1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9#include <linux/delay.h>
10#include <linux/idr.h>
11#include <linux/module.h>
12#include <linux/nvmem-provider.h>
13#include <linux/pm_runtime.h>
14#include <linux/sched/signal.h>
15#include <linux/sizes.h>
16#include <linux/slab.h>
17#include <linux/string_helpers.h>
18
19#include "tb.h"
20
21/* Switch NVM support */
22
23struct nvm_auth_status {
24	struct list_head list;
25	uuid_t uuid;
26	u32 status;
27};
28
29/*
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
32 * keep it separately.
33 */
34static LIST_HEAD(nvm_auth_status_cache);
35static DEFINE_MUTEX(nvm_auth_status_lock);
36
37static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38{
39	struct nvm_auth_status *st;
40
41	list_for_each_entry(st, &nvm_auth_status_cache, list) {
42		if (uuid_equal(&st->uuid, sw->uuid))
43			return st;
44	}
45
46	return NULL;
47}
48
49static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50{
51	struct nvm_auth_status *st;
52
53	mutex_lock(&nvm_auth_status_lock);
54	st = __nvm_get_auth_status(sw);
55	mutex_unlock(&nvm_auth_status_lock);
56
57	*status = st ? st->status : 0;
58}
59
60static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61{
62	struct nvm_auth_status *st;
63
64	if (WARN_ON(!sw->uuid))
65		return;
66
67	mutex_lock(&nvm_auth_status_lock);
68	st = __nvm_get_auth_status(sw);
69
70	if (!st) {
71		st = kzalloc(sizeof(*st), GFP_KERNEL);
72		if (!st)
73			goto unlock;
74
75		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76		INIT_LIST_HEAD(&st->list);
77		list_add_tail(&st->list, &nvm_auth_status_cache);
78	}
79
80	st->status = status;
81unlock:
82	mutex_unlock(&nvm_auth_status_lock);
83}
84
85static void nvm_clear_auth_status(const struct tb_switch *sw)
86{
87	struct nvm_auth_status *st;
88
89	mutex_lock(&nvm_auth_status_lock);
90	st = __nvm_get_auth_status(sw);
91	if (st) {
92		list_del(&st->list);
93		kfree(st);
94	}
95	mutex_unlock(&nvm_auth_status_lock);
96}
97
98static int nvm_validate_and_write(struct tb_switch *sw)
99{
100	unsigned int image_size;
101	const u8 *buf;
102	int ret;
103
104	ret = tb_nvm_validate(sw->nvm);
105	if (ret)
106		return ret;
107
108	ret = tb_nvm_write_headers(sw->nvm);
109	if (ret)
110		return ret;
111
112	buf = sw->nvm->buf_data_start;
113	image_size = sw->nvm->buf_data_size;
114
115	if (tb_switch_is_usb4(sw))
116		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117	else
118		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119	if (ret)
120		return ret;
121
122	sw->nvm->flushed = true;
123	return 0;
124}
125
126static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127{
128	int ret = 0;
129
130	/*
131	 * Root switch NVM upgrade requires that we disconnect the
132	 * existing paths first (in case it is not in safe mode
133	 * already).
134	 */
135	if (!sw->safe_mode) {
136		u32 status;
137
138		ret = tb_domain_disconnect_all_paths(sw->tb);
139		if (ret)
140			return ret;
141		/*
142		 * The host controller goes away pretty soon after this if
143		 * everything goes well so getting timeout is expected.
144		 */
145		ret = dma_port_flash_update_auth(sw->dma_port);
146		if (!ret || ret == -ETIMEDOUT)
147			return 0;
148
149		/*
150		 * Any error from update auth operation requires power
151		 * cycling of the host router.
152		 */
153		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155			nvm_set_auth_status(sw, status);
156	}
157
158	/*
159	 * From safe mode we can get out by just power cycling the
160	 * switch.
161	 */
162	dma_port_power_cycle(sw->dma_port);
163	return ret;
164}
165
166static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167{
168	int ret, retries = 10;
169
170	ret = dma_port_flash_update_auth(sw->dma_port);
171	switch (ret) {
172	case 0:
173	case -ETIMEDOUT:
174	case -EACCES:
175	case -EINVAL:
176		/* Power cycle is required */
177		break;
178	default:
179		return ret;
180	}
181
182	/*
183	 * Poll here for the authentication status. It takes some time
184	 * for the device to respond (we get timeout for a while). Once
185	 * we get response the device needs to be power cycled in order
186	 * to the new NVM to be taken into use.
187	 */
188	do {
189		u32 status;
190
191		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192		if (ret < 0 && ret != -ETIMEDOUT)
193			return ret;
194		if (ret > 0) {
195			if (status) {
196				tb_sw_warn(sw, "failed to authenticate NVM\n");
197				nvm_set_auth_status(sw, status);
198			}
199
200			tb_sw_info(sw, "power cycling the switch now\n");
201			dma_port_power_cycle(sw->dma_port);
202			return 0;
203		}
204
205		msleep(500);
206	} while (--retries);
207
208	return -ETIMEDOUT;
209}
210
211static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212{
213	struct pci_dev *root_port;
214
215	/*
216	 * During host router NVM upgrade we should not allow root port to
217	 * go into D3cold because some root ports cannot trigger PME
218	 * itself. To be on the safe side keep the root port in D0 during
219	 * the whole upgrade process.
220	 */
221	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222	if (root_port)
223		pm_runtime_get_noresume(&root_port->dev);
224}
225
226static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227{
228	struct pci_dev *root_port;
229
230	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231	if (root_port)
232		pm_runtime_put(&root_port->dev);
233}
234
235static inline bool nvm_readable(struct tb_switch *sw)
236{
237	if (tb_switch_is_usb4(sw)) {
238		/*
239		 * USB4 devices must support NVM operations but it is
240		 * optional for hosts. Therefore we query the NVM sector
241		 * size here and if it is supported assume NVM
242		 * operations are implemented.
243		 */
244		return usb4_switch_nvm_sector_size(sw) > 0;
245	}
246
247	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
248	return !!sw->dma_port;
249}
250
251static inline bool nvm_upgradeable(struct tb_switch *sw)
252{
253	if (sw->no_nvm_upgrade)
254		return false;
255	return nvm_readable(sw);
256}
257
258static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259{
260	int ret;
261
262	if (tb_switch_is_usb4(sw)) {
263		if (auth_only) {
264			ret = usb4_switch_nvm_set_offset(sw, 0);
265			if (ret)
266				return ret;
267		}
268		sw->nvm->authenticating = true;
269		return usb4_switch_nvm_authenticate(sw);
270	}
271	if (auth_only)
272		return -EOPNOTSUPP;
273
274	sw->nvm->authenticating = true;
275	if (!tb_route(sw)) {
276		nvm_authenticate_start_dma_port(sw);
277		ret = nvm_authenticate_host_dma_port(sw);
278	} else {
279		ret = nvm_authenticate_device_dma_port(sw);
280	}
281
282	return ret;
283}
284
285/**
286 * tb_switch_nvm_read() - Read router NVM
287 * @sw: Router whose NVM to read
288 * @address: Start address on the NVM
289 * @buf: Buffer where the read data is copied
290 * @size: Size of the buffer in bytes
291 *
292 * Reads from router NVM and returns the requested data in @buf. Locking
293 * is up to the caller. Returns %0 in success and negative errno in case
294 * of failure.
295 */
296int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297		       size_t size)
298{
299	if (tb_switch_is_usb4(sw))
300		return usb4_switch_nvm_read(sw, address, buf, size);
301	return dma_port_flash_read(sw->dma_port, address, buf, size);
302}
303
304static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305{
306	struct tb_nvm *nvm = priv;
307	struct tb_switch *sw = tb_to_switch(nvm->dev);
308	int ret;
309
310	pm_runtime_get_sync(&sw->dev);
311
312	if (!mutex_trylock(&sw->tb->lock)) {
313		ret = restart_syscall();
314		goto out;
315	}
316
317	ret = tb_switch_nvm_read(sw, offset, val, bytes);
318	mutex_unlock(&sw->tb->lock);
319
320out:
321	pm_runtime_mark_last_busy(&sw->dev);
322	pm_runtime_put_autosuspend(&sw->dev);
323
324	return ret;
325}
326
327static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328{
329	struct tb_nvm *nvm = priv;
330	struct tb_switch *sw = tb_to_switch(nvm->dev);
331	int ret;
332
333	if (!mutex_trylock(&sw->tb->lock))
334		return restart_syscall();
335
336	/*
337	 * Since writing the NVM image might require some special steps,
338	 * for example when CSS headers are written, we cache the image
339	 * locally here and handle the special cases when the user asks
340	 * us to authenticate the image.
341	 */
342	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343	mutex_unlock(&sw->tb->lock);
344
345	return ret;
346}
347
348static int tb_switch_nvm_add(struct tb_switch *sw)
349{
350	struct tb_nvm *nvm;
351	int ret;
352
353	if (!nvm_readable(sw))
354		return 0;
355
356	nvm = tb_nvm_alloc(&sw->dev);
357	if (IS_ERR(nvm)) {
358		ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359		goto err_nvm;
360	}
361
362	ret = tb_nvm_read_version(nvm);
363	if (ret)
364		goto err_nvm;
365
366	/*
367	 * If the switch is in safe-mode the only accessible portion of
368	 * the NVM is the non-active one where userspace is expected to
369	 * write new functional NVM.
370	 */
371	if (!sw->safe_mode) {
372		ret = tb_nvm_add_active(nvm, nvm_read);
373		if (ret)
374			goto err_nvm;
375	}
376
377	if (!sw->no_nvm_upgrade) {
378		ret = tb_nvm_add_non_active(nvm, nvm_write);
379		if (ret)
380			goto err_nvm;
381	}
382
383	sw->nvm = nvm;
384	return 0;
385
386err_nvm:
387	tb_sw_dbg(sw, "NVM upgrade disabled\n");
388	sw->no_nvm_upgrade = true;
389	if (!IS_ERR(nvm))
390		tb_nvm_free(nvm);
391
392	return ret;
393}
394
395static void tb_switch_nvm_remove(struct tb_switch *sw)
396{
397	struct tb_nvm *nvm;
398
399	nvm = sw->nvm;
400	sw->nvm = NULL;
401
402	if (!nvm)
403		return;
404
405	/* Remove authentication status in case the switch is unplugged */
406	if (!nvm->authenticating)
407		nvm_clear_auth_status(sw);
408
409	tb_nvm_free(nvm);
410}
411
412/* port utility functions */
413
414static const char *tb_port_type(const struct tb_regs_port_header *port)
415{
416	switch (port->type >> 16) {
417	case 0:
418		switch ((u8) port->type) {
419		case 0:
420			return "Inactive";
421		case 1:
422			return "Port";
423		case 2:
424			return "NHI";
425		default:
426			return "unknown";
427		}
428	case 0x2:
429		return "Ethernet";
430	case 0x8:
431		return "SATA";
432	case 0xe:
433		return "DP/HDMI";
434	case 0x10:
435		return "PCIe";
436	case 0x20:
437		return "USB";
438	default:
439		return "unknown";
440	}
441}
442
443static void tb_dump_port(struct tb *tb, const struct tb_port *port)
444{
445	const struct tb_regs_port_header *regs = &port->config;
446
447	tb_dbg(tb,
448	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
449	       regs->port_number, regs->vendor_id, regs->device_id,
450	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
451	       regs->type);
452	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
453	       regs->max_in_hop_id, regs->max_out_hop_id);
454	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
455	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
456	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
457	       port->ctl_credits);
458}
459
460/**
461 * tb_port_state() - get connectedness state of a port
462 * @port: the port to check
463 *
464 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
465 *
466 * Return: Returns an enum tb_port_state on success or an error code on failure.
467 */
468int tb_port_state(struct tb_port *port)
469{
470	struct tb_cap_phy phy;
471	int res;
472	if (port->cap_phy == 0) {
473		tb_port_WARN(port, "does not have a PHY\n");
474		return -EINVAL;
475	}
476	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
477	if (res)
478		return res;
479	return phy.state;
480}
481
482/**
483 * tb_wait_for_port() - wait for a port to become ready
484 * @port: Port to wait
485 * @wait_if_unplugged: Wait also when port is unplugged
486 *
487 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
488 * wait_if_unplugged is set then we also wait if the port is in state
489 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
490 * switch resume). Otherwise we only wait if a device is registered but the link
491 * has not yet been established.
492 *
493 * Return: Returns an error code on failure. Returns 0 if the port is not
494 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
495 * if the port is connected and in state TB_PORT_UP.
496 */
497int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
498{
499	int retries = 10;
500	int state;
501	if (!port->cap_phy) {
502		tb_port_WARN(port, "does not have PHY\n");
503		return -EINVAL;
504	}
505	if (tb_is_upstream_port(port)) {
506		tb_port_WARN(port, "is the upstream port\n");
507		return -EINVAL;
508	}
509
510	while (retries--) {
511		state = tb_port_state(port);
512		switch (state) {
513		case TB_PORT_DISABLED:
514			tb_port_dbg(port, "is disabled (state: 0)\n");
515			return 0;
516
517		case TB_PORT_UNPLUGGED:
518			if (wait_if_unplugged) {
519				/* used during resume */
520				tb_port_dbg(port,
521					    "is unplugged (state: 7), retrying...\n");
522				msleep(100);
523				break;
524			}
525			tb_port_dbg(port, "is unplugged (state: 7)\n");
526			return 0;
527
528		case TB_PORT_UP:
529		case TB_PORT_TX_CL0S:
530		case TB_PORT_RX_CL0S:
531		case TB_PORT_CL1:
532		case TB_PORT_CL2:
533			tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
534			return 1;
535
536		default:
537			if (state < 0)
538				return state;
539
540			/*
541			 * After plug-in the state is TB_PORT_CONNECTING. Give it some
542			 * time.
543			 */
544			tb_port_dbg(port,
545				    "is connected, link is not up (state: %d), retrying...\n",
546				    state);
547			msleep(100);
548		}
549
550	}
551	tb_port_warn(port,
552		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
553	return 0;
554}
555
556/**
557 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
558 * @port: Port to add/remove NFC credits
559 * @credits: Credits to add/remove
560 *
561 * Change the number of NFC credits allocated to @port by @credits. To remove
562 * NFC credits pass a negative amount of credits.
563 *
564 * Return: Returns 0 on success or an error code on failure.
565 */
566int tb_port_add_nfc_credits(struct tb_port *port, int credits)
567{
568	u32 nfc_credits;
569
570	if (credits == 0 || port->sw->is_unplugged)
571		return 0;
572
573	/*
574	 * USB4 restricts programming NFC buffers to lane adapters only
575	 * so skip other ports.
576	 */
577	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
578		return 0;
579
580	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
581	if (credits < 0)
582		credits = max_t(int, -nfc_credits, credits);
583
584	nfc_credits += credits;
585
586	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
587		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
588
589	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
590	port->config.nfc_credits |= nfc_credits;
591
592	return tb_port_write(port, &port->config.nfc_credits,
593			     TB_CFG_PORT, ADP_CS_4, 1);
594}
595
596/**
597 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
598 * @port: Port whose counters to clear
599 * @counter: Counter index to clear
600 *
601 * Return: Returns 0 on success or an error code on failure.
602 */
603int tb_port_clear_counter(struct tb_port *port, int counter)
604{
605	u32 zero[3] = { 0, 0, 0 };
606	tb_port_dbg(port, "clearing counter %d\n", counter);
607	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
608}
609
610/**
611 * tb_port_unlock() - Unlock downstream port
612 * @port: Port to unlock
613 *
614 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
615 * downstream router accessible for CM.
616 */
617int tb_port_unlock(struct tb_port *port)
618{
619	if (tb_switch_is_icm(port->sw))
620		return 0;
621	if (!tb_port_is_null(port))
622		return -EINVAL;
623	if (tb_switch_is_usb4(port->sw))
624		return usb4_port_unlock(port);
625	return 0;
626}
627
628static int __tb_port_enable(struct tb_port *port, bool enable)
629{
630	int ret;
631	u32 phy;
632
633	if (!tb_port_is_null(port))
634		return -EINVAL;
635
636	ret = tb_port_read(port, &phy, TB_CFG_PORT,
637			   port->cap_phy + LANE_ADP_CS_1, 1);
638	if (ret)
639		return ret;
640
641	if (enable)
642		phy &= ~LANE_ADP_CS_1_LD;
643	else
644		phy |= LANE_ADP_CS_1_LD;
645
646
647	ret = tb_port_write(port, &phy, TB_CFG_PORT,
648			    port->cap_phy + LANE_ADP_CS_1, 1);
649	if (ret)
650		return ret;
651
652	tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
653	return 0;
654}
655
656/**
657 * tb_port_enable() - Enable lane adapter
658 * @port: Port to enable (can be %NULL)
659 *
660 * This is used for lane 0 and 1 adapters to enable it.
661 */
662int tb_port_enable(struct tb_port *port)
663{
664	return __tb_port_enable(port, true);
665}
666
667/**
668 * tb_port_disable() - Disable lane adapter
669 * @port: Port to disable (can be %NULL)
670 *
671 * This is used for lane 0 and 1 adapters to disable it.
672 */
673int tb_port_disable(struct tb_port *port)
674{
675	return __tb_port_enable(port, false);
676}
677
678/*
679 * tb_init_port() - initialize a port
680 *
681 * This is a helper method for tb_switch_alloc. Does not check or initialize
682 * any downstream switches.
683 *
684 * Return: Returns 0 on success or an error code on failure.
685 */
686static int tb_init_port(struct tb_port *port)
687{
688	int res;
689	int cap;
690
691	INIT_LIST_HEAD(&port->list);
692
693	/* Control adapter does not have configuration space */
694	if (!port->port)
695		return 0;
696
697	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
698	if (res) {
699		if (res == -ENODEV) {
700			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
701			       port->port);
702			port->disabled = true;
703			return 0;
704		}
705		return res;
706	}
707
708	/* Port 0 is the switch itself and has no PHY. */
709	if (port->config.type == TB_TYPE_PORT) {
710		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
711
712		if (cap > 0)
713			port->cap_phy = cap;
714		else
715			tb_port_WARN(port, "non switch port without a PHY\n");
716
717		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
718		if (cap > 0)
719			port->cap_usb4 = cap;
720
721		/*
722		 * USB4 ports the buffers allocated for the control path
723		 * can be read from the path config space. Legacy
724		 * devices we use hard-coded value.
725		 */
726		if (port->cap_usb4) {
727			struct tb_regs_hop hop;
728
729			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
730				port->ctl_credits = hop.initial_credits;
731		}
732		if (!port->ctl_credits)
733			port->ctl_credits = 2;
734
735	} else {
736		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
737		if (cap > 0)
738			port->cap_adap = cap;
739	}
740
741	port->total_credits =
742		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
743		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
744
745	tb_dump_port(port->sw->tb, port);
746	return 0;
747}
748
749static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
750			       int max_hopid)
751{
752	int port_max_hopid;
753	struct ida *ida;
754
755	if (in) {
756		port_max_hopid = port->config.max_in_hop_id;
757		ida = &port->in_hopids;
758	} else {
759		port_max_hopid = port->config.max_out_hop_id;
760		ida = &port->out_hopids;
761	}
762
763	/*
764	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
765	 * reserved.
766	 */
767	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
768		min_hopid = TB_PATH_MIN_HOPID;
769
770	if (max_hopid < 0 || max_hopid > port_max_hopid)
771		max_hopid = port_max_hopid;
772
773	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
774}
775
776/**
777 * tb_port_alloc_in_hopid() - Allocate input HopID from port
778 * @port: Port to allocate HopID for
779 * @min_hopid: Minimum acceptable input HopID
780 * @max_hopid: Maximum acceptable input HopID
781 *
782 * Return: HopID between @min_hopid and @max_hopid or negative errno in
783 * case of error.
784 */
785int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
786{
787	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
788}
789
790/**
791 * tb_port_alloc_out_hopid() - Allocate output HopID from port
792 * @port: Port to allocate HopID for
793 * @min_hopid: Minimum acceptable output HopID
794 * @max_hopid: Maximum acceptable output HopID
795 *
796 * Return: HopID between @min_hopid and @max_hopid or negative errno in
797 * case of error.
798 */
799int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
800{
801	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
802}
803
804/**
805 * tb_port_release_in_hopid() - Release allocated input HopID from port
806 * @port: Port whose HopID to release
807 * @hopid: HopID to release
808 */
809void tb_port_release_in_hopid(struct tb_port *port, int hopid)
810{
811	ida_simple_remove(&port->in_hopids, hopid);
812}
813
814/**
815 * tb_port_release_out_hopid() - Release allocated output HopID from port
816 * @port: Port whose HopID to release
817 * @hopid: HopID to release
818 */
819void tb_port_release_out_hopid(struct tb_port *port, int hopid)
820{
821	ida_simple_remove(&port->out_hopids, hopid);
822}
823
824static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
825					  const struct tb_switch *sw)
826{
827	u64 mask = (1ULL << parent->config.depth * 8) - 1;
828	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
829}
830
831/**
832 * tb_next_port_on_path() - Return next port for given port on a path
833 * @start: Start port of the walk
834 * @end: End port of the walk
835 * @prev: Previous port (%NULL if this is the first)
836 *
837 * This function can be used to walk from one port to another if they
838 * are connected through zero or more switches. If the @prev is dual
839 * link port, the function follows that link and returns another end on
840 * that same link.
841 *
842 * If the @end port has been reached, return %NULL.
843 *
844 * Domain tb->lock must be held when this function is called.
845 */
846struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
847				     struct tb_port *prev)
848{
849	struct tb_port *next;
850
851	if (!prev)
852		return start;
853
854	if (prev->sw == end->sw) {
855		if (prev == end)
856			return NULL;
857		return end;
858	}
859
860	if (tb_switch_is_reachable(prev->sw, end->sw)) {
861		next = tb_port_at(tb_route(end->sw), prev->sw);
862		/* Walk down the topology if next == prev */
863		if (prev->remote &&
864		    (next == prev || next->dual_link_port == prev))
865			next = prev->remote;
866	} else {
867		if (tb_is_upstream_port(prev)) {
868			next = prev->remote;
869		} else {
870			next = tb_upstream_port(prev->sw);
871			/*
872			 * Keep the same link if prev and next are both
873			 * dual link ports.
874			 */
875			if (next->dual_link_port &&
876			    next->link_nr != prev->link_nr) {
877				next = next->dual_link_port;
878			}
879		}
880	}
881
882	return next != prev ? next : NULL;
883}
884
885/**
886 * tb_port_get_link_speed() - Get current link speed
887 * @port: Port to check (USB4 or CIO)
888 *
889 * Returns link speed in Gb/s or negative errno in case of failure.
890 */
891int tb_port_get_link_speed(struct tb_port *port)
892{
893	u32 val, speed;
894	int ret;
895
896	if (!port->cap_phy)
897		return -EINVAL;
898
899	ret = tb_port_read(port, &val, TB_CFG_PORT,
900			   port->cap_phy + LANE_ADP_CS_1, 1);
901	if (ret)
902		return ret;
903
904	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
905		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
906
907	switch (speed) {
908	case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
909		return 40;
910	case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
911		return 20;
912	default:
913		return 10;
914	}
915}
916
917/**
918 * tb_port_get_link_width() - Get current link width
919 * @port: Port to check (USB4 or CIO)
920 *
921 * Returns link width. Return the link width as encoded in &enum
922 * tb_link_width or negative errno in case of failure.
923 */
924int tb_port_get_link_width(struct tb_port *port)
925{
926	u32 val;
927	int ret;
928
929	if (!port->cap_phy)
930		return -EINVAL;
931
932	ret = tb_port_read(port, &val, TB_CFG_PORT,
933			   port->cap_phy + LANE_ADP_CS_1, 1);
934	if (ret)
935		return ret;
936
937	/* Matches the values in enum tb_link_width */
938	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
939		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
940}
941
942static bool tb_port_is_width_supported(struct tb_port *port,
943				       unsigned int width_mask)
944{
945	u32 phy, widths;
946	int ret;
947
948	if (!port->cap_phy)
949		return false;
950
951	ret = tb_port_read(port, &phy, TB_CFG_PORT,
952			   port->cap_phy + LANE_ADP_CS_0, 1);
953	if (ret)
954		return false;
955
956	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
957		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
958
959	return widths & width_mask;
960}
961
962static bool is_gen4_link(struct tb_port *port)
963{
964	return tb_port_get_link_speed(port) > 20;
965}
966
967/**
968 * tb_port_set_link_width() - Set target link width of the lane adapter
969 * @port: Lane adapter
970 * @width: Target link width
971 *
972 * Sets the target link width of the lane adapter to @width. Does not
973 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
974 *
975 * Return: %0 in case of success and negative errno in case of error
976 */
977int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
978{
979	u32 val;
980	int ret;
981
982	if (!port->cap_phy)
983		return -EINVAL;
984
985	ret = tb_port_read(port, &val, TB_CFG_PORT,
986			   port->cap_phy + LANE_ADP_CS_1, 1);
987	if (ret)
988		return ret;
989
990	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
991	switch (width) {
992	case TB_LINK_WIDTH_SINGLE:
993		/* Gen 4 link cannot be single */
994		if (is_gen4_link(port))
995			return -EOPNOTSUPP;
996		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
997			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
998		break;
999	case TB_LINK_WIDTH_DUAL:
1000		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1001			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1002		break;
1003	default:
1004		return -EINVAL;
1005	}
1006
1007	return tb_port_write(port, &val, TB_CFG_PORT,
1008			     port->cap_phy + LANE_ADP_CS_1, 1);
1009}
1010
1011/**
1012 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1013 * @port: Lane adapter
1014 * @bonding: enable/disable bonding
1015 *
1016 * Enables or disables lane bonding. This should be called after target
1017 * link width has been set (tb_port_set_link_width()). Note in most
1018 * cases one should use tb_port_lane_bonding_enable() instead to enable
1019 * lane bonding.
1020 *
1021 * Return: %0 in case of success and negative errno in case of error
1022 */
1023static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1024{
1025	u32 val;
1026	int ret;
1027
1028	if (!port->cap_phy)
1029		return -EINVAL;
1030
1031	ret = tb_port_read(port, &val, TB_CFG_PORT,
1032			   port->cap_phy + LANE_ADP_CS_1, 1);
1033	if (ret)
1034		return ret;
1035
1036	if (bonding)
1037		val |= LANE_ADP_CS_1_LB;
1038	else
1039		val &= ~LANE_ADP_CS_1_LB;
1040
1041	return tb_port_write(port, &val, TB_CFG_PORT,
1042			     port->cap_phy + LANE_ADP_CS_1, 1);
1043}
1044
1045/**
1046 * tb_port_lane_bonding_enable() - Enable bonding on port
1047 * @port: port to enable
1048 *
1049 * Enable bonding by setting the link width of the port and the other
1050 * port in case of dual link port. Does not wait for the link to
1051 * actually reach the bonded state so caller needs to call
1052 * tb_port_wait_for_link_width() before enabling any paths through the
1053 * link to make sure the link is in expected state.
1054 *
1055 * Return: %0 in case of success and negative errno in case of error
1056 */
1057int tb_port_lane_bonding_enable(struct tb_port *port)
1058{
1059	enum tb_link_width width;
1060	int ret;
1061
1062	/*
1063	 * Enable lane bonding for both links if not already enabled by
1064	 * for example the boot firmware.
1065	 */
1066	width = tb_port_get_link_width(port);
1067	if (width == TB_LINK_WIDTH_SINGLE) {
1068		ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1069		if (ret)
1070			goto err_lane0;
1071	}
1072
1073	width = tb_port_get_link_width(port->dual_link_port);
1074	if (width == TB_LINK_WIDTH_SINGLE) {
1075		ret = tb_port_set_link_width(port->dual_link_port,
1076					     TB_LINK_WIDTH_DUAL);
1077		if (ret)
1078			goto err_lane0;
1079	}
1080
1081	/*
1082	 * Only set bonding if the link was not already bonded. This
1083	 * avoids the lane adapter to re-enter bonding state.
1084	 */
1085	if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1086		ret = tb_port_set_lane_bonding(port, true);
1087		if (ret)
1088			goto err_lane1;
1089	}
1090
1091	/*
1092	 * When lane 0 bonding is set it will affect lane 1 too so
1093	 * update both.
1094	 */
1095	port->bonded = true;
1096	port->dual_link_port->bonded = true;
1097
1098	return 0;
1099
1100err_lane1:
1101	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1102err_lane0:
1103	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1104
1105	return ret;
1106}
1107
1108/**
1109 * tb_port_lane_bonding_disable() - Disable bonding on port
1110 * @port: port to disable
1111 *
1112 * Disable bonding by setting the link width of the port and the
1113 * other port in case of dual link port.
1114 */
1115void tb_port_lane_bonding_disable(struct tb_port *port)
1116{
1117	tb_port_set_lane_bonding(port, false);
1118	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1119	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1120	port->dual_link_port->bonded = false;
1121	port->bonded = false;
1122}
1123
1124/**
1125 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1126 * @port: Port to wait for
1127 * @width_mask: Expected link width mask
1128 * @timeout_msec: Timeout in ms how long to wait
1129 *
1130 * Should be used after both ends of the link have been bonded (or
1131 * bonding has been disabled) to wait until the link actually reaches
1132 * the expected state. Returns %-ETIMEDOUT if the width was not reached
1133 * within the given timeout, %0 if it did. Can be passed a mask of
1134 * expected widths and succeeds if any of the widths is reached.
1135 */
1136int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width_mask,
1137				int timeout_msec)
1138{
1139	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1140	int ret;
1141
1142	/* Gen 4 link does not support single lane */
1143	if ((width_mask & TB_LINK_WIDTH_SINGLE) && is_gen4_link(port))
1144		return -EOPNOTSUPP;
1145
1146	do {
1147		ret = tb_port_get_link_width(port);
1148		if (ret < 0) {
1149			/*
1150			 * Sometimes we get port locked error when
1151			 * polling the lanes so we can ignore it and
1152			 * retry.
1153			 */
1154			if (ret != -EACCES)
1155				return ret;
1156		} else if (ret & width_mask) {
1157			return 0;
1158		}
1159
1160		usleep_range(1000, 2000);
1161	} while (ktime_before(ktime_get(), timeout));
1162
1163	return -ETIMEDOUT;
1164}
1165
1166static int tb_port_do_update_credits(struct tb_port *port)
1167{
1168	u32 nfc_credits;
1169	int ret;
1170
1171	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1172	if (ret)
1173		return ret;
1174
1175	if (nfc_credits != port->config.nfc_credits) {
1176		u32 total;
1177
1178		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1179			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1180
1181		tb_port_dbg(port, "total credits changed %u -> %u\n",
1182			    port->total_credits, total);
1183
1184		port->config.nfc_credits = nfc_credits;
1185		port->total_credits = total;
1186	}
1187
1188	return 0;
1189}
1190
1191/**
1192 * tb_port_update_credits() - Re-read port total credits
1193 * @port: Port to update
1194 *
1195 * After the link is bonded (or bonding was disabled) the port total
1196 * credits may change, so this function needs to be called to re-read
1197 * the credits. Updates also the second lane adapter.
1198 */
1199int tb_port_update_credits(struct tb_port *port)
1200{
1201	int ret;
1202
1203	ret = tb_port_do_update_credits(port);
1204	if (ret)
1205		return ret;
1206	return tb_port_do_update_credits(port->dual_link_port);
1207}
1208
1209static int tb_port_start_lane_initialization(struct tb_port *port)
1210{
1211	int ret;
1212
1213	if (tb_switch_is_usb4(port->sw))
1214		return 0;
1215
1216	ret = tb_lc_start_lane_initialization(port);
1217	return ret == -EINVAL ? 0 : ret;
1218}
1219
1220/*
1221 * Returns true if the port had something (router, XDomain) connected
1222 * before suspend.
1223 */
1224static bool tb_port_resume(struct tb_port *port)
1225{
1226	bool has_remote = tb_port_has_remote(port);
1227
1228	if (port->usb4) {
1229		usb4_port_device_resume(port->usb4);
1230	} else if (!has_remote) {
1231		/*
1232		 * For disconnected downstream lane adapters start lane
1233		 * initialization now so we detect future connects.
1234		 *
1235		 * For XDomain start the lane initialzation now so the
1236		 * link gets re-established.
1237		 *
1238		 * This is only needed for non-USB4 ports.
1239		 */
1240		if (!tb_is_upstream_port(port) || port->xdomain)
1241			tb_port_start_lane_initialization(port);
1242	}
1243
1244	return has_remote || port->xdomain;
1245}
1246
1247/**
1248 * tb_port_is_enabled() - Is the adapter port enabled
1249 * @port: Port to check
1250 */
1251bool tb_port_is_enabled(struct tb_port *port)
1252{
1253	switch (port->config.type) {
1254	case TB_TYPE_PCIE_UP:
1255	case TB_TYPE_PCIE_DOWN:
1256		return tb_pci_port_is_enabled(port);
1257
1258	case TB_TYPE_DP_HDMI_IN:
1259	case TB_TYPE_DP_HDMI_OUT:
1260		return tb_dp_port_is_enabled(port);
1261
1262	case TB_TYPE_USB3_UP:
1263	case TB_TYPE_USB3_DOWN:
1264		return tb_usb3_port_is_enabled(port);
1265
1266	default:
1267		return false;
1268	}
1269}
1270
1271/**
1272 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1273 * @port: USB3 adapter port to check
1274 */
1275bool tb_usb3_port_is_enabled(struct tb_port *port)
1276{
1277	u32 data;
1278
1279	if (tb_port_read(port, &data, TB_CFG_PORT,
1280			 port->cap_adap + ADP_USB3_CS_0, 1))
1281		return false;
1282
1283	return !!(data & ADP_USB3_CS_0_PE);
1284}
1285
1286/**
1287 * tb_usb3_port_enable() - Enable USB3 adapter port
1288 * @port: USB3 adapter port to enable
1289 * @enable: Enable/disable the USB3 adapter
1290 */
1291int tb_usb3_port_enable(struct tb_port *port, bool enable)
1292{
1293	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1294			  : ADP_USB3_CS_0_V;
1295
1296	if (!port->cap_adap)
1297		return -ENXIO;
1298	return tb_port_write(port, &word, TB_CFG_PORT,
1299			     port->cap_adap + ADP_USB3_CS_0, 1);
1300}
1301
1302/**
1303 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1304 * @port: PCIe port to check
1305 */
1306bool tb_pci_port_is_enabled(struct tb_port *port)
1307{
1308	u32 data;
1309
1310	if (tb_port_read(port, &data, TB_CFG_PORT,
1311			 port->cap_adap + ADP_PCIE_CS_0, 1))
1312		return false;
1313
1314	return !!(data & ADP_PCIE_CS_0_PE);
1315}
1316
1317/**
1318 * tb_pci_port_enable() - Enable PCIe adapter port
1319 * @port: PCIe port to enable
1320 * @enable: Enable/disable the PCIe adapter
1321 */
1322int tb_pci_port_enable(struct tb_port *port, bool enable)
1323{
1324	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1325	if (!port->cap_adap)
1326		return -ENXIO;
1327	return tb_port_write(port, &word, TB_CFG_PORT,
1328			     port->cap_adap + ADP_PCIE_CS_0, 1);
1329}
1330
1331/**
1332 * tb_dp_port_hpd_is_active() - Is HPD already active
1333 * @port: DP out port to check
1334 *
1335 * Checks if the DP OUT adapter port has HDP bit already set.
1336 */
1337int tb_dp_port_hpd_is_active(struct tb_port *port)
1338{
1339	u32 data;
1340	int ret;
1341
1342	ret = tb_port_read(port, &data, TB_CFG_PORT,
1343			   port->cap_adap + ADP_DP_CS_2, 1);
1344	if (ret)
1345		return ret;
1346
1347	return !!(data & ADP_DP_CS_2_HDP);
1348}
1349
1350/**
1351 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1352 * @port: Port to clear HPD
1353 *
1354 * If the DP IN port has HDP set, this function can be used to clear it.
1355 */
1356int tb_dp_port_hpd_clear(struct tb_port *port)
1357{
1358	u32 data;
1359	int ret;
1360
1361	ret = tb_port_read(port, &data, TB_CFG_PORT,
1362			   port->cap_adap + ADP_DP_CS_3, 1);
1363	if (ret)
1364		return ret;
1365
1366	data |= ADP_DP_CS_3_HDPC;
1367	return tb_port_write(port, &data, TB_CFG_PORT,
1368			     port->cap_adap + ADP_DP_CS_3, 1);
1369}
1370
1371/**
1372 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1373 * @port: DP IN/OUT port to set hops
1374 * @video: Video Hop ID
1375 * @aux_tx: AUX TX Hop ID
1376 * @aux_rx: AUX RX Hop ID
1377 *
1378 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1379 * router DP adapters too but does not program the values as the fields
1380 * are read-only.
1381 */
1382int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1383			unsigned int aux_tx, unsigned int aux_rx)
1384{
1385	u32 data[2];
1386	int ret;
1387
1388	if (tb_switch_is_usb4(port->sw))
1389		return 0;
1390
1391	ret = tb_port_read(port, data, TB_CFG_PORT,
1392			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1393	if (ret)
1394		return ret;
1395
1396	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1397	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1398	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1399
1400	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1401		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1402	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1403	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1404		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1405
1406	return tb_port_write(port, data, TB_CFG_PORT,
1407			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1408}
1409
1410/**
1411 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1412 * @port: DP adapter port to check
1413 */
1414bool tb_dp_port_is_enabled(struct tb_port *port)
1415{
1416	u32 data[2];
1417
1418	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1419			 ARRAY_SIZE(data)))
1420		return false;
1421
1422	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1423}
1424
1425/**
1426 * tb_dp_port_enable() - Enables/disables DP paths of a port
1427 * @port: DP IN/OUT port
1428 * @enable: Enable/disable DP path
1429 *
1430 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1431 * calling this function.
1432 */
1433int tb_dp_port_enable(struct tb_port *port, bool enable)
1434{
1435	u32 data[2];
1436	int ret;
1437
1438	ret = tb_port_read(port, data, TB_CFG_PORT,
1439			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1440	if (ret)
1441		return ret;
1442
1443	if (enable)
1444		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1445	else
1446		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1447
1448	return tb_port_write(port, data, TB_CFG_PORT,
1449			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1450}
1451
1452/* switch utility functions */
1453
1454static const char *tb_switch_generation_name(const struct tb_switch *sw)
1455{
1456	switch (sw->generation) {
1457	case 1:
1458		return "Thunderbolt 1";
1459	case 2:
1460		return "Thunderbolt 2";
1461	case 3:
1462		return "Thunderbolt 3";
1463	case 4:
1464		return "USB4";
1465	default:
1466		return "Unknown";
1467	}
1468}
1469
1470static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1471{
1472	const struct tb_regs_switch_header *regs = &sw->config;
1473
1474	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1475	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1476	       regs->revision, regs->thunderbolt_version);
1477	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1478	tb_dbg(tb, "  Config:\n");
1479	tb_dbg(tb,
1480		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1481	       regs->upstream_port_number, regs->depth,
1482	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1483	       regs->enabled, regs->plug_events_delay);
1484	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1485	       regs->__unknown1, regs->__unknown4);
1486}
1487
1488/**
1489 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1490 * @sw: Switch to reset
1491 *
1492 * Return: Returns 0 on success or an error code on failure.
1493 */
1494int tb_switch_reset(struct tb_switch *sw)
1495{
1496	struct tb_cfg_result res;
1497
1498	if (sw->generation > 1)
1499		return 0;
1500
1501	tb_sw_dbg(sw, "resetting switch\n");
1502
1503	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1504			      TB_CFG_SWITCH, 2, 2);
1505	if (res.err)
1506		return res.err;
1507	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1508	if (res.err > 0)
1509		return -EIO;
1510	return res.err;
1511}
1512
1513/**
1514 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1515 * @sw: Router to read the offset value from
1516 * @offset: Offset in the router config space to read from
1517 * @bit: Bit mask in the offset to wait for
1518 * @value: Value of the bits to wait for
1519 * @timeout_msec: Timeout in ms how long to wait
1520 *
1521 * Wait till the specified bits in specified offset reach specified value.
1522 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1523 * within the given timeout or a negative errno in case of failure.
1524 */
1525int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1526			   u32 value, int timeout_msec)
1527{
1528	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1529
1530	do {
1531		u32 val;
1532		int ret;
1533
1534		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1535		if (ret)
1536			return ret;
1537
1538		if ((val & bit) == value)
1539			return 0;
1540
1541		usleep_range(50, 100);
1542	} while (ktime_before(ktime_get(), timeout));
1543
1544	return -ETIMEDOUT;
1545}
1546
1547/*
1548 * tb_plug_events_active() - enable/disable plug events on a switch
1549 *
1550 * Also configures a sane plug_events_delay of 255ms.
1551 *
1552 * Return: Returns 0 on success or an error code on failure.
1553 */
1554static int tb_plug_events_active(struct tb_switch *sw, bool active)
1555{
1556	u32 data;
1557	int res;
1558
1559	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1560		return 0;
1561
1562	sw->config.plug_events_delay = 0xff;
1563	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1564	if (res)
1565		return res;
1566
1567	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1568	if (res)
1569		return res;
1570
1571	if (active) {
1572		data = data & 0xFFFFFF83;
1573		switch (sw->config.device_id) {
1574		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1575		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1576		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1577			break;
1578		default:
1579			/*
1580			 * Skip Alpine Ridge, it needs to have vendor
1581			 * specific USB hotplug event enabled for the
1582			 * internal xHCI to work.
1583			 */
1584			if (!tb_switch_is_alpine_ridge(sw))
1585				data |= TB_PLUG_EVENTS_USB_DISABLE;
1586		}
1587	} else {
1588		data = data | 0x7c;
1589	}
1590	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1591			   sw->cap_plug_events + 1, 1);
1592}
1593
1594static ssize_t authorized_show(struct device *dev,
1595			       struct device_attribute *attr,
1596			       char *buf)
1597{
1598	struct tb_switch *sw = tb_to_switch(dev);
1599
1600	return sysfs_emit(buf, "%u\n", sw->authorized);
1601}
1602
1603static int disapprove_switch(struct device *dev, void *not_used)
1604{
1605	char *envp[] = { "AUTHORIZED=0", NULL };
1606	struct tb_switch *sw;
1607
1608	sw = tb_to_switch(dev);
1609	if (sw && sw->authorized) {
1610		int ret;
1611
1612		/* First children */
1613		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1614		if (ret)
1615			return ret;
1616
1617		ret = tb_domain_disapprove_switch(sw->tb, sw);
1618		if (ret)
1619			return ret;
1620
1621		sw->authorized = 0;
1622		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1623	}
1624
1625	return 0;
1626}
1627
1628static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1629{
1630	char envp_string[13];
1631	int ret = -EINVAL;
1632	char *envp[] = { envp_string, NULL };
1633
1634	if (!mutex_trylock(&sw->tb->lock))
1635		return restart_syscall();
1636
1637	if (!!sw->authorized == !!val)
1638		goto unlock;
1639
1640	switch (val) {
1641	/* Disapprove switch */
1642	case 0:
1643		if (tb_route(sw)) {
1644			ret = disapprove_switch(&sw->dev, NULL);
1645			goto unlock;
1646		}
1647		break;
1648
1649	/* Approve switch */
1650	case 1:
1651		if (sw->key)
1652			ret = tb_domain_approve_switch_key(sw->tb, sw);
1653		else
1654			ret = tb_domain_approve_switch(sw->tb, sw);
1655		break;
1656
1657	/* Challenge switch */
1658	case 2:
1659		if (sw->key)
1660			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1661		break;
1662
1663	default:
1664		break;
1665	}
1666
1667	if (!ret) {
1668		sw->authorized = val;
1669		/*
1670		 * Notify status change to the userspace, informing the new
1671		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1672		 */
1673		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1674		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1675	}
1676
1677unlock:
1678	mutex_unlock(&sw->tb->lock);
1679	return ret;
1680}
1681
1682static ssize_t authorized_store(struct device *dev,
1683				struct device_attribute *attr,
1684				const char *buf, size_t count)
1685{
1686	struct tb_switch *sw = tb_to_switch(dev);
1687	unsigned int val;
1688	ssize_t ret;
1689
1690	ret = kstrtouint(buf, 0, &val);
1691	if (ret)
1692		return ret;
1693	if (val > 2)
1694		return -EINVAL;
1695
1696	pm_runtime_get_sync(&sw->dev);
1697	ret = tb_switch_set_authorized(sw, val);
1698	pm_runtime_mark_last_busy(&sw->dev);
1699	pm_runtime_put_autosuspend(&sw->dev);
1700
1701	return ret ? ret : count;
1702}
1703static DEVICE_ATTR_RW(authorized);
1704
1705static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1706			 char *buf)
1707{
1708	struct tb_switch *sw = tb_to_switch(dev);
1709
1710	return sysfs_emit(buf, "%u\n", sw->boot);
1711}
1712static DEVICE_ATTR_RO(boot);
1713
1714static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1715			   char *buf)
1716{
1717	struct tb_switch *sw = tb_to_switch(dev);
1718
1719	return sysfs_emit(buf, "%#x\n", sw->device);
1720}
1721static DEVICE_ATTR_RO(device);
1722
1723static ssize_t
1724device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1725{
1726	struct tb_switch *sw = tb_to_switch(dev);
1727
1728	return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1729}
1730static DEVICE_ATTR_RO(device_name);
1731
1732static ssize_t
1733generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1734{
1735	struct tb_switch *sw = tb_to_switch(dev);
1736
1737	return sysfs_emit(buf, "%u\n", sw->generation);
1738}
1739static DEVICE_ATTR_RO(generation);
1740
1741static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1742			char *buf)
1743{
1744	struct tb_switch *sw = tb_to_switch(dev);
1745	ssize_t ret;
1746
1747	if (!mutex_trylock(&sw->tb->lock))
1748		return restart_syscall();
1749
1750	if (sw->key)
1751		ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1752	else
1753		ret = sysfs_emit(buf, "\n");
1754
1755	mutex_unlock(&sw->tb->lock);
1756	return ret;
1757}
1758
1759static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1760			 const char *buf, size_t count)
1761{
1762	struct tb_switch *sw = tb_to_switch(dev);
1763	u8 key[TB_SWITCH_KEY_SIZE];
1764	ssize_t ret = count;
1765	bool clear = false;
1766
1767	if (!strcmp(buf, "\n"))
1768		clear = true;
1769	else if (hex2bin(key, buf, sizeof(key)))
1770		return -EINVAL;
1771
1772	if (!mutex_trylock(&sw->tb->lock))
1773		return restart_syscall();
1774
1775	if (sw->authorized) {
1776		ret = -EBUSY;
1777	} else {
1778		kfree(sw->key);
1779		if (clear) {
1780			sw->key = NULL;
1781		} else {
1782			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1783			if (!sw->key)
1784				ret = -ENOMEM;
1785		}
1786	}
1787
1788	mutex_unlock(&sw->tb->lock);
1789	return ret;
1790}
1791static DEVICE_ATTR(key, 0600, key_show, key_store);
1792
1793static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1794			  char *buf)
1795{
1796	struct tb_switch *sw = tb_to_switch(dev);
1797
1798	return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1799}
1800
1801/*
1802 * Currently all lanes must run at the same speed but we expose here
1803 * both directions to allow possible asymmetric links in the future.
1804 */
1805static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1806static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1807
1808static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1809			     char *buf)
1810{
1811	struct tb_switch *sw = tb_to_switch(dev);
1812	unsigned int width;
1813
1814	switch (sw->link_width) {
1815	case TB_LINK_WIDTH_SINGLE:
1816	case TB_LINK_WIDTH_ASYM_TX:
1817		width = 1;
1818		break;
1819	case TB_LINK_WIDTH_DUAL:
1820		width = 2;
1821		break;
1822	case TB_LINK_WIDTH_ASYM_RX:
1823		width = 3;
1824		break;
1825	default:
1826		WARN_ON_ONCE(1);
1827		return -EINVAL;
1828	}
1829
1830	return sysfs_emit(buf, "%u\n", width);
1831}
1832static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1833
1834static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1835			     char *buf)
1836{
1837	struct tb_switch *sw = tb_to_switch(dev);
1838	unsigned int width;
1839
1840	switch (sw->link_width) {
1841	case TB_LINK_WIDTH_SINGLE:
1842	case TB_LINK_WIDTH_ASYM_RX:
1843		width = 1;
1844		break;
1845	case TB_LINK_WIDTH_DUAL:
1846		width = 2;
1847		break;
1848	case TB_LINK_WIDTH_ASYM_TX:
1849		width = 3;
1850		break;
1851	default:
1852		WARN_ON_ONCE(1);
1853		return -EINVAL;
1854	}
1855
1856	return sysfs_emit(buf, "%u\n", width);
1857}
1858static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
1859
1860static ssize_t nvm_authenticate_show(struct device *dev,
1861	struct device_attribute *attr, char *buf)
1862{
1863	struct tb_switch *sw = tb_to_switch(dev);
1864	u32 status;
1865
1866	nvm_get_auth_status(sw, &status);
1867	return sysfs_emit(buf, "%#x\n", status);
1868}
1869
1870static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1871				      bool disconnect)
1872{
1873	struct tb_switch *sw = tb_to_switch(dev);
1874	int val, ret;
1875
1876	pm_runtime_get_sync(&sw->dev);
1877
1878	if (!mutex_trylock(&sw->tb->lock)) {
1879		ret = restart_syscall();
1880		goto exit_rpm;
1881	}
1882
1883	if (sw->no_nvm_upgrade) {
1884		ret = -EOPNOTSUPP;
1885		goto exit_unlock;
1886	}
1887
1888	/* If NVMem devices are not yet added */
1889	if (!sw->nvm) {
1890		ret = -EAGAIN;
1891		goto exit_unlock;
1892	}
1893
1894	ret = kstrtoint(buf, 10, &val);
1895	if (ret)
1896		goto exit_unlock;
1897
1898	/* Always clear the authentication status */
1899	nvm_clear_auth_status(sw);
1900
1901	if (val > 0) {
1902		if (val == AUTHENTICATE_ONLY) {
1903			if (disconnect)
1904				ret = -EINVAL;
1905			else
1906				ret = nvm_authenticate(sw, true);
1907		} else {
1908			if (!sw->nvm->flushed) {
1909				if (!sw->nvm->buf) {
1910					ret = -EINVAL;
1911					goto exit_unlock;
1912				}
1913
1914				ret = nvm_validate_and_write(sw);
1915				if (ret || val == WRITE_ONLY)
1916					goto exit_unlock;
1917			}
1918			if (val == WRITE_AND_AUTHENTICATE) {
1919				if (disconnect)
1920					ret = tb_lc_force_power(sw);
1921				else
1922					ret = nvm_authenticate(sw, false);
1923			}
1924		}
1925	}
1926
1927exit_unlock:
1928	mutex_unlock(&sw->tb->lock);
1929exit_rpm:
1930	pm_runtime_mark_last_busy(&sw->dev);
1931	pm_runtime_put_autosuspend(&sw->dev);
1932
1933	return ret;
1934}
1935
1936static ssize_t nvm_authenticate_store(struct device *dev,
1937	struct device_attribute *attr, const char *buf, size_t count)
1938{
1939	int ret = nvm_authenticate_sysfs(dev, buf, false);
1940	if (ret)
1941		return ret;
1942	return count;
1943}
1944static DEVICE_ATTR_RW(nvm_authenticate);
1945
1946static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1947	struct device_attribute *attr, char *buf)
1948{
1949	return nvm_authenticate_show(dev, attr, buf);
1950}
1951
1952static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1953	struct device_attribute *attr, const char *buf, size_t count)
1954{
1955	int ret;
1956
1957	ret = nvm_authenticate_sysfs(dev, buf, true);
1958	return ret ? ret : count;
1959}
1960static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1961
1962static ssize_t nvm_version_show(struct device *dev,
1963				struct device_attribute *attr, char *buf)
1964{
1965	struct tb_switch *sw = tb_to_switch(dev);
1966	int ret;
1967
1968	if (!mutex_trylock(&sw->tb->lock))
1969		return restart_syscall();
1970
1971	if (sw->safe_mode)
1972		ret = -ENODATA;
1973	else if (!sw->nvm)
1974		ret = -EAGAIN;
1975	else
1976		ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1977
1978	mutex_unlock(&sw->tb->lock);
1979
1980	return ret;
1981}
1982static DEVICE_ATTR_RO(nvm_version);
1983
1984static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1985			   char *buf)
1986{
1987	struct tb_switch *sw = tb_to_switch(dev);
1988
1989	return sysfs_emit(buf, "%#x\n", sw->vendor);
1990}
1991static DEVICE_ATTR_RO(vendor);
1992
1993static ssize_t
1994vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1995{
1996	struct tb_switch *sw = tb_to_switch(dev);
1997
1998	return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
1999}
2000static DEVICE_ATTR_RO(vendor_name);
2001
2002static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2003			      char *buf)
2004{
2005	struct tb_switch *sw = tb_to_switch(dev);
2006
2007	return sysfs_emit(buf, "%pUb\n", sw->uuid);
2008}
2009static DEVICE_ATTR_RO(unique_id);
2010
2011static struct attribute *switch_attrs[] = {
2012	&dev_attr_authorized.attr,
2013	&dev_attr_boot.attr,
2014	&dev_attr_device.attr,
2015	&dev_attr_device_name.attr,
2016	&dev_attr_generation.attr,
2017	&dev_attr_key.attr,
2018	&dev_attr_nvm_authenticate.attr,
2019	&dev_attr_nvm_authenticate_on_disconnect.attr,
2020	&dev_attr_nvm_version.attr,
2021	&dev_attr_rx_speed.attr,
2022	&dev_attr_rx_lanes.attr,
2023	&dev_attr_tx_speed.attr,
2024	&dev_attr_tx_lanes.attr,
2025	&dev_attr_vendor.attr,
2026	&dev_attr_vendor_name.attr,
2027	&dev_attr_unique_id.attr,
2028	NULL,
2029};
2030
2031static umode_t switch_attr_is_visible(struct kobject *kobj,
2032				      struct attribute *attr, int n)
2033{
2034	struct device *dev = kobj_to_dev(kobj);
2035	struct tb_switch *sw = tb_to_switch(dev);
2036
2037	if (attr == &dev_attr_authorized.attr) {
2038		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2039		    sw->tb->security_level == TB_SECURITY_DPONLY)
2040			return 0;
2041	} else if (attr == &dev_attr_device.attr) {
2042		if (!sw->device)
2043			return 0;
2044	} else if (attr == &dev_attr_device_name.attr) {
2045		if (!sw->device_name)
2046			return 0;
2047	} else if (attr == &dev_attr_vendor.attr)  {
2048		if (!sw->vendor)
2049			return 0;
2050	} else if (attr == &dev_attr_vendor_name.attr)  {
2051		if (!sw->vendor_name)
2052			return 0;
2053	} else if (attr == &dev_attr_key.attr) {
2054		if (tb_route(sw) &&
2055		    sw->tb->security_level == TB_SECURITY_SECURE &&
2056		    sw->security_level == TB_SECURITY_SECURE)
2057			return attr->mode;
2058		return 0;
2059	} else if (attr == &dev_attr_rx_speed.attr ||
2060		   attr == &dev_attr_rx_lanes.attr ||
2061		   attr == &dev_attr_tx_speed.attr ||
2062		   attr == &dev_attr_tx_lanes.attr) {
2063		if (tb_route(sw))
2064			return attr->mode;
2065		return 0;
2066	} else if (attr == &dev_attr_nvm_authenticate.attr) {
2067		if (nvm_upgradeable(sw))
2068			return attr->mode;
2069		return 0;
2070	} else if (attr == &dev_attr_nvm_version.attr) {
2071		if (nvm_readable(sw))
2072			return attr->mode;
2073		return 0;
2074	} else if (attr == &dev_attr_boot.attr) {
2075		if (tb_route(sw))
2076			return attr->mode;
2077		return 0;
2078	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2079		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2080			return attr->mode;
2081		return 0;
2082	}
2083
2084	return sw->safe_mode ? 0 : attr->mode;
2085}
2086
2087static const struct attribute_group switch_group = {
2088	.is_visible = switch_attr_is_visible,
2089	.attrs = switch_attrs,
2090};
2091
2092static const struct attribute_group *switch_groups[] = {
2093	&switch_group,
2094	NULL,
2095};
2096
2097static void tb_switch_release(struct device *dev)
2098{
2099	struct tb_switch *sw = tb_to_switch(dev);
2100	struct tb_port *port;
2101
2102	dma_port_free(sw->dma_port);
2103
2104	tb_switch_for_each_port(sw, port) {
2105		ida_destroy(&port->in_hopids);
2106		ida_destroy(&port->out_hopids);
2107	}
2108
2109	kfree(sw->uuid);
2110	kfree(sw->device_name);
2111	kfree(sw->vendor_name);
2112	kfree(sw->ports);
2113	kfree(sw->drom);
2114	kfree(sw->key);
2115	kfree(sw);
2116}
2117
2118static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2119{
2120	const struct tb_switch *sw = tb_to_switch(dev);
2121	const char *type;
2122
2123	if (tb_switch_is_usb4(sw)) {
2124		if (add_uevent_var(env, "USB4_VERSION=%u.0",
2125				   usb4_switch_version(sw)))
2126			return -ENOMEM;
2127	}
2128
2129	if (!tb_route(sw)) {
2130		type = "host";
2131	} else {
2132		const struct tb_port *port;
2133		bool hub = false;
2134
2135		/* Device is hub if it has any downstream ports */
2136		tb_switch_for_each_port(sw, port) {
2137			if (!port->disabled && !tb_is_upstream_port(port) &&
2138			     tb_port_is_null(port)) {
2139				hub = true;
2140				break;
2141			}
2142		}
2143
2144		type = hub ? "hub" : "device";
2145	}
2146
2147	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2148		return -ENOMEM;
2149	return 0;
2150}
2151
2152/*
2153 * Currently only need to provide the callbacks. Everything else is handled
2154 * in the connection manager.
2155 */
2156static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2157{
2158	struct tb_switch *sw = tb_to_switch(dev);
2159	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2160
2161	if (cm_ops->runtime_suspend_switch)
2162		return cm_ops->runtime_suspend_switch(sw);
2163
2164	return 0;
2165}
2166
2167static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2168{
2169	struct tb_switch *sw = tb_to_switch(dev);
2170	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2171
2172	if (cm_ops->runtime_resume_switch)
2173		return cm_ops->runtime_resume_switch(sw);
2174	return 0;
2175}
2176
2177static const struct dev_pm_ops tb_switch_pm_ops = {
2178	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2179			   NULL)
2180};
2181
2182struct device_type tb_switch_type = {
2183	.name = "thunderbolt_device",
2184	.release = tb_switch_release,
2185	.uevent = tb_switch_uevent,
2186	.pm = &tb_switch_pm_ops,
2187};
2188
2189static int tb_switch_get_generation(struct tb_switch *sw)
2190{
2191	if (tb_switch_is_usb4(sw))
2192		return 4;
2193
2194	if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2195		switch (sw->config.device_id) {
2196		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2197		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2198		case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2199		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2200		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2201		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2202		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2203		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2204			return 1;
2205
2206		case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2207		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2208		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2209			return 2;
2210
2211		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2212		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2213		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2214		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2215		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2216		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2217		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2218		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2219		case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2220		case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2221			return 3;
2222		}
2223	}
2224
2225	/*
2226	 * For unknown switches assume generation to be 1 to be on the
2227	 * safe side.
2228	 */
2229	tb_sw_warn(sw, "unsupported switch device id %#x\n",
2230		   sw->config.device_id);
2231	return 1;
2232}
2233
2234static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2235{
2236	int max_depth;
2237
2238	if (tb_switch_is_usb4(sw) ||
2239	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2240		max_depth = USB4_SWITCH_MAX_DEPTH;
2241	else
2242		max_depth = TB_SWITCH_MAX_DEPTH;
2243
2244	return depth > max_depth;
2245}
2246
2247/**
2248 * tb_switch_alloc() - allocate a switch
2249 * @tb: Pointer to the owning domain
2250 * @parent: Parent device for this switch
2251 * @route: Route string for this switch
2252 *
2253 * Allocates and initializes a switch. Will not upload configuration to
2254 * the switch. For that you need to call tb_switch_configure()
2255 * separately. The returned switch should be released by calling
2256 * tb_switch_put().
2257 *
2258 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2259 * failure.
2260 */
2261struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2262				  u64 route)
2263{
2264	struct tb_switch *sw;
2265	int upstream_port;
2266	int i, ret, depth;
2267
2268	/* Unlock the downstream port so we can access the switch below */
2269	if (route) {
2270		struct tb_switch *parent_sw = tb_to_switch(parent);
2271		struct tb_port *down;
2272
2273		down = tb_port_at(route, parent_sw);
2274		tb_port_unlock(down);
2275	}
2276
2277	depth = tb_route_length(route);
2278
2279	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2280	if (upstream_port < 0)
2281		return ERR_PTR(upstream_port);
2282
2283	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2284	if (!sw)
2285		return ERR_PTR(-ENOMEM);
2286
2287	sw->tb = tb;
2288	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2289	if (ret)
2290		goto err_free_sw_ports;
2291
2292	sw->generation = tb_switch_get_generation(sw);
2293
2294	tb_dbg(tb, "current switch config:\n");
2295	tb_dump_switch(tb, sw);
2296
2297	/* configure switch */
2298	sw->config.upstream_port_number = upstream_port;
2299	sw->config.depth = depth;
2300	sw->config.route_hi = upper_32_bits(route);
2301	sw->config.route_lo = lower_32_bits(route);
2302	sw->config.enabled = 0;
2303
2304	/* Make sure we do not exceed maximum topology limit */
2305	if (tb_switch_exceeds_max_depth(sw, depth)) {
2306		ret = -EADDRNOTAVAIL;
2307		goto err_free_sw_ports;
2308	}
2309
2310	/* initialize ports */
2311	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2312				GFP_KERNEL);
2313	if (!sw->ports) {
2314		ret = -ENOMEM;
2315		goto err_free_sw_ports;
2316	}
2317
2318	for (i = 0; i <= sw->config.max_port_number; i++) {
2319		/* minimum setup for tb_find_cap and tb_drom_read to work */
2320		sw->ports[i].sw = sw;
2321		sw->ports[i].port = i;
2322
2323		/* Control port does not need HopID allocation */
2324		if (i) {
2325			ida_init(&sw->ports[i].in_hopids);
2326			ida_init(&sw->ports[i].out_hopids);
2327		}
2328	}
2329
2330	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2331	if (ret > 0)
2332		sw->cap_plug_events = ret;
2333
2334	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2335	if (ret > 0)
2336		sw->cap_vsec_tmu = ret;
2337
2338	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2339	if (ret > 0)
2340		sw->cap_lc = ret;
2341
2342	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2343	if (ret > 0)
2344		sw->cap_lp = ret;
2345
2346	/* Root switch is always authorized */
2347	if (!route)
2348		sw->authorized = true;
2349
2350	device_initialize(&sw->dev);
2351	sw->dev.parent = parent;
2352	sw->dev.bus = &tb_bus_type;
2353	sw->dev.type = &tb_switch_type;
2354	sw->dev.groups = switch_groups;
2355	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2356
2357	return sw;
2358
2359err_free_sw_ports:
2360	kfree(sw->ports);
2361	kfree(sw);
2362
2363	return ERR_PTR(ret);
2364}
2365
2366/**
2367 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2368 * @tb: Pointer to the owning domain
2369 * @parent: Parent device for this switch
2370 * @route: Route string for this switch
2371 *
2372 * This creates a switch in safe mode. This means the switch pretty much
2373 * lacks all capabilities except DMA configuration port before it is
2374 * flashed with a valid NVM firmware.
2375 *
2376 * The returned switch must be released by calling tb_switch_put().
2377 *
2378 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2379 */
2380struct tb_switch *
2381tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2382{
2383	struct tb_switch *sw;
2384
2385	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2386	if (!sw)
2387		return ERR_PTR(-ENOMEM);
2388
2389	sw->tb = tb;
2390	sw->config.depth = tb_route_length(route);
2391	sw->config.route_hi = upper_32_bits(route);
2392	sw->config.route_lo = lower_32_bits(route);
2393	sw->safe_mode = true;
2394
2395	device_initialize(&sw->dev);
2396	sw->dev.parent = parent;
2397	sw->dev.bus = &tb_bus_type;
2398	sw->dev.type = &tb_switch_type;
2399	sw->dev.groups = switch_groups;
2400	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2401
2402	return sw;
2403}
2404
2405/**
2406 * tb_switch_configure() - Uploads configuration to the switch
2407 * @sw: Switch to configure
2408 *
2409 * Call this function before the switch is added to the system. It will
2410 * upload configuration to the switch and makes it available for the
2411 * connection manager to use. Can be called to the switch again after
2412 * resume from low power states to re-initialize it.
2413 *
2414 * Return: %0 in case of success and negative errno in case of failure
2415 */
2416int tb_switch_configure(struct tb_switch *sw)
2417{
2418	struct tb *tb = sw->tb;
2419	u64 route;
2420	int ret;
2421
2422	route = tb_route(sw);
2423
2424	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2425	       sw->config.enabled ? "restoring" : "initializing", route,
2426	       tb_route_length(route), sw->config.upstream_port_number);
2427
2428	sw->config.enabled = 1;
2429
2430	if (tb_switch_is_usb4(sw)) {
2431		/*
2432		 * For USB4 devices, we need to program the CM version
2433		 * accordingly so that it knows to expose all the
2434		 * additional capabilities. Program it according to USB4
2435		 * version to avoid changing existing (v1) routers behaviour.
2436		 */
2437		if (usb4_switch_version(sw) < 2)
2438			sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2439		else
2440			sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2441		sw->config.plug_events_delay = 0xa;
2442
2443		/* Enumerate the switch */
2444		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2445				  ROUTER_CS_1, 4);
2446		if (ret)
2447			return ret;
2448
2449		ret = usb4_switch_setup(sw);
2450	} else {
2451		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2452			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2453				   sw->config.vendor_id);
2454
2455		if (!sw->cap_plug_events) {
2456			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2457			return -ENODEV;
2458		}
2459
2460		/* Enumerate the switch */
2461		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2462				  ROUTER_CS_1, 3);
2463	}
2464	if (ret)
2465		return ret;
2466
2467	return tb_plug_events_active(sw, true);
2468}
2469
2470/**
2471 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2472 * @sw: Router to configure
2473 *
2474 * Needs to be called before any tunnels can be setup through the
2475 * router. Can be called to any router.
2476 *
2477 * Returns %0 in success and negative errno otherwise.
2478 */
2479int tb_switch_configuration_valid(struct tb_switch *sw)
2480{
2481	if (tb_switch_is_usb4(sw))
2482		return usb4_switch_configuration_valid(sw);
2483	return 0;
2484}
2485
2486static int tb_switch_set_uuid(struct tb_switch *sw)
2487{
2488	bool uid = false;
2489	u32 uuid[4];
2490	int ret;
2491
2492	if (sw->uuid)
2493		return 0;
2494
2495	if (tb_switch_is_usb4(sw)) {
2496		ret = usb4_switch_read_uid(sw, &sw->uid);
2497		if (ret)
2498			return ret;
2499		uid = true;
2500	} else {
2501		/*
2502		 * The newer controllers include fused UUID as part of
2503		 * link controller specific registers
2504		 */
2505		ret = tb_lc_read_uuid(sw, uuid);
2506		if (ret) {
2507			if (ret != -EINVAL)
2508				return ret;
2509			uid = true;
2510		}
2511	}
2512
2513	if (uid) {
2514		/*
2515		 * ICM generates UUID based on UID and fills the upper
2516		 * two words with ones. This is not strictly following
2517		 * UUID format but we want to be compatible with it so
2518		 * we do the same here.
2519		 */
2520		uuid[0] = sw->uid & 0xffffffff;
2521		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2522		uuid[2] = 0xffffffff;
2523		uuid[3] = 0xffffffff;
2524	}
2525
2526	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2527	if (!sw->uuid)
2528		return -ENOMEM;
2529	return 0;
2530}
2531
2532static int tb_switch_add_dma_port(struct tb_switch *sw)
2533{
2534	u32 status;
2535	int ret;
2536
2537	switch (sw->generation) {
2538	case 2:
2539		/* Only root switch can be upgraded */
2540		if (tb_route(sw))
2541			return 0;
2542
2543		fallthrough;
2544	case 3:
2545	case 4:
2546		ret = tb_switch_set_uuid(sw);
2547		if (ret)
2548			return ret;
2549		break;
2550
2551	default:
2552		/*
2553		 * DMA port is the only thing available when the switch
2554		 * is in safe mode.
2555		 */
2556		if (!sw->safe_mode)
2557			return 0;
2558		break;
2559	}
2560
2561	if (sw->no_nvm_upgrade)
2562		return 0;
2563
2564	if (tb_switch_is_usb4(sw)) {
2565		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2566		if (ret)
2567			return ret;
2568
2569		if (status) {
2570			tb_sw_info(sw, "switch flash authentication failed\n");
2571			nvm_set_auth_status(sw, status);
2572		}
2573
2574		return 0;
2575	}
2576
2577	/* Root switch DMA port requires running firmware */
2578	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2579		return 0;
2580
2581	sw->dma_port = dma_port_alloc(sw);
2582	if (!sw->dma_port)
2583		return 0;
2584
2585	/*
2586	 * If there is status already set then authentication failed
2587	 * when the dma_port_flash_update_auth() returned. Power cycling
2588	 * is not needed (it was done already) so only thing we do here
2589	 * is to unblock runtime PM of the root port.
2590	 */
2591	nvm_get_auth_status(sw, &status);
2592	if (status) {
2593		if (!tb_route(sw))
2594			nvm_authenticate_complete_dma_port(sw);
2595		return 0;
2596	}
2597
2598	/*
2599	 * Check status of the previous flash authentication. If there
2600	 * is one we need to power cycle the switch in any case to make
2601	 * it functional again.
2602	 */
2603	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2604	if (ret <= 0)
2605		return ret;
2606
2607	/* Now we can allow root port to suspend again */
2608	if (!tb_route(sw))
2609		nvm_authenticate_complete_dma_port(sw);
2610
2611	if (status) {
2612		tb_sw_info(sw, "switch flash authentication failed\n");
2613		nvm_set_auth_status(sw, status);
2614	}
2615
2616	tb_sw_info(sw, "power cycling the switch now\n");
2617	dma_port_power_cycle(sw->dma_port);
2618
2619	/*
2620	 * We return error here which causes the switch adding failure.
2621	 * It should appear back after power cycle is complete.
2622	 */
2623	return -ESHUTDOWN;
2624}
2625
2626static void tb_switch_default_link_ports(struct tb_switch *sw)
2627{
2628	int i;
2629
2630	for (i = 1; i <= sw->config.max_port_number; i++) {
2631		struct tb_port *port = &sw->ports[i];
2632		struct tb_port *subordinate;
2633
2634		if (!tb_port_is_null(port))
2635			continue;
2636
2637		/* Check for the subordinate port */
2638		if (i == sw->config.max_port_number ||
2639		    !tb_port_is_null(&sw->ports[i + 1]))
2640			continue;
2641
2642		/* Link them if not already done so (by DROM) */
2643		subordinate = &sw->ports[i + 1];
2644		if (!port->dual_link_port && !subordinate->dual_link_port) {
2645			port->link_nr = 0;
2646			port->dual_link_port = subordinate;
2647			subordinate->link_nr = 1;
2648			subordinate->dual_link_port = port;
2649
2650			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2651				  port->port, subordinate->port);
2652		}
2653	}
2654}
2655
2656static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2657{
2658	const struct tb_port *up = tb_upstream_port(sw);
2659
2660	if (!up->dual_link_port || !up->dual_link_port->remote)
2661		return false;
2662
2663	if (tb_switch_is_usb4(sw))
2664		return usb4_switch_lane_bonding_possible(sw);
2665	return tb_lc_lane_bonding_possible(sw);
2666}
2667
2668static int tb_switch_update_link_attributes(struct tb_switch *sw)
2669{
2670	struct tb_port *up;
2671	bool change = false;
2672	int ret;
2673
2674	if (!tb_route(sw) || tb_switch_is_icm(sw))
2675		return 0;
2676
2677	up = tb_upstream_port(sw);
2678
2679	ret = tb_port_get_link_speed(up);
2680	if (ret < 0)
2681		return ret;
2682	if (sw->link_speed != ret)
2683		change = true;
2684	sw->link_speed = ret;
2685
2686	ret = tb_port_get_link_width(up);
2687	if (ret < 0)
2688		return ret;
2689	if (sw->link_width != ret)
2690		change = true;
2691	sw->link_width = ret;
2692
2693	/* Notify userspace that there is possible link attribute change */
2694	if (device_is_registered(&sw->dev) && change)
2695		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2696
2697	return 0;
2698}
2699
2700/**
2701 * tb_switch_lane_bonding_enable() - Enable lane bonding
2702 * @sw: Switch to enable lane bonding
2703 *
2704 * Connection manager can call this function to enable lane bonding of a
2705 * switch. If conditions are correct and both switches support the feature,
2706 * lanes are bonded. It is safe to call this to any switch.
2707 */
2708int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2709{
2710	struct tb_port *up, *down;
2711	u64 route = tb_route(sw);
2712	unsigned int width_mask;
2713	int ret;
2714
2715	if (!route)
2716		return 0;
2717
2718	if (!tb_switch_lane_bonding_possible(sw))
2719		return 0;
2720
2721	up = tb_upstream_port(sw);
2722	down = tb_switch_downstream_port(sw);
2723
2724	if (!tb_port_is_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2725	    !tb_port_is_width_supported(down, TB_LINK_WIDTH_DUAL))
2726		return 0;
2727
2728	/*
2729	 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2730	 * CL0 and check just for lane 1.
2731	 */
2732	if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2733		return -ENOTCONN;
2734
2735	ret = tb_port_lane_bonding_enable(up);
2736	if (ret) {
2737		tb_port_warn(up, "failed to enable lane bonding\n");
2738		return ret;
2739	}
2740
2741	ret = tb_port_lane_bonding_enable(down);
2742	if (ret) {
2743		tb_port_warn(down, "failed to enable lane bonding\n");
2744		tb_port_lane_bonding_disable(up);
2745		return ret;
2746	}
2747
2748	/* Any of the widths are all bonded */
2749	width_mask = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2750		     TB_LINK_WIDTH_ASYM_RX;
2751
2752	ret = tb_port_wait_for_link_width(down, width_mask, 100);
2753	if (ret) {
2754		tb_port_warn(down, "timeout enabling lane bonding\n");
2755		return ret;
2756	}
2757
2758	tb_port_update_credits(down);
2759	tb_port_update_credits(up);
2760	tb_switch_update_link_attributes(sw);
2761
2762	tb_sw_dbg(sw, "lane bonding enabled\n");
2763	return ret;
2764}
2765
2766/**
2767 * tb_switch_lane_bonding_disable() - Disable lane bonding
2768 * @sw: Switch whose lane bonding to disable
2769 *
2770 * Disables lane bonding between @sw and parent. This can be called even
2771 * if lanes were not bonded originally.
2772 */
2773void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2774{
2775	struct tb_port *up, *down;
2776	int ret;
2777
2778	if (!tb_route(sw))
2779		return;
2780
2781	up = tb_upstream_port(sw);
2782	if (!up->bonded)
2783		return;
2784
2785	down = tb_switch_downstream_port(sw);
2786
2787	tb_port_lane_bonding_disable(up);
2788	tb_port_lane_bonding_disable(down);
2789
2790	/*
2791	 * It is fine if we get other errors as the router might have
2792	 * been unplugged.
2793	 */
2794	ret = tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2795	if (ret == -ETIMEDOUT)
2796		tb_sw_warn(sw, "timeout disabling lane bonding\n");
2797
2798	tb_port_update_credits(down);
2799	tb_port_update_credits(up);
2800	tb_switch_update_link_attributes(sw);
2801
2802	tb_sw_dbg(sw, "lane bonding disabled\n");
2803}
2804
2805/**
2806 * tb_switch_configure_link() - Set link configured
2807 * @sw: Switch whose link is configured
2808 *
2809 * Sets the link upstream from @sw configured (from both ends) so that
2810 * it will not be disconnected when the domain exits sleep. Can be
2811 * called for any switch.
2812 *
2813 * It is recommended that this is called after lane bonding is enabled.
2814 *
2815 * Returns %0 on success and negative errno in case of error.
2816 */
2817int tb_switch_configure_link(struct tb_switch *sw)
2818{
2819	struct tb_port *up, *down;
2820	int ret;
2821
2822	if (!tb_route(sw) || tb_switch_is_icm(sw))
2823		return 0;
2824
2825	up = tb_upstream_port(sw);
2826	if (tb_switch_is_usb4(up->sw))
2827		ret = usb4_port_configure(up);
2828	else
2829		ret = tb_lc_configure_port(up);
2830	if (ret)
2831		return ret;
2832
2833	down = up->remote;
2834	if (tb_switch_is_usb4(down->sw))
2835		return usb4_port_configure(down);
2836	return tb_lc_configure_port(down);
2837}
2838
2839/**
2840 * tb_switch_unconfigure_link() - Unconfigure link
2841 * @sw: Switch whose link is unconfigured
2842 *
2843 * Sets the link unconfigured so the @sw will be disconnected if the
2844 * domain exists sleep.
2845 */
2846void tb_switch_unconfigure_link(struct tb_switch *sw)
2847{
2848	struct tb_port *up, *down;
2849
2850	if (sw->is_unplugged)
2851		return;
2852	if (!tb_route(sw) || tb_switch_is_icm(sw))
2853		return;
2854
2855	up = tb_upstream_port(sw);
2856	if (tb_switch_is_usb4(up->sw))
2857		usb4_port_unconfigure(up);
2858	else
2859		tb_lc_unconfigure_port(up);
2860
2861	down = up->remote;
2862	if (tb_switch_is_usb4(down->sw))
2863		usb4_port_unconfigure(down);
2864	else
2865		tb_lc_unconfigure_port(down);
2866}
2867
2868static void tb_switch_credits_init(struct tb_switch *sw)
2869{
2870	if (tb_switch_is_icm(sw))
2871		return;
2872	if (!tb_switch_is_usb4(sw))
2873		return;
2874	if (usb4_switch_credits_init(sw))
2875		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2876}
2877
2878static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
2879{
2880	struct tb_port *port;
2881
2882	if (tb_switch_is_icm(sw))
2883		return 0;
2884
2885	tb_switch_for_each_port(sw, port) {
2886		int res;
2887
2888		if (!port->cap_usb4)
2889			continue;
2890
2891		res = usb4_port_hotplug_enable(port);
2892		if (res)
2893			return res;
2894	}
2895	return 0;
2896}
2897
2898/**
2899 * tb_switch_add() - Add a switch to the domain
2900 * @sw: Switch to add
2901 *
2902 * This is the last step in adding switch to the domain. It will read
2903 * identification information from DROM and initializes ports so that
2904 * they can be used to connect other switches. The switch will be
2905 * exposed to the userspace when this function successfully returns. To
2906 * remove and release the switch, call tb_switch_remove().
2907 *
2908 * Return: %0 in case of success and negative errno in case of failure
2909 */
2910int tb_switch_add(struct tb_switch *sw)
2911{
2912	int i, ret;
2913
2914	/*
2915	 * Initialize DMA control port now before we read DROM. Recent
2916	 * host controllers have more complete DROM on NVM that includes
2917	 * vendor and model identification strings which we then expose
2918	 * to the userspace. NVM can be accessed through DMA
2919	 * configuration based mailbox.
2920	 */
2921	ret = tb_switch_add_dma_port(sw);
2922	if (ret) {
2923		dev_err(&sw->dev, "failed to add DMA port\n");
2924		return ret;
2925	}
2926
2927	if (!sw->safe_mode) {
2928		tb_switch_credits_init(sw);
2929
2930		/* read drom */
2931		ret = tb_drom_read(sw);
2932		if (ret)
2933			dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
2934		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2935
2936		ret = tb_switch_set_uuid(sw);
2937		if (ret) {
2938			dev_err(&sw->dev, "failed to set UUID\n");
2939			return ret;
2940		}
2941
2942		for (i = 0; i <= sw->config.max_port_number; i++) {
2943			if (sw->ports[i].disabled) {
2944				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2945				continue;
2946			}
2947			ret = tb_init_port(&sw->ports[i]);
2948			if (ret) {
2949				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2950				return ret;
2951			}
2952		}
2953
2954		tb_check_quirks(sw);
2955
2956		tb_switch_default_link_ports(sw);
2957
2958		ret = tb_switch_update_link_attributes(sw);
2959		if (ret)
2960			return ret;
2961
2962		ret = tb_switch_clx_init(sw);
2963		if (ret)
2964			return ret;
2965
2966		ret = tb_switch_tmu_init(sw);
2967		if (ret)
2968			return ret;
2969	}
2970
2971	ret = tb_switch_port_hotplug_enable(sw);
2972	if (ret)
2973		return ret;
2974
2975	ret = device_add(&sw->dev);
2976	if (ret) {
2977		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2978		return ret;
2979	}
2980
2981	if (tb_route(sw)) {
2982		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2983			 sw->vendor, sw->device);
2984		if (sw->vendor_name && sw->device_name)
2985			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2986				 sw->device_name);
2987	}
2988
2989	ret = usb4_switch_add_ports(sw);
2990	if (ret) {
2991		dev_err(&sw->dev, "failed to add USB4 ports\n");
2992		goto err_del;
2993	}
2994
2995	ret = tb_switch_nvm_add(sw);
2996	if (ret) {
2997		dev_err(&sw->dev, "failed to add NVM devices\n");
2998		goto err_ports;
2999	}
3000
3001	/*
3002	 * Thunderbolt routers do not generate wakeups themselves but
3003	 * they forward wakeups from tunneled protocols, so enable it
3004	 * here.
3005	 */
3006	device_init_wakeup(&sw->dev, true);
3007
3008	pm_runtime_set_active(&sw->dev);
3009	if (sw->rpm) {
3010		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3011		pm_runtime_use_autosuspend(&sw->dev);
3012		pm_runtime_mark_last_busy(&sw->dev);
3013		pm_runtime_enable(&sw->dev);
3014		pm_request_autosuspend(&sw->dev);
3015	}
3016
3017	tb_switch_debugfs_init(sw);
3018	return 0;
3019
3020err_ports:
3021	usb4_switch_remove_ports(sw);
3022err_del:
3023	device_del(&sw->dev);
3024
3025	return ret;
3026}
3027
3028/**
3029 * tb_switch_remove() - Remove and release a switch
3030 * @sw: Switch to remove
3031 *
3032 * This will remove the switch from the domain and release it after last
3033 * reference count drops to zero. If there are switches connected below
3034 * this switch, they will be removed as well.
3035 */
3036void tb_switch_remove(struct tb_switch *sw)
3037{
3038	struct tb_port *port;
3039
3040	tb_switch_debugfs_remove(sw);
3041
3042	if (sw->rpm) {
3043		pm_runtime_get_sync(&sw->dev);
3044		pm_runtime_disable(&sw->dev);
3045	}
3046
3047	/* port 0 is the switch itself and never has a remote */
3048	tb_switch_for_each_port(sw, port) {
3049		if (tb_port_has_remote(port)) {
3050			tb_switch_remove(port->remote->sw);
3051			port->remote = NULL;
3052		} else if (port->xdomain) {
3053			tb_xdomain_remove(port->xdomain);
3054			port->xdomain = NULL;
3055		}
3056
3057		/* Remove any downstream retimers */
3058		tb_retimer_remove_all(port);
3059	}
3060
3061	if (!sw->is_unplugged)
3062		tb_plug_events_active(sw, false);
3063
3064	tb_switch_nvm_remove(sw);
3065	usb4_switch_remove_ports(sw);
3066
3067	if (tb_route(sw))
3068		dev_info(&sw->dev, "device disconnected\n");
3069	device_unregister(&sw->dev);
3070}
3071
3072/**
3073 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3074 * @sw: Router to mark unplugged
3075 */
3076void tb_sw_set_unplugged(struct tb_switch *sw)
3077{
3078	struct tb_port *port;
3079
3080	if (sw == sw->tb->root_switch) {
3081		tb_sw_WARN(sw, "cannot unplug root switch\n");
3082		return;
3083	}
3084	if (sw->is_unplugged) {
3085		tb_sw_WARN(sw, "is_unplugged already set\n");
3086		return;
3087	}
3088	sw->is_unplugged = true;
3089	tb_switch_for_each_port(sw, port) {
3090		if (tb_port_has_remote(port))
3091			tb_sw_set_unplugged(port->remote->sw);
3092		else if (port->xdomain)
3093			port->xdomain->is_unplugged = true;
3094	}
3095}
3096
3097static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3098{
3099	if (flags)
3100		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3101	else
3102		tb_sw_dbg(sw, "disabling wakeup\n");
3103
3104	if (tb_switch_is_usb4(sw))
3105		return usb4_switch_set_wake(sw, flags);
3106	return tb_lc_set_wake(sw, flags);
3107}
3108
3109int tb_switch_resume(struct tb_switch *sw)
3110{
3111	struct tb_port *port;
3112	int err;
3113
3114	tb_sw_dbg(sw, "resuming switch\n");
3115
3116	/*
3117	 * Check for UID of the connected switches except for root
3118	 * switch which we assume cannot be removed.
3119	 */
3120	if (tb_route(sw)) {
3121		u64 uid;
3122
3123		/*
3124		 * Check first that we can still read the switch config
3125		 * space. It may be that there is now another domain
3126		 * connected.
3127		 */
3128		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3129		if (err < 0) {
3130			tb_sw_info(sw, "switch not present anymore\n");
3131			return err;
3132		}
3133
3134		/* We don't have any way to confirm this was the same device */
3135		if (!sw->uid)
3136			return -ENODEV;
3137
3138		if (tb_switch_is_usb4(sw))
3139			err = usb4_switch_read_uid(sw, &uid);
3140		else
3141			err = tb_drom_read_uid_only(sw, &uid);
3142		if (err) {
3143			tb_sw_warn(sw, "uid read failed\n");
3144			return err;
3145		}
3146		if (sw->uid != uid) {
3147			tb_sw_info(sw,
3148				"changed while suspended (uid %#llx -> %#llx)\n",
3149				sw->uid, uid);
3150			return -ENODEV;
3151		}
3152	}
3153
3154	err = tb_switch_configure(sw);
3155	if (err)
3156		return err;
3157
3158	/* Disable wakes */
3159	tb_switch_set_wake(sw, 0);
3160
3161	err = tb_switch_tmu_init(sw);
3162	if (err)
3163		return err;
3164
3165	/* check for surviving downstream switches */
3166	tb_switch_for_each_port(sw, port) {
3167		if (!tb_port_is_null(port))
3168			continue;
3169
3170		if (!tb_port_resume(port))
3171			continue;
3172
3173		if (tb_wait_for_port(port, true) <= 0) {
3174			tb_port_warn(port,
3175				     "lost during suspend, disconnecting\n");
3176			if (tb_port_has_remote(port))
3177				tb_sw_set_unplugged(port->remote->sw);
3178			else if (port->xdomain)
3179				port->xdomain->is_unplugged = true;
3180		} else {
3181			/*
3182			 * Always unlock the port so the downstream
3183			 * switch/domain is accessible.
3184			 */
3185			if (tb_port_unlock(port))
3186				tb_port_warn(port, "failed to unlock port\n");
3187			if (port->remote && tb_switch_resume(port->remote->sw)) {
3188				tb_port_warn(port,
3189					     "lost during suspend, disconnecting\n");
3190				tb_sw_set_unplugged(port->remote->sw);
3191			}
3192		}
3193	}
3194	return 0;
3195}
3196
3197/**
3198 * tb_switch_suspend() - Put a switch to sleep
3199 * @sw: Switch to suspend
3200 * @runtime: Is this runtime suspend or system sleep
3201 *
3202 * Suspends router and all its children. Enables wakes according to
3203 * value of @runtime and then sets sleep bit for the router. If @sw is
3204 * host router the domain is ready to go to sleep once this function
3205 * returns.
3206 */
3207void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3208{
3209	unsigned int flags = 0;
3210	struct tb_port *port;
3211	int err;
3212
3213	tb_sw_dbg(sw, "suspending switch\n");
3214
3215	/*
3216	 * Actually only needed for Titan Ridge but for simplicity can be
3217	 * done for USB4 device too as CLx is re-enabled at resume.
3218	 */
3219	tb_switch_clx_disable(sw);
3220
3221	err = tb_plug_events_active(sw, false);
3222	if (err)
3223		return;
3224
3225	tb_switch_for_each_port(sw, port) {
3226		if (tb_port_has_remote(port))
3227			tb_switch_suspend(port->remote->sw, runtime);
3228	}
3229
3230	if (runtime) {
3231		/* Trigger wake when something is plugged in/out */
3232		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3233		flags |= TB_WAKE_ON_USB4;
3234		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3235	} else if (device_may_wakeup(&sw->dev)) {
3236		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3237	}
3238
3239	tb_switch_set_wake(sw, flags);
3240
3241	if (tb_switch_is_usb4(sw))
3242		usb4_switch_set_sleep(sw);
3243	else
3244		tb_lc_set_sleep(sw);
3245}
3246
3247/**
3248 * tb_switch_query_dp_resource() - Query availability of DP resource
3249 * @sw: Switch whose DP resource is queried
3250 * @in: DP IN port
3251 *
3252 * Queries availability of DP resource for DP tunneling using switch
3253 * specific means. Returns %true if resource is available.
3254 */
3255bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3256{
3257	if (tb_switch_is_usb4(sw))
3258		return usb4_switch_query_dp_resource(sw, in);
3259	return tb_lc_dp_sink_query(sw, in);
3260}
3261
3262/**
3263 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3264 * @sw: Switch whose DP resource is allocated
3265 * @in: DP IN port
3266 *
3267 * Allocates DP resource for DP tunneling. The resource must be
3268 * available for this to succeed (see tb_switch_query_dp_resource()).
3269 * Returns %0 in success and negative errno otherwise.
3270 */
3271int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3272{
3273	int ret;
3274
3275	if (tb_switch_is_usb4(sw))
3276		ret = usb4_switch_alloc_dp_resource(sw, in);
3277	else
3278		ret = tb_lc_dp_sink_alloc(sw, in);
3279
3280	if (ret)
3281		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3282			   in->port);
3283	else
3284		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3285
3286	return ret;
3287}
3288
3289/**
3290 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3291 * @sw: Switch whose DP resource is de-allocated
3292 * @in: DP IN port
3293 *
3294 * De-allocates DP resource that was previously allocated for DP
3295 * tunneling.
3296 */
3297void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3298{
3299	int ret;
3300
3301	if (tb_switch_is_usb4(sw))
3302		ret = usb4_switch_dealloc_dp_resource(sw, in);
3303	else
3304		ret = tb_lc_dp_sink_dealloc(sw, in);
3305
3306	if (ret)
3307		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3308			   in->port);
3309	else
3310		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3311}
3312
3313struct tb_sw_lookup {
3314	struct tb *tb;
3315	u8 link;
3316	u8 depth;
3317	const uuid_t *uuid;
3318	u64 route;
3319};
3320
3321static int tb_switch_match(struct device *dev, const void *data)
3322{
3323	struct tb_switch *sw = tb_to_switch(dev);
3324	const struct tb_sw_lookup *lookup = data;
3325
3326	if (!sw)
3327		return 0;
3328	if (sw->tb != lookup->tb)
3329		return 0;
3330
3331	if (lookup->uuid)
3332		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3333
3334	if (lookup->route) {
3335		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3336		       sw->config.route_hi == upper_32_bits(lookup->route);
3337	}
3338
3339	/* Root switch is matched only by depth */
3340	if (!lookup->depth)
3341		return !sw->depth;
3342
3343	return sw->link == lookup->link && sw->depth == lookup->depth;
3344}
3345
3346/**
3347 * tb_switch_find_by_link_depth() - Find switch by link and depth
3348 * @tb: Domain the switch belongs
3349 * @link: Link number the switch is connected
3350 * @depth: Depth of the switch in link
3351 *
3352 * Returned switch has reference count increased so the caller needs to
3353 * call tb_switch_put() when done with the switch.
3354 */
3355struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3356{
3357	struct tb_sw_lookup lookup;
3358	struct device *dev;
3359
3360	memset(&lookup, 0, sizeof(lookup));
3361	lookup.tb = tb;
3362	lookup.link = link;
3363	lookup.depth = depth;
3364
3365	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3366	if (dev)
3367		return tb_to_switch(dev);
3368
3369	return NULL;
3370}
3371
3372/**
3373 * tb_switch_find_by_uuid() - Find switch by UUID
3374 * @tb: Domain the switch belongs
3375 * @uuid: UUID to look for
3376 *
3377 * Returned switch has reference count increased so the caller needs to
3378 * call tb_switch_put() when done with the switch.
3379 */
3380struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3381{
3382	struct tb_sw_lookup lookup;
3383	struct device *dev;
3384
3385	memset(&lookup, 0, sizeof(lookup));
3386	lookup.tb = tb;
3387	lookup.uuid = uuid;
3388
3389	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3390	if (dev)
3391		return tb_to_switch(dev);
3392
3393	return NULL;
3394}
3395
3396/**
3397 * tb_switch_find_by_route() - Find switch by route string
3398 * @tb: Domain the switch belongs
3399 * @route: Route string to look for
3400 *
3401 * Returned switch has reference count increased so the caller needs to
3402 * call tb_switch_put() when done with the switch.
3403 */
3404struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3405{
3406	struct tb_sw_lookup lookup;
3407	struct device *dev;
3408
3409	if (!route)
3410		return tb_switch_get(tb->root_switch);
3411
3412	memset(&lookup, 0, sizeof(lookup));
3413	lookup.tb = tb;
3414	lookup.route = route;
3415
3416	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3417	if (dev)
3418		return tb_to_switch(dev);
3419
3420	return NULL;
3421}
3422
3423/**
3424 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3425 * @sw: Switch to find the port from
3426 * @type: Port type to look for
3427 */
3428struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3429				    enum tb_port_type type)
3430{
3431	struct tb_port *port;
3432
3433	tb_switch_for_each_port(sw, port) {
3434		if (port->config.type == type)
3435			return port;
3436	}
3437
3438	return NULL;
3439}
3440
3441/*
3442 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3443 * device. For now used only for Titan Ridge.
3444 */
3445static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3446				       unsigned int pcie_offset, u32 value)
3447{
3448	u32 offset, command, val;
3449	int ret;
3450
3451	if (sw->generation != 3)
3452		return -EOPNOTSUPP;
3453
3454	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3455	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3456	if (ret)
3457		return ret;
3458
3459	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3460	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3461	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3462	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3463			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3464	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3465
3466	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3467
3468	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3469	if (ret)
3470		return ret;
3471
3472	ret = tb_switch_wait_for_bit(sw, offset,
3473				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3474	if (ret)
3475		return ret;
3476
3477	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3478	if (ret)
3479		return ret;
3480
3481	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3482		return -ETIMEDOUT;
3483
3484	return 0;
3485}
3486
3487/**
3488 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3489 * @sw: Router to enable PCIe L1
3490 *
3491 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3492 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3493 * was configured. Due to Intel platforms limitation, shall be called only
3494 * for first hop switch.
3495 */
3496int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3497{
3498	struct tb_switch *parent = tb_switch_parent(sw);
3499	int ret;
3500
3501	if (!tb_route(sw))
3502		return 0;
3503
3504	if (!tb_switch_is_titan_ridge(sw))
3505		return 0;
3506
3507	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3508	if (tb_route(parent))
3509		return 0;
3510
3511	/* Write to downstream PCIe bridge #5 aka Dn4 */
3512	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3513	if (ret)
3514		return ret;
3515
3516	/* Write to Upstream PCIe bridge #0 aka Up0 */
3517	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3518}
3519
3520/**
3521 * tb_switch_xhci_connect() - Connect internal xHCI
3522 * @sw: Router whose xHCI to connect
3523 *
3524 * Can be called to any router. For Alpine Ridge and Titan Ridge
3525 * performs special flows that bring the xHCI functional for any device
3526 * connected to the type-C port. Call only after PCIe tunnel has been
3527 * established. The function only does the connect if not done already
3528 * so can be called several times for the same router.
3529 */
3530int tb_switch_xhci_connect(struct tb_switch *sw)
3531{
3532	struct tb_port *port1, *port3;
3533	int ret;
3534
3535	if (sw->generation != 3)
3536		return 0;
3537
3538	port1 = &sw->ports[1];
3539	port3 = &sw->ports[3];
3540
3541	if (tb_switch_is_alpine_ridge(sw)) {
3542		bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3543
3544		usb_port1 = tb_lc_is_usb_plugged(port1);
3545		usb_port3 = tb_lc_is_usb_plugged(port3);
3546		xhci_port1 = tb_lc_is_xhci_connected(port1);
3547		xhci_port3 = tb_lc_is_xhci_connected(port3);
3548
3549		/* Figure out correct USB port to connect */
3550		if (usb_port1 && !xhci_port1) {
3551			ret = tb_lc_xhci_connect(port1);
3552			if (ret)
3553				return ret;
3554		}
3555		if (usb_port3 && !xhci_port3)
3556			return tb_lc_xhci_connect(port3);
3557	} else if (tb_switch_is_titan_ridge(sw)) {
3558		ret = tb_lc_xhci_connect(port1);
3559		if (ret)
3560			return ret;
3561		return tb_lc_xhci_connect(port3);
3562	}
3563
3564	return 0;
3565}
3566
3567/**
3568 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3569 * @sw: Router whose xHCI to disconnect
3570 *
3571 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3572 * ports.
3573 */
3574void tb_switch_xhci_disconnect(struct tb_switch *sw)
3575{
3576	if (sw->generation == 3) {
3577		struct tb_port *port1 = &sw->ports[1];
3578		struct tb_port *port3 = &sw->ports[3];
3579
3580		tb_lc_xhci_disconnect(port1);
3581		tb_port_dbg(port1, "disconnected xHCI\n");
3582		tb_lc_xhci_disconnect(port3);
3583		tb_port_dbg(port3, "disconnected xHCI\n");
3584	}
3585}
3586