xref: /kernel/linux/linux-6.6/drivers/tty/serial/imx.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for Motorola/Freescale IMX serial ports
4 *
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 *
7 * Author: Sascha Hauer <sascha@saschahauer.de>
8 * Copyright (C) 2004 Pengutronix
9 */
10
11#include <linux/module.h>
12#include <linux/ioport.h>
13#include <linux/init.h>
14#include <linux/console.h>
15#include <linux/sysrq.h>
16#include <linux/platform_device.h>
17#include <linux/tty.h>
18#include <linux/tty_flip.h>
19#include <linux/serial_core.h>
20#include <linux/serial.h>
21#include <linux/clk.h>
22#include <linux/delay.h>
23#include <linux/ktime.h>
24#include <linux/pinctrl/consumer.h>
25#include <linux/rational.h>
26#include <linux/slab.h>
27#include <linux/of.h>
28#include <linux/io.h>
29#include <linux/dma-mapping.h>
30
31#include <asm/irq.h>
32#include <linux/dma/imx-dma.h>
33
34#include "serial_mctrl_gpio.h"
35
36/* Register definitions */
37#define URXD0 0x0  /* Receiver Register */
38#define URTX0 0x40 /* Transmitter Register */
39#define UCR1  0x80 /* Control Register 1 */
40#define UCR2  0x84 /* Control Register 2 */
41#define UCR3  0x88 /* Control Register 3 */
42#define UCR4  0x8c /* Control Register 4 */
43#define UFCR  0x90 /* FIFO Control Register */
44#define USR1  0x94 /* Status Register 1 */
45#define USR2  0x98 /* Status Register 2 */
46#define UESC  0x9c /* Escape Character Register */
47#define UTIM  0xa0 /* Escape Timer Register */
48#define UBIR  0xa4 /* BRM Incremental Register */
49#define UBMR  0xa8 /* BRM Modulator Register */
50#define UBRC  0xac /* Baud Rate Count Register */
51#define IMX21_ONEMS 0xb0 /* One Millisecond register */
52#define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
53#define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
54
55/* UART Control Register Bit Fields.*/
56#define URXD_DUMMY_READ (1<<16)
57#define URXD_CHARRDY	(1<<15)
58#define URXD_ERR	(1<<14)
59#define URXD_OVRRUN	(1<<13)
60#define URXD_FRMERR	(1<<12)
61#define URXD_BRK	(1<<11)
62#define URXD_PRERR	(1<<10)
63#define URXD_RX_DATA	(0xFF<<0)
64#define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
65#define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
66#define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
67#define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
68#define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
69#define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
70#define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
71#define UCR1_IREN	(1<<7)	/* Infrared interface enable */
72#define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
73#define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
74#define UCR1_SNDBRK	(1<<4)	/* Send break */
75#define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
76#define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
77#define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
78#define UCR1_DOZE	(1<<1)	/* Doze */
79#define UCR1_UARTEN	(1<<0)	/* UART enabled */
80#define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
81#define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
82#define UCR2_CTSC	(1<<13)	/* CTS pin control */
83#define UCR2_CTS	(1<<12)	/* Clear to send */
84#define UCR2_ESCEN	(1<<11)	/* Escape enable */
85#define UCR2_PREN	(1<<8)	/* Parity enable */
86#define UCR2_PROE	(1<<7)	/* Parity odd/even */
87#define UCR2_STPB	(1<<6)	/* Stop */
88#define UCR2_WS		(1<<5)	/* Word size */
89#define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
90#define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
91#define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
92#define UCR2_RXEN	(1<<1)	/* Receiver enabled */
93#define UCR2_SRST	(1<<0)	/* SW reset */
94#define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
95#define UCR3_PARERREN	(1<<12) /* Parity enable */
96#define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
97#define UCR3_DSR	(1<<10) /* Data set ready */
98#define UCR3_DCD	(1<<9)	/* Data carrier detect */
99#define UCR3_RI		(1<<8)	/* Ring indicator */
100#define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
101#define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
102#define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
103#define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
104#define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
105#define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
106#define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
107#define UCR3_BPEN	(1<<0)	/* Preset registers enable */
108#define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
109#define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
110#define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
111#define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
112#define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
113#define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
114#define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
115#define UCR4_IRSC	(1<<5)	/* IR special case */
116#define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
117#define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
118#define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
119#define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
120#define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
121#define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
122#define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
123#define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
124#define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
125#define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
126#define USR1_RTSS	(1<<14) /* RTS pin status */
127#define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
128#define USR1_RTSD	(1<<12) /* RTS delta */
129#define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
130#define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
131#define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
132#define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
133#define USR1_DTRD	(1<<7)	 /* DTR Delta */
134#define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
135#define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
136#define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
137#define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
138#define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
139#define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
140#define USR2_IDLE	 (1<<12) /* Idle condition */
141#define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
142#define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
143#define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
144#define USR2_WAKE	 (1<<7)	 /* Wake */
145#define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
146#define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
147#define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
148#define USR2_BRCD	 (1<<2)	 /* Break condition */
149#define USR2_ORE	(1<<1)	 /* Overrun error */
150#define USR2_RDR	(1<<0)	 /* Recv data ready */
151#define UTS_FRCPERR	(1<<13) /* Force parity error */
152#define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
153#define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
154#define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
155#define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
156#define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
157#define UTS_SOFTRST	 (1<<0)	 /* Software reset */
158
159/* We've been assigned a range on the "Low-density serial ports" major */
160#define SERIAL_IMX_MAJOR	207
161#define MINOR_START		16
162#define DEV_NAME		"ttymxc"
163
164/*
165 * This determines how often we check the modem status signals
166 * for any change.  They generally aren't connected to an IRQ
167 * so we have to poll them.  We also check immediately before
168 * filling the TX fifo incase CTS has been dropped.
169 */
170#define MCTRL_TIMEOUT	(250*HZ/1000)
171
172#define DRIVER_NAME "IMX-uart"
173
174#define UART_NR 8
175
176/* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
177enum imx_uart_type {
178	IMX1_UART,
179	IMX21_UART,
180	IMX53_UART,
181	IMX6Q_UART,
182};
183
184/* device type dependent stuff */
185struct imx_uart_data {
186	unsigned uts_reg;
187	enum imx_uart_type devtype;
188};
189
190enum imx_tx_state {
191	OFF,
192	WAIT_AFTER_RTS,
193	SEND,
194	WAIT_AFTER_SEND,
195};
196
197struct imx_port {
198	struct uart_port	port;
199	struct timer_list	timer;
200	unsigned int		old_status;
201	unsigned int		have_rtscts:1;
202	unsigned int		have_rtsgpio:1;
203	unsigned int		dte_mode:1;
204	unsigned int		inverted_tx:1;
205	unsigned int		inverted_rx:1;
206	struct clk		*clk_ipg;
207	struct clk		*clk_per;
208	const struct imx_uart_data *devdata;
209
210	struct mctrl_gpios *gpios;
211
212	/* counter to stop 0xff flood */
213	int idle_counter;
214
215	/* DMA fields */
216	unsigned int		dma_is_enabled:1;
217	unsigned int		dma_is_rxing:1;
218	unsigned int		dma_is_txing:1;
219	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
220	struct scatterlist	rx_sgl, tx_sgl[2];
221	void			*rx_buf;
222	struct circ_buf		rx_ring;
223	unsigned int		rx_buf_size;
224	unsigned int		rx_period_length;
225	unsigned int		rx_periods;
226	dma_cookie_t		rx_cookie;
227	unsigned int		tx_bytes;
228	unsigned int		dma_tx_nents;
229	unsigned int            saved_reg[10];
230	bool			context_saved;
231
232	enum imx_tx_state	tx_state;
233	struct hrtimer		trigger_start_tx;
234	struct hrtimer		trigger_stop_tx;
235};
236
237struct imx_port_ucrs {
238	unsigned int	ucr1;
239	unsigned int	ucr2;
240	unsigned int	ucr3;
241};
242
243static struct imx_uart_data imx_uart_devdata[] = {
244	[IMX1_UART] = {
245		.uts_reg = IMX1_UTS,
246		.devtype = IMX1_UART,
247	},
248	[IMX21_UART] = {
249		.uts_reg = IMX21_UTS,
250		.devtype = IMX21_UART,
251	},
252	[IMX53_UART] = {
253		.uts_reg = IMX21_UTS,
254		.devtype = IMX53_UART,
255	},
256	[IMX6Q_UART] = {
257		.uts_reg = IMX21_UTS,
258		.devtype = IMX6Q_UART,
259	},
260};
261
262static const struct of_device_id imx_uart_dt_ids[] = {
263	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
264	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
265	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
266	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
267	{ /* sentinel */ }
268};
269MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
270
271static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
272{
273	writel(val, sport->port.membase + offset);
274}
275
276static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset)
277{
278	return readl(sport->port.membase + offset);
279}
280
281static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
282{
283	return sport->devdata->uts_reg;
284}
285
286static inline int imx_uart_is_imx1(struct imx_port *sport)
287{
288	return sport->devdata->devtype == IMX1_UART;
289}
290
291/*
292 * Save and restore functions for UCR1, UCR2 and UCR3 registers
293 */
294#if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
295static void imx_uart_ucrs_save(struct imx_port *sport,
296			       struct imx_port_ucrs *ucr)
297{
298	/* save control registers */
299	ucr->ucr1 = imx_uart_readl(sport, UCR1);
300	ucr->ucr2 = imx_uart_readl(sport, UCR2);
301	ucr->ucr3 = imx_uart_readl(sport, UCR3);
302}
303
304static void imx_uart_ucrs_restore(struct imx_port *sport,
305				  struct imx_port_ucrs *ucr)
306{
307	/* restore control registers */
308	imx_uart_writel(sport, ucr->ucr1, UCR1);
309	imx_uart_writel(sport, ucr->ucr2, UCR2);
310	imx_uart_writel(sport, ucr->ucr3, UCR3);
311}
312#endif
313
314/* called with port.lock taken and irqs caller dependent */
315static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
316{
317	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
318
319	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
320}
321
322/* called with port.lock taken and irqs caller dependent */
323static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
324{
325	*ucr2 &= ~UCR2_CTSC;
326	*ucr2 |= UCR2_CTS;
327
328	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
329}
330
331static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
332{
333       hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
334}
335
336/* called with port.lock taken and irqs off */
337static void imx_uart_soft_reset(struct imx_port *sport)
338{
339	int i = 10;
340	u32 ucr2, ubir, ubmr, uts;
341
342	/*
343	 * According to the Reference Manual description of the UART SRST bit:
344	 *
345	 * "Reset the transmit and receive state machines,
346	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
347	 * and UTS[6-3]".
348	 *
349	 * We don't need to restore the old values from USR1, USR2, URXD and
350	 * UTXD. UBRC is read only, so only save/restore the other three
351	 * registers.
352	 */
353	ubir = imx_uart_readl(sport, UBIR);
354	ubmr = imx_uart_readl(sport, UBMR);
355	uts = imx_uart_readl(sport, IMX21_UTS);
356
357	ucr2 = imx_uart_readl(sport, UCR2);
358	imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2);
359
360	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
361		udelay(1);
362
363	/* Restore the registers */
364	imx_uart_writel(sport, ubir, UBIR);
365	imx_uart_writel(sport, ubmr, UBMR);
366	imx_uart_writel(sport, uts, IMX21_UTS);
367
368	sport->idle_counter = 0;
369}
370
371static void imx_uart_disable_loopback_rs485(struct imx_port *sport)
372{
373	unsigned int uts;
374
375	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
376	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
377	uts &= ~UTS_LOOP;
378	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
379}
380
381/* called with port.lock taken and irqs off */
382static void imx_uart_start_rx(struct uart_port *port)
383{
384	struct imx_port *sport = (struct imx_port *)port;
385	unsigned int ucr1, ucr2;
386
387	ucr1 = imx_uart_readl(sport, UCR1);
388	ucr2 = imx_uart_readl(sport, UCR2);
389
390	ucr2 |= UCR2_RXEN;
391
392	if (sport->dma_is_enabled) {
393		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
394	} else {
395		ucr1 |= UCR1_RRDYEN;
396		ucr2 |= UCR2_ATEN;
397	}
398
399	/* Write UCR2 first as it includes RXEN */
400	imx_uart_writel(sport, ucr2, UCR2);
401	imx_uart_writel(sport, ucr1, UCR1);
402	imx_uart_disable_loopback_rs485(sport);
403}
404
405/* called with port.lock taken and irqs off */
406static void imx_uart_stop_tx(struct uart_port *port)
407{
408	struct imx_port *sport = (struct imx_port *)port;
409	u32 ucr1, ucr4, usr2;
410
411	if (sport->tx_state == OFF)
412		return;
413
414	/*
415	 * We are maybe in the SMP context, so if the DMA TX thread is running
416	 * on other cpu, we have to wait for it to finish.
417	 */
418	if (sport->dma_is_txing)
419		return;
420
421	ucr1 = imx_uart_readl(sport, UCR1);
422	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
423
424	ucr4 = imx_uart_readl(sport, UCR4);
425	usr2 = imx_uart_readl(sport, USR2);
426	if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) {
427		/* The shifter is still busy, so retry once TC triggers */
428		return;
429	}
430
431	ucr4 &= ~UCR4_TCEN;
432	imx_uart_writel(sport, ucr4, UCR4);
433
434	/* in rs485 mode disable transmitter */
435	if (port->rs485.flags & SER_RS485_ENABLED) {
436		if (sport->tx_state == SEND) {
437			sport->tx_state = WAIT_AFTER_SEND;
438
439			if (port->rs485.delay_rts_after_send > 0) {
440				start_hrtimer_ms(&sport->trigger_stop_tx,
441					 port->rs485.delay_rts_after_send);
442				return;
443			}
444
445			/* continue without any delay */
446		}
447
448		if (sport->tx_state == WAIT_AFTER_RTS ||
449		    sport->tx_state == WAIT_AFTER_SEND) {
450			u32 ucr2;
451
452			hrtimer_try_to_cancel(&sport->trigger_start_tx);
453
454			ucr2 = imx_uart_readl(sport, UCR2);
455			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
456				imx_uart_rts_active(sport, &ucr2);
457			else
458				imx_uart_rts_inactive(sport, &ucr2);
459			imx_uart_writel(sport, ucr2, UCR2);
460
461			if (!port->rs485_rx_during_tx_gpio)
462				imx_uart_start_rx(port);
463
464			sport->tx_state = OFF;
465		}
466	} else {
467		sport->tx_state = OFF;
468	}
469}
470
471/* called with port.lock taken and irqs off */
472static void imx_uart_stop_rx(struct uart_port *port)
473{
474	struct imx_port *sport = (struct imx_port *)port;
475	u32 ucr1, ucr2, ucr4, uts;
476
477	ucr1 = imx_uart_readl(sport, UCR1);
478	ucr2 = imx_uart_readl(sport, UCR2);
479	ucr4 = imx_uart_readl(sport, UCR4);
480
481	if (sport->dma_is_enabled) {
482		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
483	} else {
484		ucr1 &= ~UCR1_RRDYEN;
485		ucr2 &= ~UCR2_ATEN;
486		ucr4 &= ~UCR4_OREN;
487	}
488	imx_uart_writel(sport, ucr1, UCR1);
489	imx_uart_writel(sport, ucr4, UCR4);
490
491	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
492	if (port->rs485.flags & SER_RS485_ENABLED &&
493	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
494	    sport->have_rtscts && !sport->have_rtsgpio) {
495		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
496		uts |= UTS_LOOP;
497		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
498		ucr2 |= UCR2_RXEN;
499	} else {
500		ucr2 &= ~UCR2_RXEN;
501	}
502
503	imx_uart_writel(sport, ucr2, UCR2);
504}
505
506/* called with port.lock taken and irqs off */
507static void imx_uart_enable_ms(struct uart_port *port)
508{
509	struct imx_port *sport = (struct imx_port *)port;
510
511	mod_timer(&sport->timer, jiffies);
512
513	mctrl_gpio_enable_ms(sport->gpios);
514}
515
516static void imx_uart_dma_tx(struct imx_port *sport);
517
518/* called with port.lock taken and irqs off */
519static inline void imx_uart_transmit_buffer(struct imx_port *sport)
520{
521	struct circ_buf *xmit = &sport->port.state->xmit;
522
523	if (sport->port.x_char) {
524		/* Send next char */
525		imx_uart_writel(sport, sport->port.x_char, URTX0);
526		sport->port.icount.tx++;
527		sport->port.x_char = 0;
528		return;
529	}
530
531	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
532		imx_uart_stop_tx(&sport->port);
533		return;
534	}
535
536	if (sport->dma_is_enabled) {
537		u32 ucr1;
538		/*
539		 * We've just sent a X-char Ensure the TX DMA is enabled
540		 * and the TX IRQ is disabled.
541		 **/
542		ucr1 = imx_uart_readl(sport, UCR1);
543		ucr1 &= ~UCR1_TRDYEN;
544		if (sport->dma_is_txing) {
545			ucr1 |= UCR1_TXDMAEN;
546			imx_uart_writel(sport, ucr1, UCR1);
547		} else {
548			imx_uart_writel(sport, ucr1, UCR1);
549			imx_uart_dma_tx(sport);
550		}
551
552		return;
553	}
554
555	while (!uart_circ_empty(xmit) &&
556	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
557		/* send xmit->buf[xmit->tail]
558		 * out the port here */
559		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
560		uart_xmit_advance(&sport->port, 1);
561	}
562
563	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
564		uart_write_wakeup(&sport->port);
565
566	if (uart_circ_empty(xmit))
567		imx_uart_stop_tx(&sport->port);
568}
569
570static void imx_uart_dma_tx_callback(void *data)
571{
572	struct imx_port *sport = data;
573	struct scatterlist *sgl = &sport->tx_sgl[0];
574	struct circ_buf *xmit = &sport->port.state->xmit;
575	unsigned long flags;
576	u32 ucr1;
577
578	spin_lock_irqsave(&sport->port.lock, flags);
579
580	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
581
582	ucr1 = imx_uart_readl(sport, UCR1);
583	ucr1 &= ~UCR1_TXDMAEN;
584	imx_uart_writel(sport, ucr1, UCR1);
585
586	uart_xmit_advance(&sport->port, sport->tx_bytes);
587
588	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
589
590	sport->dma_is_txing = 0;
591
592	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
593		uart_write_wakeup(&sport->port);
594
595	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
596		imx_uart_dma_tx(sport);
597	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
598		u32 ucr4 = imx_uart_readl(sport, UCR4);
599		ucr4 |= UCR4_TCEN;
600		imx_uart_writel(sport, ucr4, UCR4);
601	}
602
603	spin_unlock_irqrestore(&sport->port.lock, flags);
604}
605
606/* called with port.lock taken and irqs off */
607static void imx_uart_dma_tx(struct imx_port *sport)
608{
609	struct circ_buf *xmit = &sport->port.state->xmit;
610	struct scatterlist *sgl = sport->tx_sgl;
611	struct dma_async_tx_descriptor *desc;
612	struct dma_chan	*chan = sport->dma_chan_tx;
613	struct device *dev = sport->port.dev;
614	u32 ucr1, ucr4;
615	int ret;
616
617	if (sport->dma_is_txing)
618		return;
619
620	ucr4 = imx_uart_readl(sport, UCR4);
621	ucr4 &= ~UCR4_TCEN;
622	imx_uart_writel(sport, ucr4, UCR4);
623
624	sport->tx_bytes = uart_circ_chars_pending(xmit);
625
626	if (xmit->tail < xmit->head || xmit->head == 0) {
627		sport->dma_tx_nents = 1;
628		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
629	} else {
630		sport->dma_tx_nents = 2;
631		sg_init_table(sgl, 2);
632		sg_set_buf(sgl, xmit->buf + xmit->tail,
633				UART_XMIT_SIZE - xmit->tail);
634		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
635	}
636
637	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
638	if (ret == 0) {
639		dev_err(dev, "DMA mapping error for TX.\n");
640		return;
641	}
642	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
643					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
644	if (!desc) {
645		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
646			     DMA_TO_DEVICE);
647		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
648		return;
649	}
650	desc->callback = imx_uart_dma_tx_callback;
651	desc->callback_param = sport;
652
653	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
654			uart_circ_chars_pending(xmit));
655
656	ucr1 = imx_uart_readl(sport, UCR1);
657	ucr1 |= UCR1_TXDMAEN;
658	imx_uart_writel(sport, ucr1, UCR1);
659
660	/* fire it */
661	sport->dma_is_txing = 1;
662	dmaengine_submit(desc);
663	dma_async_issue_pending(chan);
664	return;
665}
666
667/* called with port.lock taken and irqs off */
668static void imx_uart_start_tx(struct uart_port *port)
669{
670	struct imx_port *sport = (struct imx_port *)port;
671	u32 ucr1;
672
673	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
674		return;
675
676	/*
677	 * We cannot simply do nothing here if sport->tx_state == SEND already
678	 * because UCR1_TXMPTYEN might already have been cleared in
679	 * imx_uart_stop_tx(), but tx_state is still SEND.
680	 */
681
682	if (port->rs485.flags & SER_RS485_ENABLED) {
683		if (sport->tx_state == OFF) {
684			u32 ucr2 = imx_uart_readl(sport, UCR2);
685			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
686				imx_uart_rts_active(sport, &ucr2);
687			else
688				imx_uart_rts_inactive(sport, &ucr2);
689			imx_uart_writel(sport, ucr2, UCR2);
690
691			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) &&
692			    !port->rs485_rx_during_tx_gpio)
693				imx_uart_stop_rx(port);
694
695			sport->tx_state = WAIT_AFTER_RTS;
696
697			if (port->rs485.delay_rts_before_send > 0) {
698				start_hrtimer_ms(&sport->trigger_start_tx,
699					 port->rs485.delay_rts_before_send);
700				return;
701			}
702
703			/* continue without any delay */
704		}
705
706		if (sport->tx_state == WAIT_AFTER_SEND
707		    || sport->tx_state == WAIT_AFTER_RTS) {
708
709			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
710
711			/*
712			 * Enable transmitter and shifter empty irq only if DMA
713			 * is off.  In the DMA case this is done in the
714			 * tx-callback.
715			 */
716			if (!sport->dma_is_enabled) {
717				u32 ucr4 = imx_uart_readl(sport, UCR4);
718				ucr4 |= UCR4_TCEN;
719				imx_uart_writel(sport, ucr4, UCR4);
720			}
721
722			sport->tx_state = SEND;
723		}
724	} else {
725		sport->tx_state = SEND;
726	}
727
728	if (!sport->dma_is_enabled) {
729		ucr1 = imx_uart_readl(sport, UCR1);
730		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
731	}
732
733	if (sport->dma_is_enabled) {
734		if (sport->port.x_char) {
735			/* We have X-char to send, so enable TX IRQ and
736			 * disable TX DMA to let TX interrupt to send X-char */
737			ucr1 = imx_uart_readl(sport, UCR1);
738			ucr1 &= ~UCR1_TXDMAEN;
739			ucr1 |= UCR1_TRDYEN;
740			imx_uart_writel(sport, ucr1, UCR1);
741			return;
742		}
743
744		if (!uart_circ_empty(&port->state->xmit) &&
745		    !uart_tx_stopped(port))
746			imx_uart_dma_tx(sport);
747		return;
748	}
749}
750
751static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
752{
753	struct imx_port *sport = dev_id;
754	u32 usr1;
755
756	imx_uart_writel(sport, USR1_RTSD, USR1);
757	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
758	uart_handle_cts_change(&sport->port, usr1);
759	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
760
761	return IRQ_HANDLED;
762}
763
764static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
765{
766	struct imx_port *sport = dev_id;
767	irqreturn_t ret;
768
769	spin_lock(&sport->port.lock);
770
771	ret = __imx_uart_rtsint(irq, dev_id);
772
773	spin_unlock(&sport->port.lock);
774
775	return ret;
776}
777
778static irqreturn_t imx_uart_txint(int irq, void *dev_id)
779{
780	struct imx_port *sport = dev_id;
781
782	spin_lock(&sport->port.lock);
783	imx_uart_transmit_buffer(sport);
784	spin_unlock(&sport->port.lock);
785	return IRQ_HANDLED;
786}
787
788/* Check if hardware Rx flood is in progress, and issue soft reset to stop it.
789 * This is to be called from Rx ISRs only when some bytes were actually
790 * received.
791 *
792 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600
793 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of
794 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART
795 * that is terminated by any activity on RxD line, or could be stopped by
796 * issuing soft reset to the UART (just stop/start of RX does not help). Note
797 * that what we do here is sending isolated start bit about 2.4 times shorter
798 * than it is to be on UART configured baud rate.
799 */
800static void imx_uart_check_flood(struct imx_port *sport, u32 usr2)
801{
802	/* To detect hardware 0xff flood we monitor RxD line between RX
803	 * interrupts to isolate "receiving" of char(s) with no activity
804	 * on RxD line, that'd never happen on actual data transfers.
805	 *
806	 * We use USR2_WAKE bit to check for activity on RxD line, but we have a
807	 * race here if we clear USR2_WAKE when receiving of a char is in
808	 * progress, so we might get RX interrupt later with USR2_WAKE bit
809	 * cleared. Note though that as we don't try to clear USR2_WAKE when we
810	 * detected no activity, this race may hide actual activity only once.
811	 *
812	 * Yet another case where receive interrupt may occur without RxD
813	 * activity is expiration of aging timer, so we consider this as well.
814	 *
815	 * We use 'idle_counter' to ensure that we got at least so many RX
816	 * interrupts without any detected activity on RxD line. 2 cases
817	 * described plus 1 to be on the safe side gives us a margin of 3,
818	 * below. In practice I was not able to produce a false positive to
819	 * induce soft reset at regular data transfers even using 1 as the
820	 * margin, so 3 is actually very strong.
821	 *
822	 * We count interrupts, not chars in 'idle-counter' for simplicity.
823	 */
824
825	if (usr2 & USR2_WAKE) {
826		imx_uart_writel(sport, USR2_WAKE, USR2);
827		sport->idle_counter = 0;
828	} else if (++sport->idle_counter > 3) {
829		dev_warn(sport->port.dev, "RX flood detected: soft reset.");
830		imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */
831	}
832}
833
834static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
835{
836	struct imx_port *sport = dev_id;
837	struct tty_port *port = &sport->port.state->port;
838	u32 usr2, rx;
839
840	/* If we received something, check for 0xff flood */
841	usr2 = imx_uart_readl(sport, USR2);
842	if (usr2 & USR2_RDR)
843		imx_uart_check_flood(sport, usr2);
844
845	while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) {
846		unsigned int flg = TTY_NORMAL;
847		sport->port.icount.rx++;
848
849		if (unlikely(rx & URXD_ERR)) {
850			if (rx & URXD_BRK) {
851				sport->port.icount.brk++;
852				if (uart_handle_break(&sport->port))
853					continue;
854			}
855			else if (rx & URXD_PRERR)
856				sport->port.icount.parity++;
857			else if (rx & URXD_FRMERR)
858				sport->port.icount.frame++;
859			if (rx & URXD_OVRRUN)
860				sport->port.icount.overrun++;
861
862			if (rx & sport->port.ignore_status_mask)
863				continue;
864
865			rx &= (sport->port.read_status_mask | 0xFF);
866
867			if (rx & URXD_BRK)
868				flg = TTY_BREAK;
869			else if (rx & URXD_PRERR)
870				flg = TTY_PARITY;
871			else if (rx & URXD_FRMERR)
872				flg = TTY_FRAME;
873			if (rx & URXD_OVRRUN)
874				flg = TTY_OVERRUN;
875
876			sport->port.sysrq = 0;
877		} else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) {
878			continue;
879		}
880
881		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
882			continue;
883
884		if (tty_insert_flip_char(port, rx, flg) == 0)
885			sport->port.icount.buf_overrun++;
886	}
887
888	tty_flip_buffer_push(port);
889
890	return IRQ_HANDLED;
891}
892
893static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
894{
895	struct imx_port *sport = dev_id;
896	irqreturn_t ret;
897
898	spin_lock(&sport->port.lock);
899
900	ret = __imx_uart_rxint(irq, dev_id);
901
902	spin_unlock(&sport->port.lock);
903
904	return ret;
905}
906
907static void imx_uart_clear_rx_errors(struct imx_port *sport);
908
909/*
910 * We have a modem side uart, so the meanings of RTS and CTS are inverted.
911 */
912static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
913{
914	unsigned int tmp = TIOCM_DSR;
915	unsigned usr1 = imx_uart_readl(sport, USR1);
916	unsigned usr2 = imx_uart_readl(sport, USR2);
917
918	if (usr1 & USR1_RTSS)
919		tmp |= TIOCM_CTS;
920
921	/* in DCE mode DCDIN is always 0 */
922	if (!(usr2 & USR2_DCDIN))
923		tmp |= TIOCM_CAR;
924
925	if (sport->dte_mode)
926		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
927			tmp |= TIOCM_RI;
928
929	return tmp;
930}
931
932/*
933 * Handle any change of modem status signal since we were last called.
934 */
935static void imx_uart_mctrl_check(struct imx_port *sport)
936{
937	unsigned int status, changed;
938
939	status = imx_uart_get_hwmctrl(sport);
940	changed = status ^ sport->old_status;
941
942	if (changed == 0)
943		return;
944
945	sport->old_status = status;
946
947	if (changed & TIOCM_RI && status & TIOCM_RI)
948		sport->port.icount.rng++;
949	if (changed & TIOCM_DSR)
950		sport->port.icount.dsr++;
951	if (changed & TIOCM_CAR)
952		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
953	if (changed & TIOCM_CTS)
954		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
955
956	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
957}
958
959static irqreturn_t imx_uart_int(int irq, void *dev_id)
960{
961	struct imx_port *sport = dev_id;
962	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
963	irqreturn_t ret = IRQ_NONE;
964
965	spin_lock(&sport->port.lock);
966
967	usr1 = imx_uart_readl(sport, USR1);
968	usr2 = imx_uart_readl(sport, USR2);
969	ucr1 = imx_uart_readl(sport, UCR1);
970	ucr2 = imx_uart_readl(sport, UCR2);
971	ucr3 = imx_uart_readl(sport, UCR3);
972	ucr4 = imx_uart_readl(sport, UCR4);
973
974	/*
975	 * Even if a condition is true that can trigger an irq only handle it if
976	 * the respective irq source is enabled. This prevents some undesired
977	 * actions, for example if a character that sits in the RX FIFO and that
978	 * should be fetched via DMA is tried to be fetched using PIO. Or the
979	 * receiver is currently off and so reading from URXD0 results in an
980	 * exception. So just mask the (raw) status bits for disabled irqs.
981	 */
982	if ((ucr1 & UCR1_RRDYEN) == 0)
983		usr1 &= ~USR1_RRDY;
984	if ((ucr2 & UCR2_ATEN) == 0)
985		usr1 &= ~USR1_AGTIM;
986	if ((ucr1 & UCR1_TRDYEN) == 0)
987		usr1 &= ~USR1_TRDY;
988	if ((ucr4 & UCR4_TCEN) == 0)
989		usr2 &= ~USR2_TXDC;
990	if ((ucr3 & UCR3_DTRDEN) == 0)
991		usr1 &= ~USR1_DTRD;
992	if ((ucr1 & UCR1_RTSDEN) == 0)
993		usr1 &= ~USR1_RTSD;
994	if ((ucr3 & UCR3_AWAKEN) == 0)
995		usr1 &= ~USR1_AWAKE;
996	if ((ucr4 & UCR4_OREN) == 0)
997		usr2 &= ~USR2_ORE;
998
999	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
1000		imx_uart_writel(sport, USR1_AGTIM, USR1);
1001
1002		__imx_uart_rxint(irq, dev_id);
1003		ret = IRQ_HANDLED;
1004	}
1005
1006	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
1007		imx_uart_transmit_buffer(sport);
1008		ret = IRQ_HANDLED;
1009	}
1010
1011	if (usr1 & USR1_DTRD) {
1012		imx_uart_writel(sport, USR1_DTRD, USR1);
1013
1014		imx_uart_mctrl_check(sport);
1015
1016		ret = IRQ_HANDLED;
1017	}
1018
1019	if (usr1 & USR1_RTSD) {
1020		__imx_uart_rtsint(irq, dev_id);
1021		ret = IRQ_HANDLED;
1022	}
1023
1024	if (usr1 & USR1_AWAKE) {
1025		imx_uart_writel(sport, USR1_AWAKE, USR1);
1026		ret = IRQ_HANDLED;
1027	}
1028
1029	if (usr2 & USR2_ORE) {
1030		sport->port.icount.overrun++;
1031		imx_uart_writel(sport, USR2_ORE, USR2);
1032		ret = IRQ_HANDLED;
1033	}
1034
1035	spin_unlock(&sport->port.lock);
1036
1037	return ret;
1038}
1039
1040/*
1041 * Return TIOCSER_TEMT when transmitter is not busy.
1042 */
1043static unsigned int imx_uart_tx_empty(struct uart_port *port)
1044{
1045	struct imx_port *sport = (struct imx_port *)port;
1046	unsigned int ret;
1047
1048	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1049
1050	/* If the TX DMA is working, return 0. */
1051	if (sport->dma_is_txing)
1052		ret = 0;
1053
1054	return ret;
1055}
1056
1057/* called with port.lock taken and irqs off */
1058static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1059{
1060	struct imx_port *sport = (struct imx_port *)port;
1061	unsigned int ret = imx_uart_get_hwmctrl(sport);
1062
1063	mctrl_gpio_get(sport->gpios, &ret);
1064
1065	return ret;
1066}
1067
1068/* called with port.lock taken and irqs off */
1069static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1070{
1071	struct imx_port *sport = (struct imx_port *)port;
1072	u32 ucr3, uts;
1073
1074	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1075		u32 ucr2;
1076
1077		/*
1078		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1079		 * setting if RTS is raised.
1080		 */
1081		ucr2 = imx_uart_readl(sport, UCR2);
1082		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1083		if (mctrl & TIOCM_RTS) {
1084			ucr2 |= UCR2_CTS;
1085			/*
1086			 * UCR2_IRTS is unset if and only if the port is
1087			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1088			 * to get the state to restore to.
1089			 */
1090			if (!(ucr2 & UCR2_IRTS))
1091				ucr2 |= UCR2_CTSC;
1092		}
1093		imx_uart_writel(sport, ucr2, UCR2);
1094	}
1095
1096	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1097	if (!(mctrl & TIOCM_DTR))
1098		ucr3 |= UCR3_DSR;
1099	imx_uart_writel(sport, ucr3, UCR3);
1100
1101	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1102	if (mctrl & TIOCM_LOOP)
1103		uts |= UTS_LOOP;
1104	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1105
1106	mctrl_gpio_set(sport->gpios, mctrl);
1107}
1108
1109/*
1110 * Interrupts always disabled.
1111 */
1112static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1113{
1114	struct imx_port *sport = (struct imx_port *)port;
1115	unsigned long flags;
1116	u32 ucr1;
1117
1118	spin_lock_irqsave(&sport->port.lock, flags);
1119
1120	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1121
1122	if (break_state != 0)
1123		ucr1 |= UCR1_SNDBRK;
1124
1125	imx_uart_writel(sport, ucr1, UCR1);
1126
1127	spin_unlock_irqrestore(&sport->port.lock, flags);
1128}
1129
1130/*
1131 * This is our per-port timeout handler, for checking the
1132 * modem status signals.
1133 */
1134static void imx_uart_timeout(struct timer_list *t)
1135{
1136	struct imx_port *sport = from_timer(sport, t, timer);
1137	unsigned long flags;
1138
1139	if (sport->port.state) {
1140		spin_lock_irqsave(&sport->port.lock, flags);
1141		imx_uart_mctrl_check(sport);
1142		spin_unlock_irqrestore(&sport->port.lock, flags);
1143
1144		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1145	}
1146}
1147
1148/*
1149 * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1150 *   [1] the RX DMA buffer is full.
1151 *   [2] the aging timer expires
1152 *
1153 * Condition [2] is triggered when a character has been sitting in the FIFO
1154 * for at least 8 byte durations.
1155 */
1156static void imx_uart_dma_rx_callback(void *data)
1157{
1158	struct imx_port *sport = data;
1159	struct dma_chan	*chan = sport->dma_chan_rx;
1160	struct scatterlist *sgl = &sport->rx_sgl;
1161	struct tty_port *port = &sport->port.state->port;
1162	struct dma_tx_state state;
1163	struct circ_buf *rx_ring = &sport->rx_ring;
1164	enum dma_status status;
1165	unsigned int w_bytes = 0;
1166	unsigned int r_bytes;
1167	unsigned int bd_size;
1168
1169	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1170
1171	if (status == DMA_ERROR) {
1172		spin_lock(&sport->port.lock);
1173		imx_uart_clear_rx_errors(sport);
1174		spin_unlock(&sport->port.lock);
1175		return;
1176	}
1177
1178	/*
1179	 * The state-residue variable represents the empty space
1180	 * relative to the entire buffer. Taking this in consideration
1181	 * the head is always calculated base on the buffer total
1182	 * length - DMA transaction residue. The UART script from the
1183	 * SDMA firmware will jump to the next buffer descriptor,
1184	 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1185	 * Taking this in consideration the tail is always at the
1186	 * beginning of the buffer descriptor that contains the head.
1187	 */
1188
1189	/* Calculate the head */
1190	rx_ring->head = sg_dma_len(sgl) - state.residue;
1191
1192	/* Calculate the tail. */
1193	bd_size = sg_dma_len(sgl) / sport->rx_periods;
1194	rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1195
1196	if (rx_ring->head <= sg_dma_len(sgl) &&
1197	    rx_ring->head > rx_ring->tail) {
1198
1199		/* Move data from tail to head */
1200		r_bytes = rx_ring->head - rx_ring->tail;
1201
1202		/* If we received something, check for 0xff flood */
1203		spin_lock(&sport->port.lock);
1204		imx_uart_check_flood(sport, imx_uart_readl(sport, USR2));
1205		spin_unlock(&sport->port.lock);
1206
1207		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1208
1209			/* CPU claims ownership of RX DMA buffer */
1210			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1211					    DMA_FROM_DEVICE);
1212
1213			w_bytes = tty_insert_flip_string(port,
1214							 sport->rx_buf + rx_ring->tail, r_bytes);
1215
1216			/* UART retrieves ownership of RX DMA buffer */
1217			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1218					       DMA_FROM_DEVICE);
1219
1220			if (w_bytes != r_bytes)
1221				sport->port.icount.buf_overrun++;
1222
1223			sport->port.icount.rx += w_bytes;
1224		}
1225	} else	{
1226		WARN_ON(rx_ring->head > sg_dma_len(sgl));
1227		WARN_ON(rx_ring->head <= rx_ring->tail);
1228	}
1229
1230	if (w_bytes) {
1231		tty_flip_buffer_push(port);
1232		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1233	}
1234}
1235
1236static int imx_uart_start_rx_dma(struct imx_port *sport)
1237{
1238	struct scatterlist *sgl = &sport->rx_sgl;
1239	struct dma_chan	*chan = sport->dma_chan_rx;
1240	struct device *dev = sport->port.dev;
1241	struct dma_async_tx_descriptor *desc;
1242	int ret;
1243
1244	sport->rx_ring.head = 0;
1245	sport->rx_ring.tail = 0;
1246
1247	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1248	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1249	if (ret == 0) {
1250		dev_err(dev, "DMA mapping error for RX.\n");
1251		return -EINVAL;
1252	}
1253
1254	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1255		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1256		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1257
1258	if (!desc) {
1259		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1260		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1261		return -EINVAL;
1262	}
1263	desc->callback = imx_uart_dma_rx_callback;
1264	desc->callback_param = sport;
1265
1266	dev_dbg(dev, "RX: prepare for the DMA.\n");
1267	sport->dma_is_rxing = 1;
1268	sport->rx_cookie = dmaengine_submit(desc);
1269	dma_async_issue_pending(chan);
1270	return 0;
1271}
1272
1273static void imx_uart_clear_rx_errors(struct imx_port *sport)
1274{
1275	struct tty_port *port = &sport->port.state->port;
1276	u32 usr1, usr2;
1277
1278	usr1 = imx_uart_readl(sport, USR1);
1279	usr2 = imx_uart_readl(sport, USR2);
1280
1281	if (usr2 & USR2_BRCD) {
1282		sport->port.icount.brk++;
1283		imx_uart_writel(sport, USR2_BRCD, USR2);
1284		uart_handle_break(&sport->port);
1285		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1286			sport->port.icount.buf_overrun++;
1287		tty_flip_buffer_push(port);
1288	} else {
1289		if (usr1 & USR1_FRAMERR) {
1290			sport->port.icount.frame++;
1291			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1292		} else if (usr1 & USR1_PARITYERR) {
1293			sport->port.icount.parity++;
1294			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1295		}
1296	}
1297
1298	if (usr2 & USR2_ORE) {
1299		sport->port.icount.overrun++;
1300		imx_uart_writel(sport, USR2_ORE, USR2);
1301	}
1302
1303	sport->idle_counter = 0;
1304
1305}
1306
1307#define TXTL_DEFAULT 2 /* reset default */
1308#define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1309#define TXTL_DMA 8 /* DMA burst setting */
1310#define RXTL_DMA 9 /* DMA burst setting */
1311
1312static void imx_uart_setup_ufcr(struct imx_port *sport,
1313				unsigned char txwl, unsigned char rxwl)
1314{
1315	unsigned int val;
1316
1317	/* set receiver / transmitter trigger level */
1318	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1319	val |= txwl << UFCR_TXTL_SHF | rxwl;
1320	imx_uart_writel(sport, val, UFCR);
1321}
1322
1323static void imx_uart_dma_exit(struct imx_port *sport)
1324{
1325	if (sport->dma_chan_rx) {
1326		dmaengine_terminate_sync(sport->dma_chan_rx);
1327		dma_release_channel(sport->dma_chan_rx);
1328		sport->dma_chan_rx = NULL;
1329		sport->rx_cookie = -EINVAL;
1330		kfree(sport->rx_buf);
1331		sport->rx_buf = NULL;
1332	}
1333
1334	if (sport->dma_chan_tx) {
1335		dmaengine_terminate_sync(sport->dma_chan_tx);
1336		dma_release_channel(sport->dma_chan_tx);
1337		sport->dma_chan_tx = NULL;
1338	}
1339}
1340
1341static int imx_uart_dma_init(struct imx_port *sport)
1342{
1343	struct dma_slave_config slave_config = {};
1344	struct device *dev = sport->port.dev;
1345	int ret;
1346
1347	/* Prepare for RX : */
1348	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1349	if (!sport->dma_chan_rx) {
1350		dev_dbg(dev, "cannot get the DMA channel.\n");
1351		ret = -EINVAL;
1352		goto err;
1353	}
1354
1355	slave_config.direction = DMA_DEV_TO_MEM;
1356	slave_config.src_addr = sport->port.mapbase + URXD0;
1357	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1358	/* one byte less than the watermark level to enable the aging timer */
1359	slave_config.src_maxburst = RXTL_DMA - 1;
1360	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1361	if (ret) {
1362		dev_err(dev, "error in RX dma configuration.\n");
1363		goto err;
1364	}
1365
1366	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1367	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1368	if (!sport->rx_buf) {
1369		ret = -ENOMEM;
1370		goto err;
1371	}
1372	sport->rx_ring.buf = sport->rx_buf;
1373
1374	/* Prepare for TX : */
1375	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1376	if (!sport->dma_chan_tx) {
1377		dev_err(dev, "cannot get the TX DMA channel!\n");
1378		ret = -EINVAL;
1379		goto err;
1380	}
1381
1382	slave_config.direction = DMA_MEM_TO_DEV;
1383	slave_config.dst_addr = sport->port.mapbase + URTX0;
1384	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1385	slave_config.dst_maxburst = TXTL_DMA;
1386	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1387	if (ret) {
1388		dev_err(dev, "error in TX dma configuration.");
1389		goto err;
1390	}
1391
1392	return 0;
1393err:
1394	imx_uart_dma_exit(sport);
1395	return ret;
1396}
1397
1398static void imx_uart_enable_dma(struct imx_port *sport)
1399{
1400	u32 ucr1;
1401
1402	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1403
1404	/* set UCR1 */
1405	ucr1 = imx_uart_readl(sport, UCR1);
1406	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1407	imx_uart_writel(sport, ucr1, UCR1);
1408
1409	sport->dma_is_enabled = 1;
1410}
1411
1412static void imx_uart_disable_dma(struct imx_port *sport)
1413{
1414	u32 ucr1;
1415
1416	/* clear UCR1 */
1417	ucr1 = imx_uart_readl(sport, UCR1);
1418	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1419	imx_uart_writel(sport, ucr1, UCR1);
1420
1421	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1422
1423	sport->dma_is_enabled = 0;
1424}
1425
1426/* half the RX buffer size */
1427#define CTSTL 16
1428
1429static int imx_uart_startup(struct uart_port *port)
1430{
1431	struct imx_port *sport = (struct imx_port *)port;
1432	int retval;
1433	unsigned long flags;
1434	int dma_is_inited = 0;
1435	u32 ucr1, ucr2, ucr3, ucr4;
1436
1437	retval = clk_prepare_enable(sport->clk_per);
1438	if (retval)
1439		return retval;
1440	retval = clk_prepare_enable(sport->clk_ipg);
1441	if (retval) {
1442		clk_disable_unprepare(sport->clk_per);
1443		return retval;
1444	}
1445
1446	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1447
1448	/* disable the DREN bit (Data Ready interrupt enable) before
1449	 * requesting IRQs
1450	 */
1451	ucr4 = imx_uart_readl(sport, UCR4);
1452
1453	/* set the trigger level for CTS */
1454	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1455	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1456
1457	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1458
1459	/* Can we enable the DMA support? */
1460	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1461		dma_is_inited = 1;
1462
1463	spin_lock_irqsave(&sport->port.lock, flags);
1464
1465	/* Reset fifo's and state machines */
1466	imx_uart_soft_reset(sport);
1467
1468	/*
1469	 * Finally, clear and enable interrupts
1470	 */
1471	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1472	imx_uart_writel(sport, USR2_ORE, USR2);
1473
1474	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1475	ucr1 |= UCR1_UARTEN;
1476	if (sport->have_rtscts)
1477		ucr1 |= UCR1_RTSDEN;
1478
1479	imx_uart_writel(sport, ucr1, UCR1);
1480
1481	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1482	if (!dma_is_inited)
1483		ucr4 |= UCR4_OREN;
1484	if (sport->inverted_rx)
1485		ucr4 |= UCR4_INVR;
1486	imx_uart_writel(sport, ucr4, UCR4);
1487
1488	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1489	/*
1490	 * configure tx polarity before enabling tx
1491	 */
1492	if (sport->inverted_tx)
1493		ucr3 |= UCR3_INVT;
1494
1495	if (!imx_uart_is_imx1(sport)) {
1496		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1497
1498		if (sport->dte_mode)
1499			/* disable broken interrupts */
1500			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1501	}
1502	imx_uart_writel(sport, ucr3, UCR3);
1503
1504	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1505	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1506	if (!sport->have_rtscts)
1507		ucr2 |= UCR2_IRTS;
1508	/*
1509	 * make sure the edge sensitive RTS-irq is disabled,
1510	 * we're using RTSD instead.
1511	 */
1512	if (!imx_uart_is_imx1(sport))
1513		ucr2 &= ~UCR2_RTSEN;
1514	imx_uart_writel(sport, ucr2, UCR2);
1515
1516	/*
1517	 * Enable modem status interrupts
1518	 */
1519	imx_uart_enable_ms(&sport->port);
1520
1521	if (dma_is_inited) {
1522		imx_uart_enable_dma(sport);
1523		imx_uart_start_rx_dma(sport);
1524	} else {
1525		ucr1 = imx_uart_readl(sport, UCR1);
1526		ucr1 |= UCR1_RRDYEN;
1527		imx_uart_writel(sport, ucr1, UCR1);
1528
1529		ucr2 = imx_uart_readl(sport, UCR2);
1530		ucr2 |= UCR2_ATEN;
1531		imx_uart_writel(sport, ucr2, UCR2);
1532	}
1533
1534	imx_uart_disable_loopback_rs485(sport);
1535
1536	spin_unlock_irqrestore(&sport->port.lock, flags);
1537
1538	return 0;
1539}
1540
1541static void imx_uart_shutdown(struct uart_port *port)
1542{
1543	struct imx_port *sport = (struct imx_port *)port;
1544	unsigned long flags;
1545	u32 ucr1, ucr2, ucr4, uts;
1546
1547	if (sport->dma_is_enabled) {
1548		dmaengine_terminate_sync(sport->dma_chan_tx);
1549		if (sport->dma_is_txing) {
1550			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1551				     sport->dma_tx_nents, DMA_TO_DEVICE);
1552			sport->dma_is_txing = 0;
1553		}
1554		dmaengine_terminate_sync(sport->dma_chan_rx);
1555		if (sport->dma_is_rxing) {
1556			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1557				     1, DMA_FROM_DEVICE);
1558			sport->dma_is_rxing = 0;
1559		}
1560
1561		spin_lock_irqsave(&sport->port.lock, flags);
1562		imx_uart_stop_tx(port);
1563		imx_uart_stop_rx(port);
1564		imx_uart_disable_dma(sport);
1565		spin_unlock_irqrestore(&sport->port.lock, flags);
1566		imx_uart_dma_exit(sport);
1567	}
1568
1569	mctrl_gpio_disable_ms(sport->gpios);
1570
1571	spin_lock_irqsave(&sport->port.lock, flags);
1572	ucr2 = imx_uart_readl(sport, UCR2);
1573	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1574	imx_uart_writel(sport, ucr2, UCR2);
1575	spin_unlock_irqrestore(&sport->port.lock, flags);
1576
1577	/*
1578	 * Stop our timer.
1579	 */
1580	del_timer_sync(&sport->timer);
1581
1582	/*
1583	 * Disable all interrupts, port and break condition.
1584	 */
1585
1586	spin_lock_irqsave(&sport->port.lock, flags);
1587
1588	ucr1 = imx_uart_readl(sport, UCR1);
1589	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN |
1590		  UCR1_ATDMAEN | UCR1_SNDBRK);
1591	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1592	if (port->rs485.flags & SER_RS485_ENABLED &&
1593	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
1594	    sport->have_rtscts && !sport->have_rtsgpio) {
1595		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1596		uts |= UTS_LOOP;
1597		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1598		ucr1 |= UCR1_UARTEN;
1599	} else {
1600		ucr1 &= ~UCR1_UARTEN;
1601	}
1602	imx_uart_writel(sport, ucr1, UCR1);
1603
1604	ucr4 = imx_uart_readl(sport, UCR4);
1605	ucr4 &= ~UCR4_TCEN;
1606	imx_uart_writel(sport, ucr4, UCR4);
1607
1608	spin_unlock_irqrestore(&sport->port.lock, flags);
1609
1610	clk_disable_unprepare(sport->clk_per);
1611	clk_disable_unprepare(sport->clk_ipg);
1612}
1613
1614/* called with port.lock taken and irqs off */
1615static void imx_uart_flush_buffer(struct uart_port *port)
1616{
1617	struct imx_port *sport = (struct imx_port *)port;
1618	struct scatterlist *sgl = &sport->tx_sgl[0];
1619
1620	if (!sport->dma_chan_tx)
1621		return;
1622
1623	sport->tx_bytes = 0;
1624	dmaengine_terminate_all(sport->dma_chan_tx);
1625	if (sport->dma_is_txing) {
1626		u32 ucr1;
1627
1628		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1629			     DMA_TO_DEVICE);
1630		ucr1 = imx_uart_readl(sport, UCR1);
1631		ucr1 &= ~UCR1_TXDMAEN;
1632		imx_uart_writel(sport, ucr1, UCR1);
1633		sport->dma_is_txing = 0;
1634	}
1635
1636	imx_uart_soft_reset(sport);
1637
1638}
1639
1640static void
1641imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1642		     const struct ktermios *old)
1643{
1644	struct imx_port *sport = (struct imx_port *)port;
1645	unsigned long flags;
1646	u32 ucr2, old_ucr2, ufcr;
1647	unsigned int baud, quot;
1648	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1649	unsigned long div;
1650	unsigned long num, denom, old_ubir, old_ubmr;
1651	uint64_t tdiv64;
1652
1653	/*
1654	 * We only support CS7 and CS8.
1655	 */
1656	while ((termios->c_cflag & CSIZE) != CS7 &&
1657	       (termios->c_cflag & CSIZE) != CS8) {
1658		termios->c_cflag &= ~CSIZE;
1659		termios->c_cflag |= old_csize;
1660		old_csize = CS8;
1661	}
1662
1663	del_timer_sync(&sport->timer);
1664
1665	/*
1666	 * Ask the core to calculate the divisor for us.
1667	 */
1668	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1669	quot = uart_get_divisor(port, baud);
1670
1671	spin_lock_irqsave(&sport->port.lock, flags);
1672
1673	/*
1674	 * Read current UCR2 and save it for future use, then clear all the bits
1675	 * except those we will or may need to preserve.
1676	 */
1677	old_ucr2 = imx_uart_readl(sport, UCR2);
1678	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1679
1680	ucr2 |= UCR2_SRST | UCR2_IRTS;
1681	if ((termios->c_cflag & CSIZE) == CS8)
1682		ucr2 |= UCR2_WS;
1683
1684	if (!sport->have_rtscts)
1685		termios->c_cflag &= ~CRTSCTS;
1686
1687	if (port->rs485.flags & SER_RS485_ENABLED) {
1688		/*
1689		 * RTS is mandatory for rs485 operation, so keep
1690		 * it under manual control and keep transmitter
1691		 * disabled.
1692		 */
1693		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1694			imx_uart_rts_active(sport, &ucr2);
1695		else
1696			imx_uart_rts_inactive(sport, &ucr2);
1697
1698	} else if (termios->c_cflag & CRTSCTS) {
1699		/*
1700		 * Only let receiver control RTS output if we were not requested
1701		 * to have RTS inactive (which then should take precedence).
1702		 */
1703		if (ucr2 & UCR2_CTS)
1704			ucr2 |= UCR2_CTSC;
1705	}
1706
1707	if (termios->c_cflag & CRTSCTS)
1708		ucr2 &= ~UCR2_IRTS;
1709	if (termios->c_cflag & CSTOPB)
1710		ucr2 |= UCR2_STPB;
1711	if (termios->c_cflag & PARENB) {
1712		ucr2 |= UCR2_PREN;
1713		if (termios->c_cflag & PARODD)
1714			ucr2 |= UCR2_PROE;
1715	}
1716
1717	sport->port.read_status_mask = 0;
1718	if (termios->c_iflag & INPCK)
1719		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1720	if (termios->c_iflag & (BRKINT | PARMRK))
1721		sport->port.read_status_mask |= URXD_BRK;
1722
1723	/*
1724	 * Characters to ignore
1725	 */
1726	sport->port.ignore_status_mask = 0;
1727	if (termios->c_iflag & IGNPAR)
1728		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1729	if (termios->c_iflag & IGNBRK) {
1730		sport->port.ignore_status_mask |= URXD_BRK;
1731		/*
1732		 * If we're ignoring parity and break indicators,
1733		 * ignore overruns too (for real raw support).
1734		 */
1735		if (termios->c_iflag & IGNPAR)
1736			sport->port.ignore_status_mask |= URXD_OVRRUN;
1737	}
1738
1739	if ((termios->c_cflag & CREAD) == 0)
1740		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1741
1742	/*
1743	 * Update the per-port timeout.
1744	 */
1745	uart_update_timeout(port, termios->c_cflag, baud);
1746
1747	/* custom-baudrate handling */
1748	div = sport->port.uartclk / (baud * 16);
1749	if (baud == 38400 && quot != div)
1750		baud = sport->port.uartclk / (quot * 16);
1751
1752	div = sport->port.uartclk / (baud * 16);
1753	if (div > 7)
1754		div = 7;
1755	if (!div)
1756		div = 1;
1757
1758	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1759		1 << 16, 1 << 16, &num, &denom);
1760
1761	tdiv64 = sport->port.uartclk;
1762	tdiv64 *= num;
1763	do_div(tdiv64, denom * 16 * div);
1764	tty_termios_encode_baud_rate(termios,
1765				(speed_t)tdiv64, (speed_t)tdiv64);
1766
1767	num -= 1;
1768	denom -= 1;
1769
1770	ufcr = imx_uart_readl(sport, UFCR);
1771	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1772	imx_uart_writel(sport, ufcr, UFCR);
1773
1774	/*
1775	 *  Two registers below should always be written both and in this
1776	 *  particular order. One consequence is that we need to check if any of
1777	 *  them changes and then update both. We do need the check for change
1778	 *  as even writing the same values seem to "restart"
1779	 *  transmission/receiving logic in the hardware, that leads to data
1780	 *  breakage even when rate doesn't in fact change. E.g., user switches
1781	 *  RTS/CTS handshake and suddenly gets broken bytes.
1782	 */
1783	old_ubir = imx_uart_readl(sport, UBIR);
1784	old_ubmr = imx_uart_readl(sport, UBMR);
1785	if (old_ubir != num || old_ubmr != denom) {
1786		imx_uart_writel(sport, num, UBIR);
1787		imx_uart_writel(sport, denom, UBMR);
1788	}
1789
1790	if (!imx_uart_is_imx1(sport))
1791		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1792				IMX21_ONEMS);
1793
1794	imx_uart_writel(sport, ucr2, UCR2);
1795
1796	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1797		imx_uart_enable_ms(&sport->port);
1798
1799	spin_unlock_irqrestore(&sport->port.lock, flags);
1800}
1801
1802static const char *imx_uart_type(struct uart_port *port)
1803{
1804	return port->type == PORT_IMX ? "IMX" : NULL;
1805}
1806
1807/*
1808 * Configure/autoconfigure the port.
1809 */
1810static void imx_uart_config_port(struct uart_port *port, int flags)
1811{
1812	if (flags & UART_CONFIG_TYPE)
1813		port->type = PORT_IMX;
1814}
1815
1816/*
1817 * Verify the new serial_struct (for TIOCSSERIAL).
1818 * The only change we allow are to the flags and type, and
1819 * even then only between PORT_IMX and PORT_UNKNOWN
1820 */
1821static int
1822imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1823{
1824	int ret = 0;
1825
1826	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1827		ret = -EINVAL;
1828	if (port->irq != ser->irq)
1829		ret = -EINVAL;
1830	if (ser->io_type != UPIO_MEM)
1831		ret = -EINVAL;
1832	if (port->uartclk / 16 != ser->baud_base)
1833		ret = -EINVAL;
1834	if (port->mapbase != (unsigned long)ser->iomem_base)
1835		ret = -EINVAL;
1836	if (port->iobase != ser->port)
1837		ret = -EINVAL;
1838	if (ser->hub6 != 0)
1839		ret = -EINVAL;
1840	return ret;
1841}
1842
1843#if defined(CONFIG_CONSOLE_POLL)
1844
1845static int imx_uart_poll_init(struct uart_port *port)
1846{
1847	struct imx_port *sport = (struct imx_port *)port;
1848	unsigned long flags;
1849	u32 ucr1, ucr2;
1850	int retval;
1851
1852	retval = clk_prepare_enable(sport->clk_ipg);
1853	if (retval)
1854		return retval;
1855	retval = clk_prepare_enable(sport->clk_per);
1856	if (retval)
1857		clk_disable_unprepare(sport->clk_ipg);
1858
1859	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1860
1861	spin_lock_irqsave(&sport->port.lock, flags);
1862
1863	/*
1864	 * Be careful about the order of enabling bits here. First enable the
1865	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1866	 * This prevents that a character that already sits in the RX fifo is
1867	 * triggering an irq but the try to fetch it from there results in an
1868	 * exception because UARTEN or RXEN is still off.
1869	 */
1870	ucr1 = imx_uart_readl(sport, UCR1);
1871	ucr2 = imx_uart_readl(sport, UCR2);
1872
1873	if (imx_uart_is_imx1(sport))
1874		ucr1 |= IMX1_UCR1_UARTCLKEN;
1875
1876	ucr1 |= UCR1_UARTEN;
1877	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1878
1879	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1880	ucr2 &= ~UCR2_ATEN;
1881
1882	imx_uart_writel(sport, ucr1, UCR1);
1883	imx_uart_writel(sport, ucr2, UCR2);
1884
1885	/* now enable irqs */
1886	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1887	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1888
1889	spin_unlock_irqrestore(&sport->port.lock, flags);
1890
1891	return 0;
1892}
1893
1894static int imx_uart_poll_get_char(struct uart_port *port)
1895{
1896	struct imx_port *sport = (struct imx_port *)port;
1897	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1898		return NO_POLL_CHAR;
1899
1900	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1901}
1902
1903static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1904{
1905	struct imx_port *sport = (struct imx_port *)port;
1906	unsigned int status;
1907
1908	/* drain */
1909	do {
1910		status = imx_uart_readl(sport, USR1);
1911	} while (~status & USR1_TRDY);
1912
1913	/* write */
1914	imx_uart_writel(sport, c, URTX0);
1915
1916	/* flush */
1917	do {
1918		status = imx_uart_readl(sport, USR2);
1919	} while (~status & USR2_TXDC);
1920}
1921#endif
1922
1923/* called with port.lock taken and irqs off or from .probe without locking */
1924static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios,
1925				 struct serial_rs485 *rs485conf)
1926{
1927	struct imx_port *sport = (struct imx_port *)port;
1928	u32 ucr2;
1929
1930	if (rs485conf->flags & SER_RS485_ENABLED) {
1931		/* Enable receiver if low-active RTS signal is requested */
1932		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1933		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1934			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1935
1936		/* disable transmitter */
1937		ucr2 = imx_uart_readl(sport, UCR2);
1938		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1939			imx_uart_rts_active(sport, &ucr2);
1940		else
1941			imx_uart_rts_inactive(sport, &ucr2);
1942		imx_uart_writel(sport, ucr2, UCR2);
1943	}
1944
1945	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1946	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1947	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1948		imx_uart_start_rx(port);
1949
1950	return 0;
1951}
1952
1953static const struct uart_ops imx_uart_pops = {
1954	.tx_empty	= imx_uart_tx_empty,
1955	.set_mctrl	= imx_uart_set_mctrl,
1956	.get_mctrl	= imx_uart_get_mctrl,
1957	.stop_tx	= imx_uart_stop_tx,
1958	.start_tx	= imx_uart_start_tx,
1959	.stop_rx	= imx_uart_stop_rx,
1960	.enable_ms	= imx_uart_enable_ms,
1961	.break_ctl	= imx_uart_break_ctl,
1962	.startup	= imx_uart_startup,
1963	.shutdown	= imx_uart_shutdown,
1964	.flush_buffer	= imx_uart_flush_buffer,
1965	.set_termios	= imx_uart_set_termios,
1966	.type		= imx_uart_type,
1967	.config_port	= imx_uart_config_port,
1968	.verify_port	= imx_uart_verify_port,
1969#if defined(CONFIG_CONSOLE_POLL)
1970	.poll_init      = imx_uart_poll_init,
1971	.poll_get_char  = imx_uart_poll_get_char,
1972	.poll_put_char  = imx_uart_poll_put_char,
1973#endif
1974};
1975
1976static struct imx_port *imx_uart_ports[UART_NR];
1977
1978#if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1979static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
1980{
1981	struct imx_port *sport = (struct imx_port *)port;
1982
1983	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1984		barrier();
1985
1986	imx_uart_writel(sport, ch, URTX0);
1987}
1988
1989/*
1990 * Interrupts are disabled on entering
1991 */
1992static void
1993imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1994{
1995	struct imx_port *sport = imx_uart_ports[co->index];
1996	struct imx_port_ucrs old_ucr;
1997	unsigned long flags;
1998	unsigned int ucr1;
1999	int locked = 1;
2000
2001	if (sport->port.sysrq)
2002		locked = 0;
2003	else if (oops_in_progress)
2004		locked = spin_trylock_irqsave(&sport->port.lock, flags);
2005	else
2006		spin_lock_irqsave(&sport->port.lock, flags);
2007
2008	/*
2009	 *	First, save UCR1/2/3 and then disable interrupts
2010	 */
2011	imx_uart_ucrs_save(sport, &old_ucr);
2012	ucr1 = old_ucr.ucr1;
2013
2014	if (imx_uart_is_imx1(sport))
2015		ucr1 |= IMX1_UCR1_UARTCLKEN;
2016	ucr1 |= UCR1_UARTEN;
2017	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2018
2019	imx_uart_writel(sport, ucr1, UCR1);
2020
2021	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2022
2023	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2024
2025	/*
2026	 *	Finally, wait for transmitter to become empty
2027	 *	and restore UCR1/2/3
2028	 */
2029	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2030
2031	imx_uart_ucrs_restore(sport, &old_ucr);
2032
2033	if (locked)
2034		spin_unlock_irqrestore(&sport->port.lock, flags);
2035}
2036
2037/*
2038 * If the port was already initialised (eg, by a boot loader),
2039 * try to determine the current setup.
2040 */
2041static void
2042imx_uart_console_get_options(struct imx_port *sport, int *baud,
2043			     int *parity, int *bits)
2044{
2045
2046	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2047		/* ok, the port was enabled */
2048		unsigned int ucr2, ubir, ubmr, uartclk;
2049		unsigned int baud_raw;
2050		unsigned int ucfr_rfdiv;
2051
2052		ucr2 = imx_uart_readl(sport, UCR2);
2053
2054		*parity = 'n';
2055		if (ucr2 & UCR2_PREN) {
2056			if (ucr2 & UCR2_PROE)
2057				*parity = 'o';
2058			else
2059				*parity = 'e';
2060		}
2061
2062		if (ucr2 & UCR2_WS)
2063			*bits = 8;
2064		else
2065			*bits = 7;
2066
2067		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2068		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2069
2070		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2071		if (ucfr_rfdiv == 6)
2072			ucfr_rfdiv = 7;
2073		else
2074			ucfr_rfdiv = 6 - ucfr_rfdiv;
2075
2076		uartclk = clk_get_rate(sport->clk_per);
2077		uartclk /= ucfr_rfdiv;
2078
2079		{	/*
2080			 * The next code provides exact computation of
2081			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2082			 * without need of float support or long long division,
2083			 * which would be required to prevent 32bit arithmetic overflow
2084			 */
2085			unsigned int mul = ubir + 1;
2086			unsigned int div = 16 * (ubmr + 1);
2087			unsigned int rem = uartclk % div;
2088
2089			baud_raw = (uartclk / div) * mul;
2090			baud_raw += (rem * mul + div / 2) / div;
2091			*baud = (baud_raw + 50) / 100 * 100;
2092		}
2093
2094		if (*baud != baud_raw)
2095			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2096				baud_raw, *baud);
2097	}
2098}
2099
2100static int
2101imx_uart_console_setup(struct console *co, char *options)
2102{
2103	struct imx_port *sport;
2104	int baud = 9600;
2105	int bits = 8;
2106	int parity = 'n';
2107	int flow = 'n';
2108	int retval;
2109
2110	/*
2111	 * Check whether an invalid uart number has been specified, and
2112	 * if so, search for the first available port that does have
2113	 * console support.
2114	 */
2115	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2116		co->index = 0;
2117	sport = imx_uart_ports[co->index];
2118	if (sport == NULL)
2119		return -ENODEV;
2120
2121	/* For setting the registers, we only need to enable the ipg clock. */
2122	retval = clk_prepare_enable(sport->clk_ipg);
2123	if (retval)
2124		goto error_console;
2125
2126	if (options)
2127		uart_parse_options(options, &baud, &parity, &bits, &flow);
2128	else
2129		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2130
2131	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2132
2133	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2134
2135	if (retval) {
2136		clk_disable_unprepare(sport->clk_ipg);
2137		goto error_console;
2138	}
2139
2140	retval = clk_prepare_enable(sport->clk_per);
2141	if (retval)
2142		clk_disable_unprepare(sport->clk_ipg);
2143
2144error_console:
2145	return retval;
2146}
2147
2148static int
2149imx_uart_console_exit(struct console *co)
2150{
2151	struct imx_port *sport = imx_uart_ports[co->index];
2152
2153	clk_disable_unprepare(sport->clk_per);
2154	clk_disable_unprepare(sport->clk_ipg);
2155
2156	return 0;
2157}
2158
2159static struct uart_driver imx_uart_uart_driver;
2160static struct console imx_uart_console = {
2161	.name		= DEV_NAME,
2162	.write		= imx_uart_console_write,
2163	.device		= uart_console_device,
2164	.setup		= imx_uart_console_setup,
2165	.exit		= imx_uart_console_exit,
2166	.flags		= CON_PRINTBUFFER,
2167	.index		= -1,
2168	.data		= &imx_uart_uart_driver,
2169};
2170
2171#define IMX_CONSOLE	&imx_uart_console
2172
2173#else
2174#define IMX_CONSOLE	NULL
2175#endif
2176
2177static struct uart_driver imx_uart_uart_driver = {
2178	.owner          = THIS_MODULE,
2179	.driver_name    = DRIVER_NAME,
2180	.dev_name       = DEV_NAME,
2181	.major          = SERIAL_IMX_MAJOR,
2182	.minor          = MINOR_START,
2183	.nr             = ARRAY_SIZE(imx_uart_ports),
2184	.cons           = IMX_CONSOLE,
2185};
2186
2187static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2188{
2189	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2190	unsigned long flags;
2191
2192	spin_lock_irqsave(&sport->port.lock, flags);
2193	if (sport->tx_state == WAIT_AFTER_RTS)
2194		imx_uart_start_tx(&sport->port);
2195	spin_unlock_irqrestore(&sport->port.lock, flags);
2196
2197	return HRTIMER_NORESTART;
2198}
2199
2200static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2201{
2202	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2203	unsigned long flags;
2204
2205	spin_lock_irqsave(&sport->port.lock, flags);
2206	if (sport->tx_state == WAIT_AFTER_SEND)
2207		imx_uart_stop_tx(&sport->port);
2208	spin_unlock_irqrestore(&sport->port.lock, flags);
2209
2210	return HRTIMER_NORESTART;
2211}
2212
2213static const struct serial_rs485 imx_rs485_supported = {
2214	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2215		 SER_RS485_RX_DURING_TX,
2216	.delay_rts_before_send = 1,
2217	.delay_rts_after_send = 1,
2218};
2219
2220/* Default RX DMA buffer configuration */
2221#define RX_DMA_PERIODS		16
2222#define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2223
2224static int imx_uart_probe(struct platform_device *pdev)
2225{
2226	struct device_node *np = pdev->dev.of_node;
2227	struct imx_port *sport;
2228	void __iomem *base;
2229	u32 dma_buf_conf[2];
2230	int ret = 0;
2231	u32 ucr1, ucr2, uts;
2232	struct resource *res;
2233	int txirq, rxirq, rtsirq;
2234
2235	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2236	if (!sport)
2237		return -ENOMEM;
2238
2239	sport->devdata = of_device_get_match_data(&pdev->dev);
2240
2241	ret = of_alias_get_id(np, "serial");
2242	if (ret < 0) {
2243		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2244		return ret;
2245	}
2246	sport->port.line = ret;
2247
2248	sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") ||
2249		of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */
2250
2251	sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode");
2252
2253	sport->have_rtsgpio = of_property_present(np, "rts-gpios");
2254
2255	sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx");
2256
2257	sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx");
2258
2259	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2260		sport->rx_period_length = dma_buf_conf[0];
2261		sport->rx_periods = dma_buf_conf[1];
2262	} else {
2263		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2264		sport->rx_periods = RX_DMA_PERIODS;
2265	}
2266
2267	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2268		dev_err(&pdev->dev, "serial%d out of range\n",
2269			sport->port.line);
2270		return -EINVAL;
2271	}
2272
2273	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2274	if (IS_ERR(base))
2275		return PTR_ERR(base);
2276
2277	rxirq = platform_get_irq(pdev, 0);
2278	if (rxirq < 0)
2279		return rxirq;
2280	txirq = platform_get_irq_optional(pdev, 1);
2281	rtsirq = platform_get_irq_optional(pdev, 2);
2282
2283	sport->port.dev = &pdev->dev;
2284	sport->port.mapbase = res->start;
2285	sport->port.membase = base;
2286	sport->port.type = PORT_IMX;
2287	sport->port.iotype = UPIO_MEM;
2288	sport->port.irq = rxirq;
2289	sport->port.fifosize = 32;
2290	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2291	sport->port.ops = &imx_uart_pops;
2292	sport->port.rs485_config = imx_uart_rs485_config;
2293	/* RTS is required to control the RS485 transmitter */
2294	if (sport->have_rtscts || sport->have_rtsgpio)
2295		sport->port.rs485_supported = imx_rs485_supported;
2296	sport->port.flags = UPF_BOOT_AUTOCONF;
2297	timer_setup(&sport->timer, imx_uart_timeout, 0);
2298
2299	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2300	if (IS_ERR(sport->gpios))
2301		return PTR_ERR(sport->gpios);
2302
2303	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2304	if (IS_ERR(sport->clk_ipg)) {
2305		ret = PTR_ERR(sport->clk_ipg);
2306		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2307		return ret;
2308	}
2309
2310	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2311	if (IS_ERR(sport->clk_per)) {
2312		ret = PTR_ERR(sport->clk_per);
2313		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2314		return ret;
2315	}
2316
2317	sport->port.uartclk = clk_get_rate(sport->clk_per);
2318
2319	/* For register access, we only need to enable the ipg clock. */
2320	ret = clk_prepare_enable(sport->clk_ipg);
2321	if (ret) {
2322		dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret);
2323		return ret;
2324	}
2325
2326	ret = uart_get_rs485_mode(&sport->port);
2327	if (ret)
2328		goto err_clk;
2329
2330	/*
2331	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2332	 * signal cannot be set low during transmission in case the
2333	 * receiver is off (limitation of the i.MX UART IP).
2334	 */
2335	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2336	    sport->have_rtscts && !sport->have_rtsgpio &&
2337	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2338	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2339		dev_err(&pdev->dev,
2340			"low-active RTS not possible when receiver is off, enabling receiver\n");
2341
2342	/* Disable interrupts before requesting them */
2343	ucr1 = imx_uart_readl(sport, UCR1);
2344	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2345	imx_uart_writel(sport, ucr1, UCR1);
2346
2347	/* Disable Ageing Timer interrupt */
2348	ucr2 = imx_uart_readl(sport, UCR2);
2349	ucr2 &= ~UCR2_ATEN;
2350	imx_uart_writel(sport, ucr2, UCR2);
2351
2352	/*
2353	 * In case RS485 is enabled without GPIO RTS control, the UART IP
2354	 * is used to control CTS signal. Keep both the UART and Receiver
2355	 * enabled, otherwise the UART IP pulls CTS signal always HIGH no
2356	 * matter how the UCR2 CTSC and CTS bits are set. To prevent any
2357	 * data from being fed into the RX FIFO, enable loopback mode in
2358	 * UTS register, which disconnects the RX path from external RXD
2359	 * pin and connects it to the Transceiver, which is disabled, so
2360	 * no data can be fed to the RX FIFO that way.
2361	 */
2362	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2363	    sport->have_rtscts && !sport->have_rtsgpio) {
2364		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
2365		uts |= UTS_LOOP;
2366		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
2367
2368		ucr1 = imx_uart_readl(sport, UCR1);
2369		ucr1 |= UCR1_UARTEN;
2370		imx_uart_writel(sport, ucr1, UCR1);
2371
2372		ucr2 = imx_uart_readl(sport, UCR2);
2373		ucr2 |= UCR2_RXEN;
2374		imx_uart_writel(sport, ucr2, UCR2);
2375	}
2376
2377	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2378		/*
2379		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2380		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2381		 * and DCD (when they are outputs) or enables the respective
2382		 * irqs. So set this bit early, i.e. before requesting irqs.
2383		 */
2384		u32 ufcr = imx_uart_readl(sport, UFCR);
2385		if (!(ufcr & UFCR_DCEDTE))
2386			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2387
2388		/*
2389		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2390		 * enabled later because they cannot be cleared
2391		 * (confirmed on i.MX25) which makes them unusable.
2392		 */
2393		imx_uart_writel(sport,
2394				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2395				UCR3);
2396
2397	} else {
2398		u32 ucr3 = UCR3_DSR;
2399		u32 ufcr = imx_uart_readl(sport, UFCR);
2400		if (ufcr & UFCR_DCEDTE)
2401			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2402
2403		if (!imx_uart_is_imx1(sport))
2404			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2405		imx_uart_writel(sport, ucr3, UCR3);
2406	}
2407
2408	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2409	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2410	sport->trigger_start_tx.function = imx_trigger_start_tx;
2411	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2412
2413	/*
2414	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2415	 * chips only have one interrupt.
2416	 */
2417	if (txirq > 0) {
2418		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2419				       dev_name(&pdev->dev), sport);
2420		if (ret) {
2421			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2422				ret);
2423			goto err_clk;
2424		}
2425
2426		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2427				       dev_name(&pdev->dev), sport);
2428		if (ret) {
2429			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2430				ret);
2431			goto err_clk;
2432		}
2433
2434		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2435				       dev_name(&pdev->dev), sport);
2436		if (ret) {
2437			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2438				ret);
2439			goto err_clk;
2440		}
2441	} else {
2442		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2443				       dev_name(&pdev->dev), sport);
2444		if (ret) {
2445			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2446			goto err_clk;
2447		}
2448	}
2449
2450	imx_uart_ports[sport->port.line] = sport;
2451
2452	platform_set_drvdata(pdev, sport);
2453
2454	ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2455
2456err_clk:
2457	clk_disable_unprepare(sport->clk_ipg);
2458
2459	return ret;
2460}
2461
2462static int imx_uart_remove(struct platform_device *pdev)
2463{
2464	struct imx_port *sport = platform_get_drvdata(pdev);
2465
2466	uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2467
2468	return 0;
2469}
2470
2471static void imx_uart_restore_context(struct imx_port *sport)
2472{
2473	unsigned long flags;
2474
2475	spin_lock_irqsave(&sport->port.lock, flags);
2476	if (!sport->context_saved) {
2477		spin_unlock_irqrestore(&sport->port.lock, flags);
2478		return;
2479	}
2480
2481	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2482	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2483	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2484	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2485	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2486	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2487	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2488	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2489	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2490	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2491	sport->context_saved = false;
2492	spin_unlock_irqrestore(&sport->port.lock, flags);
2493}
2494
2495static void imx_uart_save_context(struct imx_port *sport)
2496{
2497	unsigned long flags;
2498
2499	/* Save necessary regs */
2500	spin_lock_irqsave(&sport->port.lock, flags);
2501	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2502	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2503	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2504	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2505	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2506	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2507	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2508	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2509	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2510	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2511	sport->context_saved = true;
2512	spin_unlock_irqrestore(&sport->port.lock, flags);
2513}
2514
2515static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2516{
2517	u32 ucr3;
2518
2519	ucr3 = imx_uart_readl(sport, UCR3);
2520	if (on) {
2521		imx_uart_writel(sport, USR1_AWAKE, USR1);
2522		ucr3 |= UCR3_AWAKEN;
2523	} else {
2524		ucr3 &= ~UCR3_AWAKEN;
2525	}
2526	imx_uart_writel(sport, ucr3, UCR3);
2527
2528	if (sport->have_rtscts) {
2529		u32 ucr1 = imx_uart_readl(sport, UCR1);
2530		if (on) {
2531			imx_uart_writel(sport, USR1_RTSD, USR1);
2532			ucr1 |= UCR1_RTSDEN;
2533		} else {
2534			ucr1 &= ~UCR1_RTSDEN;
2535		}
2536		imx_uart_writel(sport, ucr1, UCR1);
2537	}
2538}
2539
2540static int imx_uart_suspend_noirq(struct device *dev)
2541{
2542	struct imx_port *sport = dev_get_drvdata(dev);
2543
2544	imx_uart_save_context(sport);
2545
2546	clk_disable(sport->clk_ipg);
2547
2548	pinctrl_pm_select_sleep_state(dev);
2549
2550	return 0;
2551}
2552
2553static int imx_uart_resume_noirq(struct device *dev)
2554{
2555	struct imx_port *sport = dev_get_drvdata(dev);
2556	int ret;
2557
2558	pinctrl_pm_select_default_state(dev);
2559
2560	ret = clk_enable(sport->clk_ipg);
2561	if (ret)
2562		return ret;
2563
2564	imx_uart_restore_context(sport);
2565
2566	return 0;
2567}
2568
2569static int imx_uart_suspend(struct device *dev)
2570{
2571	struct imx_port *sport = dev_get_drvdata(dev);
2572	int ret;
2573
2574	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2575	disable_irq(sport->port.irq);
2576
2577	ret = clk_prepare_enable(sport->clk_ipg);
2578	if (ret)
2579		return ret;
2580
2581	/* enable wakeup from i.MX UART */
2582	imx_uart_enable_wakeup(sport, true);
2583
2584	return 0;
2585}
2586
2587static int imx_uart_resume(struct device *dev)
2588{
2589	struct imx_port *sport = dev_get_drvdata(dev);
2590
2591	/* disable wakeup from i.MX UART */
2592	imx_uart_enable_wakeup(sport, false);
2593
2594	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2595	enable_irq(sport->port.irq);
2596
2597	clk_disable_unprepare(sport->clk_ipg);
2598
2599	return 0;
2600}
2601
2602static int imx_uart_freeze(struct device *dev)
2603{
2604	struct imx_port *sport = dev_get_drvdata(dev);
2605
2606	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2607
2608	return clk_prepare_enable(sport->clk_ipg);
2609}
2610
2611static int imx_uart_thaw(struct device *dev)
2612{
2613	struct imx_port *sport = dev_get_drvdata(dev);
2614
2615	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2616
2617	clk_disable_unprepare(sport->clk_ipg);
2618
2619	return 0;
2620}
2621
2622static const struct dev_pm_ops imx_uart_pm_ops = {
2623	.suspend_noirq = imx_uart_suspend_noirq,
2624	.resume_noirq = imx_uart_resume_noirq,
2625	.freeze_noirq = imx_uart_suspend_noirq,
2626	.thaw_noirq = imx_uart_resume_noirq,
2627	.restore_noirq = imx_uart_resume_noirq,
2628	.suspend = imx_uart_suspend,
2629	.resume = imx_uart_resume,
2630	.freeze = imx_uart_freeze,
2631	.thaw = imx_uart_thaw,
2632	.restore = imx_uart_thaw,
2633};
2634
2635static struct platform_driver imx_uart_platform_driver = {
2636	.probe = imx_uart_probe,
2637	.remove = imx_uart_remove,
2638
2639	.driver = {
2640		.name = "imx-uart",
2641		.of_match_table = imx_uart_dt_ids,
2642		.pm = &imx_uart_pm_ops,
2643	},
2644};
2645
2646static int __init imx_uart_init(void)
2647{
2648	int ret = uart_register_driver(&imx_uart_uart_driver);
2649
2650	if (ret)
2651		return ret;
2652
2653	ret = platform_driver_register(&imx_uart_platform_driver);
2654	if (ret != 0)
2655		uart_unregister_driver(&imx_uart_uart_driver);
2656
2657	return ret;
2658}
2659
2660static void __exit imx_uart_exit(void)
2661{
2662	platform_driver_unregister(&imx_uart_platform_driver);
2663	uart_unregister_driver(&imx_uart_uart_driver);
2664}
2665
2666module_init(imx_uart_init);
2667module_exit(imx_uart_exit);
2668
2669MODULE_AUTHOR("Sascha Hauer");
2670MODULE_DESCRIPTION("IMX generic serial port driver");
2671MODULE_LICENSE("GPL");
2672MODULE_ALIAS("platform:imx-uart");
2673