1// SPDX-License-Identifier: GPL-2.0
2/*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 *	    Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10#include <linux/delay.h>
11#include <linux/ktime.h>
12#include <linux/units.h>
13
14#include "sb_regs.h"
15#include "tb.h"
16
17#define USB4_DATA_RETRIES		3
18#define USB4_DATA_DWORDS		16
19
20enum usb4_sb_target {
21	USB4_SB_TARGET_ROUTER,
22	USB4_SB_TARGET_PARTNER,
23	USB4_SB_TARGET_RETIMER,
24};
25
26#define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
27#define USB4_NVM_READ_OFFSET_SHIFT	2
28#define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
29#define USB4_NVM_READ_LENGTH_SHIFT	24
30
31#define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
32#define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
33
34#define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
35#define USB4_DROM_ADDRESS_SHIFT		2
36#define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
37#define USB4_DROM_SIZE_SHIFT		15
38
39#define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
40
41#define USB4_BA_LENGTH_MASK		GENMASK(7, 0)
42#define USB4_BA_INDEX_MASK		GENMASK(15, 0)
43
44enum usb4_ba_index {
45	USB4_BA_MAX_USB3 = 0x1,
46	USB4_BA_MIN_DP_AUX = 0x2,
47	USB4_BA_MIN_DP_MAIN = 0x3,
48	USB4_BA_MAX_PCIE = 0x4,
49	USB4_BA_MAX_HI = 0x5,
50};
51
52#define USB4_BA_VALUE_MASK		GENMASK(31, 16)
53#define USB4_BA_VALUE_SHIFT		16
54
55static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
56				 u32 *metadata, u8 *status,
57				 const void *tx_data, size_t tx_dwords,
58				 void *rx_data, size_t rx_dwords)
59{
60	u32 val;
61	int ret;
62
63	if (metadata) {
64		ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
65		if (ret)
66			return ret;
67	}
68	if (tx_dwords) {
69		ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
70				  tx_dwords);
71		if (ret)
72			return ret;
73	}
74
75	val = opcode | ROUTER_CS_26_OV;
76	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
77	if (ret)
78		return ret;
79
80	ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
81	if (ret)
82		return ret;
83
84	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
85	if (ret)
86		return ret;
87
88	if (val & ROUTER_CS_26_ONS)
89		return -EOPNOTSUPP;
90
91	if (status)
92		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
93			ROUTER_CS_26_STATUS_SHIFT;
94
95	if (metadata) {
96		ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
97		if (ret)
98			return ret;
99	}
100	if (rx_dwords) {
101		ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
102				 rx_dwords);
103		if (ret)
104			return ret;
105	}
106
107	return 0;
108}
109
110static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
111			    u8 *status, const void *tx_data, size_t tx_dwords,
112			    void *rx_data, size_t rx_dwords)
113{
114	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
115
116	if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
117		return -EINVAL;
118
119	/*
120	 * If the connection manager implementation provides USB4 router
121	 * operation proxy callback, call it here instead of running the
122	 * operation natively.
123	 */
124	if (cm_ops->usb4_switch_op) {
125		int ret;
126
127		ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
128					     tx_data, tx_dwords, rx_data,
129					     rx_dwords);
130		if (ret != -EOPNOTSUPP)
131			return ret;
132
133		/*
134		 * If the proxy was not supported then run the native
135		 * router operation instead.
136		 */
137	}
138
139	return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
140				     tx_dwords, rx_data, rx_dwords);
141}
142
143static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
144				 u32 *metadata, u8 *status)
145{
146	return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
147}
148
149static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
150				      u32 *metadata, u8 *status,
151				      const void *tx_data, size_t tx_dwords,
152				      void *rx_data, size_t rx_dwords)
153{
154	return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
155				tx_dwords, rx_data, rx_dwords);
156}
157
158static void usb4_switch_check_wakes(struct tb_switch *sw)
159{
160	bool wakeup_usb4 = false;
161	struct usb4_port *usb4;
162	struct tb_port *port;
163	bool wakeup = false;
164	u32 val;
165
166	if (!device_may_wakeup(&sw->dev))
167		return;
168
169	if (tb_route(sw)) {
170		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
171			return;
172
173		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
174			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
175			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
176
177		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
178	}
179
180	/*
181	 * Check for any downstream ports for USB4 wake,
182	 * connection wake and disconnection wake.
183	 */
184	tb_switch_for_each_port(sw, port) {
185		if (!port->cap_usb4)
186			continue;
187
188		if (tb_port_read(port, &val, TB_CFG_PORT,
189				 port->cap_usb4 + PORT_CS_18, 1))
190			break;
191
192		tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
193			    (val & PORT_CS_18_WOU4S) ? "yes" : "no",
194			    (val & PORT_CS_18_WOCS) ? "yes" : "no",
195			    (val & PORT_CS_18_WODS) ? "yes" : "no");
196
197		wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
198				     PORT_CS_18_WODS);
199
200		usb4 = port->usb4;
201		if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
202			pm_wakeup_event(&usb4->dev, 0);
203
204		wakeup |= wakeup_usb4;
205	}
206
207	if (wakeup)
208		pm_wakeup_event(&sw->dev, 0);
209}
210
211static bool link_is_usb4(struct tb_port *port)
212{
213	u32 val;
214
215	if (!port->cap_usb4)
216		return false;
217
218	if (tb_port_read(port, &val, TB_CFG_PORT,
219			 port->cap_usb4 + PORT_CS_18, 1))
220		return false;
221
222	return !(val & PORT_CS_18_TCM);
223}
224
225/**
226 * usb4_switch_setup() - Additional setup for USB4 device
227 * @sw: USB4 router to setup
228 *
229 * USB4 routers need additional settings in order to enable all the
230 * tunneling. This function enables USB and PCIe tunneling if it can be
231 * enabled (e.g the parent switch also supports them). If USB tunneling
232 * is not available for some reason (like that there is Thunderbolt 3
233 * switch upstream) then the internal xHCI controller is enabled
234 * instead.
235 *
236 * This does not set the configuration valid bit of the router. To do
237 * that call usb4_switch_configuration_valid().
238 */
239int usb4_switch_setup(struct tb_switch *sw)
240{
241	struct tb_switch *parent = tb_switch_parent(sw);
242	struct tb_port *down;
243	bool tbt3, xhci;
244	u32 val = 0;
245	int ret;
246
247	usb4_switch_check_wakes(sw);
248
249	if (!tb_route(sw))
250		return 0;
251
252	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
253	if (ret)
254		return ret;
255
256	down = tb_switch_downstream_port(sw);
257	sw->link_usb4 = link_is_usb4(down);
258	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
259
260	xhci = val & ROUTER_CS_6_HCI;
261	tbt3 = !(val & ROUTER_CS_6_TNS);
262
263	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
264		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
265
266	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
267	if (ret)
268		return ret;
269
270	if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
271	    tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
272		val |= ROUTER_CS_5_UTO;
273		xhci = false;
274	}
275
276	/*
277	 * Only enable PCIe tunneling if the parent router supports it
278	 * and it is not disabled.
279	 */
280	if (tb_acpi_may_tunnel_pcie() &&
281	    tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
282		val |= ROUTER_CS_5_PTO;
283		/*
284		 * xHCI can be enabled if PCIe tunneling is supported
285		 * and the parent does not have any USB3 dowstream
286		 * adapters (so we cannot do USB 3.x tunneling).
287		 */
288		if (xhci)
289			val |= ROUTER_CS_5_HCO;
290	}
291
292	/* TBT3 supported by the CM */
293	val &= ~ROUTER_CS_5_CNS;
294
295	return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
296}
297
298/**
299 * usb4_switch_configuration_valid() - Set tunneling configuration to be valid
300 * @sw: USB4 router
301 *
302 * Sets configuration valid bit for the router. Must be called before
303 * any tunnels can be set through the router and after
304 * usb4_switch_setup() has been called. Can be called to host and device
305 * routers (does nothing for the latter).
306 *
307 * Returns %0 in success and negative errno otherwise.
308 */
309int usb4_switch_configuration_valid(struct tb_switch *sw)
310{
311	u32 val;
312	int ret;
313
314	if (!tb_route(sw))
315		return 0;
316
317	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
318	if (ret)
319		return ret;
320
321	val |= ROUTER_CS_5_CV;
322
323	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
324	if (ret)
325		return ret;
326
327	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
328				      ROUTER_CS_6_CR, 50);
329}
330
331/**
332 * usb4_switch_read_uid() - Read UID from USB4 router
333 * @sw: USB4 router
334 * @uid: UID is stored here
335 *
336 * Reads 64-bit UID from USB4 router config space.
337 */
338int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
339{
340	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
341}
342
343static int usb4_switch_drom_read_block(void *data,
344				       unsigned int dwaddress, void *buf,
345				       size_t dwords)
346{
347	struct tb_switch *sw = data;
348	u8 status = 0;
349	u32 metadata;
350	int ret;
351
352	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
353	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
354		USB4_DROM_ADDRESS_MASK;
355
356	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
357				  &status, NULL, 0, buf, dwords);
358	if (ret)
359		return ret;
360
361	return status ? -EIO : 0;
362}
363
364/**
365 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
366 * @sw: USB4 router
367 * @address: Byte address inside DROM to start reading
368 * @buf: Buffer where the DROM content is stored
369 * @size: Number of bytes to read from DROM
370 *
371 * Uses USB4 router operations to read router DROM. For devices this
372 * should always work but for hosts it may return %-EOPNOTSUPP in which
373 * case the host router does not have DROM.
374 */
375int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
376			  size_t size)
377{
378	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
379				usb4_switch_drom_read_block, sw);
380}
381
382/**
383 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
384 * @sw: USB4 router
385 *
386 * Checks whether conditions are met so that lane bonding can be
387 * established with the upstream router. Call only for device routers.
388 */
389bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
390{
391	struct tb_port *up;
392	int ret;
393	u32 val;
394
395	up = tb_upstream_port(sw);
396	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
397	if (ret)
398		return false;
399
400	return !!(val & PORT_CS_18_BE);
401}
402
403/**
404 * usb4_switch_set_wake() - Enabled/disable wake
405 * @sw: USB4 router
406 * @flags: Wakeup flags (%0 to disable)
407 *
408 * Enables/disables router to wake up from sleep.
409 */
410int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
411{
412	struct usb4_port *usb4;
413	struct tb_port *port;
414	u64 route = tb_route(sw);
415	u32 val;
416	int ret;
417
418	/*
419	 * Enable wakes coming from all USB4 downstream ports (from
420	 * child routers). For device routers do this also for the
421	 * upstream USB4 port.
422	 */
423	tb_switch_for_each_port(sw, port) {
424		if (!tb_port_is_null(port))
425			continue;
426		if (!route && tb_is_upstream_port(port))
427			continue;
428		if (!port->cap_usb4)
429			continue;
430
431		ret = tb_port_read(port, &val, TB_CFG_PORT,
432				   port->cap_usb4 + PORT_CS_19, 1);
433		if (ret)
434			return ret;
435
436		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
437
438		if (tb_is_upstream_port(port)) {
439			val |= PORT_CS_19_WOU4;
440		} else {
441			bool configured = val & PORT_CS_19_PC;
442			usb4 = port->usb4;
443
444			if (((flags & TB_WAKE_ON_CONNECT) |
445			      device_may_wakeup(&usb4->dev)) && !configured)
446				val |= PORT_CS_19_WOC;
447			if (((flags & TB_WAKE_ON_DISCONNECT) |
448			      device_may_wakeup(&usb4->dev)) && configured)
449				val |= PORT_CS_19_WOD;
450			if ((flags & TB_WAKE_ON_USB4) && configured)
451				val |= PORT_CS_19_WOU4;
452		}
453
454		ret = tb_port_write(port, &val, TB_CFG_PORT,
455				    port->cap_usb4 + PORT_CS_19, 1);
456		if (ret)
457			return ret;
458	}
459
460	/*
461	 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
462	 * needed for device routers.
463	 */
464	if (route) {
465		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
466		if (ret)
467			return ret;
468
469		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
470		if (flags & TB_WAKE_ON_USB3)
471			val |= ROUTER_CS_5_WOU;
472		if (flags & TB_WAKE_ON_PCIE)
473			val |= ROUTER_CS_5_WOP;
474		if (flags & TB_WAKE_ON_DP)
475			val |= ROUTER_CS_5_WOD;
476
477		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
478		if (ret)
479			return ret;
480	}
481
482	return 0;
483}
484
485/**
486 * usb4_switch_set_sleep() - Prepare the router to enter sleep
487 * @sw: USB4 router
488 *
489 * Sets sleep bit for the router. Returns when the router sleep ready
490 * bit has been asserted.
491 */
492int usb4_switch_set_sleep(struct tb_switch *sw)
493{
494	int ret;
495	u32 val;
496
497	/* Set sleep bit and wait for sleep ready to be asserted */
498	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
499	if (ret)
500		return ret;
501
502	val |= ROUTER_CS_5_SLP;
503
504	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
505	if (ret)
506		return ret;
507
508	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
509				      ROUTER_CS_6_SLPR, 500);
510}
511
512/**
513 * usb4_switch_nvm_sector_size() - Return router NVM sector size
514 * @sw: USB4 router
515 *
516 * If the router supports NVM operations this function returns the NVM
517 * sector size in bytes. If NVM operations are not supported returns
518 * %-EOPNOTSUPP.
519 */
520int usb4_switch_nvm_sector_size(struct tb_switch *sw)
521{
522	u32 metadata;
523	u8 status;
524	int ret;
525
526	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
527			     &status);
528	if (ret)
529		return ret;
530
531	if (status)
532		return status == 0x2 ? -EOPNOTSUPP : -EIO;
533
534	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
535}
536
537static int usb4_switch_nvm_read_block(void *data,
538	unsigned int dwaddress, void *buf, size_t dwords)
539{
540	struct tb_switch *sw = data;
541	u8 status = 0;
542	u32 metadata;
543	int ret;
544
545	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
546		   USB4_NVM_READ_LENGTH_MASK;
547	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
548		   USB4_NVM_READ_OFFSET_MASK;
549
550	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
551				  &status, NULL, 0, buf, dwords);
552	if (ret)
553		return ret;
554
555	return status ? -EIO : 0;
556}
557
558/**
559 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
560 * @sw: USB4 router
561 * @address: Starting address in bytes
562 * @buf: Read data is placed here
563 * @size: How many bytes to read
564 *
565 * Reads NVM contents of the router. If NVM is not supported returns
566 * %-EOPNOTSUPP.
567 */
568int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
569			 size_t size)
570{
571	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
572				usb4_switch_nvm_read_block, sw);
573}
574
575/**
576 * usb4_switch_nvm_set_offset() - Set NVM write offset
577 * @sw: USB4 router
578 * @address: Start offset
579 *
580 * Explicitly sets NVM write offset. Normally when writing to NVM this
581 * is done automatically by usb4_switch_nvm_write().
582 *
583 * Returns %0 in success and negative errno if there was a failure.
584 */
585int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
586{
587	u32 metadata, dwaddress;
588	u8 status = 0;
589	int ret;
590
591	dwaddress = address / 4;
592	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
593		   USB4_NVM_SET_OFFSET_MASK;
594
595	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
596			     &status);
597	if (ret)
598		return ret;
599
600	return status ? -EIO : 0;
601}
602
603static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
604					    const void *buf, size_t dwords)
605{
606	struct tb_switch *sw = data;
607	u8 status;
608	int ret;
609
610	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
611				  buf, dwords, NULL, 0);
612	if (ret)
613		return ret;
614
615	return status ? -EIO : 0;
616}
617
618/**
619 * usb4_switch_nvm_write() - Write to the router NVM
620 * @sw: USB4 router
621 * @address: Start address where to write in bytes
622 * @buf: Pointer to the data to write
623 * @size: Size of @buf in bytes
624 *
625 * Writes @buf to the router NVM using USB4 router operations. If NVM
626 * write is not supported returns %-EOPNOTSUPP.
627 */
628int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
629			  const void *buf, size_t size)
630{
631	int ret;
632
633	ret = usb4_switch_nvm_set_offset(sw, address);
634	if (ret)
635		return ret;
636
637	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
638				 usb4_switch_nvm_write_next_block, sw);
639}
640
641/**
642 * usb4_switch_nvm_authenticate() - Authenticate new NVM
643 * @sw: USB4 router
644 *
645 * After the new NVM has been written via usb4_switch_nvm_write(), this
646 * function triggers NVM authentication process. The router gets power
647 * cycled and if the authentication is successful the new NVM starts
648 * running. In case of failure returns negative errno.
649 *
650 * The caller should call usb4_switch_nvm_authenticate_status() to read
651 * the status of the authentication after power cycle. It should be the
652 * first router operation to avoid the status being lost.
653 */
654int usb4_switch_nvm_authenticate(struct tb_switch *sw)
655{
656	int ret;
657
658	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
659	switch (ret) {
660	/*
661	 * The router is power cycled once NVM_AUTH is started so it is
662	 * expected to get any of the following errors back.
663	 */
664	case -EACCES:
665	case -ENOTCONN:
666	case -ETIMEDOUT:
667		return 0;
668
669	default:
670		return ret;
671	}
672}
673
674/**
675 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
676 * @sw: USB4 router
677 * @status: Status code of the operation
678 *
679 * The function checks if there is status available from the last NVM
680 * authenticate router operation. If there is status then %0 is returned
681 * and the status code is placed in @status. Returns negative errno in case
682 * of failure.
683 *
684 * Must be called before any other router operation.
685 */
686int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
687{
688	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
689	u16 opcode;
690	u32 val;
691	int ret;
692
693	if (cm_ops->usb4_switch_nvm_authenticate_status) {
694		ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
695		if (ret != -EOPNOTSUPP)
696			return ret;
697	}
698
699	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
700	if (ret)
701		return ret;
702
703	/* Check that the opcode is correct */
704	opcode = val & ROUTER_CS_26_OPCODE_MASK;
705	if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
706		if (val & ROUTER_CS_26_OV)
707			return -EBUSY;
708		if (val & ROUTER_CS_26_ONS)
709			return -EOPNOTSUPP;
710
711		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
712			ROUTER_CS_26_STATUS_SHIFT;
713	} else {
714		*status = 0;
715	}
716
717	return 0;
718}
719
720/**
721 * usb4_switch_credits_init() - Read buffer allocation parameters
722 * @sw: USB4 router
723 *
724 * Reads @sw buffer allocation parameters and initializes @sw buffer
725 * allocation fields accordingly. Specifically @sw->credits_allocation
726 * is set to %true if these parameters can be used in tunneling.
727 *
728 * Returns %0 on success and negative errno otherwise.
729 */
730int usb4_switch_credits_init(struct tb_switch *sw)
731{
732	int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
733	int ret, length, i, nports;
734	const struct tb_port *port;
735	u32 data[USB4_DATA_DWORDS];
736	u32 metadata = 0;
737	u8 status = 0;
738
739	memset(data, 0, sizeof(data));
740	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
741				  &status, NULL, 0, data, ARRAY_SIZE(data));
742	if (ret)
743		return ret;
744	if (status)
745		return -EIO;
746
747	length = metadata & USB4_BA_LENGTH_MASK;
748	if (WARN_ON(length > ARRAY_SIZE(data)))
749		return -EMSGSIZE;
750
751	max_usb3 = -1;
752	min_dp_aux = -1;
753	min_dp_main = -1;
754	max_pcie = -1;
755	max_dma = -1;
756
757	tb_sw_dbg(sw, "credit allocation parameters:\n");
758
759	for (i = 0; i < length; i++) {
760		u16 index, value;
761
762		index = data[i] & USB4_BA_INDEX_MASK;
763		value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
764
765		switch (index) {
766		case USB4_BA_MAX_USB3:
767			tb_sw_dbg(sw, " USB3: %u\n", value);
768			max_usb3 = value;
769			break;
770		case USB4_BA_MIN_DP_AUX:
771			tb_sw_dbg(sw, " DP AUX: %u\n", value);
772			min_dp_aux = value;
773			break;
774		case USB4_BA_MIN_DP_MAIN:
775			tb_sw_dbg(sw, " DP main: %u\n", value);
776			min_dp_main = value;
777			break;
778		case USB4_BA_MAX_PCIE:
779			tb_sw_dbg(sw, " PCIe: %u\n", value);
780			max_pcie = value;
781			break;
782		case USB4_BA_MAX_HI:
783			tb_sw_dbg(sw, " DMA: %u\n", value);
784			max_dma = value;
785			break;
786		default:
787			tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
788				  index);
789			break;
790		}
791	}
792
793	/*
794	 * Validate the buffer allocation preferences. If we find
795	 * issues, log a warning and fall back using the hard-coded
796	 * values.
797	 */
798
799	/* Host router must report baMaxHI */
800	if (!tb_route(sw) && max_dma < 0) {
801		tb_sw_warn(sw, "host router is missing baMaxHI\n");
802		goto err_invalid;
803	}
804
805	nports = 0;
806	tb_switch_for_each_port(sw, port) {
807		if (tb_port_is_null(port))
808			nports++;
809	}
810
811	/* Must have DP buffer allocation (multiple USB4 ports) */
812	if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
813		tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
814		goto err_invalid;
815	}
816
817	tb_switch_for_each_port(sw, port) {
818		if (tb_port_is_dpout(port) && min_dp_main < 0) {
819			tb_sw_warn(sw, "missing baMinDPmain");
820			goto err_invalid;
821		}
822		if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
823		    min_dp_aux < 0) {
824			tb_sw_warn(sw, "missing baMinDPaux");
825			goto err_invalid;
826		}
827		if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
828		    max_usb3 < 0) {
829			tb_sw_warn(sw, "missing baMaxUSB3");
830			goto err_invalid;
831		}
832		if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
833		    max_pcie < 0) {
834			tb_sw_warn(sw, "missing baMaxPCIe");
835			goto err_invalid;
836		}
837	}
838
839	/*
840	 * Buffer allocation passed the validation so we can use it in
841	 * path creation.
842	 */
843	sw->credit_allocation = true;
844	if (max_usb3 > 0)
845		sw->max_usb3_credits = max_usb3;
846	if (min_dp_aux > 0)
847		sw->min_dp_aux_credits = min_dp_aux;
848	if (min_dp_main > 0)
849		sw->min_dp_main_credits = min_dp_main;
850	if (max_pcie > 0)
851		sw->max_pcie_credits = max_pcie;
852	if (max_dma > 0)
853		sw->max_dma_credits = max_dma;
854
855	return 0;
856
857err_invalid:
858	return -EINVAL;
859}
860
861/**
862 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
863 * @sw: USB4 router
864 * @in: DP IN adapter
865 *
866 * For DP tunneling this function can be used to query availability of
867 * DP IN resource. Returns true if the resource is available for DP
868 * tunneling, false otherwise.
869 */
870bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
871{
872	u32 metadata = in->port;
873	u8 status;
874	int ret;
875
876	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
877			     &status);
878	/*
879	 * If DP resource allocation is not supported assume it is
880	 * always available.
881	 */
882	if (ret == -EOPNOTSUPP)
883		return true;
884	if (ret)
885		return false;
886
887	return !status;
888}
889
890/**
891 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
892 * @sw: USB4 router
893 * @in: DP IN adapter
894 *
895 * Allocates DP IN resource for DP tunneling using USB4 router
896 * operations. If the resource was allocated returns %0. Otherwise
897 * returns negative errno, in particular %-EBUSY if the resource is
898 * already allocated.
899 */
900int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
901{
902	u32 metadata = in->port;
903	u8 status;
904	int ret;
905
906	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
907			     &status);
908	if (ret == -EOPNOTSUPP)
909		return 0;
910	if (ret)
911		return ret;
912
913	return status ? -EBUSY : 0;
914}
915
916/**
917 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
918 * @sw: USB4 router
919 * @in: DP IN adapter
920 *
921 * Releases the previously allocated DP IN resource.
922 */
923int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
924{
925	u32 metadata = in->port;
926	u8 status;
927	int ret;
928
929	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
930			     &status);
931	if (ret == -EOPNOTSUPP)
932		return 0;
933	if (ret)
934		return ret;
935
936	return status ? -EIO : 0;
937}
938
939static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
940{
941	struct tb_port *p;
942	int usb4_idx = 0;
943
944	/* Assume port is primary */
945	tb_switch_for_each_port(sw, p) {
946		if (!tb_port_is_null(p))
947			continue;
948		if (tb_is_upstream_port(p))
949			continue;
950		if (!p->link_nr) {
951			if (p == port)
952				break;
953			usb4_idx++;
954		}
955	}
956
957	return usb4_idx;
958}
959
960/**
961 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
962 * @sw: USB4 router
963 * @port: USB4 port
964 *
965 * USB4 routers have direct mapping between USB4 ports and PCIe
966 * downstream adapters where the PCIe topology is extended. This
967 * function returns the corresponding downstream PCIe adapter or %NULL
968 * if no such mapping was possible.
969 */
970struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
971					  const struct tb_port *port)
972{
973	int usb4_idx = usb4_port_idx(sw, port);
974	struct tb_port *p;
975	int pcie_idx = 0;
976
977	/* Find PCIe down port matching usb4_port */
978	tb_switch_for_each_port(sw, p) {
979		if (!tb_port_is_pcie_down(p))
980			continue;
981
982		if (pcie_idx == usb4_idx)
983			return p;
984
985		pcie_idx++;
986	}
987
988	return NULL;
989}
990
991/**
992 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
993 * @sw: USB4 router
994 * @port: USB4 port
995 *
996 * USB4 routers have direct mapping between USB4 ports and USB 3.x
997 * downstream adapters where the USB 3.x topology is extended. This
998 * function returns the corresponding downstream USB 3.x adapter or
999 * %NULL if no such mapping was possible.
1000 */
1001struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1002					  const struct tb_port *port)
1003{
1004	int usb4_idx = usb4_port_idx(sw, port);
1005	struct tb_port *p;
1006	int usb_idx = 0;
1007
1008	/* Find USB3 down port matching usb4_port */
1009	tb_switch_for_each_port(sw, p) {
1010		if (!tb_port_is_usb3_down(p))
1011			continue;
1012
1013		if (usb_idx == usb4_idx)
1014			return p;
1015
1016		usb_idx++;
1017	}
1018
1019	return NULL;
1020}
1021
1022/**
1023 * usb4_switch_add_ports() - Add USB4 ports for this router
1024 * @sw: USB4 router
1025 *
1026 * For USB4 router finds all USB4 ports and registers devices for each.
1027 * Can be called to any router.
1028 *
1029 * Return %0 in case of success and negative errno in case of failure.
1030 */
1031int usb4_switch_add_ports(struct tb_switch *sw)
1032{
1033	struct tb_port *port;
1034
1035	if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1036		return 0;
1037
1038	tb_switch_for_each_port(sw, port) {
1039		struct usb4_port *usb4;
1040
1041		if (!tb_port_is_null(port))
1042			continue;
1043		if (!port->cap_usb4)
1044			continue;
1045
1046		usb4 = usb4_port_device_add(port);
1047		if (IS_ERR(usb4)) {
1048			usb4_switch_remove_ports(sw);
1049			return PTR_ERR(usb4);
1050		}
1051
1052		port->usb4 = usb4;
1053	}
1054
1055	return 0;
1056}
1057
1058/**
1059 * usb4_switch_remove_ports() - Removes USB4 ports from this router
1060 * @sw: USB4 router
1061 *
1062 * Unregisters previously registered USB4 ports.
1063 */
1064void usb4_switch_remove_ports(struct tb_switch *sw)
1065{
1066	struct tb_port *port;
1067
1068	tb_switch_for_each_port(sw, port) {
1069		if (port->usb4) {
1070			usb4_port_device_remove(port->usb4);
1071			port->usb4 = NULL;
1072		}
1073	}
1074}
1075
1076/**
1077 * usb4_port_unlock() - Unlock USB4 downstream port
1078 * @port: USB4 port to unlock
1079 *
1080 * Unlocks USB4 downstream port so that the connection manager can
1081 * access the router below this port.
1082 */
1083int usb4_port_unlock(struct tb_port *port)
1084{
1085	int ret;
1086	u32 val;
1087
1088	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1089	if (ret)
1090		return ret;
1091
1092	val &= ~ADP_CS_4_LCK;
1093	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1094}
1095
1096/**
1097 * usb4_port_hotplug_enable() - Enables hotplug for a port
1098 * @port: USB4 port to operate on
1099 *
1100 * Enables hot plug events on a given port. This is only intended
1101 * to be used on lane, DP-IN, and DP-OUT adapters.
1102 */
1103int usb4_port_hotplug_enable(struct tb_port *port)
1104{
1105	int ret;
1106	u32 val;
1107
1108	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1109	if (ret)
1110		return ret;
1111
1112	val &= ~ADP_CS_5_DHP;
1113	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1114}
1115
1116static int usb4_port_set_configured(struct tb_port *port, bool configured)
1117{
1118	int ret;
1119	u32 val;
1120
1121	if (!port->cap_usb4)
1122		return -EINVAL;
1123
1124	ret = tb_port_read(port, &val, TB_CFG_PORT,
1125			   port->cap_usb4 + PORT_CS_19, 1);
1126	if (ret)
1127		return ret;
1128
1129	if (configured)
1130		val |= PORT_CS_19_PC;
1131	else
1132		val &= ~PORT_CS_19_PC;
1133
1134	return tb_port_write(port, &val, TB_CFG_PORT,
1135			     port->cap_usb4 + PORT_CS_19, 1);
1136}
1137
1138/**
1139 * usb4_port_configure() - Set USB4 port configured
1140 * @port: USB4 router
1141 *
1142 * Sets the USB4 link to be configured for power management purposes.
1143 */
1144int usb4_port_configure(struct tb_port *port)
1145{
1146	return usb4_port_set_configured(port, true);
1147}
1148
1149/**
1150 * usb4_port_unconfigure() - Set USB4 port unconfigured
1151 * @port: USB4 router
1152 *
1153 * Sets the USB4 link to be unconfigured for power management purposes.
1154 */
1155void usb4_port_unconfigure(struct tb_port *port)
1156{
1157	usb4_port_set_configured(port, false);
1158}
1159
1160static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1161{
1162	int ret;
1163	u32 val;
1164
1165	if (!port->cap_usb4)
1166		return -EINVAL;
1167
1168	ret = tb_port_read(port, &val, TB_CFG_PORT,
1169			   port->cap_usb4 + PORT_CS_19, 1);
1170	if (ret)
1171		return ret;
1172
1173	if (configured)
1174		val |= PORT_CS_19_PID;
1175	else
1176		val &= ~PORT_CS_19_PID;
1177
1178	return tb_port_write(port, &val, TB_CFG_PORT,
1179			     port->cap_usb4 + PORT_CS_19, 1);
1180}
1181
1182/**
1183 * usb4_port_configure_xdomain() - Configure port for XDomain
1184 * @port: USB4 port connected to another host
1185 * @xd: XDomain that is connected to the port
1186 *
1187 * Marks the USB4 port as being connected to another host and updates
1188 * the link type. Returns %0 in success and negative errno in failure.
1189 */
1190int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1191{
1192	xd->link_usb4 = link_is_usb4(port);
1193	return usb4_set_xdomain_configured(port, true);
1194}
1195
1196/**
1197 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1198 * @port: USB4 port that was connected to another host
1199 *
1200 * Clears USB4 port from being marked as XDomain.
1201 */
1202void usb4_port_unconfigure_xdomain(struct tb_port *port)
1203{
1204	usb4_set_xdomain_configured(port, false);
1205}
1206
1207static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1208				  u32 value, int timeout_msec)
1209{
1210	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1211
1212	do {
1213		u32 val;
1214		int ret;
1215
1216		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1217		if (ret)
1218			return ret;
1219
1220		if ((val & bit) == value)
1221			return 0;
1222
1223		usleep_range(50, 100);
1224	} while (ktime_before(ktime_get(), timeout));
1225
1226	return -ETIMEDOUT;
1227}
1228
1229static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1230{
1231	if (dwords > USB4_DATA_DWORDS)
1232		return -EINVAL;
1233
1234	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1235			    dwords);
1236}
1237
1238static int usb4_port_write_data(struct tb_port *port, const void *data,
1239				size_t dwords)
1240{
1241	if (dwords > USB4_DATA_DWORDS)
1242		return -EINVAL;
1243
1244	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1245			     dwords);
1246}
1247
1248static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1249			     u8 index, u8 reg, void *buf, u8 size)
1250{
1251	size_t dwords = DIV_ROUND_UP(size, 4);
1252	int ret;
1253	u32 val;
1254
1255	if (!port->cap_usb4)
1256		return -EINVAL;
1257
1258	val = reg;
1259	val |= size << PORT_CS_1_LENGTH_SHIFT;
1260	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1261	if (target == USB4_SB_TARGET_RETIMER)
1262		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1263	val |= PORT_CS_1_PND;
1264
1265	ret = tb_port_write(port, &val, TB_CFG_PORT,
1266			    port->cap_usb4 + PORT_CS_1, 1);
1267	if (ret)
1268		return ret;
1269
1270	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1271				     PORT_CS_1_PND, 0, 500);
1272	if (ret)
1273		return ret;
1274
1275	ret = tb_port_read(port, &val, TB_CFG_PORT,
1276			    port->cap_usb4 + PORT_CS_1, 1);
1277	if (ret)
1278		return ret;
1279
1280	if (val & PORT_CS_1_NR)
1281		return -ENODEV;
1282	if (val & PORT_CS_1_RC)
1283		return -EIO;
1284
1285	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1286}
1287
1288static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1289			      u8 index, u8 reg, const void *buf, u8 size)
1290{
1291	size_t dwords = DIV_ROUND_UP(size, 4);
1292	int ret;
1293	u32 val;
1294
1295	if (!port->cap_usb4)
1296		return -EINVAL;
1297
1298	if (buf) {
1299		ret = usb4_port_write_data(port, buf, dwords);
1300		if (ret)
1301			return ret;
1302	}
1303
1304	val = reg;
1305	val |= size << PORT_CS_1_LENGTH_SHIFT;
1306	val |= PORT_CS_1_WNR_WRITE;
1307	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1308	if (target == USB4_SB_TARGET_RETIMER)
1309		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1310	val |= PORT_CS_1_PND;
1311
1312	ret = tb_port_write(port, &val, TB_CFG_PORT,
1313			    port->cap_usb4 + PORT_CS_1, 1);
1314	if (ret)
1315		return ret;
1316
1317	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1318				     PORT_CS_1_PND, 0, 500);
1319	if (ret)
1320		return ret;
1321
1322	ret = tb_port_read(port, &val, TB_CFG_PORT,
1323			    port->cap_usb4 + PORT_CS_1, 1);
1324	if (ret)
1325		return ret;
1326
1327	if (val & PORT_CS_1_NR)
1328		return -ENODEV;
1329	if (val & PORT_CS_1_RC)
1330		return -EIO;
1331
1332	return 0;
1333}
1334
1335static int usb4_port_sb_opcode_err_to_errno(u32 val)
1336{
1337	switch (val) {
1338	case 0:
1339		return 0;
1340	case USB4_SB_OPCODE_ERR:
1341		return -EAGAIN;
1342	case USB4_SB_OPCODE_ONS:
1343		return -EOPNOTSUPP;
1344	default:
1345		return -EIO;
1346	}
1347}
1348
1349static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1350			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1351{
1352	ktime_t timeout;
1353	u32 val;
1354	int ret;
1355
1356	val = opcode;
1357	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1358				 sizeof(val));
1359	if (ret)
1360		return ret;
1361
1362	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1363
1364	do {
1365		/* Check results */
1366		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1367					&val, sizeof(val));
1368		if (ret)
1369			return ret;
1370
1371		if (val != opcode)
1372			return usb4_port_sb_opcode_err_to_errno(val);
1373	} while (ktime_before(ktime_get(), timeout));
1374
1375	return -ETIMEDOUT;
1376}
1377
1378static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1379{
1380	u32 val = !offline;
1381	int ret;
1382
1383	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1384				  USB4_SB_METADATA, &val, sizeof(val));
1385	if (ret)
1386		return ret;
1387
1388	val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1389	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1390				  USB4_SB_OPCODE, &val, sizeof(val));
1391}
1392
1393/**
1394 * usb4_port_router_offline() - Put the USB4 port to offline mode
1395 * @port: USB4 port
1396 *
1397 * This function puts the USB4 port into offline mode. In this mode the
1398 * port does not react on hotplug events anymore. This needs to be
1399 * called before retimer access is done when the USB4 links is not up.
1400 *
1401 * Returns %0 in case of success and negative errno if there was an
1402 * error.
1403 */
1404int usb4_port_router_offline(struct tb_port *port)
1405{
1406	return usb4_port_set_router_offline(port, true);
1407}
1408
1409/**
1410 * usb4_port_router_online() - Put the USB4 port back to online
1411 * @port: USB4 port
1412 *
1413 * Makes the USB4 port functional again.
1414 */
1415int usb4_port_router_online(struct tb_port *port)
1416{
1417	return usb4_port_set_router_offline(port, false);
1418}
1419
1420/**
1421 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1422 * @port: USB4 port
1423 *
1424 * This forces the USB4 port to send broadcast RT transaction which
1425 * makes the retimers on the link to assign index to themselves. Returns
1426 * %0 in case of success and negative errno if there was an error.
1427 */
1428int usb4_port_enumerate_retimers(struct tb_port *port)
1429{
1430	u32 val;
1431
1432	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1433	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1434				  USB4_SB_OPCODE, &val, sizeof(val));
1435}
1436
1437/**
1438 * usb4_port_clx_supported() - Check if CLx is supported by the link
1439 * @port: Port to check for CLx support for
1440 *
1441 * PORT_CS_18_CPS bit reflects if the link supports CLx including
1442 * active cables (if connected on the link).
1443 */
1444bool usb4_port_clx_supported(struct tb_port *port)
1445{
1446	int ret;
1447	u32 val;
1448
1449	ret = tb_port_read(port, &val, TB_CFG_PORT,
1450			   port->cap_usb4 + PORT_CS_18, 1);
1451	if (ret)
1452		return false;
1453
1454	return !!(val & PORT_CS_18_CPS);
1455}
1456
1457/**
1458 * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1459 * @port: USB4 port
1460 * @caps: Array with at least two elements to hold the results
1461 *
1462 * Reads the USB4 port lane margining capabilities into @caps.
1463 */
1464int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
1465{
1466	int ret;
1467
1468	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1469			      USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1470	if (ret)
1471		return ret;
1472
1473	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1474				 USB4_SB_DATA, caps, sizeof(*caps) * 2);
1475}
1476
1477/**
1478 * usb4_port_hw_margin() - Run hardware lane margining on port
1479 * @port: USB4 port
1480 * @lanes: Which lanes to run (must match the port capabilities). Can be
1481 *	   %0, %1 or %7.
1482 * @ber_level: BER level contour value
1483 * @timing: Perform timing margining instead of voltage
1484 * @right_high: Use Right/high margin instead of left/low
1485 * @results: Array with at least two elements to hold the results
1486 *
1487 * Runs hardware lane margining on USB4 port and returns the result in
1488 * @results.
1489 */
1490int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1491			unsigned int ber_level, bool timing, bool right_high,
1492			u32 *results)
1493{
1494	u32 val;
1495	int ret;
1496
1497	val = lanes;
1498	if (timing)
1499		val |= USB4_MARGIN_HW_TIME;
1500	if (right_high)
1501		val |= USB4_MARGIN_HW_RH;
1502	if (ber_level)
1503		val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
1504			USB4_MARGIN_HW_BER_MASK;
1505
1506	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1507				 USB4_SB_METADATA, &val, sizeof(val));
1508	if (ret)
1509		return ret;
1510
1511	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1512			      USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1513	if (ret)
1514		return ret;
1515
1516	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1517				 USB4_SB_DATA, results, sizeof(*results) * 2);
1518}
1519
1520/**
1521 * usb4_port_sw_margin() - Run software lane margining on port
1522 * @port: USB4 port
1523 * @lanes: Which lanes to run (must match the port capabilities). Can be
1524 *	   %0, %1 or %7.
1525 * @timing: Perform timing margining instead of voltage
1526 * @right_high: Use Right/high margin instead of left/low
1527 * @counter: What to do with the error counter
1528 *
1529 * Runs software lane margining on USB4 port. Read back the error
1530 * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1531 * success and negative errno otherwise.
1532 */
1533int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1534			bool right_high, u32 counter)
1535{
1536	u32 val;
1537	int ret;
1538
1539	val = lanes;
1540	if (timing)
1541		val |= USB4_MARGIN_SW_TIME;
1542	if (right_high)
1543		val |= USB4_MARGIN_SW_RH;
1544	val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
1545		USB4_MARGIN_SW_COUNTER_MASK;
1546
1547	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1548				 USB4_SB_METADATA, &val, sizeof(val));
1549	if (ret)
1550		return ret;
1551
1552	return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1553			       USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1554}
1555
1556/**
1557 * usb4_port_sw_margin_errors() - Read the software margining error counters
1558 * @port: USB4 port
1559 * @errors: Error metadata is copied here.
1560 *
1561 * This reads back the software margining error counters from the port.
1562 * Returns %0 in success and negative errno otherwise.
1563 */
1564int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
1565{
1566	int ret;
1567
1568	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1569			      USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1570	if (ret)
1571		return ret;
1572
1573	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1574				 USB4_SB_METADATA, errors, sizeof(*errors));
1575}
1576
1577static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1578				       enum usb4_sb_opcode opcode,
1579				       int timeout_msec)
1580{
1581	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1582			       timeout_msec);
1583}
1584
1585/**
1586 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1587 * @port: USB4 port
1588 * @index: Retimer index
1589 *
1590 * Enables sideband channel transations on SBTX. Can be used when USB4
1591 * link does not go up, for example if there is no device connected.
1592 */
1593int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1594{
1595	int ret;
1596
1597	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1598				   500);
1599
1600	if (ret != -ENODEV)
1601		return ret;
1602
1603	/*
1604	 * Per the USB4 retimer spec, the retimer is not required to
1605	 * send an RT (Retimer Transaction) response for the first
1606	 * SET_INBOUND_SBTX command
1607	 */
1608	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1609				    500);
1610}
1611
1612/**
1613 * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1614 * @port: USB4 port
1615 * @index: Retimer index
1616 *
1617 * Disables sideband channel transations on SBTX. The reverse of
1618 * usb4_port_retimer_set_inbound_sbtx().
1619 */
1620int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1621{
1622	return usb4_port_retimer_op(port, index,
1623				    USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1624}
1625
1626/**
1627 * usb4_port_retimer_read() - Read from retimer sideband registers
1628 * @port: USB4 port
1629 * @index: Retimer index
1630 * @reg: Sideband register to read
1631 * @buf: Data from @reg is stored here
1632 * @size: Number of bytes to read
1633 *
1634 * Function reads retimer sideband registers starting from @reg. The
1635 * retimer is connected to @port at @index. Returns %0 in case of
1636 * success, and read data is copied to @buf. If there is no retimer
1637 * present at given @index returns %-ENODEV. In any other failure
1638 * returns negative errno.
1639 */
1640int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1641			   u8 size)
1642{
1643	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1644				 size);
1645}
1646
1647/**
1648 * usb4_port_retimer_write() - Write to retimer sideband registers
1649 * @port: USB4 port
1650 * @index: Retimer index
1651 * @reg: Sideband register to write
1652 * @buf: Data that is written starting from @reg
1653 * @size: Number of bytes to write
1654 *
1655 * Writes retimer sideband registers starting from @reg. The retimer is
1656 * connected to @port at @index. Returns %0 in case of success. If there
1657 * is no retimer present at given @index returns %-ENODEV. In any other
1658 * failure returns negative errno.
1659 */
1660int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1661			    const void *buf, u8 size)
1662{
1663	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1664				  size);
1665}
1666
1667/**
1668 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1669 * @port: USB4 port
1670 * @index: Retimer index
1671 *
1672 * If the retimer at @index is last one (connected directly to the
1673 * Type-C port) this function returns %1. If it is not returns %0. If
1674 * the retimer is not present returns %-ENODEV. Otherwise returns
1675 * negative errno.
1676 */
1677int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1678{
1679	u32 metadata;
1680	int ret;
1681
1682	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1683				   500);
1684	if (ret)
1685		return ret;
1686
1687	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1688				     sizeof(metadata));
1689	return ret ? ret : metadata & 1;
1690}
1691
1692/**
1693 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1694 * @port: USB4 port
1695 * @index: Retimer index
1696 *
1697 * Reads NVM sector size (in bytes) of a retimer at @index. This
1698 * operation can be used to determine whether the retimer supports NVM
1699 * upgrade for example. Returns sector size in bytes or negative errno
1700 * in case of error. Specifically returns %-ENODEV if there is no
1701 * retimer at @index.
1702 */
1703int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1704{
1705	u32 metadata;
1706	int ret;
1707
1708	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1709				   500);
1710	if (ret)
1711		return ret;
1712
1713	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1714				     sizeof(metadata));
1715	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1716}
1717
1718/**
1719 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1720 * @port: USB4 port
1721 * @index: Retimer index
1722 * @address: Start offset
1723 *
1724 * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1725 * done automatically by usb4_port_retimer_nvm_write().
1726 *
1727 * Returns %0 in success and negative errno if there was a failure.
1728 */
1729int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1730				     unsigned int address)
1731{
1732	u32 metadata, dwaddress;
1733	int ret;
1734
1735	dwaddress = address / 4;
1736	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1737		  USB4_NVM_SET_OFFSET_MASK;
1738
1739	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1740				      sizeof(metadata));
1741	if (ret)
1742		return ret;
1743
1744	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1745				    500);
1746}
1747
1748struct retimer_info {
1749	struct tb_port *port;
1750	u8 index;
1751};
1752
1753static int usb4_port_retimer_nvm_write_next_block(void *data,
1754	unsigned int dwaddress, const void *buf, size_t dwords)
1755
1756{
1757	const struct retimer_info *info = data;
1758	struct tb_port *port = info->port;
1759	u8 index = info->index;
1760	int ret;
1761
1762	ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1763				      buf, dwords * 4);
1764	if (ret)
1765		return ret;
1766
1767	return usb4_port_retimer_op(port, index,
1768			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1769}
1770
1771/**
1772 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1773 * @port: USB4 port
1774 * @index: Retimer index
1775 * @address: Byte address where to start the write
1776 * @buf: Data to write
1777 * @size: Size in bytes how much to write
1778 *
1779 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1780 * upgrade. Returns %0 if the data was written successfully and negative
1781 * errno in case of failure. Specifically returns %-ENODEV if there is
1782 * no retimer at @index.
1783 */
1784int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1785				const void *buf, size_t size)
1786{
1787	struct retimer_info info = { .port = port, .index = index };
1788	int ret;
1789
1790	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1791	if (ret)
1792		return ret;
1793
1794	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1795				 usb4_port_retimer_nvm_write_next_block, &info);
1796}
1797
1798/**
1799 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1800 * @port: USB4 port
1801 * @index: Retimer index
1802 *
1803 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1804 * this function can be used to trigger the NVM upgrade process. If
1805 * successful the retimer restarts with the new NVM and may not have the
1806 * index set so one needs to call usb4_port_enumerate_retimers() to
1807 * force index to be assigned.
1808 */
1809int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1810{
1811	u32 val;
1812
1813	/*
1814	 * We need to use the raw operation here because once the
1815	 * authentication completes the retimer index is not set anymore
1816	 * so we do not get back the status now.
1817	 */
1818	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1819	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1820				  USB4_SB_OPCODE, &val, sizeof(val));
1821}
1822
1823/**
1824 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1825 * @port: USB4 port
1826 * @index: Retimer index
1827 * @status: Raw status code read from metadata
1828 *
1829 * This can be called after usb4_port_retimer_nvm_authenticate() and
1830 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1831 *
1832 * Returns %0 if the authentication status was successfully read. The
1833 * completion metadata (the result) is then stored into @status. If
1834 * reading the status fails, returns negative errno.
1835 */
1836int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1837					      u32 *status)
1838{
1839	u32 metadata, val;
1840	int ret;
1841
1842	ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1843				     sizeof(val));
1844	if (ret)
1845		return ret;
1846
1847	ret = usb4_port_sb_opcode_err_to_errno(val);
1848	switch (ret) {
1849	case 0:
1850		*status = 0;
1851		return 0;
1852
1853	case -EAGAIN:
1854		ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1855					     &metadata, sizeof(metadata));
1856		if (ret)
1857			return ret;
1858
1859		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1860		return 0;
1861
1862	default:
1863		return ret;
1864	}
1865}
1866
1867static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1868					    void *buf, size_t dwords)
1869{
1870	const struct retimer_info *info = data;
1871	struct tb_port *port = info->port;
1872	u8 index = info->index;
1873	u32 metadata;
1874	int ret;
1875
1876	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1877	if (dwords < USB4_DATA_DWORDS)
1878		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1879
1880	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1881				      sizeof(metadata));
1882	if (ret)
1883		return ret;
1884
1885	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1886	if (ret)
1887		return ret;
1888
1889	return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1890				      dwords * 4);
1891}
1892
1893/**
1894 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1895 * @port: USB4 port
1896 * @index: Retimer index
1897 * @address: NVM address (in bytes) to start reading
1898 * @buf: Data read from NVM is stored here
1899 * @size: Number of bytes to read
1900 *
1901 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1902 * read was successful and negative errno in case of failure.
1903 * Specifically returns %-ENODEV if there is no retimer at @index.
1904 */
1905int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1906			       unsigned int address, void *buf, size_t size)
1907{
1908	struct retimer_info info = { .port = port, .index = index };
1909
1910	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
1911				usb4_port_retimer_nvm_read_block, &info);
1912}
1913
1914static inline unsigned int
1915usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
1916{
1917	/* Take the possible bandwidth limitation into account */
1918	if (port->max_bw)
1919		return min(bw, port->max_bw);
1920	return bw;
1921}
1922
1923/**
1924 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1925 * @port: USB3 adapter port
1926 *
1927 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1928 * Negative errno in case of error.
1929 */
1930int usb4_usb3_port_max_link_rate(struct tb_port *port)
1931{
1932	int ret, lr;
1933	u32 val;
1934
1935	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1936		return -EINVAL;
1937
1938	ret = tb_port_read(port, &val, TB_CFG_PORT,
1939			   port->cap_adap + ADP_USB3_CS_4, 1);
1940	if (ret)
1941		return ret;
1942
1943	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1944	ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1945
1946	return usb4_usb3_port_max_bandwidth(port, ret);
1947}
1948
1949/**
1950 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1951 * @port: USB3 adapter port
1952 *
1953 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1954 * link is not up returns %0 and negative errno in case of failure.
1955 */
1956int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1957{
1958	int ret, lr;
1959	u32 val;
1960
1961	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1962		return -EINVAL;
1963
1964	ret = tb_port_read(port, &val, TB_CFG_PORT,
1965			   port->cap_adap + ADP_USB3_CS_4, 1);
1966	if (ret)
1967		return ret;
1968
1969	if (!(val & ADP_USB3_CS_4_ULV))
1970		return 0;
1971
1972	lr = val & ADP_USB3_CS_4_ALR_MASK;
1973	ret = lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1974
1975	return usb4_usb3_port_max_bandwidth(port, ret);
1976}
1977
1978static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1979{
1980	int ret;
1981	u32 val;
1982
1983	if (!tb_port_is_usb3_down(port))
1984		return -EINVAL;
1985	if (tb_route(port->sw))
1986		return -EINVAL;
1987
1988	ret = tb_port_read(port, &val, TB_CFG_PORT,
1989			   port->cap_adap + ADP_USB3_CS_2, 1);
1990	if (ret)
1991		return ret;
1992
1993	if (request)
1994		val |= ADP_USB3_CS_2_CMR;
1995	else
1996		val &= ~ADP_USB3_CS_2_CMR;
1997
1998	ret = tb_port_write(port, &val, TB_CFG_PORT,
1999			    port->cap_adap + ADP_USB3_CS_2, 1);
2000	if (ret)
2001		return ret;
2002
2003	/*
2004	 * We can use val here directly as the CMR bit is in the same place
2005	 * as HCA. Just mask out others.
2006	 */
2007	val &= ADP_USB3_CS_2_CMR;
2008	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
2009				      ADP_USB3_CS_1_HCA, val, 1500);
2010}
2011
2012static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
2013{
2014	return usb4_usb3_port_cm_request(port, true);
2015}
2016
2017static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
2018{
2019	return usb4_usb3_port_cm_request(port, false);
2020}
2021
2022static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
2023{
2024	unsigned long uframes;
2025
2026	uframes = bw * 512UL << scale;
2027	return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
2028}
2029
2030static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2031{
2032	unsigned long uframes;
2033
2034	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2035	uframes = ((unsigned long)mbps * MEGA) / 8000;
2036	return DIV_ROUND_UP(uframes, 512UL << scale);
2037}
2038
2039static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2040						   int *upstream_bw,
2041						   int *downstream_bw)
2042{
2043	u32 val, bw, scale;
2044	int ret;
2045
2046	ret = tb_port_read(port, &val, TB_CFG_PORT,
2047			   port->cap_adap + ADP_USB3_CS_2, 1);
2048	if (ret)
2049		return ret;
2050
2051	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2052			   port->cap_adap + ADP_USB3_CS_3, 1);
2053	if (ret)
2054		return ret;
2055
2056	scale &= ADP_USB3_CS_3_SCALE_MASK;
2057
2058	bw = val & ADP_USB3_CS_2_AUBW_MASK;
2059	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2060
2061	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2062	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2063
2064	return 0;
2065}
2066
2067/**
2068 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2069 * @port: USB3 adapter port
2070 * @upstream_bw: Allocated upstream bandwidth is stored here
2071 * @downstream_bw: Allocated downstream bandwidth is stored here
2072 *
2073 * Stores currently allocated USB3 bandwidth into @upstream_bw and
2074 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2075 * errno in failure.
2076 */
2077int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2078				       int *downstream_bw)
2079{
2080	int ret;
2081
2082	ret = usb4_usb3_port_set_cm_request(port);
2083	if (ret)
2084		return ret;
2085
2086	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2087						      downstream_bw);
2088	usb4_usb3_port_clear_cm_request(port);
2089
2090	return ret;
2091}
2092
2093static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2094						  int *upstream_bw,
2095						  int *downstream_bw)
2096{
2097	u32 val, bw, scale;
2098	int ret;
2099
2100	ret = tb_port_read(port, &val, TB_CFG_PORT,
2101			   port->cap_adap + ADP_USB3_CS_1, 1);
2102	if (ret)
2103		return ret;
2104
2105	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2106			   port->cap_adap + ADP_USB3_CS_3, 1);
2107	if (ret)
2108		return ret;
2109
2110	scale &= ADP_USB3_CS_3_SCALE_MASK;
2111
2112	bw = val & ADP_USB3_CS_1_CUBW_MASK;
2113	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2114
2115	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2116	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2117
2118	return 0;
2119}
2120
2121static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2122						    int upstream_bw,
2123						    int downstream_bw)
2124{
2125	u32 val, ubw, dbw, scale;
2126	int ret, max_bw;
2127
2128	/* Figure out suitable scale */
2129	scale = 0;
2130	max_bw = max(upstream_bw, downstream_bw);
2131	while (scale < 64) {
2132		if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2133			break;
2134		scale++;
2135	}
2136
2137	if (WARN_ON(scale >= 64))
2138		return -EINVAL;
2139
2140	ret = tb_port_write(port, &scale, TB_CFG_PORT,
2141			    port->cap_adap + ADP_USB3_CS_3, 1);
2142	if (ret)
2143		return ret;
2144
2145	ubw = mbps_to_usb3_bw(upstream_bw, scale);
2146	dbw = mbps_to_usb3_bw(downstream_bw, scale);
2147
2148	tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2149
2150	ret = tb_port_read(port, &val, TB_CFG_PORT,
2151			   port->cap_adap + ADP_USB3_CS_2, 1);
2152	if (ret)
2153		return ret;
2154
2155	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2156	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2157	val |= ubw;
2158
2159	return tb_port_write(port, &val, TB_CFG_PORT,
2160			     port->cap_adap + ADP_USB3_CS_2, 1);
2161}
2162
2163/**
2164 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2165 * @port: USB3 adapter port
2166 * @upstream_bw: New upstream bandwidth
2167 * @downstream_bw: New downstream bandwidth
2168 *
2169 * This can be used to set how much bandwidth is allocated for the USB3
2170 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2171 * new values programmed to the USB3 adapter allocation registers. If
2172 * the values are lower than what is currently consumed the allocation
2173 * is set to what is currently consumed instead (consumed bandwidth
2174 * cannot be taken away by CM). The actual new values are returned in
2175 * @upstream_bw and @downstream_bw.
2176 *
2177 * Returns %0 in case of success and negative errno if there was a
2178 * failure.
2179 */
2180int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2181				      int *downstream_bw)
2182{
2183	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2184
2185	ret = usb4_usb3_port_set_cm_request(port);
2186	if (ret)
2187		return ret;
2188
2189	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2190						     &consumed_down);
2191	if (ret)
2192		goto err_request;
2193
2194	/* Don't allow it go lower than what is consumed */
2195	allocate_up = max(*upstream_bw, consumed_up);
2196	allocate_down = max(*downstream_bw, consumed_down);
2197
2198	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2199						       allocate_down);
2200	if (ret)
2201		goto err_request;
2202
2203	*upstream_bw = allocate_up;
2204	*downstream_bw = allocate_down;
2205
2206err_request:
2207	usb4_usb3_port_clear_cm_request(port);
2208	return ret;
2209}
2210
2211/**
2212 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2213 * @port: USB3 adapter port
2214 * @upstream_bw: New allocated upstream bandwidth
2215 * @downstream_bw: New allocated downstream bandwidth
2216 *
2217 * Releases USB3 allocated bandwidth down to what is actually consumed.
2218 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2219 *
2220 * Returns 0% in success and negative errno in case of failure.
2221 */
2222int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2223				     int *downstream_bw)
2224{
2225	int ret, consumed_up, consumed_down;
2226
2227	ret = usb4_usb3_port_set_cm_request(port);
2228	if (ret)
2229		return ret;
2230
2231	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2232						     &consumed_down);
2233	if (ret)
2234		goto err_request;
2235
2236	/*
2237	 * Always keep 1000 Mb/s to make sure xHCI has at least some
2238	 * bandwidth available for isochronous traffic.
2239	 */
2240	if (consumed_up < 1000)
2241		consumed_up = 1000;
2242	if (consumed_down < 1000)
2243		consumed_down = 1000;
2244
2245	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2246						       consumed_down);
2247	if (ret)
2248		goto err_request;
2249
2250	*upstream_bw = consumed_up;
2251	*downstream_bw = consumed_down;
2252
2253err_request:
2254	usb4_usb3_port_clear_cm_request(port);
2255	return ret;
2256}
2257
2258static bool is_usb4_dpin(const struct tb_port *port)
2259{
2260	if (!tb_port_is_dpin(port))
2261		return false;
2262	if (!tb_switch_is_usb4(port->sw))
2263		return false;
2264	return true;
2265}
2266
2267/**
2268 * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2269 * @port: DP IN adapter
2270 * @cm_id: CM ID to assign
2271 *
2272 * Sets CM ID for the @port. Returns %0 on success and negative errno
2273 * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2274 * support this.
2275 */
2276int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2277{
2278	u32 val;
2279	int ret;
2280
2281	if (!is_usb4_dpin(port))
2282		return -EOPNOTSUPP;
2283
2284	ret = tb_port_read(port, &val, TB_CFG_PORT,
2285			   port->cap_adap + ADP_DP_CS_2, 1);
2286	if (ret)
2287		return ret;
2288
2289	val &= ~ADP_DP_CS_2_CM_ID_MASK;
2290	val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2291
2292	return tb_port_write(port, &val, TB_CFG_PORT,
2293			     port->cap_adap + ADP_DP_CS_2, 1);
2294}
2295
2296/**
2297 * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
2298 *					     supported
2299 * @port: DP IN adapter to check
2300 *
2301 * Can be called to any DP IN adapter. Returns true if the adapter
2302 * supports USB4 bandwidth allocation mode, false otherwise.
2303 */
2304bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
2305{
2306	int ret;
2307	u32 val;
2308
2309	if (!is_usb4_dpin(port))
2310		return false;
2311
2312	ret = tb_port_read(port, &val, TB_CFG_PORT,
2313			   port->cap_adap + DP_LOCAL_CAP, 1);
2314	if (ret)
2315		return false;
2316
2317	return !!(val & DP_COMMON_CAP_BW_MODE);
2318}
2319
2320/**
2321 * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
2322 *					   enabled
2323 * @port: DP IN adapter to check
2324 *
2325 * Can be called to any DP IN adapter. Returns true if the bandwidth
2326 * allocation mode has been enabled, false otherwise.
2327 */
2328bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
2329{
2330	int ret;
2331	u32 val;
2332
2333	if (!is_usb4_dpin(port))
2334		return false;
2335
2336	ret = tb_port_read(port, &val, TB_CFG_PORT,
2337			   port->cap_adap + ADP_DP_CS_8, 1);
2338	if (ret)
2339		return false;
2340
2341	return !!(val & ADP_DP_CS_8_DPME);
2342}
2343
2344/**
2345 * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
2346 *						    bandwidth allocation mode
2347 * @port: DP IN adapter
2348 * @supported: Does the CM support bandwidth allocation mode
2349 *
2350 * Can be called to any DP IN adapter. Sets or clears the CM support bit
2351 * of the DP IN adapter. Returns %0 in success and negative errno
2352 * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2353 * does not support this.
2354 */
2355int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
2356						 bool supported)
2357{
2358	u32 val;
2359	int ret;
2360
2361	if (!is_usb4_dpin(port))
2362		return -EOPNOTSUPP;
2363
2364	ret = tb_port_read(port, &val, TB_CFG_PORT,
2365			   port->cap_adap + ADP_DP_CS_2, 1);
2366	if (ret)
2367		return ret;
2368
2369	if (supported)
2370		val |= ADP_DP_CS_2_CMMS;
2371	else
2372		val &= ~ADP_DP_CS_2_CMMS;
2373
2374	return tb_port_write(port, &val, TB_CFG_PORT,
2375			     port->cap_adap + ADP_DP_CS_2, 1);
2376}
2377
2378/**
2379 * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2380 * @port: DP IN adapter
2381 *
2382 * Reads bandwidth allocation Group ID from the DP IN adapter and
2383 * returns it. If the adapter does not support setting Group_ID
2384 * %-EOPNOTSUPP is returned.
2385 */
2386int usb4_dp_port_group_id(struct tb_port *port)
2387{
2388	u32 val;
2389	int ret;
2390
2391	if (!is_usb4_dpin(port))
2392		return -EOPNOTSUPP;
2393
2394	ret = tb_port_read(port, &val, TB_CFG_PORT,
2395			   port->cap_adap + ADP_DP_CS_2, 1);
2396	if (ret)
2397		return ret;
2398
2399	return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2400}
2401
2402/**
2403 * usb4_dp_port_set_group_id() - Set adapter Group ID
2404 * @port: DP IN adapter
2405 * @group_id: Group ID for the adapter
2406 *
2407 * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2408 * Returns %0 in case of success and negative errno otherwise.
2409 * Specifically returns %-EOPNOTSUPP if the adapter does not support
2410 * this.
2411 */
2412int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2413{
2414	u32 val;
2415	int ret;
2416
2417	if (!is_usb4_dpin(port))
2418		return -EOPNOTSUPP;
2419
2420	ret = tb_port_read(port, &val, TB_CFG_PORT,
2421			   port->cap_adap + ADP_DP_CS_2, 1);
2422	if (ret)
2423		return ret;
2424
2425	val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2426	val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2427
2428	return tb_port_write(port, &val, TB_CFG_PORT,
2429			     port->cap_adap + ADP_DP_CS_2, 1);
2430}
2431
2432/**
2433 * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2434 * @port: DP IN adapter
2435 * @rate: Non-reduced rate in Mb/s is placed here
2436 * @lanes: Non-reduced lanes are placed here
2437 *
2438 * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2439 * %0 in success and negative errno otherwise. Specifically returns
2440 * %-EOPNOTSUPP if the adapter does not support this.
2441 */
2442int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2443{
2444	u32 val, tmp;
2445	int ret;
2446
2447	if (!is_usb4_dpin(port))
2448		return -EOPNOTSUPP;
2449
2450	ret = tb_port_read(port, &val, TB_CFG_PORT,
2451			   port->cap_adap + ADP_DP_CS_2, 1);
2452	if (ret)
2453		return ret;
2454
2455	tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2456	switch (tmp) {
2457	case DP_COMMON_CAP_RATE_RBR:
2458		*rate = 1620;
2459		break;
2460	case DP_COMMON_CAP_RATE_HBR:
2461		*rate = 2700;
2462		break;
2463	case DP_COMMON_CAP_RATE_HBR2:
2464		*rate = 5400;
2465		break;
2466	case DP_COMMON_CAP_RATE_HBR3:
2467		*rate = 8100;
2468		break;
2469	}
2470
2471	tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2472	switch (tmp) {
2473	case DP_COMMON_CAP_1_LANE:
2474		*lanes = 1;
2475		break;
2476	case DP_COMMON_CAP_2_LANES:
2477		*lanes = 2;
2478		break;
2479	case DP_COMMON_CAP_4_LANES:
2480		*lanes = 4;
2481		break;
2482	}
2483
2484	return 0;
2485}
2486
2487/**
2488 * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2489 * @port: DP IN adapter
2490 * @rate: Non-reduced rate in Mb/s
2491 * @lanes: Non-reduced lanes
2492 *
2493 * Before the capabilities reduction this function can be used to set
2494 * the non-reduced values for the DP IN adapter. Returns %0 in success
2495 * and negative errno otherwise. If the adapter does not support this
2496 * %-EOPNOTSUPP is returned.
2497 */
2498int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2499{
2500	u32 val;
2501	int ret;
2502
2503	if (!is_usb4_dpin(port))
2504		return -EOPNOTSUPP;
2505
2506	ret = tb_port_read(port, &val, TB_CFG_PORT,
2507			   port->cap_adap + ADP_DP_CS_2, 1);
2508	if (ret)
2509		return ret;
2510
2511	val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2512
2513	switch (rate) {
2514	case 1620:
2515		break;
2516	case 2700:
2517		val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2518			& ADP_DP_CS_2_NRD_MLR_MASK;
2519		break;
2520	case 5400:
2521		val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2522			& ADP_DP_CS_2_NRD_MLR_MASK;
2523		break;
2524	case 8100:
2525		val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2526			& ADP_DP_CS_2_NRD_MLR_MASK;
2527		break;
2528	default:
2529		return -EINVAL;
2530	}
2531
2532	val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2533
2534	switch (lanes) {
2535	case 1:
2536		break;
2537	case 2:
2538		val |= DP_COMMON_CAP_2_LANES;
2539		break;
2540	case 4:
2541		val |= DP_COMMON_CAP_4_LANES;
2542		break;
2543	default:
2544		return -EINVAL;
2545	}
2546
2547	return tb_port_write(port, &val, TB_CFG_PORT,
2548			     port->cap_adap + ADP_DP_CS_2, 1);
2549}
2550
2551/**
2552 * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2553 * @port: DP IN adapter
2554 *
2555 * Reads the programmed granularity from @port. If the DP IN adapter does
2556 * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2557 * errno in other error cases.
2558 */
2559int usb4_dp_port_granularity(struct tb_port *port)
2560{
2561	u32 val;
2562	int ret;
2563
2564	if (!is_usb4_dpin(port))
2565		return -EOPNOTSUPP;
2566
2567	ret = tb_port_read(port, &val, TB_CFG_PORT,
2568			   port->cap_adap + ADP_DP_CS_2, 1);
2569	if (ret)
2570		return ret;
2571
2572	val &= ADP_DP_CS_2_GR_MASK;
2573	val >>= ADP_DP_CS_2_GR_SHIFT;
2574
2575	switch (val) {
2576	case ADP_DP_CS_2_GR_0_25G:
2577		return 250;
2578	case ADP_DP_CS_2_GR_0_5G:
2579		return 500;
2580	case ADP_DP_CS_2_GR_1G:
2581		return 1000;
2582	}
2583
2584	return -EINVAL;
2585}
2586
2587/**
2588 * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2589 * @port: DP IN adapter
2590 * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2591 *
2592 * Sets the granularity used with the estimated, allocated and requested
2593 * bandwidth. Returns %0 in success and negative errno otherwise. If the
2594 * adapter does not support this %-EOPNOTSUPP is returned.
2595 */
2596int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2597{
2598	u32 val;
2599	int ret;
2600
2601	if (!is_usb4_dpin(port))
2602		return -EOPNOTSUPP;
2603
2604	ret = tb_port_read(port, &val, TB_CFG_PORT,
2605			   port->cap_adap + ADP_DP_CS_2, 1);
2606	if (ret)
2607		return ret;
2608
2609	val &= ~ADP_DP_CS_2_GR_MASK;
2610
2611	switch (granularity) {
2612	case 250:
2613		val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2614		break;
2615	case 500:
2616		val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2617		break;
2618	case 1000:
2619		val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2620		break;
2621	default:
2622		return -EINVAL;
2623	}
2624
2625	return tb_port_write(port, &val, TB_CFG_PORT,
2626			     port->cap_adap + ADP_DP_CS_2, 1);
2627}
2628
2629/**
2630 * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
2631 * @port: DP IN adapter
2632 * @bw: Estimated bandwidth in Mb/s.
2633 *
2634 * Sets the estimated bandwidth to @bw. Set the granularity by calling
2635 * usb4_dp_port_set_granularity() before calling this. The @bw is round
2636 * down to the closest granularity multiplier. Returns %0 in success
2637 * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2638 * the adapter does not support this.
2639 */
2640int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
2641{
2642	u32 val, granularity;
2643	int ret;
2644
2645	if (!is_usb4_dpin(port))
2646		return -EOPNOTSUPP;
2647
2648	ret = usb4_dp_port_granularity(port);
2649	if (ret < 0)
2650		return ret;
2651	granularity = ret;
2652
2653	ret = tb_port_read(port, &val, TB_CFG_PORT,
2654			   port->cap_adap + ADP_DP_CS_2, 1);
2655	if (ret)
2656		return ret;
2657
2658	val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2659	val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2660
2661	return tb_port_write(port, &val, TB_CFG_PORT,
2662			     port->cap_adap + ADP_DP_CS_2, 1);
2663}
2664
2665/**
2666 * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
2667 * @port: DP IN adapter
2668 *
2669 * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2670 * account the programmed granularity). Returns negative errno in case
2671 * of error.
2672 */
2673int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
2674{
2675	u32 val, granularity;
2676	int ret;
2677
2678	if (!is_usb4_dpin(port))
2679		return -EOPNOTSUPP;
2680
2681	ret = usb4_dp_port_granularity(port);
2682	if (ret < 0)
2683		return ret;
2684	granularity = ret;
2685
2686	ret = tb_port_read(port, &val, TB_CFG_PORT,
2687			   port->cap_adap + DP_STATUS, 1);
2688	if (ret)
2689		return ret;
2690
2691	val &= DP_STATUS_ALLOCATED_BW_MASK;
2692	val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2693
2694	return val * granularity;
2695}
2696
2697static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2698{
2699	u32 val;
2700	int ret;
2701
2702	ret = tb_port_read(port, &val, TB_CFG_PORT,
2703			   port->cap_adap + ADP_DP_CS_2, 1);
2704	if (ret)
2705		return ret;
2706
2707	if (ack)
2708		val |= ADP_DP_CS_2_CA;
2709	else
2710		val &= ~ADP_DP_CS_2_CA;
2711
2712	return tb_port_write(port, &val, TB_CFG_PORT,
2713			     port->cap_adap + ADP_DP_CS_2, 1);
2714}
2715
2716static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2717{
2718	return __usb4_dp_port_set_cm_ack(port, true);
2719}
2720
2721static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2722					      int timeout_msec)
2723{
2724	ktime_t end;
2725	u32 val;
2726	int ret;
2727
2728	ret = __usb4_dp_port_set_cm_ack(port, false);
2729	if (ret)
2730		return ret;
2731
2732	end = ktime_add_ms(ktime_get(), timeout_msec);
2733	do {
2734		ret = tb_port_read(port, &val, TB_CFG_PORT,
2735				   port->cap_adap + ADP_DP_CS_8, 1);
2736		if (ret)
2737			return ret;
2738
2739		if (!(val & ADP_DP_CS_8_DR))
2740			break;
2741
2742		usleep_range(50, 100);
2743	} while (ktime_before(ktime_get(), end));
2744
2745	if (val & ADP_DP_CS_8_DR)
2746		return -ETIMEDOUT;
2747
2748	ret = tb_port_read(port, &val, TB_CFG_PORT,
2749			   port->cap_adap + ADP_DP_CS_2, 1);
2750	if (ret)
2751		return ret;
2752
2753	val &= ~ADP_DP_CS_2_CA;
2754	return tb_port_write(port, &val, TB_CFG_PORT,
2755			     port->cap_adap + ADP_DP_CS_2, 1);
2756}
2757
2758/**
2759 * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
2760 * @port: DP IN adapter
2761 * @bw: New allocated bandwidth in Mb/s
2762 *
2763 * Communicates the new allocated bandwidth with the DPCD (graphics
2764 * driver). Takes into account the programmed granularity. Returns %0 in
2765 * success and negative errno in case of error.
2766 */
2767int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
2768{
2769	u32 val, granularity;
2770	int ret;
2771
2772	if (!is_usb4_dpin(port))
2773		return -EOPNOTSUPP;
2774
2775	ret = usb4_dp_port_granularity(port);
2776	if (ret < 0)
2777		return ret;
2778	granularity = ret;
2779
2780	ret = tb_port_read(port, &val, TB_CFG_PORT,
2781			   port->cap_adap + DP_STATUS, 1);
2782	if (ret)
2783		return ret;
2784
2785	val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2786	val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2787
2788	ret = tb_port_write(port, &val, TB_CFG_PORT,
2789			    port->cap_adap + DP_STATUS, 1);
2790	if (ret)
2791		return ret;
2792
2793	ret = usb4_dp_port_set_cm_ack(port);
2794	if (ret)
2795		return ret;
2796
2797	return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2798}
2799
2800/**
2801 * usb4_dp_port_requested_bandwidth() - Read requested bandwidth
2802 * @port: DP IN adapter
2803 *
2804 * Reads the DPCD (graphics driver) requested bandwidth and returns it
2805 * in Mb/s. Takes the programmed granularity into account. In case of
2806 * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2807 * the adapter does not support bandwidth allocation mode, and %ENODATA
2808 * if there is no active bandwidth request from the graphics driver.
2809 */
2810int usb4_dp_port_requested_bandwidth(struct tb_port *port)
2811{
2812	u32 val, granularity;
2813	int ret;
2814
2815	if (!is_usb4_dpin(port))
2816		return -EOPNOTSUPP;
2817
2818	ret = usb4_dp_port_granularity(port);
2819	if (ret < 0)
2820		return ret;
2821	granularity = ret;
2822
2823	ret = tb_port_read(port, &val, TB_CFG_PORT,
2824			   port->cap_adap + ADP_DP_CS_8, 1);
2825	if (ret)
2826		return ret;
2827
2828	if (!(val & ADP_DP_CS_8_DR))
2829		return -ENODATA;
2830
2831	return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2832}
2833
2834/**
2835 * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
2836 * @port: PCIe adapter
2837 * @enable: Enable/disable extended encapsulation
2838 *
2839 * Enables or disables extended encapsulation used in PCIe tunneling. Caller
2840 * needs to make sure both adapters support this before enabling. Returns %0 on
2841 * success and negative errno otherwise.
2842 */
2843int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
2844{
2845	u32 val;
2846	int ret;
2847
2848	if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
2849		return -EINVAL;
2850
2851	ret = tb_port_read(port, &val, TB_CFG_PORT,
2852			   port->cap_adap + ADP_PCIE_CS_1, 1);
2853	if (ret)
2854		return ret;
2855
2856	if (enable)
2857		val |= ADP_PCIE_CS_1_EE;
2858	else
2859		val &= ~ADP_PCIE_CS_1_EE;
2860
2861	return tb_port_write(port, &val, TB_CFG_PORT,
2862			     port->cap_adap + ADP_PCIE_CS_1, 1);
2863}
2864