1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Thunderbolt driver - NHI driver
4 *
5 * The NHI (native host interface) is the pci device that allows us to send and
6 * receive frames from the thunderbolt bus.
7 *
8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9 * Copyright (C) 2018, Intel Corporation
10 */
11
12#include <linux/pm_runtime.h>
13#include <linux/slab.h>
14#include <linux/errno.h>
15#include <linux/pci.h>
16#include <linux/dma-mapping.h>
17#include <linux/interrupt.h>
18#include <linux/iommu.h>
19#include <linux/module.h>
20#include <linux/delay.h>
21#include <linux/property.h>
22#include <linux/string_helpers.h>
23
24#include "nhi.h"
25#include "nhi_regs.h"
26#include "tb.h"
27
28#define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
29
30#define RING_FIRST_USABLE_HOPID	1
31/*
32 * Used with QUIRK_E2E to specify an unused HopID the Rx credits are
33 * transferred.
34 */
35#define RING_E2E_RESERVED_HOPID	RING_FIRST_USABLE_HOPID
36/*
37 * Minimal number of vectors when we use MSI-X. Two for control channel
38 * Rx/Tx and the rest four are for cross domain DMA paths.
39 */
40#define MSIX_MIN_VECS		6
41#define MSIX_MAX_VECS		16
42
43#define NHI_MAILBOX_TIMEOUT	500 /* ms */
44
45/* Host interface quirks */
46#define QUIRK_AUTO_CLEAR_INT	BIT(0)
47#define QUIRK_E2E		BIT(1)
48
49static bool host_reset = true;
50module_param(host_reset, bool, 0444);
51MODULE_PARM_DESC(host_reset, "reset USBv2 host router (default: true)");
52
53static int ring_interrupt_index(const struct tb_ring *ring)
54{
55	int bit = ring->hop;
56	if (!ring->is_tx)
57		bit += ring->nhi->hop_count;
58	return bit;
59}
60
61static void nhi_mask_interrupt(struct tb_nhi *nhi, int mask, int ring)
62{
63	if (nhi->quirks & QUIRK_AUTO_CLEAR_INT) {
64		u32 val;
65
66		val = ioread32(nhi->iobase + REG_RING_INTERRUPT_BASE + ring);
67		iowrite32(val & ~mask, nhi->iobase + REG_RING_INTERRUPT_BASE + ring);
68	} else {
69		iowrite32(mask, nhi->iobase + REG_RING_INTERRUPT_MASK_CLEAR_BASE + ring);
70	}
71}
72
73static void nhi_clear_interrupt(struct tb_nhi *nhi, int ring)
74{
75	if (nhi->quirks & QUIRK_AUTO_CLEAR_INT)
76		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + ring);
77	else
78		iowrite32(~0, nhi->iobase + REG_RING_INT_CLEAR + ring);
79}
80
81/*
82 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
83 *
84 * ring->nhi->lock must be held.
85 */
86static void ring_interrupt_active(struct tb_ring *ring, bool active)
87{
88	int index = ring_interrupt_index(ring) / 32 * 4;
89	int reg = REG_RING_INTERRUPT_BASE + index;
90	int interrupt_bit = ring_interrupt_index(ring) & 31;
91	int mask = 1 << interrupt_bit;
92	u32 old, new;
93
94	if (ring->irq > 0) {
95		u32 step, shift, ivr, misc;
96		void __iomem *ivr_base;
97		int auto_clear_bit;
98		int index;
99
100		if (ring->is_tx)
101			index = ring->hop;
102		else
103			index = ring->hop + ring->nhi->hop_count;
104
105		/*
106		 * Intel routers support a bit that isn't part of
107		 * the USB4 spec to ask the hardware to clear
108		 * interrupt status bits automatically since
109		 * we already know which interrupt was triggered.
110		 *
111		 * Other routers explicitly disable auto-clear
112		 * to prevent conditions that may occur where two
113		 * MSIX interrupts are simultaneously active and
114		 * reading the register clears both of them.
115		 */
116		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
117		if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
118			auto_clear_bit = REG_DMA_MISC_INT_AUTO_CLEAR;
119		else
120			auto_clear_bit = REG_DMA_MISC_DISABLE_AUTO_CLEAR;
121		if (!(misc & auto_clear_bit))
122			iowrite32(misc | auto_clear_bit,
123				  ring->nhi->iobase + REG_DMA_MISC);
124
125		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
126		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
127		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
128		ivr = ioread32(ivr_base + step);
129		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
130		if (active)
131			ivr |= ring->vector << shift;
132		iowrite32(ivr, ivr_base + step);
133	}
134
135	old = ioread32(ring->nhi->iobase + reg);
136	if (active)
137		new = old | mask;
138	else
139		new = old & ~mask;
140
141	dev_dbg(&ring->nhi->pdev->dev,
142		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
143		active ? "enabling" : "disabling", reg, interrupt_bit, old, new);
144
145	if (new == old)
146		dev_WARN(&ring->nhi->pdev->dev,
147					 "interrupt for %s %d is already %s\n",
148					 RING_TYPE(ring), ring->hop,
149					 active ? "enabled" : "disabled");
150
151	if (active)
152		iowrite32(new, ring->nhi->iobase + reg);
153	else
154		nhi_mask_interrupt(ring->nhi, mask, index);
155}
156
157/*
158 * nhi_disable_interrupts() - disable interrupts for all rings
159 *
160 * Use only during init and shutdown.
161 */
162static void nhi_disable_interrupts(struct tb_nhi *nhi)
163{
164	int i = 0;
165	/* disable interrupts */
166	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
167		nhi_mask_interrupt(nhi, ~0, 4 * i);
168
169	/* clear interrupt status bits */
170	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
171		nhi_clear_interrupt(nhi, 4 * i);
172}
173
174/* ring helper methods */
175
176static void __iomem *ring_desc_base(struct tb_ring *ring)
177{
178	void __iomem *io = ring->nhi->iobase;
179	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
180	io += ring->hop * 16;
181	return io;
182}
183
184static void __iomem *ring_options_base(struct tb_ring *ring)
185{
186	void __iomem *io = ring->nhi->iobase;
187	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
188	io += ring->hop * 32;
189	return io;
190}
191
192static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
193{
194	/*
195	 * The other 16-bits in the register is read-only and writes to it
196	 * are ignored by the hardware so we can save one ioread32() by
197	 * filling the read-only bits with zeroes.
198	 */
199	iowrite32(cons, ring_desc_base(ring) + 8);
200}
201
202static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
203{
204	/* See ring_iowrite_cons() above for explanation */
205	iowrite32(prod << 16, ring_desc_base(ring) + 8);
206}
207
208static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
209{
210	iowrite32(value, ring_desc_base(ring) + offset);
211}
212
213static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
214{
215	iowrite32(value, ring_desc_base(ring) + offset);
216	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
217}
218
219static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
220{
221	iowrite32(value, ring_options_base(ring) + offset);
222}
223
224static bool ring_full(struct tb_ring *ring)
225{
226	return ((ring->head + 1) % ring->size) == ring->tail;
227}
228
229static bool ring_empty(struct tb_ring *ring)
230{
231	return ring->head == ring->tail;
232}
233
234/*
235 * ring_write_descriptors() - post frames from ring->queue to the controller
236 *
237 * ring->lock is held.
238 */
239static void ring_write_descriptors(struct tb_ring *ring)
240{
241	struct ring_frame *frame, *n;
242	struct ring_desc *descriptor;
243	list_for_each_entry_safe(frame, n, &ring->queue, list) {
244		if (ring_full(ring))
245			break;
246		list_move_tail(&frame->list, &ring->in_flight);
247		descriptor = &ring->descriptors[ring->head];
248		descriptor->phys = frame->buffer_phy;
249		descriptor->time = 0;
250		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
251		if (ring->is_tx) {
252			descriptor->length = frame->size;
253			descriptor->eof = frame->eof;
254			descriptor->sof = frame->sof;
255		}
256		ring->head = (ring->head + 1) % ring->size;
257		if (ring->is_tx)
258			ring_iowrite_prod(ring, ring->head);
259		else
260			ring_iowrite_cons(ring, ring->head);
261	}
262}
263
264/*
265 * ring_work() - progress completed frames
266 *
267 * If the ring is shutting down then all frames are marked as canceled and
268 * their callbacks are invoked.
269 *
270 * Otherwise we collect all completed frame from the ring buffer, write new
271 * frame to the ring buffer and invoke the callbacks for the completed frames.
272 */
273static void ring_work(struct work_struct *work)
274{
275	struct tb_ring *ring = container_of(work, typeof(*ring), work);
276	struct ring_frame *frame;
277	bool canceled = false;
278	unsigned long flags;
279	LIST_HEAD(done);
280
281	spin_lock_irqsave(&ring->lock, flags);
282
283	if (!ring->running) {
284		/*  Move all frames to done and mark them as canceled. */
285		list_splice_tail_init(&ring->in_flight, &done);
286		list_splice_tail_init(&ring->queue, &done);
287		canceled = true;
288		goto invoke_callback;
289	}
290
291	while (!ring_empty(ring)) {
292		if (!(ring->descriptors[ring->tail].flags
293				& RING_DESC_COMPLETED))
294			break;
295		frame = list_first_entry(&ring->in_flight, typeof(*frame),
296					 list);
297		list_move_tail(&frame->list, &done);
298		if (!ring->is_tx) {
299			frame->size = ring->descriptors[ring->tail].length;
300			frame->eof = ring->descriptors[ring->tail].eof;
301			frame->sof = ring->descriptors[ring->tail].sof;
302			frame->flags = ring->descriptors[ring->tail].flags;
303		}
304		ring->tail = (ring->tail + 1) % ring->size;
305	}
306	ring_write_descriptors(ring);
307
308invoke_callback:
309	/* allow callbacks to schedule new work */
310	spin_unlock_irqrestore(&ring->lock, flags);
311	while (!list_empty(&done)) {
312		frame = list_first_entry(&done, typeof(*frame), list);
313		/*
314		 * The callback may reenqueue or delete frame.
315		 * Do not hold on to it.
316		 */
317		list_del_init(&frame->list);
318		if (frame->callback)
319			frame->callback(ring, frame, canceled);
320	}
321}
322
323int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
324{
325	unsigned long flags;
326	int ret = 0;
327
328	spin_lock_irqsave(&ring->lock, flags);
329	if (ring->running) {
330		list_add_tail(&frame->list, &ring->queue);
331		ring_write_descriptors(ring);
332	} else {
333		ret = -ESHUTDOWN;
334	}
335	spin_unlock_irqrestore(&ring->lock, flags);
336	return ret;
337}
338EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
339
340/**
341 * tb_ring_poll() - Poll one completed frame from the ring
342 * @ring: Ring to poll
343 *
344 * This function can be called when @start_poll callback of the @ring
345 * has been called. It will read one completed frame from the ring and
346 * return it to the caller. Returns %NULL if there is no more completed
347 * frames.
348 */
349struct ring_frame *tb_ring_poll(struct tb_ring *ring)
350{
351	struct ring_frame *frame = NULL;
352	unsigned long flags;
353
354	spin_lock_irqsave(&ring->lock, flags);
355	if (!ring->running)
356		goto unlock;
357	if (ring_empty(ring))
358		goto unlock;
359
360	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
361		frame = list_first_entry(&ring->in_flight, typeof(*frame),
362					 list);
363		list_del_init(&frame->list);
364
365		if (!ring->is_tx) {
366			frame->size = ring->descriptors[ring->tail].length;
367			frame->eof = ring->descriptors[ring->tail].eof;
368			frame->sof = ring->descriptors[ring->tail].sof;
369			frame->flags = ring->descriptors[ring->tail].flags;
370		}
371
372		ring->tail = (ring->tail + 1) % ring->size;
373	}
374
375unlock:
376	spin_unlock_irqrestore(&ring->lock, flags);
377	return frame;
378}
379EXPORT_SYMBOL_GPL(tb_ring_poll);
380
381static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
382{
383	int idx = ring_interrupt_index(ring);
384	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
385	int bit = idx % 32;
386	u32 val;
387
388	val = ioread32(ring->nhi->iobase + reg);
389	if (mask)
390		val &= ~BIT(bit);
391	else
392		val |= BIT(bit);
393	iowrite32(val, ring->nhi->iobase + reg);
394}
395
396/* Both @nhi->lock and @ring->lock should be held */
397static void __ring_interrupt(struct tb_ring *ring)
398{
399	if (!ring->running)
400		return;
401
402	if (ring->start_poll) {
403		__ring_interrupt_mask(ring, true);
404		ring->start_poll(ring->poll_data);
405	} else {
406		schedule_work(&ring->work);
407	}
408}
409
410/**
411 * tb_ring_poll_complete() - Re-start interrupt for the ring
412 * @ring: Ring to re-start the interrupt
413 *
414 * This will re-start (unmask) the ring interrupt once the user is done
415 * with polling.
416 */
417void tb_ring_poll_complete(struct tb_ring *ring)
418{
419	unsigned long flags;
420
421	spin_lock_irqsave(&ring->nhi->lock, flags);
422	spin_lock(&ring->lock);
423	if (ring->start_poll)
424		__ring_interrupt_mask(ring, false);
425	spin_unlock(&ring->lock);
426	spin_unlock_irqrestore(&ring->nhi->lock, flags);
427}
428EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
429
430static void ring_clear_msix(const struct tb_ring *ring)
431{
432	int bit;
433
434	if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
435		return;
436
437	bit = ring_interrupt_index(ring) & 31;
438	if (ring->is_tx)
439		iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR);
440	else
441		iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR +
442			  4 * (ring->nhi->hop_count / 32));
443}
444
445static irqreturn_t ring_msix(int irq, void *data)
446{
447	struct tb_ring *ring = data;
448
449	spin_lock(&ring->nhi->lock);
450	ring_clear_msix(ring);
451	spin_lock(&ring->lock);
452	__ring_interrupt(ring);
453	spin_unlock(&ring->lock);
454	spin_unlock(&ring->nhi->lock);
455
456	return IRQ_HANDLED;
457}
458
459static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
460{
461	struct tb_nhi *nhi = ring->nhi;
462	unsigned long irqflags;
463	int ret;
464
465	if (!nhi->pdev->msix_enabled)
466		return 0;
467
468	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
469	if (ret < 0)
470		return ret;
471
472	ring->vector = ret;
473
474	ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
475	if (ret < 0)
476		goto err_ida_remove;
477
478	ring->irq = ret;
479
480	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
481	ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
482	if (ret)
483		goto err_ida_remove;
484
485	return 0;
486
487err_ida_remove:
488	ida_simple_remove(&nhi->msix_ida, ring->vector);
489
490	return ret;
491}
492
493static void ring_release_msix(struct tb_ring *ring)
494{
495	if (ring->irq <= 0)
496		return;
497
498	free_irq(ring->irq, ring);
499	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
500	ring->vector = 0;
501	ring->irq = 0;
502}
503
504static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
505{
506	unsigned int start_hop = RING_FIRST_USABLE_HOPID;
507	int ret = 0;
508
509	if (nhi->quirks & QUIRK_E2E) {
510		start_hop = RING_FIRST_USABLE_HOPID + 1;
511		if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
512			dev_dbg(&nhi->pdev->dev, "quirking E2E TX HopID %u -> %u\n",
513				ring->e2e_tx_hop, RING_E2E_RESERVED_HOPID);
514			ring->e2e_tx_hop = RING_E2E_RESERVED_HOPID;
515		}
516	}
517
518	spin_lock_irq(&nhi->lock);
519
520	if (ring->hop < 0) {
521		unsigned int i;
522
523		/*
524		 * Automatically allocate HopID from the non-reserved
525		 * range 1 .. hop_count - 1.
526		 */
527		for (i = start_hop; i < nhi->hop_count; i++) {
528			if (ring->is_tx) {
529				if (!nhi->tx_rings[i]) {
530					ring->hop = i;
531					break;
532				}
533			} else {
534				if (!nhi->rx_rings[i]) {
535					ring->hop = i;
536					break;
537				}
538			}
539		}
540	}
541
542	if (ring->hop > 0 && ring->hop < start_hop) {
543		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
544		ret = -EINVAL;
545		goto err_unlock;
546	}
547	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
548		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
549		ret = -EINVAL;
550		goto err_unlock;
551	}
552	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
553		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
554			 ring->hop);
555		ret = -EBUSY;
556		goto err_unlock;
557	}
558	if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
559		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
560			 ring->hop);
561		ret = -EBUSY;
562		goto err_unlock;
563	}
564
565	if (ring->is_tx)
566		nhi->tx_rings[ring->hop] = ring;
567	else
568		nhi->rx_rings[ring->hop] = ring;
569
570err_unlock:
571	spin_unlock_irq(&nhi->lock);
572
573	return ret;
574}
575
576static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
577				     bool transmit, unsigned int flags,
578				     int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
579				     void (*start_poll)(void *),
580				     void *poll_data)
581{
582	struct tb_ring *ring = NULL;
583
584	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
585		transmit ? "TX" : "RX", hop, size);
586
587	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
588	if (!ring)
589		return NULL;
590
591	spin_lock_init(&ring->lock);
592	INIT_LIST_HEAD(&ring->queue);
593	INIT_LIST_HEAD(&ring->in_flight);
594	INIT_WORK(&ring->work, ring_work);
595
596	ring->nhi = nhi;
597	ring->hop = hop;
598	ring->is_tx = transmit;
599	ring->size = size;
600	ring->flags = flags;
601	ring->e2e_tx_hop = e2e_tx_hop;
602	ring->sof_mask = sof_mask;
603	ring->eof_mask = eof_mask;
604	ring->head = 0;
605	ring->tail = 0;
606	ring->running = false;
607	ring->start_poll = start_poll;
608	ring->poll_data = poll_data;
609
610	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
611			size * sizeof(*ring->descriptors),
612			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
613	if (!ring->descriptors)
614		goto err_free_ring;
615
616	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
617		goto err_free_descs;
618
619	if (nhi_alloc_hop(nhi, ring))
620		goto err_release_msix;
621
622	return ring;
623
624err_release_msix:
625	ring_release_msix(ring);
626err_free_descs:
627	dma_free_coherent(&ring->nhi->pdev->dev,
628			  ring->size * sizeof(*ring->descriptors),
629			  ring->descriptors, ring->descriptors_dma);
630err_free_ring:
631	kfree(ring);
632
633	return NULL;
634}
635
636/**
637 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
638 * @nhi: Pointer to the NHI the ring is to be allocated
639 * @hop: HopID (ring) to allocate
640 * @size: Number of entries in the ring
641 * @flags: Flags for the ring
642 */
643struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
644				 unsigned int flags)
645{
646	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
647}
648EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
649
650/**
651 * tb_ring_alloc_rx() - Allocate DMA ring for receive
652 * @nhi: Pointer to the NHI the ring is to be allocated
653 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
654 * @size: Number of entries in the ring
655 * @flags: Flags for the ring
656 * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
657 * @sof_mask: Mask of PDF values that start a frame
658 * @eof_mask: Mask of PDF values that end a frame
659 * @start_poll: If not %NULL the ring will call this function when an
660 *		interrupt is triggered and masked, instead of callback
661 *		in each Rx frame.
662 * @poll_data: Optional data passed to @start_poll
663 */
664struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
665				 unsigned int flags, int e2e_tx_hop,
666				 u16 sof_mask, u16 eof_mask,
667				 void (*start_poll)(void *), void *poll_data)
668{
669	return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
670			     start_poll, poll_data);
671}
672EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
673
674/**
675 * tb_ring_start() - enable a ring
676 * @ring: Ring to start
677 *
678 * Must not be invoked in parallel with tb_ring_stop().
679 */
680void tb_ring_start(struct tb_ring *ring)
681{
682	u16 frame_size;
683	u32 flags;
684
685	spin_lock_irq(&ring->nhi->lock);
686	spin_lock(&ring->lock);
687	if (ring->nhi->going_away)
688		goto err;
689	if (ring->running) {
690		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
691		goto err;
692	}
693	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
694		RING_TYPE(ring), ring->hop);
695
696	if (ring->flags & RING_FLAG_FRAME) {
697		/* Means 4096 */
698		frame_size = 0;
699		flags = RING_FLAG_ENABLE;
700	} else {
701		frame_size = TB_FRAME_SIZE;
702		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
703	}
704
705	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
706	if (ring->is_tx) {
707		ring_iowrite32desc(ring, ring->size, 12);
708		ring_iowrite32options(ring, 0, 4); /* time releated ? */
709		ring_iowrite32options(ring, flags, 0);
710	} else {
711		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
712
713		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
714		ring_iowrite32options(ring, sof_eof_mask, 4);
715		ring_iowrite32options(ring, flags, 0);
716	}
717
718	/*
719	 * Now that the ring valid bit is set we can configure E2E if
720	 * enabled for the ring.
721	 */
722	if (ring->flags & RING_FLAG_E2E) {
723		if (!ring->is_tx) {
724			u32 hop;
725
726			hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
727			hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
728			flags |= hop;
729
730			dev_dbg(&ring->nhi->pdev->dev,
731				"enabling E2E for %s %d with TX HopID %d\n",
732				RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
733		} else {
734			dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
735				RING_TYPE(ring), ring->hop);
736		}
737
738		flags |= RING_FLAG_E2E_FLOW_CONTROL;
739		ring_iowrite32options(ring, flags, 0);
740	}
741
742	ring_interrupt_active(ring, true);
743	ring->running = true;
744err:
745	spin_unlock(&ring->lock);
746	spin_unlock_irq(&ring->nhi->lock);
747}
748EXPORT_SYMBOL_GPL(tb_ring_start);
749
750/**
751 * tb_ring_stop() - shutdown a ring
752 * @ring: Ring to stop
753 *
754 * Must not be invoked from a callback.
755 *
756 * This method will disable the ring. Further calls to
757 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
758 * called.
759 *
760 * All enqueued frames will be canceled and their callbacks will be executed
761 * with frame->canceled set to true (on the callback thread). This method
762 * returns only after all callback invocations have finished.
763 */
764void tb_ring_stop(struct tb_ring *ring)
765{
766	spin_lock_irq(&ring->nhi->lock);
767	spin_lock(&ring->lock);
768	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
769		RING_TYPE(ring), ring->hop);
770	if (ring->nhi->going_away)
771		goto err;
772	if (!ring->running) {
773		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
774			 RING_TYPE(ring), ring->hop);
775		goto err;
776	}
777	ring_interrupt_active(ring, false);
778
779	ring_iowrite32options(ring, 0, 0);
780	ring_iowrite64desc(ring, 0, 0);
781	ring_iowrite32desc(ring, 0, 8);
782	ring_iowrite32desc(ring, 0, 12);
783	ring->head = 0;
784	ring->tail = 0;
785	ring->running = false;
786
787err:
788	spin_unlock(&ring->lock);
789	spin_unlock_irq(&ring->nhi->lock);
790
791	/*
792	 * schedule ring->work to invoke callbacks on all remaining frames.
793	 */
794	schedule_work(&ring->work);
795	flush_work(&ring->work);
796}
797EXPORT_SYMBOL_GPL(tb_ring_stop);
798
799/*
800 * tb_ring_free() - free ring
801 *
802 * When this method returns all invocations of ring->callback will have
803 * finished.
804 *
805 * Ring must be stopped.
806 *
807 * Must NOT be called from ring_frame->callback!
808 */
809void tb_ring_free(struct tb_ring *ring)
810{
811	spin_lock_irq(&ring->nhi->lock);
812	/*
813	 * Dissociate the ring from the NHI. This also ensures that
814	 * nhi_interrupt_work cannot reschedule ring->work.
815	 */
816	if (ring->is_tx)
817		ring->nhi->tx_rings[ring->hop] = NULL;
818	else
819		ring->nhi->rx_rings[ring->hop] = NULL;
820
821	if (ring->running) {
822		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
823			 RING_TYPE(ring), ring->hop);
824	}
825	spin_unlock_irq(&ring->nhi->lock);
826
827	ring_release_msix(ring);
828
829	dma_free_coherent(&ring->nhi->pdev->dev,
830			  ring->size * sizeof(*ring->descriptors),
831			  ring->descriptors, ring->descriptors_dma);
832
833	ring->descriptors = NULL;
834	ring->descriptors_dma = 0;
835
836
837	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
838		ring->hop);
839
840	/*
841	 * ring->work can no longer be scheduled (it is scheduled only
842	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
843	 * to finish before freeing the ring.
844	 */
845	flush_work(&ring->work);
846	kfree(ring);
847}
848EXPORT_SYMBOL_GPL(tb_ring_free);
849
850/**
851 * nhi_mailbox_cmd() - Send a command through NHI mailbox
852 * @nhi: Pointer to the NHI structure
853 * @cmd: Command to send
854 * @data: Data to be send with the command
855 *
856 * Sends mailbox command to the firmware running on NHI. Returns %0 in
857 * case of success and negative errno in case of failure.
858 */
859int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
860{
861	ktime_t timeout;
862	u32 val;
863
864	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
865
866	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
867	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
868	val |= REG_INMAIL_OP_REQUEST | cmd;
869	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
870
871	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
872	do {
873		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
874		if (!(val & REG_INMAIL_OP_REQUEST))
875			break;
876		usleep_range(10, 20);
877	} while (ktime_before(ktime_get(), timeout));
878
879	if (val & REG_INMAIL_OP_REQUEST)
880		return -ETIMEDOUT;
881	if (val & REG_INMAIL_ERROR)
882		return -EIO;
883
884	return 0;
885}
886
887/**
888 * nhi_mailbox_mode() - Return current firmware operation mode
889 * @nhi: Pointer to the NHI structure
890 *
891 * The function reads current firmware operation mode using NHI mailbox
892 * registers and returns it to the caller.
893 */
894enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
895{
896	u32 val;
897
898	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
899	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
900	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
901
902	return (enum nhi_fw_mode)val;
903}
904
905static void nhi_interrupt_work(struct work_struct *work)
906{
907	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
908	int value = 0; /* Suppress uninitialized usage warning. */
909	int bit;
910	int hop = -1;
911	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
912	struct tb_ring *ring;
913
914	spin_lock_irq(&nhi->lock);
915
916	/*
917	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
918	 * (TX, RX, RX overflow). We iterate over the bits and read a new
919	 * dwords as required. The registers are cleared on read.
920	 */
921	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
922		if (bit % 32 == 0)
923			value = ioread32(nhi->iobase
924					 + REG_RING_NOTIFY_BASE
925					 + 4 * (bit / 32));
926		if (++hop == nhi->hop_count) {
927			hop = 0;
928			type++;
929		}
930		if ((value & (1 << (bit % 32))) == 0)
931			continue;
932		if (type == 2) {
933			dev_warn(&nhi->pdev->dev,
934				 "RX overflow for ring %d\n",
935				 hop);
936			continue;
937		}
938		if (type == 0)
939			ring = nhi->tx_rings[hop];
940		else
941			ring = nhi->rx_rings[hop];
942		if (ring == NULL) {
943			dev_warn(&nhi->pdev->dev,
944				 "got interrupt for inactive %s ring %d\n",
945				 type ? "RX" : "TX",
946				 hop);
947			continue;
948		}
949
950		spin_lock(&ring->lock);
951		__ring_interrupt(ring);
952		spin_unlock(&ring->lock);
953	}
954	spin_unlock_irq(&nhi->lock);
955}
956
957static irqreturn_t nhi_msi(int irq, void *data)
958{
959	struct tb_nhi *nhi = data;
960	schedule_work(&nhi->interrupt_work);
961	return IRQ_HANDLED;
962}
963
964static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
965{
966	struct pci_dev *pdev = to_pci_dev(dev);
967	struct tb *tb = pci_get_drvdata(pdev);
968	struct tb_nhi *nhi = tb->nhi;
969	int ret;
970
971	ret = tb_domain_suspend_noirq(tb);
972	if (ret)
973		return ret;
974
975	if (nhi->ops && nhi->ops->suspend_noirq) {
976		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
977		if (ret)
978			return ret;
979	}
980
981	return 0;
982}
983
984static int nhi_suspend_noirq(struct device *dev)
985{
986	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
987}
988
989static int nhi_freeze_noirq(struct device *dev)
990{
991	struct pci_dev *pdev = to_pci_dev(dev);
992	struct tb *tb = pci_get_drvdata(pdev);
993
994	return tb_domain_freeze_noirq(tb);
995}
996
997static int nhi_thaw_noirq(struct device *dev)
998{
999	struct pci_dev *pdev = to_pci_dev(dev);
1000	struct tb *tb = pci_get_drvdata(pdev);
1001
1002	return tb_domain_thaw_noirq(tb);
1003}
1004
1005static bool nhi_wake_supported(struct pci_dev *pdev)
1006{
1007	u8 val;
1008
1009	/*
1010	 * If power rails are sustainable for wakeup from S4 this
1011	 * property is set by the BIOS.
1012	 */
1013	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
1014		return !!val;
1015
1016	return true;
1017}
1018
1019static int nhi_poweroff_noirq(struct device *dev)
1020{
1021	struct pci_dev *pdev = to_pci_dev(dev);
1022	bool wakeup;
1023
1024	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
1025	return __nhi_suspend_noirq(dev, wakeup);
1026}
1027
1028static void nhi_enable_int_throttling(struct tb_nhi *nhi)
1029{
1030	/* Throttling is specified in 256ns increments */
1031	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
1032	unsigned int i;
1033
1034	/*
1035	 * Configure interrupt throttling for all vectors even if we
1036	 * only use few.
1037	 */
1038	for (i = 0; i < MSIX_MAX_VECS; i++) {
1039		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
1040		iowrite32(throttle, nhi->iobase + reg);
1041	}
1042}
1043
1044static int nhi_resume_noirq(struct device *dev)
1045{
1046	struct pci_dev *pdev = to_pci_dev(dev);
1047	struct tb *tb = pci_get_drvdata(pdev);
1048	struct tb_nhi *nhi = tb->nhi;
1049	int ret;
1050
1051	/*
1052	 * Check that the device is still there. It may be that the user
1053	 * unplugged last device which causes the host controller to go
1054	 * away on PCs.
1055	 */
1056	if (!pci_device_is_present(pdev)) {
1057		nhi->going_away = true;
1058	} else {
1059		if (nhi->ops && nhi->ops->resume_noirq) {
1060			ret = nhi->ops->resume_noirq(nhi);
1061			if (ret)
1062				return ret;
1063		}
1064		nhi_enable_int_throttling(tb->nhi);
1065	}
1066
1067	return tb_domain_resume_noirq(tb);
1068}
1069
1070static int nhi_suspend(struct device *dev)
1071{
1072	struct pci_dev *pdev = to_pci_dev(dev);
1073	struct tb *tb = pci_get_drvdata(pdev);
1074
1075	return tb_domain_suspend(tb);
1076}
1077
1078static void nhi_complete(struct device *dev)
1079{
1080	struct pci_dev *pdev = to_pci_dev(dev);
1081	struct tb *tb = pci_get_drvdata(pdev);
1082
1083	/*
1084	 * If we were runtime suspended when system suspend started,
1085	 * schedule runtime resume now. It should bring the domain back
1086	 * to functional state.
1087	 */
1088	if (pm_runtime_suspended(&pdev->dev))
1089		pm_runtime_resume(&pdev->dev);
1090	else
1091		tb_domain_complete(tb);
1092}
1093
1094static int nhi_runtime_suspend(struct device *dev)
1095{
1096	struct pci_dev *pdev = to_pci_dev(dev);
1097	struct tb *tb = pci_get_drvdata(pdev);
1098	struct tb_nhi *nhi = tb->nhi;
1099	int ret;
1100
1101	ret = tb_domain_runtime_suspend(tb);
1102	if (ret)
1103		return ret;
1104
1105	if (nhi->ops && nhi->ops->runtime_suspend) {
1106		ret = nhi->ops->runtime_suspend(tb->nhi);
1107		if (ret)
1108			return ret;
1109	}
1110	return 0;
1111}
1112
1113static int nhi_runtime_resume(struct device *dev)
1114{
1115	struct pci_dev *pdev = to_pci_dev(dev);
1116	struct tb *tb = pci_get_drvdata(pdev);
1117	struct tb_nhi *nhi = tb->nhi;
1118	int ret;
1119
1120	if (nhi->ops && nhi->ops->runtime_resume) {
1121		ret = nhi->ops->runtime_resume(nhi);
1122		if (ret)
1123			return ret;
1124	}
1125
1126	nhi_enable_int_throttling(nhi);
1127	return tb_domain_runtime_resume(tb);
1128}
1129
1130static void nhi_shutdown(struct tb_nhi *nhi)
1131{
1132	int i;
1133
1134	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1135
1136	for (i = 0; i < nhi->hop_count; i++) {
1137		if (nhi->tx_rings[i])
1138			dev_WARN(&nhi->pdev->dev,
1139				 "TX ring %d is still active\n", i);
1140		if (nhi->rx_rings[i])
1141			dev_WARN(&nhi->pdev->dev,
1142				 "RX ring %d is still active\n", i);
1143	}
1144	nhi_disable_interrupts(nhi);
1145	/*
1146	 * We have to release the irq before calling flush_work. Otherwise an
1147	 * already executing IRQ handler could call schedule_work again.
1148	 */
1149	if (!nhi->pdev->msix_enabled) {
1150		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1151		flush_work(&nhi->interrupt_work);
1152	}
1153	ida_destroy(&nhi->msix_ida);
1154
1155	if (nhi->ops && nhi->ops->shutdown)
1156		nhi->ops->shutdown(nhi);
1157}
1158
1159static void nhi_check_quirks(struct tb_nhi *nhi)
1160{
1161	if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL) {
1162		/*
1163		 * Intel hardware supports auto clear of the interrupt
1164		 * status register right after interrupt is being
1165		 * issued.
1166		 */
1167		nhi->quirks |= QUIRK_AUTO_CLEAR_INT;
1168
1169		switch (nhi->pdev->device) {
1170		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1171		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1172			/*
1173			 * Falcon Ridge controller needs the end-to-end
1174			 * flow control workaround to avoid losing Rx
1175			 * packets when RING_FLAG_E2E is set.
1176			 */
1177			nhi->quirks |= QUIRK_E2E;
1178			break;
1179		}
1180	}
1181}
1182
1183static int nhi_check_iommu_pdev(struct pci_dev *pdev, void *data)
1184{
1185	if (!pdev->external_facing ||
1186	    !device_iommu_capable(&pdev->dev, IOMMU_CAP_PRE_BOOT_PROTECTION))
1187		return 0;
1188	*(bool *)data = true;
1189	return 1; /* Stop walking */
1190}
1191
1192static void nhi_check_iommu(struct tb_nhi *nhi)
1193{
1194	struct pci_bus *bus = nhi->pdev->bus;
1195	bool port_ok = false;
1196
1197	/*
1198	 * Ideally what we'd do here is grab every PCI device that
1199	 * represents a tunnelling adapter for this NHI and check their
1200	 * status directly, but unfortunately USB4 seems to make it
1201	 * obnoxiously difficult to reliably make any correlation.
1202	 *
1203	 * So for now we'll have to bodge it... Hoping that the system
1204	 * is at least sane enough that an adapter is in the same PCI
1205	 * segment as its NHI, if we can find *something* on that segment
1206	 * which meets the requirements for Kernel DMA Protection, we'll
1207	 * take that to imply that firmware is aware and has (hopefully)
1208	 * done the right thing in general. We need to know that the PCI
1209	 * layer has seen the ExternalFacingPort property which will then
1210	 * inform the IOMMU layer to enforce the complete "untrusted DMA"
1211	 * flow, but also that the IOMMU driver itself can be trusted not
1212	 * to have been subverted by a pre-boot DMA attack.
1213	 */
1214	while (bus->parent)
1215		bus = bus->parent;
1216
1217	pci_walk_bus(bus, nhi_check_iommu_pdev, &port_ok);
1218
1219	nhi->iommu_dma_protection = port_ok;
1220	dev_dbg(&nhi->pdev->dev, "IOMMU DMA protection is %s\n",
1221		str_enabled_disabled(port_ok));
1222}
1223
1224static void nhi_reset(struct tb_nhi *nhi)
1225{
1226	ktime_t timeout;
1227	u32 val;
1228
1229	val = ioread32(nhi->iobase + REG_CAPS);
1230	/* Reset only v2 and later routers */
1231	if (FIELD_GET(REG_CAPS_VERSION_MASK, val) < REG_CAPS_VERSION_2)
1232		return;
1233
1234	if (!host_reset) {
1235		dev_dbg(&nhi->pdev->dev, "skipping host router reset\n");
1236		return;
1237	}
1238
1239	iowrite32(REG_RESET_HRR, nhi->iobase + REG_RESET);
1240	msleep(100);
1241
1242	timeout = ktime_add_ms(ktime_get(), 500);
1243	do {
1244		val = ioread32(nhi->iobase + REG_RESET);
1245		if (!(val & REG_RESET_HRR)) {
1246			dev_warn(&nhi->pdev->dev, "host router reset successful\n");
1247			return;
1248		}
1249		usleep_range(10, 20);
1250	} while (ktime_before(ktime_get(), timeout));
1251
1252	dev_warn(&nhi->pdev->dev, "timeout resetting host router\n");
1253}
1254
1255static int nhi_init_msi(struct tb_nhi *nhi)
1256{
1257	struct pci_dev *pdev = nhi->pdev;
1258	struct device *dev = &pdev->dev;
1259	int res, irq, nvec;
1260
1261	/* In case someone left them on. */
1262	nhi_disable_interrupts(nhi);
1263
1264	nhi_enable_int_throttling(nhi);
1265
1266	ida_init(&nhi->msix_ida);
1267
1268	/*
1269	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1270	 * get all MSI-X vectors and if we succeed, each ring will have
1271	 * one MSI-X. If for some reason that does not work out, we
1272	 * fallback to a single MSI.
1273	 */
1274	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1275				     PCI_IRQ_MSIX);
1276	if (nvec < 0) {
1277		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1278		if (nvec < 0)
1279			return nvec;
1280
1281		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1282
1283		irq = pci_irq_vector(nhi->pdev, 0);
1284		if (irq < 0)
1285			return irq;
1286
1287		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1288				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1289		if (res)
1290			return dev_err_probe(dev, res, "request_irq failed, aborting\n");
1291	}
1292
1293	return 0;
1294}
1295
1296static bool nhi_imr_valid(struct pci_dev *pdev)
1297{
1298	u8 val;
1299
1300	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1301		return !!val;
1302
1303	return true;
1304}
1305
1306static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1307{
1308	struct tb *tb;
1309
1310	/*
1311	 * USB4 case is simple. If we got control of any of the
1312	 * capabilities, we use software CM.
1313	 */
1314	if (tb_acpi_is_native())
1315		return tb_probe(nhi);
1316
1317	/*
1318	 * Either firmware based CM is running (we did not get control
1319	 * from the firmware) or this is pre-USB4 PC so try first
1320	 * firmware CM and then fallback to software CM.
1321	 */
1322	tb = icm_probe(nhi);
1323	if (!tb)
1324		tb = tb_probe(nhi);
1325
1326	return tb;
1327}
1328
1329static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1330{
1331	struct device *dev = &pdev->dev;
1332	struct tb_nhi *nhi;
1333	struct tb *tb;
1334	int res;
1335
1336	if (!nhi_imr_valid(pdev))
1337		return dev_err_probe(dev, -ENODEV, "firmware image not valid, aborting\n");
1338
1339	res = pcim_enable_device(pdev);
1340	if (res)
1341		return dev_err_probe(dev, res, "cannot enable PCI device, aborting\n");
1342
1343	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1344	if (res)
1345		return dev_err_probe(dev, res, "cannot obtain PCI resources, aborting\n");
1346
1347	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1348	if (!nhi)
1349		return -ENOMEM;
1350
1351	nhi->pdev = pdev;
1352	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1353	/* cannot fail - table is allocated in pcim_iomap_regions */
1354	nhi->iobase = pcim_iomap_table(pdev)[0];
1355	nhi->hop_count = ioread32(nhi->iobase + REG_CAPS) & 0x3ff;
1356	dev_dbg(dev, "total paths: %d\n", nhi->hop_count);
1357
1358	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1359				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1360	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1361				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1362	if (!nhi->tx_rings || !nhi->rx_rings)
1363		return -ENOMEM;
1364
1365	nhi_check_quirks(nhi);
1366	nhi_check_iommu(nhi);
1367
1368	nhi_reset(nhi);
1369
1370	res = nhi_init_msi(nhi);
1371	if (res)
1372		return dev_err_probe(dev, res, "cannot enable MSI, aborting\n");
1373
1374	spin_lock_init(&nhi->lock);
1375
1376	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1377	if (res)
1378		return dev_err_probe(dev, res, "failed to set DMA mask\n");
1379
1380	pci_set_master(pdev);
1381
1382	if (nhi->ops && nhi->ops->init) {
1383		res = nhi->ops->init(nhi);
1384		if (res)
1385			return res;
1386	}
1387
1388	tb = nhi_select_cm(nhi);
1389	if (!tb)
1390		return dev_err_probe(dev, -ENODEV,
1391			"failed to determine connection manager, aborting\n");
1392
1393	dev_dbg(dev, "NHI initialized, starting thunderbolt\n");
1394
1395	res = tb_domain_add(tb);
1396	if (res) {
1397		/*
1398		 * At this point the RX/TX rings might already have been
1399		 * activated. Do a proper shutdown.
1400		 */
1401		tb_domain_put(tb);
1402		nhi_shutdown(nhi);
1403		return res;
1404	}
1405	pci_set_drvdata(pdev, tb);
1406
1407	device_wakeup_enable(&pdev->dev);
1408
1409	pm_runtime_allow(&pdev->dev);
1410	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1411	pm_runtime_use_autosuspend(&pdev->dev);
1412	pm_runtime_put_autosuspend(&pdev->dev);
1413
1414	return 0;
1415}
1416
1417static void nhi_remove(struct pci_dev *pdev)
1418{
1419	struct tb *tb = pci_get_drvdata(pdev);
1420	struct tb_nhi *nhi = tb->nhi;
1421
1422	pm_runtime_get_sync(&pdev->dev);
1423	pm_runtime_dont_use_autosuspend(&pdev->dev);
1424	pm_runtime_forbid(&pdev->dev);
1425
1426	tb_domain_remove(tb);
1427	nhi_shutdown(nhi);
1428}
1429
1430/*
1431 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1432 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1433 * resume_noirq until we are done.
1434 */
1435static const struct dev_pm_ops nhi_pm_ops = {
1436	.suspend_noirq = nhi_suspend_noirq,
1437	.resume_noirq = nhi_resume_noirq,
1438	.freeze_noirq = nhi_freeze_noirq,  /*
1439					    * we just disable hotplug, the
1440					    * pci-tunnels stay alive.
1441					    */
1442	.thaw_noirq = nhi_thaw_noirq,
1443	.restore_noirq = nhi_resume_noirq,
1444	.suspend = nhi_suspend,
1445	.poweroff_noirq = nhi_poweroff_noirq,
1446	.poweroff = nhi_suspend,
1447	.complete = nhi_complete,
1448	.runtime_suspend = nhi_runtime_suspend,
1449	.runtime_resume = nhi_runtime_resume,
1450};
1451
1452static struct pci_device_id nhi_ids[] = {
1453	/*
1454	 * We have to specify class, the TB bridges use the same device and
1455	 * vendor (sub)id on gen 1 and gen 2 controllers.
1456	 */
1457	{
1458		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1459		.vendor = PCI_VENDOR_ID_INTEL,
1460		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1461		.subvendor = 0x2222, .subdevice = 0x1111,
1462	},
1463	{
1464		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1465		.vendor = PCI_VENDOR_ID_INTEL,
1466		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1467		.subvendor = 0x2222, .subdevice = 0x1111,
1468	},
1469	{
1470		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1471		.vendor = PCI_VENDOR_ID_INTEL,
1472		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1473		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1474	},
1475	{
1476		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1477		.vendor = PCI_VENDOR_ID_INTEL,
1478		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1479		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1480	},
1481
1482	/* Thunderbolt 3 */
1483	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1484	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1485	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1486	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1487	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1488	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1489	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1490	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1491	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1492	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1493	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1494	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1495	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1496	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1497	/* Thunderbolt 4 */
1498	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1499	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1500	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1501	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1502	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1503	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1504	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1505	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1506	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1507	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1508	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1509	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1510	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI0),
1511	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1512	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI1),
1513	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1514	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_M_NHI0),
1515	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1516	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI0),
1517	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1518	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI1),
1519	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1520	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_BARLOW_RIDGE_HOST_80G_NHI) },
1521	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_BARLOW_RIDGE_HOST_40G_NHI) },
1522
1523	/* Any USB4 compliant host */
1524	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1525
1526	{ 0,}
1527};
1528
1529MODULE_DEVICE_TABLE(pci, nhi_ids);
1530MODULE_DESCRIPTION("Thunderbolt/USB4 core driver");
1531MODULE_LICENSE("GPL");
1532
1533static struct pci_driver nhi_driver = {
1534	.name = "thunderbolt",
1535	.id_table = nhi_ids,
1536	.probe = nhi_probe,
1537	.remove = nhi_remove,
1538	.shutdown = nhi_remove,
1539	.driver.pm = &nhi_pm_ops,
1540};
1541
1542static int __init nhi_init(void)
1543{
1544	int ret;
1545
1546	ret = tb_domain_init();
1547	if (ret)
1548		return ret;
1549	ret = pci_register_driver(&nhi_driver);
1550	if (ret)
1551		tb_domain_exit();
1552	return ret;
1553}
1554
1555static void __exit nhi_unload(void)
1556{
1557	pci_unregister_driver(&nhi_driver);
1558	tb_domain_exit();
1559}
1560
1561rootfs_initcall(nhi_init);
1562module_exit(nhi_unload);
1563