] = {
1014	{
1015		.compatible = "marvell,armada-3700-uart",
1016		.data = (void *)&uart_std_driver_data,
1017	},
1018	{
1019		.compatible = "marvell,armada-3700-uart-ext",
1020		.data = (void *)&uart_ext_driver_data,
1021	},
1022	{}
1023};
1024
1025static struct platform_driver mvebu_uart_platform_driver = {
1026	.probe	= mvebu_uart_probe,
1027	.driver	= {
1028		.name  = "mvebu-uart",
1029		.of_match_table = of_match_ptr(mvebu_uart_of_match),
1030		.suppress_bind_attrs = true,
1031#if defined(CONFIG_PM)
1032		.pm	= &mvebu_uart_pm_ops,
1033#endif /* CONFIG_PM */
1034	},
1035};
1036
1037/* This code is based on clk-fixed-factor.c driver and modified. */
1038
1039struct mvebu_uart_clock {
1040	struct clk_hw clk_hw;
1041	int clock_idx;
1042	u32 pm_context_reg1;
1043	u32 pm_context_reg2;
1044};
1045
1046struct mvebu_uart_clock_base {
1047	struct mvebu_uart_clock clocks[2];
1048	unsigned int parent_rates[5];
1049	int parent_idx;
1050	unsigned int div;
1051	void __iomem *reg1;
1052	void __iomem *reg2;
1053	bool configured;
1054};
1055
1056#define PARENT_CLOCK_XTAL 4
1057
1058#define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw)
1059#define to_uart_clock_base(uart_clock) container_of(uart_clock, \
1060	struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx])
1061
1062static int mvebu_uart_clock_prepare(struct clk_hw *hw)
1063{
1064	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1065	struct mvebu_uart_clock_base *uart_clock_base =
1066						to_uart_clock_base(uart_clock);
1067	unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2;
1068	unsigned int parent_clock_idx, parent_clock_rate;
1069	unsigned long flags;
1070	unsigned int d1, d2;
1071	u64 divisor;
1072	u32 val;
1073
1074	/*
1075	 * This function just reconfigures UART Clock Control register (located
1076	 * in UART1 address space which controls both UART1 and UART2) to
1077	 * selected UART base clock and recalculates current UART1/UART2
1078	 * divisors in their address spaces, so that final baudrate will not be
1079	 * changed by switching UART parent clock. This is required for
1080	 * otherwise kernel's boot log stops working - we need to ensure that
1081	 * UART baudrate does not change during this setup. It is a one time
1082	 * operation, it will execute only once and set `configured` to true,
1083	 * and be skipped on subsequent calls. Because this UART Clock Control
1084	 * register (UART_BRDV) is shared between UART1 baudrate function,
1085	 * UART1 clock selector and UART2 clock selector, every access to
1086	 * UART_BRDV (reg1) needs to be protected by a lock.
1087	 */
1088
1089	spin_lock_irqsave(&mvebu_uart_lock, flags);
1090
1091	if (uart_clock_base->configured) {
1092		spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1093		return 0;
1094	}
1095
1096	parent_clock_idx = uart_clock_base->parent_idx;
1097	parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx];
1098
1099	val = readl(uart_clock_base->reg1);
1100
1101	if (uart_clock_base->div > CLK_TBG_DIV1_MAX) {
1102		d1 = CLK_TBG_DIV1_MAX;
1103		d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX;
1104	} else {
1105		d1 = uart_clock_base->div;
1106		d2 = 1;
1107	}
1108
1109	if (val & CLK_NO_XTAL) {
1110		prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK;
1111		prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) *
1112			    ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK);
1113	} else {
1114		prev_clock_idx = PARENT_CLOCK_XTAL;
1115		prev_d1d2 = 1;
1116	}
1117
1118	/* Note that uart_clock_base->parent_rates[i] may not be available */
1119	prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx];
1120
1121	/* Recalculate UART1 divisor so UART1 baudrate does not change */
1122	if (prev_clock_rate) {
1123		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1124						parent_clock_rate * prev_d1d2,
1125						prev_clock_rate * d1 * d2);
1126		if (divisor < 1)
1127			divisor = 1;
1128		else if (divisor > BRDV_BAUD_MAX)
1129			divisor = BRDV_BAUD_MAX;
1130		val = (val & ~BRDV_BAUD_MASK) | divisor;
1131	}
1132
1133	if (parent_clock_idx != PARENT_CLOCK_XTAL) {
1134		/* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */
1135		val |= CLK_NO_XTAL;
1136		val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT);
1137		val |= d1 << CLK_TBG_DIV1_SHIFT;
1138		val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT);
1139		val |= d2 << CLK_TBG_DIV2_SHIFT;
1140		val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT);
1141		val |= parent_clock_idx << CLK_TBG_SEL_SHIFT;
1142	} else {
1143		/* Use XTAL, TBG bits are then ignored */
1144		val &= ~CLK_NO_XTAL;
1145	}
1146
1147	writel(val, uart_clock_base->reg1);
1148
1149	/* Recalculate UART2 divisor so UART2 baudrate does not change */
1150	if (prev_clock_rate) {
1151		val = readl(uart_clock_base->reg2);
1152		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1153						parent_clock_rate * prev_d1d2,
1154						prev_clock_rate * d1 * d2);
1155		if (divisor < 1)
1156			divisor = 1;
1157		else if (divisor > BRDV_BAUD_MAX)
1158			divisor = BRDV_BAUD_MAX;
1159		val = (val & ~BRDV_BAUD_MASK) | divisor;
1160		writel(val, uart_clock_base->reg2);
1161	}
1162
1163	uart_clock_base->configured = true;
1164
1165	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1166
1167	return 0;
1168}
1169
1170static int mvebu_uart_clock_enable(struct clk_hw *hw)
1171{
1172	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1173	struct mvebu_uart_clock_base *uart_clock_base =
1174						to_uart_clock_base(uart_clock);
1175	unsigned long flags;
1176	u32 val;
1177
1178	spin_lock_irqsave(&mvebu_uart_lock, flags);
1179
1180	val = readl(uart_clock_base->reg1);
1181
1182	if (uart_clock->clock_idx == 0)
1183		val &= ~UART1_CLK_DIS;
1184	else
1185		val &= ~UART2_CLK_DIS;
1186
1187	writel(val, uart_clock_base->reg1);
1188
1189	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1190
1191	return 0;
1192}
1193
1194static void mvebu_uart_clock_disable(struct clk_hw *hw)
1195{
1196	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1197	struct mvebu_uart_clock_base *uart_clock_base =
1198						to_uart_clock_base(uart_clock);
1199	unsigned long flags;
1200	u32 val;
1201
1202	spin_lock_irqsave(&mvebu_uart_lock, flags);
1203
1204	val = readl(uart_clock_base->reg1);
1205
1206	if (uart_clock->clock_idx == 0)
1207		val |= UART1_CLK_DIS;
1208	else
1209		val |= UART2_CLK_DIS;
1210
1211	writel(val, uart_clock_base->reg1);
1212
1213	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1214}
1215
1216static int mvebu_uart_clock_is_enabled(struct clk_hw *hw)
1217{
1218	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1219	struct mvebu_uart_clock_base *uart_clock_base =
1220						to_uart_clock_base(uart_clock);
1221	u32 val;
1222
1223	val = readl(uart_clock_base->reg1);
1224
1225	if (uart_clock->clock_idx == 0)
1226		return !(val & UART1_CLK_DIS);
1227	else
1228		return !(val & UART2_CLK_DIS);
1229}
1230
1231static int mvebu_uart_clock_save_context(struct clk_hw *hw)
1232{
1233	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1234	struct mvebu_uart_clock_base *uart_clock_base =
1235						to_uart_clock_base(uart_clock);
1236	unsigned long flags;
1237
1238	spin_lock_irqsave(&mvebu_uart_lock, flags);
1239	uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1);
1240	uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2);
1241	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1242
1243	return 0;
1244}
1245
1246static void mvebu_uart_clock_restore_context(struct clk_hw *hw)
1247{
1248	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1249	struct mvebu_uart_clock_base *uart_clock_base =
1250						to_uart_clock_base(uart_clock);
1251	unsigned long flags;
1252
1253	spin_lock_irqsave(&mvebu_uart_lock, flags);
1254	writel(uart_clock->pm_context_reg1, uart_clock_base->reg1);
1255	writel(uart_clock->pm_context_reg2, uart_clock_base->reg2);
1256	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1257}
1258
1259static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw,
1260						  unsigned long parent_rate)
1261{
1262	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1263	struct mvebu_uart_clock_base *uart_clock_base =
1264						to_uart_clock_base(uart_clock);
1265
1266	return parent_rate / uart_clock_base->div;
1267}
1268
1269static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate,
1270					unsigned long *parent_rate)
1271{
1272	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1273	struct mvebu_uart_clock_base *uart_clock_base =
1274						to_uart_clock_base(uart_clock);
1275
1276	return *parent_rate / uart_clock_base->div;
1277}
1278
1279static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate,
1280				     unsigned long parent_rate)
1281{
1282	/*
1283	 * We must report success but we can do so unconditionally because
1284	 * mvebu_uart_clock_round_rate returns values that ensure this call is a
1285	 * nop.
1286	 */
1287
1288	return 0;
1289}
1290
1291static const struct clk_ops mvebu_uart_clock_ops = {
1292	.prepare = mvebu_uart_clock_prepare,
1293	.enable = mvebu_uart_clock_enable,
1294	.disable = mvebu_uart_clock_disable,
1295	.is_enabled = mvebu_uart_clock_is_enabled,
1296	.save_context = mvebu_uart_clock_save_context,
1297	.restore_context = mvebu_uart_clock_restore_context,
1298	.round_rate = mvebu_uart_clock_round_rate,
1299	.set_rate = mvebu_uart_clock_set_rate,
1300	.recalc_rate = mvebu_uart_clock_recalc_rate,
1301};
1302
1303static int mvebu_uart_clock_register(struct device *dev,
1304				     struct mvebu_uart_clock *uart_clock,
1305				     const char *name,
1306				     const char *parent_name)
1307{
1308	struct clk_init_data init = { };
1309
1310	uart_clock->clk_hw.init = &init;
1311
1312	init.name = name;
1313	init.ops = &mvebu_uart_clock_ops;
1314	init.flags = 0;
1315	init.num_parents = 1;
1316	init.parent_names = &parent_name;
1317
1318	return devm_clk_hw_register(dev, &uart_clock->clk_hw);
1319}
1320
1321static int mvebu_uart_clock_probe(struct platform_device *pdev)
1322{
1323	static const char *const uart_clk_names[] = { "uart_1", "uart_2" };
1324	static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P",
1325							"TBG-A-S", "TBG-B-S",
1326							"xtal" };
1327	struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)];
1328	struct mvebu_uart_clock_base *uart_clock_base;
1329	struct clk_hw_onecell_data *hw_clk_data;
1330	struct device *dev = &pdev->dev;
1331	int i, parent_clk_idx, ret;
1332	unsigned long div, rate;
1333	struct resource *res;
1334	unsigned int d1, d2;
1335
1336	BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) !=
1337		     ARRAY_SIZE(uart_clock_base->clocks));
1338	BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) !=
1339		     ARRAY_SIZE(uart_clock_base->parent_rates));
1340
1341	uart_clock_base = devm_kzalloc(dev,
1342				       sizeof(*uart_clock_base),
1343				       GFP_KERNEL);
1344	if (!uart_clock_base)
1345		return -ENOMEM;
1346
1347	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1348	if (!res) {
1349		dev_err(dev, "Couldn't get first register\n");
1350		return -ENOENT;
1351	}
1352
1353	/*
1354	 * UART Clock Control register (reg1 / UART_BRDV) is in the address
1355	 * space of UART1 (standard UART variant), controls parent clock and
1356	 * dividers for both UART1 and UART2 and is supplied via DT as the first
1357	 * resource. Therefore use ioremap() rather than ioremap_resource() to
1358	 * avoid conflicts with UART1 driver. Access to UART_BRDV is protected
1359	 * by a lock shared between clock and UART driver.
1360	 */
1361	uart_clock_base->reg1 = devm_ioremap(dev, res->start,
1362					     resource_size(res));
1363	if (!uart_clock_base->reg1)
1364		return -ENOMEM;
1365
1366	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1367	if (!res) {
1368		dev_err(dev, "Couldn't get second register\n");
1369		return -ENOENT;
1370	}
1371
1372	/*
1373	 * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address
1374	 * space of UART2 (extended UART variant), controls only one UART2
1375	 * specific divider and is supplied via DT as second resource.
1376	 * Therefore use ioremap() rather than ioremap_resource() to avoid
1377	 * conflicts with UART2 driver. Access to UART_BRDV is protected by a
1378	 * by lock shared between clock and UART driver.
1379	 */
1380	uart_clock_base->reg2 = devm_ioremap(dev, res->start,
1381					     resource_size(res));
1382	if (!uart_clock_base->reg2)
1383		return -ENOMEM;
1384
1385	hw_clk_data = devm_kzalloc(dev,
1386				   struct_size(hw_clk_data, hws,
1387					       ARRAY_SIZE(uart_clk_names)),
1388				   GFP_KERNEL);
1389	if (!hw_clk_data)
1390		return -ENOMEM;
1391
1392	hw_clk_data->num = ARRAY_SIZE(uart_clk_names);
1393	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1394		hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw;
1395		uart_clock_base->clocks[i].clock_idx = i;
1396	}
1397
1398	parent_clk_idx = -1;
1399
1400	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1401		parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]);
1402		if (IS_ERR(parent_clks[i])) {
1403			if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER)
1404				return -EPROBE_DEFER;
1405			dev_warn(dev, "Couldn't get the parent clock %s: %ld\n",
1406				 parent_clk_names[i], PTR_ERR(parent_clks[i]));
1407			continue;
1408		}
1409
1410		ret = clk_prepare_enable(parent_clks[i]);
1411		if (ret) {
1412			dev_warn(dev, "Couldn't enable parent clock %s: %d\n",
1413				 parent_clk_names[i], ret);
1414			continue;
1415		}
1416		rate = clk_get_rate(parent_clks[i]);
1417		uart_clock_base->parent_rates[i] = rate;
1418
1419		if (i != PARENT_CLOCK_XTAL) {
1420			/*
1421			 * Calculate the smallest TBG d1 and d2 divisors that
1422			 * still can provide 9600 baudrate.
1423			 */
1424			d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1425					  BRDV_BAUD_MAX);
1426			if (d1 < 1)
1427				d1 = 1;
1428			else if (d1 > CLK_TBG_DIV1_MAX)
1429				d1 = CLK_TBG_DIV1_MAX;
1430
1431			d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1432					  BRDV_BAUD_MAX * d1);
1433			if (d2 < 1)
1434				d2 = 1;
1435			else if (d2 > CLK_TBG_DIV2_MAX)
1436				d2 = CLK_TBG_DIV2_MAX;
1437		} else {
1438			/*
1439			 * When UART clock uses XTAL clock as a source then it
1440			 * is not possible to use d1 and d2 divisors.
1441			 */
1442			d1 = d2 = 1;
1443		}
1444
1445		/* Skip clock source which cannot provide 9600 baudrate */
1446		if (rate > 9600 * OSAMP_MAX_DIVISOR * BRDV_BAUD_MAX * d1 * d2)
1447			continue;
1448
1449		/*
1450		 * Choose TBG clock source with the smallest divisors. Use XTAL
1451		 * clock source only in case TBG is not available as XTAL cannot
1452		 * be used for baudrates higher than 230400.
1453		 */
1454		if (parent_clk_idx == -1 ||
1455		    (i != PARENT_CLOCK_XTAL && div > d1 * d2)) {
1456			parent_clk_idx = i;
1457			div = d1 * d2;
1458		}
1459	}
1460
1461	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1462		if (i == parent_clk_idx || IS_ERR(parent_clks[i]))
1463			continue;
1464		clk_disable_unprepare(parent_clks[i]);
1465		devm_clk_put(dev, parent_clks[i]);
1466	}
1467
1468	if (parent_clk_idx == -1) {
1469		dev_err(dev, "No usable parent clock\n");
1470		return -ENOENT;
1471	}
1472
1473	uart_clock_base->parent_idx = parent_clk_idx;
1474	uart_clock_base->div = div;
1475
1476	dev_notice(dev, "Using parent clock %s as base UART clock\n",
1477		   __clk_get_name(parent_clks[parent_clk_idx]));
1478
1479	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1480		ret = mvebu_uart_clock_register(dev,
1481				&uart_clock_base->clocks[i],
1482				uart_clk_names[i],
1483				__clk_get_name(parent_clks[parent_clk_idx]));
1484		if (ret) {
1485			dev_err(dev, "Can't register UART clock %d: %d\n",
1486				i, ret);
1487			return ret;
1488		}
1489	}
1490
1491	return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
1492					   hw_clk_data);
1493}
1494
1495static const struct of_device_id mvebu_uart_clock_of_match[] = {
1496	{ .compatible = "marvell,armada-3700-uart-clock", },
1497	{ }
1498};
1499
1500static struct platform_driver mvebu_uart_clock_platform_driver = {
1501	.probe = mvebu_uart_clock_probe,
1502	.driver		= {
1503		.name	= "mvebu-uart-clock",
1504		.of_match_table = mvebu_uart_clock_of_match,
1505	},
1506};
1507
1508static int __init mvebu_uart_init(void)
1509{
1510	int ret;
1511
1512	ret = uart_register_driver(&mvebu_uart_driver);
1513	if (ret)
1514		return ret;
1515
1516	ret = platform_driver_register(&mvebu_uart_clock_platform_driver);
1517	if (ret) {
1518		uart_unregister_driver(&mvebu_uart_driver);
1519		return ret;
1520	}
1521
1522	ret = platform_driver_register(&mvebu_uart_platform_driver);
1523	if (ret) {
1524		platform_driver_unregister(&mvebu_uart_clock_platform_driver);
1525		uart_unregister_driver(&mvebu_uart_driver);
1526		return ret;
1527	}
1528
1529	return 0;
1530}
1531arch_initcall(mvebu_uart_init);
1532