162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * Tegra30 SoC Thermal Sensor driver 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Based on downstream HWMON driver from NVIDIA. 662306a36Sopenharmony_ci * Copyright (C) 2011 NVIDIA Corporation 762306a36Sopenharmony_ci * 862306a36Sopenharmony_ci * Author: Dmitry Osipenko <digetx@gmail.com> 962306a36Sopenharmony_ci * Copyright (C) 2021 GRATE-DRIVER project 1062306a36Sopenharmony_ci */ 1162306a36Sopenharmony_ci 1262306a36Sopenharmony_ci#include <linux/bitfield.h> 1362306a36Sopenharmony_ci#include <linux/clk.h> 1462306a36Sopenharmony_ci#include <linux/delay.h> 1562306a36Sopenharmony_ci#include <linux/errno.h> 1662306a36Sopenharmony_ci#include <linux/interrupt.h> 1762306a36Sopenharmony_ci#include <linux/io.h> 1862306a36Sopenharmony_ci#include <linux/iopoll.h> 1962306a36Sopenharmony_ci#include <linux/math.h> 2062306a36Sopenharmony_ci#include <linux/module.h> 2162306a36Sopenharmony_ci#include <linux/of.h> 2262306a36Sopenharmony_ci#include <linux/platform_device.h> 2362306a36Sopenharmony_ci#include <linux/pm.h> 2462306a36Sopenharmony_ci#include <linux/reset.h> 2562306a36Sopenharmony_ci#include <linux/slab.h> 2662306a36Sopenharmony_ci#include <linux/thermal.h> 2762306a36Sopenharmony_ci#include <linux/types.h> 2862306a36Sopenharmony_ci 2962306a36Sopenharmony_ci#include <soc/tegra/fuse.h> 3062306a36Sopenharmony_ci 3162306a36Sopenharmony_ci#include "../thermal_hwmon.h" 3262306a36Sopenharmony_ci 3362306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG0 0x0 3462306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP BIT(0) 3562306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG0_HW_FREQ_DIV_EN BIT(1) 3662306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG0_THERMAL_RST_EN BIT(2) 3762306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG0_DVFS_EN BIT(3) 3862306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG0_INTR_OVERFLOW_EN BIT(4) 3962306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG0_INTR_HW_FREQ_DIV_EN BIT(5) 4062306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG0_INTR_THERMAL_RST_EN BIT(6) 4162306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG0_M GENMASK(23, 8) 4262306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG0_N GENMASK(31, 24) 4362306a36Sopenharmony_ci 4462306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG1 0x8 4562306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG1_TH1 GENMASK(15, 0) 4662306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG1_TH2 GENMASK(31, 16) 4762306a36Sopenharmony_ci 4862306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG2 0xc 4962306a36Sopenharmony_ci#define TSENSOR_SENSOR0_CONFIG2_TH3 GENMASK(15, 0) 5062306a36Sopenharmony_ci 5162306a36Sopenharmony_ci#define TSENSOR_SENSOR0_STATUS0 0x18 5262306a36Sopenharmony_ci#define TSENSOR_SENSOR0_STATUS0_STATE GENMASK(2, 0) 5362306a36Sopenharmony_ci#define TSENSOR_SENSOR0_STATUS0_INTR BIT(8) 5462306a36Sopenharmony_ci#define TSENSOR_SENSOR0_STATUS0_CURRENT_VALID BIT(9) 5562306a36Sopenharmony_ci 5662306a36Sopenharmony_ci#define TSENSOR_SENSOR0_TS_STATUS1 0x1c 5762306a36Sopenharmony_ci#define TSENSOR_SENSOR0_TS_STATUS1_CURRENT_COUNT GENMASK(31, 16) 5862306a36Sopenharmony_ci 5962306a36Sopenharmony_ci#define TEGRA30_FUSE_TEST_PROG_VER 0x28 6062306a36Sopenharmony_ci 6162306a36Sopenharmony_ci#define TEGRA30_FUSE_TSENSOR_CALIB 0x98 6262306a36Sopenharmony_ci#define TEGRA30_FUSE_TSENSOR_CALIB_LOW GENMASK(15, 0) 6362306a36Sopenharmony_ci#define TEGRA30_FUSE_TSENSOR_CALIB_HIGH GENMASK(31, 16) 6462306a36Sopenharmony_ci 6562306a36Sopenharmony_ci#define TEGRA30_FUSE_SPARE_BIT 0x144 6662306a36Sopenharmony_ci 6762306a36Sopenharmony_cistruct tegra_tsensor; 6862306a36Sopenharmony_ci 6962306a36Sopenharmony_cistruct tegra_tsensor_calibration_data { 7062306a36Sopenharmony_ci int a, b, m, n, p, r; 7162306a36Sopenharmony_ci}; 7262306a36Sopenharmony_ci 7362306a36Sopenharmony_cistruct tegra_tsensor_channel { 7462306a36Sopenharmony_ci void __iomem *regs; 7562306a36Sopenharmony_ci unsigned int id; 7662306a36Sopenharmony_ci struct tegra_tsensor *ts; 7762306a36Sopenharmony_ci struct thermal_zone_device *tzd; 7862306a36Sopenharmony_ci}; 7962306a36Sopenharmony_ci 8062306a36Sopenharmony_cistruct tegra_tsensor { 8162306a36Sopenharmony_ci void __iomem *regs; 8262306a36Sopenharmony_ci bool swap_channels; 8362306a36Sopenharmony_ci struct clk *clk; 8462306a36Sopenharmony_ci struct device *dev; 8562306a36Sopenharmony_ci struct reset_control *rst; 8662306a36Sopenharmony_ci struct tegra_tsensor_channel ch[2]; 8762306a36Sopenharmony_ci struct tegra_tsensor_calibration_data calib; 8862306a36Sopenharmony_ci}; 8962306a36Sopenharmony_ci 9062306a36Sopenharmony_cistatic int tegra_tsensor_hw_enable(const struct tegra_tsensor *ts) 9162306a36Sopenharmony_ci{ 9262306a36Sopenharmony_ci u32 val; 9362306a36Sopenharmony_ci int err; 9462306a36Sopenharmony_ci 9562306a36Sopenharmony_ci err = reset_control_assert(ts->rst); 9662306a36Sopenharmony_ci if (err) { 9762306a36Sopenharmony_ci dev_err(ts->dev, "failed to assert hardware reset: %d\n", err); 9862306a36Sopenharmony_ci return err; 9962306a36Sopenharmony_ci } 10062306a36Sopenharmony_ci 10162306a36Sopenharmony_ci err = clk_prepare_enable(ts->clk); 10262306a36Sopenharmony_ci if (err) { 10362306a36Sopenharmony_ci dev_err(ts->dev, "failed to enable clock: %d\n", err); 10462306a36Sopenharmony_ci return err; 10562306a36Sopenharmony_ci } 10662306a36Sopenharmony_ci 10762306a36Sopenharmony_ci fsleep(1000); 10862306a36Sopenharmony_ci 10962306a36Sopenharmony_ci err = reset_control_deassert(ts->rst); 11062306a36Sopenharmony_ci if (err) { 11162306a36Sopenharmony_ci dev_err(ts->dev, "failed to deassert hardware reset: %d\n", err); 11262306a36Sopenharmony_ci goto disable_clk; 11362306a36Sopenharmony_ci } 11462306a36Sopenharmony_ci 11562306a36Sopenharmony_ci /* 11662306a36Sopenharmony_ci * Sensors are enabled after reset by default, but not gauging 11762306a36Sopenharmony_ci * until clock counter is programmed. 11862306a36Sopenharmony_ci * 11962306a36Sopenharmony_ci * M: number of reference clock pulses after which every 12062306a36Sopenharmony_ci * temperature / voltage measurement is made 12162306a36Sopenharmony_ci * 12262306a36Sopenharmony_ci * N: number of reference clock counts for which the counter runs 12362306a36Sopenharmony_ci */ 12462306a36Sopenharmony_ci val = FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_M, 12500); 12562306a36Sopenharmony_ci val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_N, 255); 12662306a36Sopenharmony_ci 12762306a36Sopenharmony_ci /* apply the same configuration to both channels */ 12862306a36Sopenharmony_ci writel_relaxed(val, ts->regs + 0x40 + TSENSOR_SENSOR0_CONFIG0); 12962306a36Sopenharmony_ci writel_relaxed(val, ts->regs + 0x80 + TSENSOR_SENSOR0_CONFIG0); 13062306a36Sopenharmony_ci 13162306a36Sopenharmony_ci return 0; 13262306a36Sopenharmony_ci 13362306a36Sopenharmony_cidisable_clk: 13462306a36Sopenharmony_ci clk_disable_unprepare(ts->clk); 13562306a36Sopenharmony_ci 13662306a36Sopenharmony_ci return err; 13762306a36Sopenharmony_ci} 13862306a36Sopenharmony_ci 13962306a36Sopenharmony_cistatic int tegra_tsensor_hw_disable(const struct tegra_tsensor *ts) 14062306a36Sopenharmony_ci{ 14162306a36Sopenharmony_ci int err; 14262306a36Sopenharmony_ci 14362306a36Sopenharmony_ci err = reset_control_assert(ts->rst); 14462306a36Sopenharmony_ci if (err) { 14562306a36Sopenharmony_ci dev_err(ts->dev, "failed to assert hardware reset: %d\n", err); 14662306a36Sopenharmony_ci return err; 14762306a36Sopenharmony_ci } 14862306a36Sopenharmony_ci 14962306a36Sopenharmony_ci clk_disable_unprepare(ts->clk); 15062306a36Sopenharmony_ci 15162306a36Sopenharmony_ci return 0; 15262306a36Sopenharmony_ci} 15362306a36Sopenharmony_ci 15462306a36Sopenharmony_cistatic void devm_tegra_tsensor_hw_disable(void *data) 15562306a36Sopenharmony_ci{ 15662306a36Sopenharmony_ci const struct tegra_tsensor *ts = data; 15762306a36Sopenharmony_ci 15862306a36Sopenharmony_ci tegra_tsensor_hw_disable(ts); 15962306a36Sopenharmony_ci} 16062306a36Sopenharmony_ci 16162306a36Sopenharmony_cistatic int tegra_tsensor_get_temp(struct thermal_zone_device *tz, int *temp) 16262306a36Sopenharmony_ci{ 16362306a36Sopenharmony_ci const struct tegra_tsensor_channel *tsc = thermal_zone_device_priv(tz); 16462306a36Sopenharmony_ci const struct tegra_tsensor *ts = tsc->ts; 16562306a36Sopenharmony_ci int err, c1, c2, c3, c4, counter; 16662306a36Sopenharmony_ci u32 val; 16762306a36Sopenharmony_ci 16862306a36Sopenharmony_ci /* 16962306a36Sopenharmony_ci * Counter will be invalid if hardware is misprogrammed or not enough 17062306a36Sopenharmony_ci * time passed since the time when sensor was enabled. 17162306a36Sopenharmony_ci */ 17262306a36Sopenharmony_ci err = readl_relaxed_poll_timeout(tsc->regs + TSENSOR_SENSOR0_STATUS0, val, 17362306a36Sopenharmony_ci val & TSENSOR_SENSOR0_STATUS0_CURRENT_VALID, 17462306a36Sopenharmony_ci 21 * USEC_PER_MSEC, 17562306a36Sopenharmony_ci 21 * USEC_PER_MSEC * 50); 17662306a36Sopenharmony_ci if (err) { 17762306a36Sopenharmony_ci dev_err_once(ts->dev, "ch%u: counter invalid\n", tsc->id); 17862306a36Sopenharmony_ci return err; 17962306a36Sopenharmony_ci } 18062306a36Sopenharmony_ci 18162306a36Sopenharmony_ci val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_TS_STATUS1); 18262306a36Sopenharmony_ci counter = FIELD_GET(TSENSOR_SENSOR0_TS_STATUS1_CURRENT_COUNT, val); 18362306a36Sopenharmony_ci 18462306a36Sopenharmony_ci /* 18562306a36Sopenharmony_ci * This shouldn't happen with a valid counter status, nevertheless 18662306a36Sopenharmony_ci * lets verify the value since it's in a separate (from status) 18762306a36Sopenharmony_ci * register. 18862306a36Sopenharmony_ci */ 18962306a36Sopenharmony_ci if (counter == 0xffff) { 19062306a36Sopenharmony_ci dev_err_once(ts->dev, "ch%u: counter overflow\n", tsc->id); 19162306a36Sopenharmony_ci return -EINVAL; 19262306a36Sopenharmony_ci } 19362306a36Sopenharmony_ci 19462306a36Sopenharmony_ci /* 19562306a36Sopenharmony_ci * temperature = a * counter + b 19662306a36Sopenharmony_ci * temperature = m * (temperature ^ 2) + n * temperature + p 19762306a36Sopenharmony_ci */ 19862306a36Sopenharmony_ci c1 = DIV_ROUND_CLOSEST(ts->calib.a * counter + ts->calib.b, 1000000); 19962306a36Sopenharmony_ci c1 = c1 ?: 1; 20062306a36Sopenharmony_ci c2 = DIV_ROUND_CLOSEST(ts->calib.p, c1); 20162306a36Sopenharmony_ci c3 = c1 * ts->calib.m; 20262306a36Sopenharmony_ci c4 = ts->calib.n; 20362306a36Sopenharmony_ci 20462306a36Sopenharmony_ci *temp = DIV_ROUND_CLOSEST(c1 * (c2 + c3 + c4), 1000); 20562306a36Sopenharmony_ci 20662306a36Sopenharmony_ci return 0; 20762306a36Sopenharmony_ci} 20862306a36Sopenharmony_ci 20962306a36Sopenharmony_cistatic int tegra_tsensor_temp_to_counter(const struct tegra_tsensor *ts, int temp) 21062306a36Sopenharmony_ci{ 21162306a36Sopenharmony_ci int c1, c2; 21262306a36Sopenharmony_ci 21362306a36Sopenharmony_ci c1 = DIV_ROUND_CLOSEST(ts->calib.p - temp * 1000, ts->calib.m); 21462306a36Sopenharmony_ci c2 = -ts->calib.r - int_sqrt(ts->calib.r * ts->calib.r - c1); 21562306a36Sopenharmony_ci 21662306a36Sopenharmony_ci return DIV_ROUND_CLOSEST(c2 * 1000000 - ts->calib.b, ts->calib.a); 21762306a36Sopenharmony_ci} 21862306a36Sopenharmony_ci 21962306a36Sopenharmony_cistatic int tegra_tsensor_set_trips(struct thermal_zone_device *tz, int low, int high) 22062306a36Sopenharmony_ci{ 22162306a36Sopenharmony_ci const struct tegra_tsensor_channel *tsc = thermal_zone_device_priv(tz); 22262306a36Sopenharmony_ci const struct tegra_tsensor *ts = tsc->ts; 22362306a36Sopenharmony_ci u32 val; 22462306a36Sopenharmony_ci 22562306a36Sopenharmony_ci /* 22662306a36Sopenharmony_ci * TSENSOR doesn't trigger interrupt on the "low" temperature breach, 22762306a36Sopenharmony_ci * hence bail out if high temperature is unspecified. 22862306a36Sopenharmony_ci */ 22962306a36Sopenharmony_ci if (high == INT_MAX) 23062306a36Sopenharmony_ci return 0; 23162306a36Sopenharmony_ci 23262306a36Sopenharmony_ci val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG1); 23362306a36Sopenharmony_ci val &= ~TSENSOR_SENSOR0_CONFIG1_TH1; 23462306a36Sopenharmony_ci 23562306a36Sopenharmony_ci high = tegra_tsensor_temp_to_counter(ts, high); 23662306a36Sopenharmony_ci val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG1_TH1, high); 23762306a36Sopenharmony_ci writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG1); 23862306a36Sopenharmony_ci 23962306a36Sopenharmony_ci return 0; 24062306a36Sopenharmony_ci} 24162306a36Sopenharmony_ci 24262306a36Sopenharmony_cistatic const struct thermal_zone_device_ops ops = { 24362306a36Sopenharmony_ci .get_temp = tegra_tsensor_get_temp, 24462306a36Sopenharmony_ci .set_trips = tegra_tsensor_set_trips, 24562306a36Sopenharmony_ci}; 24662306a36Sopenharmony_ci 24762306a36Sopenharmony_cistatic bool 24862306a36Sopenharmony_citegra_tsensor_handle_channel_interrupt(const struct tegra_tsensor *ts, 24962306a36Sopenharmony_ci unsigned int id) 25062306a36Sopenharmony_ci{ 25162306a36Sopenharmony_ci const struct tegra_tsensor_channel *tsc = &ts->ch[id]; 25262306a36Sopenharmony_ci u32 val; 25362306a36Sopenharmony_ci 25462306a36Sopenharmony_ci val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_STATUS0); 25562306a36Sopenharmony_ci writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_STATUS0); 25662306a36Sopenharmony_ci 25762306a36Sopenharmony_ci if (FIELD_GET(TSENSOR_SENSOR0_STATUS0_STATE, val) == 5) 25862306a36Sopenharmony_ci dev_err_ratelimited(ts->dev, "ch%u: counter overflowed\n", id); 25962306a36Sopenharmony_ci 26062306a36Sopenharmony_ci if (!FIELD_GET(TSENSOR_SENSOR0_STATUS0_INTR, val)) 26162306a36Sopenharmony_ci return false; 26262306a36Sopenharmony_ci 26362306a36Sopenharmony_ci thermal_zone_device_update(tsc->tzd, THERMAL_EVENT_UNSPECIFIED); 26462306a36Sopenharmony_ci 26562306a36Sopenharmony_ci return true; 26662306a36Sopenharmony_ci} 26762306a36Sopenharmony_ci 26862306a36Sopenharmony_cistatic irqreturn_t tegra_tsensor_isr(int irq, void *data) 26962306a36Sopenharmony_ci{ 27062306a36Sopenharmony_ci const struct tegra_tsensor *ts = data; 27162306a36Sopenharmony_ci bool handled = false; 27262306a36Sopenharmony_ci unsigned int i; 27362306a36Sopenharmony_ci 27462306a36Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(ts->ch); i++) 27562306a36Sopenharmony_ci handled |= tegra_tsensor_handle_channel_interrupt(ts, i); 27662306a36Sopenharmony_ci 27762306a36Sopenharmony_ci return handled ? IRQ_HANDLED : IRQ_NONE; 27862306a36Sopenharmony_ci} 27962306a36Sopenharmony_ci 28062306a36Sopenharmony_cistatic int tegra_tsensor_disable_hw_channel(const struct tegra_tsensor *ts, 28162306a36Sopenharmony_ci unsigned int id) 28262306a36Sopenharmony_ci{ 28362306a36Sopenharmony_ci const struct tegra_tsensor_channel *tsc = &ts->ch[id]; 28462306a36Sopenharmony_ci struct thermal_zone_device *tzd = tsc->tzd; 28562306a36Sopenharmony_ci u32 val; 28662306a36Sopenharmony_ci int err; 28762306a36Sopenharmony_ci 28862306a36Sopenharmony_ci if (!tzd) 28962306a36Sopenharmony_ci goto stop_channel; 29062306a36Sopenharmony_ci 29162306a36Sopenharmony_ci err = thermal_zone_device_disable(tzd); 29262306a36Sopenharmony_ci if (err) { 29362306a36Sopenharmony_ci dev_err(ts->dev, "ch%u: failed to disable zone: %d\n", id, err); 29462306a36Sopenharmony_ci return err; 29562306a36Sopenharmony_ci } 29662306a36Sopenharmony_ci 29762306a36Sopenharmony_cistop_channel: 29862306a36Sopenharmony_ci /* stop channel gracefully */ 29962306a36Sopenharmony_ci val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG0); 30062306a36Sopenharmony_ci val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP, 1); 30162306a36Sopenharmony_ci writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG0); 30262306a36Sopenharmony_ci 30362306a36Sopenharmony_ci return 0; 30462306a36Sopenharmony_ci} 30562306a36Sopenharmony_ci 30662306a36Sopenharmony_cistatic void tegra_tsensor_get_hw_channel_trips(struct thermal_zone_device *tzd, 30762306a36Sopenharmony_ci int *hot_trip, int *crit_trip) 30862306a36Sopenharmony_ci{ 30962306a36Sopenharmony_ci unsigned int i; 31062306a36Sopenharmony_ci 31162306a36Sopenharmony_ci /* 31262306a36Sopenharmony_ci * 90C is the maximal critical temperature of all Tegra30 SoC variants, 31362306a36Sopenharmony_ci * use it for the default trip if unspecified in a device-tree. 31462306a36Sopenharmony_ci */ 31562306a36Sopenharmony_ci *hot_trip = 85000; 31662306a36Sopenharmony_ci *crit_trip = 90000; 31762306a36Sopenharmony_ci 31862306a36Sopenharmony_ci for (i = 0; i < thermal_zone_get_num_trips(tzd); i++) { 31962306a36Sopenharmony_ci 32062306a36Sopenharmony_ci struct thermal_trip trip; 32162306a36Sopenharmony_ci 32262306a36Sopenharmony_ci thermal_zone_get_trip(tzd, i, &trip); 32362306a36Sopenharmony_ci 32462306a36Sopenharmony_ci if (trip.type == THERMAL_TRIP_HOT) 32562306a36Sopenharmony_ci *hot_trip = trip.temperature; 32662306a36Sopenharmony_ci 32762306a36Sopenharmony_ci if (trip.type == THERMAL_TRIP_CRITICAL) 32862306a36Sopenharmony_ci *crit_trip = trip.temperature; 32962306a36Sopenharmony_ci } 33062306a36Sopenharmony_ci 33162306a36Sopenharmony_ci /* clamp hardware trips to the calibration limits */ 33262306a36Sopenharmony_ci *hot_trip = clamp(*hot_trip, 25000, 90000); 33362306a36Sopenharmony_ci 33462306a36Sopenharmony_ci /* 33562306a36Sopenharmony_ci * Kernel will perform a normal system shut down if it will 33662306a36Sopenharmony_ci * see that critical temperature is breached, hence set the 33762306a36Sopenharmony_ci * hardware limit by 5C higher in order to allow system to 33862306a36Sopenharmony_ci * shut down gracefully before sending signal to the Power 33962306a36Sopenharmony_ci * Management controller. 34062306a36Sopenharmony_ci */ 34162306a36Sopenharmony_ci *crit_trip = clamp(*crit_trip + 5000, 25000, 90000); 34262306a36Sopenharmony_ci} 34362306a36Sopenharmony_ci 34462306a36Sopenharmony_cistatic int tegra_tsensor_enable_hw_channel(const struct tegra_tsensor *ts, 34562306a36Sopenharmony_ci unsigned int id) 34662306a36Sopenharmony_ci{ 34762306a36Sopenharmony_ci const struct tegra_tsensor_channel *tsc = &ts->ch[id]; 34862306a36Sopenharmony_ci struct thermal_zone_device *tzd = tsc->tzd; 34962306a36Sopenharmony_ci int err, hot_trip = 0, crit_trip = 0; 35062306a36Sopenharmony_ci u32 val; 35162306a36Sopenharmony_ci 35262306a36Sopenharmony_ci if (!tzd) { 35362306a36Sopenharmony_ci val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG0); 35462306a36Sopenharmony_ci val &= ~TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP; 35562306a36Sopenharmony_ci writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG0); 35662306a36Sopenharmony_ci 35762306a36Sopenharmony_ci return 0; 35862306a36Sopenharmony_ci } 35962306a36Sopenharmony_ci 36062306a36Sopenharmony_ci tegra_tsensor_get_hw_channel_trips(tzd, &hot_trip, &crit_trip); 36162306a36Sopenharmony_ci 36262306a36Sopenharmony_ci dev_info_once(ts->dev, "ch%u: PMC emergency shutdown trip set to %dC\n", 36362306a36Sopenharmony_ci id, DIV_ROUND_CLOSEST(crit_trip, 1000)); 36462306a36Sopenharmony_ci 36562306a36Sopenharmony_ci hot_trip = tegra_tsensor_temp_to_counter(ts, hot_trip); 36662306a36Sopenharmony_ci crit_trip = tegra_tsensor_temp_to_counter(ts, crit_trip); 36762306a36Sopenharmony_ci 36862306a36Sopenharmony_ci /* program LEVEL2 counter threshold */ 36962306a36Sopenharmony_ci val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG1); 37062306a36Sopenharmony_ci val &= ~TSENSOR_SENSOR0_CONFIG1_TH2; 37162306a36Sopenharmony_ci val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG1_TH2, hot_trip); 37262306a36Sopenharmony_ci writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG1); 37362306a36Sopenharmony_ci 37462306a36Sopenharmony_ci /* program LEVEL3 counter threshold */ 37562306a36Sopenharmony_ci val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG2); 37662306a36Sopenharmony_ci val &= ~TSENSOR_SENSOR0_CONFIG2_TH3; 37762306a36Sopenharmony_ci val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG2_TH3, crit_trip); 37862306a36Sopenharmony_ci writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG2); 37962306a36Sopenharmony_ci 38062306a36Sopenharmony_ci /* 38162306a36Sopenharmony_ci * Enable sensor, emergency shutdown, interrupts for level 1/2/3 38262306a36Sopenharmony_ci * breaches and counter overflow condition. 38362306a36Sopenharmony_ci * 38462306a36Sopenharmony_ci * Disable DIV2 throttle for now since we need to figure out how 38562306a36Sopenharmony_ci * to integrate it properly with the thermal framework. 38662306a36Sopenharmony_ci * 38762306a36Sopenharmony_ci * Thermal levels supported by hardware: 38862306a36Sopenharmony_ci * 38962306a36Sopenharmony_ci * Level 0 = cold 39062306a36Sopenharmony_ci * Level 1 = passive cooling (cpufreq DVFS) 39162306a36Sopenharmony_ci * Level 2 = passive cooling assisted by hardware (DIV2) 39262306a36Sopenharmony_ci * Level 3 = emergency shutdown assisted by hardware (PMC) 39362306a36Sopenharmony_ci */ 39462306a36Sopenharmony_ci val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG0); 39562306a36Sopenharmony_ci val &= ~TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP; 39662306a36Sopenharmony_ci val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_DVFS_EN, 1); 39762306a36Sopenharmony_ci val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_HW_FREQ_DIV_EN, 0); 39862306a36Sopenharmony_ci val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_THERMAL_RST_EN, 1); 39962306a36Sopenharmony_ci val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_INTR_OVERFLOW_EN, 1); 40062306a36Sopenharmony_ci val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_INTR_HW_FREQ_DIV_EN, 1); 40162306a36Sopenharmony_ci val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_INTR_THERMAL_RST_EN, 1); 40262306a36Sopenharmony_ci writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG0); 40362306a36Sopenharmony_ci 40462306a36Sopenharmony_ci err = thermal_zone_device_enable(tzd); 40562306a36Sopenharmony_ci if (err) { 40662306a36Sopenharmony_ci dev_err(ts->dev, "ch%u: failed to enable zone: %d\n", id, err); 40762306a36Sopenharmony_ci return err; 40862306a36Sopenharmony_ci } 40962306a36Sopenharmony_ci 41062306a36Sopenharmony_ci return 0; 41162306a36Sopenharmony_ci} 41262306a36Sopenharmony_ci 41362306a36Sopenharmony_cistatic bool tegra_tsensor_fuse_read_spare(unsigned int spare) 41462306a36Sopenharmony_ci{ 41562306a36Sopenharmony_ci u32 val = 0; 41662306a36Sopenharmony_ci 41762306a36Sopenharmony_ci tegra_fuse_readl(TEGRA30_FUSE_SPARE_BIT + spare * 4, &val); 41862306a36Sopenharmony_ci 41962306a36Sopenharmony_ci return !!val; 42062306a36Sopenharmony_ci} 42162306a36Sopenharmony_ci 42262306a36Sopenharmony_cistatic int tegra_tsensor_nvmem_setup(struct tegra_tsensor *ts) 42362306a36Sopenharmony_ci{ 42462306a36Sopenharmony_ci u32 i, ate_ver = 0, cal = 0, t1_25C = 0, t2_90C = 0; 42562306a36Sopenharmony_ci int err, c1_25C, c2_90C; 42662306a36Sopenharmony_ci 42762306a36Sopenharmony_ci err = tegra_fuse_readl(TEGRA30_FUSE_TEST_PROG_VER, &ate_ver); 42862306a36Sopenharmony_ci if (err) { 42962306a36Sopenharmony_ci dev_err_probe(ts->dev, err, "failed to get ATE version\n"); 43062306a36Sopenharmony_ci return err; 43162306a36Sopenharmony_ci } 43262306a36Sopenharmony_ci 43362306a36Sopenharmony_ci if (ate_ver < 8) { 43462306a36Sopenharmony_ci dev_info(ts->dev, "unsupported ATE version: %u\n", ate_ver); 43562306a36Sopenharmony_ci return -ENODEV; 43662306a36Sopenharmony_ci } 43762306a36Sopenharmony_ci 43862306a36Sopenharmony_ci /* 43962306a36Sopenharmony_ci * We have two TSENSOR channels in a two different spots on SoC. 44062306a36Sopenharmony_ci * Second channel provides more accurate data on older SoC versions, 44162306a36Sopenharmony_ci * use it as a primary channel. 44262306a36Sopenharmony_ci */ 44362306a36Sopenharmony_ci if (ate_ver <= 21) { 44462306a36Sopenharmony_ci dev_info_once(ts->dev, 44562306a36Sopenharmony_ci "older ATE version detected, channels remapped\n"); 44662306a36Sopenharmony_ci ts->swap_channels = true; 44762306a36Sopenharmony_ci } 44862306a36Sopenharmony_ci 44962306a36Sopenharmony_ci err = tegra_fuse_readl(TEGRA30_FUSE_TSENSOR_CALIB, &cal); 45062306a36Sopenharmony_ci if (err) { 45162306a36Sopenharmony_ci dev_err(ts->dev, "failed to get calibration data: %d\n", err); 45262306a36Sopenharmony_ci return err; 45362306a36Sopenharmony_ci } 45462306a36Sopenharmony_ci 45562306a36Sopenharmony_ci /* get calibrated counter values for 25C/90C thresholds */ 45662306a36Sopenharmony_ci c1_25C = FIELD_GET(TEGRA30_FUSE_TSENSOR_CALIB_LOW, cal); 45762306a36Sopenharmony_ci c2_90C = FIELD_GET(TEGRA30_FUSE_TSENSOR_CALIB_HIGH, cal); 45862306a36Sopenharmony_ci 45962306a36Sopenharmony_ci /* and calibrated temperatures corresponding to the counter values */ 46062306a36Sopenharmony_ci for (i = 0; i < 7; i++) { 46162306a36Sopenharmony_ci t1_25C |= tegra_tsensor_fuse_read_spare(14 + i) << i; 46262306a36Sopenharmony_ci t1_25C |= tegra_tsensor_fuse_read_spare(21 + i) << i; 46362306a36Sopenharmony_ci 46462306a36Sopenharmony_ci t2_90C |= tegra_tsensor_fuse_read_spare(0 + i) << i; 46562306a36Sopenharmony_ci t2_90C |= tegra_tsensor_fuse_read_spare(7 + i) << i; 46662306a36Sopenharmony_ci } 46762306a36Sopenharmony_ci 46862306a36Sopenharmony_ci if (c2_90C - c1_25C <= t2_90C - t1_25C) { 46962306a36Sopenharmony_ci dev_err(ts->dev, "invalid calibration data: %d %d %u %u\n", 47062306a36Sopenharmony_ci c2_90C, c1_25C, t2_90C, t1_25C); 47162306a36Sopenharmony_ci return -EINVAL; 47262306a36Sopenharmony_ci } 47362306a36Sopenharmony_ci 47462306a36Sopenharmony_ci /* all calibration coefficients are premultiplied by 1000000 */ 47562306a36Sopenharmony_ci 47662306a36Sopenharmony_ci ts->calib.a = DIV_ROUND_CLOSEST((t2_90C - t1_25C) * 1000000, 47762306a36Sopenharmony_ci (c2_90C - c1_25C)); 47862306a36Sopenharmony_ci 47962306a36Sopenharmony_ci ts->calib.b = t1_25C * 1000000 - ts->calib.a * c1_25C; 48062306a36Sopenharmony_ci 48162306a36Sopenharmony_ci if (tegra_sku_info.revision == TEGRA_REVISION_A01) { 48262306a36Sopenharmony_ci ts->calib.m = -2775; 48362306a36Sopenharmony_ci ts->calib.n = 1338811; 48462306a36Sopenharmony_ci ts->calib.p = -7300000; 48562306a36Sopenharmony_ci } else { 48662306a36Sopenharmony_ci ts->calib.m = -3512; 48762306a36Sopenharmony_ci ts->calib.n = 1528943; 48862306a36Sopenharmony_ci ts->calib.p = -11100000; 48962306a36Sopenharmony_ci } 49062306a36Sopenharmony_ci 49162306a36Sopenharmony_ci /* except the coefficient of a reduced quadratic equation */ 49262306a36Sopenharmony_ci ts->calib.r = DIV_ROUND_CLOSEST(ts->calib.n, ts->calib.m * 2); 49362306a36Sopenharmony_ci 49462306a36Sopenharmony_ci dev_info_once(ts->dev, 49562306a36Sopenharmony_ci "calibration: %d %d %u %u ATE ver: %u SoC rev: %u\n", 49662306a36Sopenharmony_ci c2_90C, c1_25C, t2_90C, t1_25C, ate_ver, 49762306a36Sopenharmony_ci tegra_sku_info.revision); 49862306a36Sopenharmony_ci 49962306a36Sopenharmony_ci return 0; 50062306a36Sopenharmony_ci} 50162306a36Sopenharmony_ci 50262306a36Sopenharmony_cistatic int tegra_tsensor_register_channel(struct tegra_tsensor *ts, 50362306a36Sopenharmony_ci unsigned int id) 50462306a36Sopenharmony_ci{ 50562306a36Sopenharmony_ci struct tegra_tsensor_channel *tsc = &ts->ch[id]; 50662306a36Sopenharmony_ci unsigned int hw_id = ts->swap_channels ? !id : id; 50762306a36Sopenharmony_ci 50862306a36Sopenharmony_ci tsc->ts = ts; 50962306a36Sopenharmony_ci tsc->id = id; 51062306a36Sopenharmony_ci tsc->regs = ts->regs + 0x40 * (hw_id + 1); 51162306a36Sopenharmony_ci 51262306a36Sopenharmony_ci tsc->tzd = devm_thermal_of_zone_register(ts->dev, id, tsc, &ops); 51362306a36Sopenharmony_ci if (IS_ERR(tsc->tzd)) { 51462306a36Sopenharmony_ci if (PTR_ERR(tsc->tzd) != -ENODEV) 51562306a36Sopenharmony_ci return dev_err_probe(ts->dev, PTR_ERR(tsc->tzd), 51662306a36Sopenharmony_ci "failed to register thermal zone\n"); 51762306a36Sopenharmony_ci 51862306a36Sopenharmony_ci /* 51962306a36Sopenharmony_ci * It's okay if sensor isn't assigned to any thermal zone 52062306a36Sopenharmony_ci * in a device-tree. 52162306a36Sopenharmony_ci */ 52262306a36Sopenharmony_ci tsc->tzd = NULL; 52362306a36Sopenharmony_ci return 0; 52462306a36Sopenharmony_ci } 52562306a36Sopenharmony_ci 52662306a36Sopenharmony_ci devm_thermal_add_hwmon_sysfs(ts->dev, tsc->tzd); 52762306a36Sopenharmony_ci 52862306a36Sopenharmony_ci return 0; 52962306a36Sopenharmony_ci} 53062306a36Sopenharmony_ci 53162306a36Sopenharmony_cistatic int tegra_tsensor_probe(struct platform_device *pdev) 53262306a36Sopenharmony_ci{ 53362306a36Sopenharmony_ci struct tegra_tsensor *ts; 53462306a36Sopenharmony_ci unsigned int i; 53562306a36Sopenharmony_ci int err, irq; 53662306a36Sopenharmony_ci 53762306a36Sopenharmony_ci ts = devm_kzalloc(&pdev->dev, sizeof(*ts), GFP_KERNEL); 53862306a36Sopenharmony_ci if (!ts) 53962306a36Sopenharmony_ci return -ENOMEM; 54062306a36Sopenharmony_ci 54162306a36Sopenharmony_ci irq = platform_get_irq(pdev, 0); 54262306a36Sopenharmony_ci if (irq < 0) 54362306a36Sopenharmony_ci return irq; 54462306a36Sopenharmony_ci 54562306a36Sopenharmony_ci ts->dev = &pdev->dev; 54662306a36Sopenharmony_ci platform_set_drvdata(pdev, ts); 54762306a36Sopenharmony_ci 54862306a36Sopenharmony_ci ts->regs = devm_platform_ioremap_resource(pdev, 0); 54962306a36Sopenharmony_ci if (IS_ERR(ts->regs)) 55062306a36Sopenharmony_ci return PTR_ERR(ts->regs); 55162306a36Sopenharmony_ci 55262306a36Sopenharmony_ci ts->clk = devm_clk_get(&pdev->dev, NULL); 55362306a36Sopenharmony_ci if (IS_ERR(ts->clk)) 55462306a36Sopenharmony_ci return dev_err_probe(&pdev->dev, PTR_ERR(ts->clk), 55562306a36Sopenharmony_ci "failed to get clock\n"); 55662306a36Sopenharmony_ci 55762306a36Sopenharmony_ci ts->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL); 55862306a36Sopenharmony_ci if (IS_ERR(ts->rst)) 55962306a36Sopenharmony_ci return dev_err_probe(&pdev->dev, PTR_ERR(ts->rst), 56062306a36Sopenharmony_ci "failed to get reset control\n"); 56162306a36Sopenharmony_ci 56262306a36Sopenharmony_ci err = tegra_tsensor_nvmem_setup(ts); 56362306a36Sopenharmony_ci if (err) 56462306a36Sopenharmony_ci return err; 56562306a36Sopenharmony_ci 56662306a36Sopenharmony_ci err = tegra_tsensor_hw_enable(ts); 56762306a36Sopenharmony_ci if (err) 56862306a36Sopenharmony_ci return err; 56962306a36Sopenharmony_ci 57062306a36Sopenharmony_ci err = devm_add_action_or_reset(&pdev->dev, 57162306a36Sopenharmony_ci devm_tegra_tsensor_hw_disable, 57262306a36Sopenharmony_ci ts); 57362306a36Sopenharmony_ci if (err) 57462306a36Sopenharmony_ci return err; 57562306a36Sopenharmony_ci 57662306a36Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(ts->ch); i++) { 57762306a36Sopenharmony_ci err = tegra_tsensor_register_channel(ts, i); 57862306a36Sopenharmony_ci if (err) 57962306a36Sopenharmony_ci return err; 58062306a36Sopenharmony_ci } 58162306a36Sopenharmony_ci 58262306a36Sopenharmony_ci /* 58362306a36Sopenharmony_ci * Enable the channels before setting the interrupt so 58462306a36Sopenharmony_ci * set_trips() can not be called while we are setting up the 58562306a36Sopenharmony_ci * register TSENSOR_SENSOR0_CONFIG1. With this we close a 58662306a36Sopenharmony_ci * potential race window where we are setting up the TH2 and 58762306a36Sopenharmony_ci * the temperature hits TH1 resulting to an update of the 58862306a36Sopenharmony_ci * TSENSOR_SENSOR0_CONFIG1 register in the ISR. 58962306a36Sopenharmony_ci */ 59062306a36Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(ts->ch); i++) { 59162306a36Sopenharmony_ci err = tegra_tsensor_enable_hw_channel(ts, i); 59262306a36Sopenharmony_ci if (err) 59362306a36Sopenharmony_ci return err; 59462306a36Sopenharmony_ci } 59562306a36Sopenharmony_ci 59662306a36Sopenharmony_ci err = devm_request_threaded_irq(&pdev->dev, irq, NULL, 59762306a36Sopenharmony_ci tegra_tsensor_isr, IRQF_ONESHOT, 59862306a36Sopenharmony_ci "tegra_tsensor", ts); 59962306a36Sopenharmony_ci if (err) 60062306a36Sopenharmony_ci return dev_err_probe(&pdev->dev, err, 60162306a36Sopenharmony_ci "failed to request interrupt\n"); 60262306a36Sopenharmony_ci 60362306a36Sopenharmony_ci return 0; 60462306a36Sopenharmony_ci} 60562306a36Sopenharmony_ci 60662306a36Sopenharmony_cistatic int __maybe_unused tegra_tsensor_suspend(struct device *dev) 60762306a36Sopenharmony_ci{ 60862306a36Sopenharmony_ci struct tegra_tsensor *ts = dev_get_drvdata(dev); 60962306a36Sopenharmony_ci unsigned int i; 61062306a36Sopenharmony_ci int err; 61162306a36Sopenharmony_ci 61262306a36Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(ts->ch); i++) { 61362306a36Sopenharmony_ci err = tegra_tsensor_disable_hw_channel(ts, i); 61462306a36Sopenharmony_ci if (err) 61562306a36Sopenharmony_ci goto enable_channel; 61662306a36Sopenharmony_ci } 61762306a36Sopenharmony_ci 61862306a36Sopenharmony_ci err = tegra_tsensor_hw_disable(ts); 61962306a36Sopenharmony_ci if (err) 62062306a36Sopenharmony_ci goto enable_channel; 62162306a36Sopenharmony_ci 62262306a36Sopenharmony_ci return 0; 62362306a36Sopenharmony_ci 62462306a36Sopenharmony_cienable_channel: 62562306a36Sopenharmony_ci while (i--) 62662306a36Sopenharmony_ci tegra_tsensor_enable_hw_channel(ts, i); 62762306a36Sopenharmony_ci 62862306a36Sopenharmony_ci return err; 62962306a36Sopenharmony_ci} 63062306a36Sopenharmony_ci 63162306a36Sopenharmony_cistatic int __maybe_unused tegra_tsensor_resume(struct device *dev) 63262306a36Sopenharmony_ci{ 63362306a36Sopenharmony_ci struct tegra_tsensor *ts = dev_get_drvdata(dev); 63462306a36Sopenharmony_ci unsigned int i; 63562306a36Sopenharmony_ci int err; 63662306a36Sopenharmony_ci 63762306a36Sopenharmony_ci err = tegra_tsensor_hw_enable(ts); 63862306a36Sopenharmony_ci if (err) 63962306a36Sopenharmony_ci return err; 64062306a36Sopenharmony_ci 64162306a36Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(ts->ch); i++) { 64262306a36Sopenharmony_ci err = tegra_tsensor_enable_hw_channel(ts, i); 64362306a36Sopenharmony_ci if (err) 64462306a36Sopenharmony_ci return err; 64562306a36Sopenharmony_ci } 64662306a36Sopenharmony_ci 64762306a36Sopenharmony_ci return 0; 64862306a36Sopenharmony_ci} 64962306a36Sopenharmony_ci 65062306a36Sopenharmony_cistatic const struct dev_pm_ops tegra_tsensor_pm_ops = { 65162306a36Sopenharmony_ci SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_tsensor_suspend, 65262306a36Sopenharmony_ci tegra_tsensor_resume) 65362306a36Sopenharmony_ci}; 65462306a36Sopenharmony_ci 65562306a36Sopenharmony_cistatic const struct of_device_id tegra_tsensor_of_match[] = { 65662306a36Sopenharmony_ci { .compatible = "nvidia,tegra30-tsensor", }, 65762306a36Sopenharmony_ci {}, 65862306a36Sopenharmony_ci}; 65962306a36Sopenharmony_ciMODULE_DEVICE_TABLE(of, tegra_tsensor_of_match); 66062306a36Sopenharmony_ci 66162306a36Sopenharmony_cistatic struct platform_driver tegra_tsensor_driver = { 66262306a36Sopenharmony_ci .probe = tegra_tsensor_probe, 66362306a36Sopenharmony_ci .driver = { 66462306a36Sopenharmony_ci .name = "tegra30-tsensor", 66562306a36Sopenharmony_ci .of_match_table = tegra_tsensor_of_match, 66662306a36Sopenharmony_ci .pm = &tegra_tsensor_pm_ops, 66762306a36Sopenharmony_ci }, 66862306a36Sopenharmony_ci}; 66962306a36Sopenharmony_cimodule_platform_driver(tegra_tsensor_driver); 67062306a36Sopenharmony_ci 67162306a36Sopenharmony_ciMODULE_DESCRIPTION("NVIDIA Tegra30 Thermal Sensor driver"); 67262306a36Sopenharmony_ciMODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>"); 67362306a36Sopenharmony_ciMODULE_LICENSE("GPL"); 674