1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION.  All rights reserved.
4 *
5 * Author:
6 *	Mikko Perttunen <mperttunen@nvidia.com>
7 *
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 */
18
19#include <linux/debugfs.h>
20#include <linux/bitops.h>
21#include <linux/clk.h>
22#include <linux/delay.h>
23#include <linux/err.h>
24#include <linux/interrupt.h>
25#include <linux/io.h>
26#include <linux/irq.h>
27#include <linux/irqdomain.h>
28#include <linux/module.h>
29#include <linux/of.h>
30#include <linux/platform_device.h>
31#include <linux/reset.h>
32#include <linux/thermal.h>
33
34#include <dt-bindings/thermal/tegra124-soctherm.h>
35
36#include "../thermal_core.h"
37#include "soctherm.h"
38
39#define SENSOR_CONFIG0				0
40#define SENSOR_CONFIG0_STOP			BIT(0)
41#define SENSOR_CONFIG0_CPTR_OVER		BIT(2)
42#define SENSOR_CONFIG0_OVER			BIT(3)
43#define SENSOR_CONFIG0_TCALC_OVER		BIT(4)
44#define SENSOR_CONFIG0_TALL_MASK		(0xfffff << 8)
45#define SENSOR_CONFIG0_TALL_SHIFT		8
46
47#define SENSOR_CONFIG1				4
48#define SENSOR_CONFIG1_TSAMPLE_MASK		0x3ff
49#define SENSOR_CONFIG1_TSAMPLE_SHIFT		0
50#define SENSOR_CONFIG1_TIDDQ_EN_MASK		(0x3f << 15)
51#define SENSOR_CONFIG1_TIDDQ_EN_SHIFT		15
52#define SENSOR_CONFIG1_TEN_COUNT_MASK		(0x3f << 24)
53#define SENSOR_CONFIG1_TEN_COUNT_SHIFT		24
54#define SENSOR_CONFIG1_TEMP_ENABLE		BIT(31)
55
56/*
57 * SENSOR_CONFIG2 is defined in soctherm.h
58 * because, it will be used by tegra_soctherm_fuse.c
59 */
60
61#define SENSOR_STATUS0				0xc
62#define SENSOR_STATUS0_VALID_MASK		BIT(31)
63#define SENSOR_STATUS0_CAPTURE_MASK		0xffff
64
65#define SENSOR_STATUS1				0x10
66#define SENSOR_STATUS1_TEMP_VALID_MASK		BIT(31)
67#define SENSOR_STATUS1_TEMP_MASK		0xffff
68
69#define READBACK_VALUE_MASK			0xff00
70#define READBACK_VALUE_SHIFT			8
71#define READBACK_ADD_HALF			BIT(7)
72#define READBACK_NEGATE				BIT(0)
73
74/*
75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
76 * because it will be used by tegraxxx_soctherm.c
77 */
78#define THERMCTL_LVL0_CPU0_EN_MASK		BIT(8)
79#define THERMCTL_LVL0_CPU0_CPU_THROT_MASK	(0x3 << 5)
80#define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT	0x1
81#define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY	0x2
82#define THERMCTL_LVL0_CPU0_GPU_THROT_MASK	(0x3 << 3)
83#define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT	0x1
84#define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY	0x2
85#define THERMCTL_LVL0_CPU0_MEM_THROT_MASK	BIT(2)
86#define THERMCTL_LVL0_CPU0_STATUS_MASK		0x3
87
88#define THERMCTL_LVL0_UP_STATS			0x10
89#define THERMCTL_LVL0_DN_STATS			0x14
90
91#define THERMCTL_INTR_STATUS			0x84
92
93#define TH_INTR_MD0_MASK			BIT(25)
94#define TH_INTR_MU0_MASK			BIT(24)
95#define TH_INTR_GD0_MASK			BIT(17)
96#define TH_INTR_GU0_MASK			BIT(16)
97#define TH_INTR_CD0_MASK			BIT(9)
98#define TH_INTR_CU0_MASK			BIT(8)
99#define TH_INTR_PD0_MASK			BIT(1)
100#define TH_INTR_PU0_MASK			BIT(0)
101#define TH_INTR_IGNORE_MASK			0xFCFCFCFC
102
103#define THERMCTL_STATS_CTL			0x94
104#define STATS_CTL_CLR_DN			0x8
105#define STATS_CTL_EN_DN				0x4
106#define STATS_CTL_CLR_UP			0x2
107#define STATS_CTL_EN_UP				0x1
108
109#define OC1_CFG					0x310
110#define OC1_CFG_LONG_LATENCY_MASK		BIT(6)
111#define OC1_CFG_HW_RESTORE_MASK			BIT(5)
112#define OC1_CFG_PWR_GOOD_MASK_MASK		BIT(4)
113#define OC1_CFG_THROTTLE_MODE_MASK		(0x3 << 2)
114#define OC1_CFG_ALARM_POLARITY_MASK		BIT(1)
115#define OC1_CFG_EN_THROTTLE_MASK		BIT(0)
116
117#define OC1_CNT_THRESHOLD			0x314
118#define OC1_THROTTLE_PERIOD			0x318
119#define OC1_ALARM_COUNT				0x31c
120#define OC1_FILTER				0x320
121#define OC1_STATS				0x3a8
122
123#define OC_INTR_STATUS				0x39c
124#define OC_INTR_ENABLE				0x3a0
125#define OC_INTR_DISABLE				0x3a4
126#define OC_STATS_CTL				0x3c4
127#define OC_STATS_CTL_CLR_ALL			0x2
128#define OC_STATS_CTL_EN_ALL			0x1
129
130#define OC_INTR_OC1_MASK			BIT(0)
131#define OC_INTR_OC2_MASK			BIT(1)
132#define OC_INTR_OC3_MASK			BIT(2)
133#define OC_INTR_OC4_MASK			BIT(3)
134#define OC_INTR_OC5_MASK			BIT(4)
135
136#define THROT_GLOBAL_CFG			0x400
137#define THROT_GLOBAL_ENB_MASK			BIT(0)
138
139#define CPU_PSKIP_STATUS			0x418
140#define XPU_PSKIP_STATUS_M_MASK			(0xff << 12)
141#define XPU_PSKIP_STATUS_N_MASK			(0xff << 4)
142#define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK	BIT(1)
143#define XPU_PSKIP_STATUS_ENABLED_MASK		BIT(0)
144
145#define THROT_PRIORITY_LOCK			0x424
146#define THROT_PRIORITY_LOCK_PRIORITY_MASK	0xff
147
148#define THROT_STATUS				0x428
149#define THROT_STATUS_BREACH_MASK		BIT(12)
150#define THROT_STATUS_STATE_MASK			(0xff << 4)
151#define THROT_STATUS_ENABLED_MASK		BIT(0)
152
153#define THROT_PSKIP_CTRL_LITE_CPU		0x430
154#define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
155#define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
156#define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
157#define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
158#define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
159#define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
160
161#define THROT_VECT_NONE				0x0 /* 3'b000 */
162#define THROT_VECT_LOW				0x1 /* 3'b001 */
163#define THROT_VECT_MED				0x3 /* 3'b011 */
164#define THROT_VECT_HIGH				0x7 /* 3'b111 */
165
166#define THROT_PSKIP_RAMP_LITE_CPU		0x434
167#define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
168#define THROT_PSKIP_RAMP_DURATION_MASK		(0xffff << 8)
169#define THROT_PSKIP_RAMP_STEP_MASK		0xff
170
171#define THROT_PRIORITY_LITE			0x444
172#define THROT_PRIORITY_LITE_PRIO_MASK		0xff
173
174#define THROT_DELAY_LITE			0x448
175#define THROT_DELAY_LITE_DELAY_MASK		0xff
176
177/* car register offsets needed for enabling HW throttling */
178#define CAR_SUPER_CCLKG_DIVIDER			0x36c
179#define CDIVG_USE_THERM_CONTROLS_MASK		BIT(30)
180
181/* ccroc register offsets needed for enabling HW throttling for Tegra132 */
182#define CCROC_SUPER_CCLKG_DIVIDER		0x024
183
184#define CCROC_GLOBAL_CFG			0x148
185
186#define CCROC_THROT_PSKIP_RAMP_CPU		0x150
187#define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
188#define CCROC_THROT_PSKIP_RAMP_DURATION_MASK	(0xffff << 8)
189#define CCROC_THROT_PSKIP_RAMP_STEP_MASK	0xff
190
191#define CCROC_THROT_PSKIP_CTRL_CPU		0x154
192#define CCROC_THROT_PSKIP_CTRL_ENB_MASK		BIT(31)
193#define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK	(0xff << 8)
194#define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK	0xff
195
196/* get val from register(r) mask bits(m) */
197#define REG_GET_MASK(r, m)	(((r) & (m)) >> (ffs(m) - 1))
198/* set val(v) to mask bits(m) of register(r) */
199#define REG_SET_MASK(r, m, v)	(((r) & ~(m)) | \
200				 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
201
202/* get dividend from the depth */
203#define THROT_DEPTH_DIVIDEND(depth)	((256 * (100 - (depth)) / 100) - 1)
204
205/* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
206 * level	vector
207 * NONE		3'b000
208 * LOW		3'b001
209 * MED		3'b011
210 * HIGH		3'b111
211 */
212#define THROT_LEVEL_TO_DEPTH(level)	((0x1 << (level)) - 1)
213
214/* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
215#define THROT_OFFSET			0x30
216#define THROT_PSKIP_CTRL(throt, dev)	(THROT_PSKIP_CTRL_LITE_CPU + \
217					(THROT_OFFSET * throt) + (8 * dev))
218#define THROT_PSKIP_RAMP(throt, dev)	(THROT_PSKIP_RAMP_LITE_CPU + \
219					(THROT_OFFSET * throt) + (8 * dev))
220
221/* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
222#define THROT_PRIORITY_CTRL(throt)	(THROT_PRIORITY_LITE + \
223					(THROT_OFFSET * throt))
224#define THROT_DELAY_CTRL(throt)		(THROT_DELAY_LITE + \
225					(THROT_OFFSET * throt))
226
227#define ALARM_OFFSET			0x14
228#define ALARM_CFG(throt)		(OC1_CFG + \
229					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
230
231#define ALARM_CNT_THRESHOLD(throt)	(OC1_CNT_THRESHOLD + \
232					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
233
234#define ALARM_THROTTLE_PERIOD(throt)	(OC1_THROTTLE_PERIOD + \
235					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
236
237#define ALARM_ALARM_COUNT(throt)	(OC1_ALARM_COUNT + \
238					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
239
240#define ALARM_FILTER(throt)		(OC1_FILTER + \
241					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
242
243#define ALARM_STATS(throt)		(OC1_STATS + \
244					(4 * (throt - THROTTLE_OC1)))
245
246/* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
247#define CCROC_THROT_OFFSET			0x0c
248#define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
249						(CCROC_THROT_OFFSET * vect))
250#define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
251						(CCROC_THROT_OFFSET * vect))
252
253/* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
254#define THERMCTL_LVL_REGS_SIZE		0x20
255#define THERMCTL_LVL_REG(rg, lv)	((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
256
257#define OC_THROTTLE_MODE_DISABLED	0
258#define OC_THROTTLE_MODE_BRIEF		2
259
260static const int min_low_temp = -127000;
261static const int max_high_temp = 127000;
262
263enum soctherm_throttle_id {
264	THROTTLE_LIGHT = 0,
265	THROTTLE_HEAVY,
266	THROTTLE_OC1,
267	THROTTLE_OC2,
268	THROTTLE_OC3,
269	THROTTLE_OC4,
270	THROTTLE_OC5, /* OC5 is reserved */
271	THROTTLE_SIZE,
272};
273
274enum soctherm_oc_irq_id {
275	TEGRA_SOC_OC_IRQ_1,
276	TEGRA_SOC_OC_IRQ_2,
277	TEGRA_SOC_OC_IRQ_3,
278	TEGRA_SOC_OC_IRQ_4,
279	TEGRA_SOC_OC_IRQ_5,
280	TEGRA_SOC_OC_IRQ_MAX,
281};
282
283enum soctherm_throttle_dev_id {
284	THROTTLE_DEV_CPU = 0,
285	THROTTLE_DEV_GPU,
286	THROTTLE_DEV_SIZE,
287};
288
289static const char *const throt_names[] = {
290	[THROTTLE_LIGHT] = "light",
291	[THROTTLE_HEAVY] = "heavy",
292	[THROTTLE_OC1]   = "oc1",
293	[THROTTLE_OC2]   = "oc2",
294	[THROTTLE_OC3]   = "oc3",
295	[THROTTLE_OC4]   = "oc4",
296	[THROTTLE_OC5]   = "oc5",
297};
298
299struct tegra_soctherm;
300struct tegra_thermctl_zone {
301	void __iomem *reg;
302	struct device *dev;
303	struct tegra_soctherm *ts;
304	struct thermal_zone_device *tz;
305	const struct tegra_tsensor_group *sg;
306};
307
308struct soctherm_oc_cfg {
309	u32 active_low;
310	u32 throt_period;
311	u32 alarm_cnt_thresh;
312	u32 alarm_filter;
313	u32 mode;
314	bool intr_en;
315};
316
317struct soctherm_throt_cfg {
318	const char *name;
319	unsigned int id;
320	u8 priority;
321	u8 cpu_throt_level;
322	u32 cpu_throt_depth;
323	u32 gpu_throt_level;
324	struct soctherm_oc_cfg oc_cfg;
325	struct thermal_cooling_device *cdev;
326	bool init;
327};
328
329struct tegra_soctherm {
330	struct reset_control *reset;
331	struct clk *clock_tsensor;
332	struct clk *clock_soctherm;
333	void __iomem *regs;
334	void __iomem *clk_regs;
335	void __iomem *ccroc_regs;
336
337	int thermal_irq;
338	int edp_irq;
339
340	u32 *calib;
341	struct thermal_zone_device **thermctl_tzs;
342	struct tegra_soctherm_soc *soc;
343
344	struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
345
346	struct dentry *debugfs_dir;
347
348	struct mutex thermctl_lock;
349};
350
351struct soctherm_oc_irq_chip_data {
352	struct mutex		irq_lock; /* serialize OC IRQs */
353	struct irq_chip		irq_chip;
354	struct irq_domain	*domain;
355	int			irq_enable;
356};
357
358static struct soctherm_oc_irq_chip_data soc_irq_cdata;
359
360/**
361 * ccroc_writel() - writes a value to a CCROC register
362 * @ts: pointer to a struct tegra_soctherm
363 * @value: the value to write
364 * @reg: the register offset
365 *
366 * Writes @v to @reg.  No return value.
367 */
368static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
369{
370	writel(value, (ts->ccroc_regs + reg));
371}
372
373/**
374 * ccroc_readl() - reads specified register from CCROC IP block
375 * @ts: pointer to a struct tegra_soctherm
376 * @reg: register address to be read
377 *
378 * Return: the value of the register
379 */
380static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
381{
382	return readl(ts->ccroc_regs + reg);
383}
384
385static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
386{
387	const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
388	void __iomem *base = tegra->regs + sensor->base;
389	unsigned int val;
390
391	val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
392	writel(val, base + SENSOR_CONFIG0);
393
394	val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
395	val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
396	val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
397	val |= SENSOR_CONFIG1_TEMP_ENABLE;
398	writel(val, base + SENSOR_CONFIG1);
399
400	writel(tegra->calib[i], base + SENSOR_CONFIG2);
401}
402
403/*
404 * Translate from soctherm readback format to millicelsius.
405 * The soctherm readback format in bits is as follows:
406 *   TTTTTTTT H______N
407 * where T's contain the temperature in Celsius,
408 * H denotes an addition of 0.5 Celsius and N denotes negation
409 * of the final value.
410 */
411static int translate_temp(u16 val)
412{
413	int t;
414
415	t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
416	if (val & READBACK_ADD_HALF)
417		t += 500;
418	if (val & READBACK_NEGATE)
419		t *= -1;
420
421	return t;
422}
423
424static int tegra_thermctl_get_temp(struct thermal_zone_device *tz, int *out_temp)
425{
426	struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
427	u32 val;
428
429	val = readl(zone->reg);
430	val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
431	*out_temp = translate_temp(val);
432
433	return 0;
434}
435
436/**
437 * enforce_temp_range() - check and enforce temperature range [min, max]
438 * @dev: struct device * of the SOC_THERM instance
439 * @trip_temp: the trip temperature to check
440 *
441 * Checks and enforces the permitted temperature range that SOC_THERM
442 * HW can support This is
443 * done while taking care of precision.
444 *
445 * Return: The precision adjusted capped temperature in millicelsius.
446 */
447static int enforce_temp_range(struct device *dev, int trip_temp)
448{
449	int temp;
450
451	temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
452	if (temp != trip_temp)
453		dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n",
454			trip_temp, temp);
455	return temp;
456}
457
458/**
459 * thermtrip_program() - Configures the hardware to shut down the
460 * system if a given sensor group reaches a given temperature
461 * @dev: ptr to the struct device for the SOC_THERM IP block
462 * @sg: pointer to the sensor group to set the thermtrip temperature for
463 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
464 *
465 * Sets the thermal trip threshold of the given sensor group to be the
466 * @trip_temp.  If this threshold is crossed, the hardware will shut
467 * down.
468 *
469 * Note that, although @trip_temp is specified in millicelsius, the
470 * hardware is programmed in degrees Celsius.
471 *
472 * Return: 0 upon success, or %-EINVAL upon failure.
473 */
474static int thermtrip_program(struct device *dev,
475			     const struct tegra_tsensor_group *sg,
476			     int trip_temp)
477{
478	struct tegra_soctherm *ts = dev_get_drvdata(dev);
479	int temp;
480	u32 r;
481
482	if (!sg || !sg->thermtrip_threshold_mask)
483		return -EINVAL;
484
485	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
486
487	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
488	r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
489	r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
490	r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
491	writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
492
493	return 0;
494}
495
496/**
497 * throttrip_program() - Configures the hardware to throttle the
498 * pulse if a given sensor group reaches a given temperature
499 * @dev: ptr to the struct device for the SOC_THERM IP block
500 * @sg: pointer to the sensor group to set the thermtrip temperature for
501 * @stc: pointer to the throttle need to be triggered
502 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
503 *
504 * Sets the thermal trip threshold and throttle event of the given sensor
505 * group. If this threshold is crossed, the hardware will trigger the
506 * throttle.
507 *
508 * Note that, although @trip_temp is specified in millicelsius, the
509 * hardware is programmed in degrees Celsius.
510 *
511 * Return: 0 upon success, or %-EINVAL upon failure.
512 */
513static int throttrip_program(struct device *dev,
514			     const struct tegra_tsensor_group *sg,
515			     struct soctherm_throt_cfg *stc,
516			     int trip_temp)
517{
518	struct tegra_soctherm *ts = dev_get_drvdata(dev);
519	int temp, cpu_throt, gpu_throt;
520	unsigned int throt;
521	u32 r, reg_off;
522
523	if (!sg || !stc || !stc->init)
524		return -EINVAL;
525
526	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
527
528	/* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
529	throt = stc->id;
530	reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
531
532	if (throt == THROTTLE_LIGHT) {
533		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
534		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
535	} else {
536		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
537		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
538		if (throt != THROTTLE_HEAVY)
539			dev_warn(dev,
540				 "invalid throt id %d - assuming HEAVY",
541				 throt);
542	}
543
544	r = readl(ts->regs + reg_off);
545	r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
546	r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
547	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
548	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
549	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
550	writel(r, ts->regs + reg_off);
551
552	return 0;
553}
554
555static struct soctherm_throt_cfg *
556find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
557{
558	unsigned int i;
559
560	for (i = 0; ts->throt_cfgs[i].name; i++)
561		if (!strcmp(ts->throt_cfgs[i].name, name))
562			return &ts->throt_cfgs[i];
563
564	return NULL;
565}
566
567static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
568{
569	int i, temp = min_low_temp;
570	struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
571
572	if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
573		return temp;
574
575	if (tt) {
576		for (i = 0; i < ts->soc->num_ttgs; i++) {
577			if (tt[i].id == id)
578				return tt[i].temp;
579		}
580	}
581
582	return temp;
583}
584
585static int tegra_thermctl_set_trip_temp(struct thermal_zone_device *tz, int trip_id, int temp)
586{
587	struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
588	struct tegra_soctherm *ts = zone->ts;
589	struct thermal_trip trip;
590	const struct tegra_tsensor_group *sg = zone->sg;
591	struct device *dev = zone->dev;
592	int ret;
593
594	if (!tz)
595		return -EINVAL;
596
597	ret = __thermal_zone_get_trip(tz, trip_id, &trip);
598	if (ret)
599		return ret;
600
601	if (trip.type == THERMAL_TRIP_CRITICAL) {
602		/*
603		 * If thermtrips property is set in DT,
604		 * doesn't need to program critical type trip to HW,
605		 * if not, program critical trip to HW.
606		 */
607		if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
608			return thermtrip_program(dev, sg, temp);
609		else
610			return 0;
611
612	} else if (trip.type == THERMAL_TRIP_HOT) {
613		int i;
614
615		for (i = 0; i < THROTTLE_SIZE; i++) {
616			struct thermal_cooling_device *cdev;
617			struct soctherm_throt_cfg *stc;
618
619			if (!ts->throt_cfgs[i].init)
620				continue;
621
622			cdev = ts->throt_cfgs[i].cdev;
623			if (get_thermal_instance(tz, cdev, trip_id))
624				stc = find_throttle_cfg_by_name(ts, cdev->type);
625			else
626				continue;
627
628			return throttrip_program(dev, sg, stc, temp);
629		}
630	}
631
632	return 0;
633}
634
635static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
636{
637	u32 r;
638
639	/* multiple zones could be handling and setting trips at once */
640	mutex_lock(&zn->ts->thermctl_lock);
641	r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
642	r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
643	writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
644	mutex_unlock(&zn->ts->thermctl_lock);
645}
646
647static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
648{
649	u32 r;
650
651	/* multiple zones could be handling and setting trips at once */
652	mutex_lock(&zn->ts->thermctl_lock);
653	r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
654	r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
655	writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
656	mutex_unlock(&zn->ts->thermctl_lock);
657}
658
659static int tegra_thermctl_set_trips(struct thermal_zone_device *tz, int lo, int hi)
660{
661	struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
662	u32 r;
663
664	thermal_irq_disable(zone);
665
666	r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
667	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
668	writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
669
670	lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
671	hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
672	dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
673
674	r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
675	r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
676	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
677	writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
678
679	thermal_irq_enable(zone);
680
681	return 0;
682}
683
684static const struct thermal_zone_device_ops tegra_of_thermal_ops = {
685	.get_temp = tegra_thermctl_get_temp,
686	.set_trip_temp = tegra_thermctl_set_trip_temp,
687	.set_trips = tegra_thermctl_set_trips,
688};
689
690static int get_hot_temp(struct thermal_zone_device *tz, int *trip_id, int *temp)
691{
692	int i, ret;
693	struct thermal_trip trip;
694
695	for (i = 0; i < thermal_zone_get_num_trips(tz); i++) {
696
697		ret = thermal_zone_get_trip(tz, i, &trip);
698		if (ret)
699			return -EINVAL;
700
701		if (trip.type == THERMAL_TRIP_HOT) {
702			*trip_id = i;
703			return 0;
704		}
705	}
706
707	return -EINVAL;
708}
709
710/**
711 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
712 * @dev: struct device * of the SOC_THERM instance
713 * @sg: pointer to the sensor group to set the thermtrip temperature for
714 * @tz: struct thermal_zone_device *
715 *
716 * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
717 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
718 * type trip_temp
719 * from thermal zone.
720 * After they have been configured, THERMTRIP or THROTTLE will take
721 * action when the configured SoC thermal sensor group reaches a
722 * certain temperature.
723 *
724 * Return: 0 upon success, or a negative error code on failure.
725 * "Success" does not mean that trips was enabled; it could also
726 * mean that no node was found in DT.
727 * THERMTRIP has been enabled successfully when a message similar to
728 * this one appears on the serial console:
729 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
730 * THROTTLE has been enabled successfully when a message similar to
731 * this one appears on the serial console:
732 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
733 */
734static int tegra_soctherm_set_hwtrips(struct device *dev,
735				      const struct tegra_tsensor_group *sg,
736				      struct thermal_zone_device *tz)
737{
738	struct tegra_soctherm *ts = dev_get_drvdata(dev);
739	struct soctherm_throt_cfg *stc;
740	int i, trip, temperature, ret;
741
742	/* Get thermtrips. If missing, try to get critical trips. */
743	temperature = tsensor_group_thermtrip_get(ts, sg->id);
744	if (min_low_temp == temperature)
745		if (thermal_zone_get_crit_temp(tz, &temperature))
746			temperature = max_high_temp;
747
748	ret = thermtrip_program(dev, sg, temperature);
749	if (ret) {
750		dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
751		return ret;
752	}
753
754	dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
755		 sg->name, temperature);
756
757	ret = get_hot_temp(tz, &trip, &temperature);
758	if (ret) {
759		dev_info(dev, "throttrip: %s: missing hot temperature\n",
760			 sg->name);
761		return 0;
762	}
763
764	for (i = 0; i < THROTTLE_OC1; i++) {
765		struct thermal_cooling_device *cdev;
766
767		if (!ts->throt_cfgs[i].init)
768			continue;
769
770		cdev = ts->throt_cfgs[i].cdev;
771		if (get_thermal_instance(tz, cdev, trip))
772			stc = find_throttle_cfg_by_name(ts, cdev->type);
773		else
774			continue;
775
776		ret = throttrip_program(dev, sg, stc, temperature);
777		if (ret) {
778			dev_err(dev, "throttrip: %s: error during enable\n",
779				sg->name);
780			return ret;
781		}
782
783		dev_info(dev,
784			 "throttrip: will throttle when %s reaches %d mC\n",
785			 sg->name, temperature);
786		break;
787	}
788
789	if (i == THROTTLE_SIZE)
790		dev_info(dev, "throttrip: %s: missing throttle cdev\n",
791			 sg->name);
792
793	return 0;
794}
795
796static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
797{
798	struct tegra_soctherm *ts = dev_id;
799	u32 r;
800
801	/* Case for no lock:
802	 * Although interrupts are enabled in set_trips, there is still no need
803	 * to lock here because the interrupts are disabled before programming
804	 * new trip points. Hence there cant be a interrupt on the same sensor.
805	 * An interrupt can however occur on a sensor while trips are being
806	 * programmed on a different one. This beign a LEVEL interrupt won't
807	 * cause a new interrupt but this is taken care of by the re-reading of
808	 * the STATUS register in the thread function.
809	 */
810	r = readl(ts->regs + THERMCTL_INTR_STATUS);
811	writel(r, ts->regs + THERMCTL_INTR_DISABLE);
812
813	return IRQ_WAKE_THREAD;
814}
815
816/**
817 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
818 * @irq:       The interrupt number being requested; not used
819 * @dev_id:    Opaque pointer to tegra_soctherm;
820 *
821 * Clears the interrupt status register if there are expected
822 * interrupt bits set.
823 * The interrupt(s) are then handled by updating the corresponding
824 * thermal zones.
825 *
826 * An error is logged if any unexpected interrupt bits are set.
827 *
828 * Disabled interrupts are re-enabled.
829 *
830 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
831 * is needed.
832 */
833static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
834{
835	struct tegra_soctherm *ts = dev_id;
836	struct thermal_zone_device *tz;
837	u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
838
839	st = readl(ts->regs + THERMCTL_INTR_STATUS);
840
841	/* deliberately clear expected interrupts handled in SW */
842	cp |= st & TH_INTR_CD0_MASK;
843	cp |= st & TH_INTR_CU0_MASK;
844
845	gp |= st & TH_INTR_GD0_MASK;
846	gp |= st & TH_INTR_GU0_MASK;
847
848	pl |= st & TH_INTR_PD0_MASK;
849	pl |= st & TH_INTR_PU0_MASK;
850
851	me |= st & TH_INTR_MD0_MASK;
852	me |= st & TH_INTR_MU0_MASK;
853
854	ex |= cp | gp | pl | me;
855	if (ex) {
856		writel(ex, ts->regs + THERMCTL_INTR_STATUS);
857		st &= ~ex;
858
859		if (cp) {
860			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
861			thermal_zone_device_update(tz,
862						   THERMAL_EVENT_UNSPECIFIED);
863		}
864
865		if (gp) {
866			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
867			thermal_zone_device_update(tz,
868						   THERMAL_EVENT_UNSPECIFIED);
869		}
870
871		if (pl) {
872			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
873			thermal_zone_device_update(tz,
874						   THERMAL_EVENT_UNSPECIFIED);
875		}
876
877		if (me) {
878			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
879			thermal_zone_device_update(tz,
880						   THERMAL_EVENT_UNSPECIFIED);
881		}
882	}
883
884	/* deliberately ignore expected interrupts NOT handled in SW */
885	ex |= TH_INTR_IGNORE_MASK;
886	st &= ~ex;
887
888	if (st) {
889		/* Whine about any other unexpected INTR bits still set */
890		pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
891		writel(st, ts->regs + THERMCTL_INTR_STATUS);
892	}
893
894	return IRQ_HANDLED;
895}
896
897/**
898 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
899 * @ts:		pointer to a struct tegra_soctherm
900 * @alarm:		The soctherm throttle id
901 * @enable:		Flag indicating enable the soctherm over-current
902 *			interrupt or disable it
903 *
904 * Enables a specific over-current pins @alarm to raise an interrupt if the flag
905 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
906 */
907static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
908				    enum soctherm_throttle_id alarm,
909				    bool enable)
910{
911	u32 r;
912
913	if (!enable)
914		return;
915
916	r = readl(ts->regs + OC_INTR_ENABLE);
917	switch (alarm) {
918	case THROTTLE_OC1:
919		r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
920		break;
921	case THROTTLE_OC2:
922		r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
923		break;
924	case THROTTLE_OC3:
925		r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
926		break;
927	case THROTTLE_OC4:
928		r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
929		break;
930	default:
931		r = 0;
932		break;
933	}
934	writel(r, ts->regs + OC_INTR_ENABLE);
935}
936
937/**
938 * soctherm_handle_alarm() - Handles soctherm alarms
939 * @alarm:		The soctherm throttle id
940 *
941 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
942 * a warning or informative message.
943 *
944 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
945 */
946static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
947{
948	int rv = -EINVAL;
949
950	switch (alarm) {
951	case THROTTLE_OC1:
952		pr_debug("soctherm: Successfully handled OC1 alarm\n");
953		rv = 0;
954		break;
955
956	case THROTTLE_OC2:
957		pr_debug("soctherm: Successfully handled OC2 alarm\n");
958		rv = 0;
959		break;
960
961	case THROTTLE_OC3:
962		pr_debug("soctherm: Successfully handled OC3 alarm\n");
963		rv = 0;
964		break;
965
966	case THROTTLE_OC4:
967		pr_debug("soctherm: Successfully handled OC4 alarm\n");
968		rv = 0;
969		break;
970
971	default:
972		break;
973	}
974
975	if (rv)
976		pr_err("soctherm: ERROR in handling %s alarm\n",
977		       throt_names[alarm]);
978
979	return rv;
980}
981
982/**
983 * soctherm_edp_isr_thread() - log an over-current interrupt request
984 * @irq:	OC irq number. Currently not being used. See description
985 * @arg:	a void pointer for callback, currently not being used
986 *
987 * Over-current events are handled in hardware. This function is called to log
988 * and handle any OC events that happened. Additionally, it checks every
989 * over-current interrupt registers for registers are set but
990 * was not expected (i.e. any discrepancy in interrupt status) by the function,
991 * the discrepancy will logged.
992 *
993 * Return: %IRQ_HANDLED
994 */
995static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
996{
997	struct tegra_soctherm *ts = arg;
998	u32 st, ex, oc1, oc2, oc3, oc4;
999
1000	st = readl(ts->regs + OC_INTR_STATUS);
1001
1002	/* deliberately clear expected interrupts handled in SW */
1003	oc1 = st & OC_INTR_OC1_MASK;
1004	oc2 = st & OC_INTR_OC2_MASK;
1005	oc3 = st & OC_INTR_OC3_MASK;
1006	oc4 = st & OC_INTR_OC4_MASK;
1007	ex = oc1 | oc2 | oc3 | oc4;
1008
1009	pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1010	if (ex) {
1011		writel(st, ts->regs + OC_INTR_STATUS);
1012		st &= ~ex;
1013
1014		if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1015			soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1016
1017		if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1018			soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1019
1020		if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1021			soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1022
1023		if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1024			soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1025
1026		if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1027			handle_nested_irq(
1028				irq_find_mapping(soc_irq_cdata.domain, 0));
1029
1030		if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1031			handle_nested_irq(
1032				irq_find_mapping(soc_irq_cdata.domain, 1));
1033
1034		if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1035			handle_nested_irq(
1036				irq_find_mapping(soc_irq_cdata.domain, 2));
1037
1038		if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1039			handle_nested_irq(
1040				irq_find_mapping(soc_irq_cdata.domain, 3));
1041	}
1042
1043	if (st) {
1044		pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1045		writel(st, ts->regs + OC_INTR_STATUS);
1046	}
1047
1048	return IRQ_HANDLED;
1049}
1050
1051/**
1052 * soctherm_edp_isr() - Disables any active interrupts
1053 * @irq:	The interrupt request number
1054 * @arg:	Opaque pointer to an argument
1055 *
1056 * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1057 * masking any asserted interrupts. Doing this prevents the same interrupts
1058 * from triggering this isr repeatedly. The thread woken by this isr will
1059 * handle asserted interrupts and subsequently unmask/re-enable them.
1060 *
1061 * The OC_INTR_DISABLE register indicates which OC interrupts
1062 * have been disabled.
1063 *
1064 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1065 */
1066static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1067{
1068	struct tegra_soctherm *ts = arg;
1069	u32 r;
1070
1071	if (!ts)
1072		return IRQ_NONE;
1073
1074	r = readl(ts->regs + OC_INTR_STATUS);
1075	writel(r, ts->regs + OC_INTR_DISABLE);
1076
1077	return IRQ_WAKE_THREAD;
1078}
1079
1080/**
1081 * soctherm_oc_irq_lock() - locks the over-current interrupt request
1082 * @data:	Interrupt request data
1083 *
1084 * Looks up the chip data from @data and locks the mutex associated with
1085 * a particular over-current interrupt request.
1086 */
1087static void soctherm_oc_irq_lock(struct irq_data *data)
1088{
1089	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1090
1091	mutex_lock(&d->irq_lock);
1092}
1093
1094/**
1095 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1096 * @data:		Interrupt request data
1097 *
1098 * Looks up the interrupt request data @data and unlocks the mutex associated
1099 * with a particular over-current interrupt request.
1100 */
1101static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1102{
1103	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1104
1105	mutex_unlock(&d->irq_lock);
1106}
1107
1108/**
1109 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1110 * @data:       irq_data structure of the chip
1111 *
1112 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1113 * to respond to over-current interrupts.
1114 *
1115 */
1116static void soctherm_oc_irq_enable(struct irq_data *data)
1117{
1118	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1119
1120	d->irq_enable |= BIT(data->hwirq);
1121}
1122
1123/**
1124 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1125 * @data:	The interrupt request information
1126 *
1127 * Clears the interrupt request enable bit of the overcurrent
1128 * interrupt request chip data.
1129 *
1130 * Return: Nothing is returned (void)
1131 */
1132static void soctherm_oc_irq_disable(struct irq_data *data)
1133{
1134	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1135
1136	d->irq_enable &= ~BIT(data->hwirq);
1137}
1138
1139static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1140{
1141	return 0;
1142}
1143
1144/**
1145 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1146 * @h:		Interrupt request domain
1147 * @virq:	Virtual interrupt request number
1148 * @hw:		Hardware interrupt request number
1149 *
1150 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1151 * interrupt request is called, the irq_domain takes the request's virtual
1152 * request number (much like a virtual memory address) and maps it to a
1153 * physical hardware request number.
1154 *
1155 * When a mapping doesn't already exist for a virtual request number, the
1156 * irq_domain calls this function to associate the virtual request number with
1157 * a hardware request number.
1158 *
1159 * Return: 0
1160 */
1161static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1162		irq_hw_number_t hw)
1163{
1164	struct soctherm_oc_irq_chip_data *data = h->host_data;
1165
1166	irq_set_chip_data(virq, data);
1167	irq_set_chip(virq, &data->irq_chip);
1168	irq_set_nested_thread(virq, 1);
1169	return 0;
1170}
1171
1172/**
1173 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1174 * @d:      Interrupt request domain
1175 * @ctrlr:      Controller device tree node
1176 * @intspec:    Array of u32s from DTs "interrupt" property
1177 * @intsize:    Number of values inside the intspec array
1178 * @out_hwirq:  HW IRQ value associated with this interrupt
1179 * @out_type:   The IRQ SENSE type for this interrupt.
1180 *
1181 * This Device Tree IRQ specifier translation function will translate a
1182 * specific "interrupt" as defined by 2 DT values where the cell values map
1183 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1184 * number, this function will subtract 1 from the value listed in DT.
1185 *
1186 * Return: 0
1187 */
1188static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1189	struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1190	irq_hw_number_t *out_hwirq, unsigned int *out_type)
1191{
1192	if (WARN_ON(intsize < 2))
1193		return -EINVAL;
1194
1195	/*
1196	 * The HW value is 1 index less than the DT IRQ values.
1197	 * i.e. OC4 goes to HW index 3.
1198	 */
1199	*out_hwirq = intspec[0] - 1;
1200	*out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1201	return 0;
1202}
1203
1204static const struct irq_domain_ops soctherm_oc_domain_ops = {
1205	.map	= soctherm_oc_irq_map,
1206	.xlate	= soctherm_irq_domain_xlate_twocell,
1207};
1208
1209/**
1210 * soctherm_oc_int_init() - Initial enabling of the over
1211 * current interrupts
1212 * @np:	The devicetree node for soctherm
1213 * @num_irqs:	The number of new interrupt requests
1214 *
1215 * Sets the over current interrupt request chip data
1216 *
1217 * Return: 0 on success or if overcurrent interrupts are not enabled,
1218 * -ENOMEM (out of memory), or irq_base if the function failed to
1219 * allocate the irqs
1220 */
1221static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1222{
1223	if (!num_irqs) {
1224		pr_info("%s(): OC interrupts are not enabled\n", __func__);
1225		return 0;
1226	}
1227
1228	mutex_init(&soc_irq_cdata.irq_lock);
1229	soc_irq_cdata.irq_enable = 0;
1230
1231	soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1232	soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1233	soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1234		soctherm_oc_irq_sync_unlock;
1235	soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1236	soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1237	soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1238	soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1239
1240	soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1241						     &soctherm_oc_domain_ops,
1242						     &soc_irq_cdata);
1243
1244	if (!soc_irq_cdata.domain) {
1245		pr_err("%s: Failed to create IRQ domain\n", __func__);
1246		return -ENOMEM;
1247	}
1248
1249	pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1250	return 0;
1251}
1252
1253#ifdef CONFIG_DEBUG_FS
1254static int regs_show(struct seq_file *s, void *data)
1255{
1256	struct platform_device *pdev = s->private;
1257	struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1258	const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1259	const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1260	u32 r, state;
1261	int i, level;
1262
1263	seq_puts(s, "-----TSENSE (convert HW)-----\n");
1264
1265	for (i = 0; i < ts->soc->num_tsensors; i++) {
1266		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1267		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1268
1269		seq_printf(s, "%s: ", tsensors[i].name);
1270		seq_printf(s, "En(%d) ", state);
1271
1272		if (!state) {
1273			seq_puts(s, "\n");
1274			continue;
1275		}
1276
1277		state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1278		seq_printf(s, "tiddq(%d) ", state);
1279		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1280		seq_printf(s, "ten_count(%d) ", state);
1281		state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1282		seq_printf(s, "tsample(%d) ", state + 1);
1283
1284		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1285		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1286		seq_printf(s, "Temp(%d/", state);
1287		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1288		seq_printf(s, "%d) ", translate_temp(state));
1289
1290		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1291		state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1292		seq_printf(s, "Capture(%d/", state);
1293		state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1294		seq_printf(s, "%d) ", state);
1295
1296		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1297		state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1298		seq_printf(s, "Stop(%d) ", state);
1299		state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1300		seq_printf(s, "Tall(%d) ", state);
1301		state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1302		seq_printf(s, "Over(%d/", state);
1303		state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1304		seq_printf(s, "%d/", state);
1305		state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1306		seq_printf(s, "%d) ", state);
1307
1308		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1309		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1310		seq_printf(s, "Therm_A/B(%d/", state);
1311		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1312		seq_printf(s, "%d)\n", (s16)state);
1313	}
1314
1315	r = readl(ts->regs + SENSOR_PDIV);
1316	seq_printf(s, "PDIV: 0x%x\n", r);
1317
1318	r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1319	seq_printf(s, "HOTSPOT: 0x%x\n", r);
1320
1321	seq_puts(s, "\n");
1322	seq_puts(s, "-----SOC_THERM-----\n");
1323
1324	r = readl(ts->regs + SENSOR_TEMP1);
1325	state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1326	seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1327	state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1328	seq_printf(s, " GPU(%d) ", translate_temp(state));
1329	r = readl(ts->regs + SENSOR_TEMP2);
1330	state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1331	seq_printf(s, " PLLX(%d) ", translate_temp(state));
1332	state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1333	seq_printf(s, " MEM(%d)\n", translate_temp(state));
1334
1335	for (i = 0; i < ts->soc->num_ttgs; i++) {
1336		seq_printf(s, "%s:\n", ttgs[i]->name);
1337		for (level = 0; level < 4; level++) {
1338			s32 v;
1339			u32 mask;
1340			u16 off = ttgs[i]->thermctl_lvl0_offset;
1341
1342			r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1343
1344			mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1345			state = REG_GET_MASK(r, mask);
1346			v = sign_extend32(state, ts->soc->bptt - 1);
1347			v *= ts->soc->thresh_grain;
1348			seq_printf(s, "   %d: Up/Dn(%d /", level, v);
1349
1350			mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1351			state = REG_GET_MASK(r, mask);
1352			v = sign_extend32(state, ts->soc->bptt - 1);
1353			v *= ts->soc->thresh_grain;
1354			seq_printf(s, "%d ) ", v);
1355
1356			mask = THERMCTL_LVL0_CPU0_EN_MASK;
1357			state = REG_GET_MASK(r, mask);
1358			seq_printf(s, "En(%d) ", state);
1359
1360			mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1361			state = REG_GET_MASK(r, mask);
1362			seq_puts(s, "CPU Throt");
1363			if (!state)
1364				seq_printf(s, "(%s) ", "none");
1365			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1366				seq_printf(s, "(%s) ", "L");
1367			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1368				seq_printf(s, "(%s) ", "H");
1369			else
1370				seq_printf(s, "(%s) ", "H+L");
1371
1372			mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1373			state = REG_GET_MASK(r, mask);
1374			seq_puts(s, "GPU Throt");
1375			if (!state)
1376				seq_printf(s, "(%s) ", "none");
1377			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1378				seq_printf(s, "(%s) ", "L");
1379			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1380				seq_printf(s, "(%s) ", "H");
1381			else
1382				seq_printf(s, "(%s) ", "H+L");
1383
1384			mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1385			state = REG_GET_MASK(r, mask);
1386			seq_printf(s, "Status(%s)\n",
1387				   state == 0 ? "LO" :
1388				   state == 1 ? "In" :
1389				   state == 2 ? "Res" : "HI");
1390		}
1391	}
1392
1393	r = readl(ts->regs + THERMCTL_STATS_CTL);
1394	seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1395		   r & STATS_CTL_EN_UP ? "En" : "--",
1396		   r & STATS_CTL_EN_DN ? "En" : "--");
1397
1398	for (level = 0; level < 4; level++) {
1399		u16 off;
1400
1401		off = THERMCTL_LVL0_UP_STATS;
1402		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1403		seq_printf(s, "  Level_%d Up(%d) ", level, r);
1404
1405		off = THERMCTL_LVL0_DN_STATS;
1406		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1407		seq_printf(s, "Dn(%d)\n", r);
1408	}
1409
1410	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1411	state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1412	seq_printf(s, "Thermtrip Any En(%d)\n", state);
1413	for (i = 0; i < ts->soc->num_ttgs; i++) {
1414		state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1415		seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
1416		state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1417		state *= ts->soc->thresh_grain;
1418		seq_printf(s, "Thresh(%d)\n", state);
1419	}
1420
1421	r = readl(ts->regs + THROT_GLOBAL_CFG);
1422	seq_puts(s, "\n");
1423	seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1424
1425	seq_puts(s, "---------------------------------------------------\n");
1426	r = readl(ts->regs + THROT_STATUS);
1427	state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1428	seq_printf(s, "THROT STATUS: breach(%d) ", state);
1429	state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1430	seq_printf(s, "state(%d) ", state);
1431	state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1432	seq_printf(s, "enabled(%d)\n", state);
1433
1434	r = readl(ts->regs + CPU_PSKIP_STATUS);
1435	if (ts->soc->use_ccroc) {
1436		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1437		seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1438	} else {
1439		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1440		seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1441		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1442		seq_printf(s, "N(%d) ", state);
1443		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1444		seq_printf(s, "enabled(%d)\n", state);
1445	}
1446
1447	return 0;
1448}
1449
1450DEFINE_SHOW_ATTRIBUTE(regs);
1451
1452static void soctherm_debug_init(struct platform_device *pdev)
1453{
1454	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1455	struct dentry *root;
1456
1457	root = debugfs_create_dir("soctherm", NULL);
1458
1459	tegra->debugfs_dir = root;
1460
1461	debugfs_create_file("reg_contents", 0644, root, pdev, &regs_fops);
1462}
1463#else
1464static inline void soctherm_debug_init(struct platform_device *pdev) {}
1465#endif
1466
1467static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1468{
1469	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1470	int err;
1471
1472	if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1473		return -EINVAL;
1474
1475	reset_control_assert(tegra->reset);
1476
1477	if (enable) {
1478		err = clk_prepare_enable(tegra->clock_soctherm);
1479		if (err) {
1480			reset_control_deassert(tegra->reset);
1481			return err;
1482		}
1483
1484		err = clk_prepare_enable(tegra->clock_tsensor);
1485		if (err) {
1486			clk_disable_unprepare(tegra->clock_soctherm);
1487			reset_control_deassert(tegra->reset);
1488			return err;
1489		}
1490	} else {
1491		clk_disable_unprepare(tegra->clock_tsensor);
1492		clk_disable_unprepare(tegra->clock_soctherm);
1493	}
1494
1495	reset_control_deassert(tegra->reset);
1496
1497	return 0;
1498}
1499
1500static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1501				    unsigned long *max_state)
1502{
1503	*max_state = 1;
1504	return 0;
1505}
1506
1507static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1508				    unsigned long *cur_state)
1509{
1510	struct tegra_soctherm *ts = cdev->devdata;
1511	u32 r;
1512
1513	r = readl(ts->regs + THROT_STATUS);
1514	if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1515		*cur_state = 1;
1516	else
1517		*cur_state = 0;
1518
1519	return 0;
1520}
1521
1522static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1523				unsigned long cur_state)
1524{
1525	return 0;
1526}
1527
1528static const struct thermal_cooling_device_ops throt_cooling_ops = {
1529	.get_max_state = throt_get_cdev_max_state,
1530	.get_cur_state = throt_get_cdev_cur_state,
1531	.set_cur_state = throt_set_cdev_state,
1532};
1533
1534static int soctherm_thermtrips_parse(struct platform_device *pdev)
1535{
1536	struct device *dev = &pdev->dev;
1537	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1538	struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1539	const int max_num_prop = ts->soc->num_ttgs * 2;
1540	u32 *tlb;
1541	int i, j, n, ret;
1542
1543	if (!tt)
1544		return -ENOMEM;
1545
1546	n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1547	if (n <= 0) {
1548		dev_info(dev,
1549			 "missing thermtrips, will use critical trips as shut down temp\n");
1550		return n;
1551	}
1552
1553	n = min(max_num_prop, n);
1554
1555	tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1556	if (!tlb)
1557		return -ENOMEM;
1558	ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1559					 tlb, n);
1560	if (ret) {
1561		dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1562		return ret;
1563	}
1564
1565	i = 0;
1566	for (j = 0; j < n; j = j + 2) {
1567		if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1568			continue;
1569
1570		tt[i].id = tlb[j];
1571		tt[i].temp = tlb[j + 1];
1572		i++;
1573	}
1574
1575	return 0;
1576}
1577
1578static void soctherm_oc_cfg_parse(struct device *dev,
1579				struct device_node *np_oc,
1580				struct soctherm_throt_cfg *stc)
1581{
1582	u32 val;
1583
1584	if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1585		stc->oc_cfg.active_low = 1;
1586	else
1587		stc->oc_cfg.active_low = 0;
1588
1589	if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1590		stc->oc_cfg.intr_en = 1;
1591		stc->oc_cfg.alarm_cnt_thresh = val;
1592	}
1593
1594	if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1595		stc->oc_cfg.throt_period = val;
1596
1597	if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1598		stc->oc_cfg.alarm_filter = val;
1599
1600	/* BRIEF throttling by default, do not support STICKY */
1601	stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1602}
1603
1604static int soctherm_throt_cfg_parse(struct device *dev,
1605				    struct device_node *np,
1606				    struct soctherm_throt_cfg *stc)
1607{
1608	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1609	int ret;
1610	u32 val;
1611
1612	ret = of_property_read_u32(np, "nvidia,priority", &val);
1613	if (ret) {
1614		dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1615		return -EINVAL;
1616	}
1617	stc->priority = val;
1618
1619	ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1620				   "nvidia,cpu-throt-level" :
1621				   "nvidia,cpu-throt-percent", &val);
1622	if (!ret) {
1623		if (ts->soc->use_ccroc &&
1624		    val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1625			stc->cpu_throt_level = val;
1626		else if (!ts->soc->use_ccroc && val <= 100)
1627			stc->cpu_throt_depth = val;
1628		else
1629			goto err;
1630	} else {
1631		goto err;
1632	}
1633
1634	ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1635	if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1636		stc->gpu_throt_level = val;
1637	else
1638		goto err;
1639
1640	return 0;
1641
1642err:
1643	dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1644		stc->name);
1645	return -EINVAL;
1646}
1647
1648/**
1649 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1650 * and register them as cooling devices.
1651 * @pdev: Pointer to platform_device struct
1652 */
1653static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1654{
1655	struct device *dev = &pdev->dev;
1656	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1657	struct device_node *np_stc, *np_stcc;
1658	const char *name;
1659	int i;
1660
1661	for (i = 0; i < THROTTLE_SIZE; i++) {
1662		ts->throt_cfgs[i].name = throt_names[i];
1663		ts->throt_cfgs[i].id = i;
1664		ts->throt_cfgs[i].init = false;
1665	}
1666
1667	np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1668	if (!np_stc) {
1669		dev_info(dev,
1670			 "throttle-cfg: no throttle-cfgs - not enabling\n");
1671		return;
1672	}
1673
1674	for_each_child_of_node(np_stc, np_stcc) {
1675		struct soctherm_throt_cfg *stc;
1676		struct thermal_cooling_device *tcd;
1677		int err;
1678
1679		name = np_stcc->name;
1680		stc = find_throttle_cfg_by_name(ts, name);
1681		if (!stc) {
1682			dev_err(dev,
1683				"throttle-cfg: could not find %s\n", name);
1684			continue;
1685		}
1686
1687		if (stc->init) {
1688			dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1689			of_node_put(np_stcc);
1690			break;
1691		}
1692
1693		err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1694		if (err)
1695			continue;
1696
1697		if (stc->id >= THROTTLE_OC1) {
1698			soctherm_oc_cfg_parse(dev, np_stcc, stc);
1699			stc->init = true;
1700		} else {
1701
1702			tcd = thermal_of_cooling_device_register(np_stcc,
1703							 (char *)name, ts,
1704							 &throt_cooling_ops);
1705			if (IS_ERR_OR_NULL(tcd)) {
1706				dev_err(dev,
1707					"throttle-cfg: %s: failed to register cooling device\n",
1708					name);
1709				continue;
1710			}
1711			stc->cdev = tcd;
1712			stc->init = true;
1713		}
1714
1715	}
1716
1717	of_node_put(np_stc);
1718}
1719
1720/**
1721 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1722 * @ts: pointer to a struct tegra_soctherm
1723 * @level: describing the level LOW/MED/HIGH of throttling
1724 *
1725 * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1726 * the M/N values desired for each level. This function does this.
1727 *
1728 * This function pre-programs the CCROC NV_THERM levels in terms of
1729 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1730 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1731 */
1732static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1733{
1734	u8 depth, dividend;
1735	u32 r;
1736
1737	switch (level) {
1738	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1739		depth = 50;
1740		break;
1741	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1742		depth = 75;
1743		break;
1744	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1745		depth = 80;
1746		break;
1747	case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1748		return;
1749	default:
1750		return;
1751	}
1752
1753	dividend = THROT_DEPTH_DIVIDEND(depth);
1754
1755	/* setup PSKIP in ccroc nv_therm registers */
1756	r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1757	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1758	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1759	ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1760
1761	r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1762	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1763	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1764	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1765	ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1766}
1767
1768/**
1769 * throttlectl_cpu_level_select() - program CPU pulse skipper config
1770 * @ts: pointer to a struct tegra_soctherm
1771 * @throt: the LIGHT/HEAVY of throttle event id
1772 *
1773 * Pulse skippers are used to throttle clock frequencies.  This
1774 * function programs the pulse skippers based on @throt and platform
1775 * data.  This function is used on SoCs which have CPU-local pulse
1776 * skipper control, such as T13x. It programs soctherm's interface to
1777 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1778 * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1779 */
1780static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1781					 enum soctherm_throttle_id throt)
1782{
1783	u32 r, throt_vect;
1784
1785	/* Denver:CCROC NV_THERM interface N:3 Mapping */
1786	switch (ts->throt_cfgs[throt].cpu_throt_level) {
1787	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1788		throt_vect = THROT_VECT_LOW;
1789		break;
1790	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1791		throt_vect = THROT_VECT_MED;
1792		break;
1793	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1794		throt_vect = THROT_VECT_HIGH;
1795		break;
1796	default:
1797		throt_vect = THROT_VECT_NONE;
1798		break;
1799	}
1800
1801	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1802	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1803	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1804	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1805	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1806
1807	/* bypass sequencer in soc_therm as it is programmed in ccroc */
1808	r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1809	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1810}
1811
1812/**
1813 * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1814 * @ts: pointer to a struct tegra_soctherm
1815 * @throt: the LIGHT/HEAVY of throttle event id
1816 *
1817 * Pulse skippers are used to throttle clock frequencies.  This
1818 * function programs the pulse skippers based on @throt and platform
1819 * data.  This function is used for CPUs that have "remote" pulse
1820 * skipper control, e.g., the CPU pulse skipper is controlled by the
1821 * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
1822 * complex.)
1823 */
1824static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1825			       enum soctherm_throttle_id throt)
1826{
1827	u32 r;
1828	int depth;
1829	u8 dividend;
1830
1831	depth = ts->throt_cfgs[throt].cpu_throt_depth;
1832	dividend = THROT_DEPTH_DIVIDEND(depth);
1833
1834	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1835	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1836	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1837	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1838	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1839
1840	r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1841	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1842	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1843	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1844}
1845
1846/**
1847 * throttlectl_gpu_level_select() - selects throttling level for GPU
1848 * @ts: pointer to a struct tegra_soctherm
1849 * @throt: the LIGHT/HEAVY of throttle event id
1850 *
1851 * This function programs soctherm's interface to GK20a NV_THERM to select
1852 * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1853 *
1854 * Return: boolean true if HW was programmed
1855 */
1856static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1857					 enum soctherm_throttle_id throt)
1858{
1859	u32 r, level, throt_vect;
1860
1861	level = ts->throt_cfgs[throt].gpu_throt_level;
1862	throt_vect = THROT_LEVEL_TO_DEPTH(level);
1863	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1864	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1865	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1866	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1867}
1868
1869static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1870				      enum soctherm_throttle_id throt)
1871{
1872	u32 r;
1873	struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1874
1875	if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1876		return -EINVAL;
1877
1878	r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1879	r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1880	r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1881	r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1882	writel(r, ts->regs + ALARM_CFG(throt));
1883	writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1884	writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1885	writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1886	soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1887
1888	return 0;
1889}
1890
1891/**
1892 * soctherm_throttle_program() - programs pulse skippers' configuration
1893 * @ts: pointer to a struct tegra_soctherm
1894 * @throt: the LIGHT/HEAVY of the throttle event id.
1895 *
1896 * Pulse skippers are used to throttle clock frequencies.
1897 * This function programs the pulse skippers.
1898 */
1899static void soctherm_throttle_program(struct tegra_soctherm *ts,
1900				      enum soctherm_throttle_id throt)
1901{
1902	u32 r;
1903	struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1904
1905	if (!stc.init)
1906		return;
1907
1908	if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1909		return;
1910
1911	/* Setup PSKIP parameters */
1912	if (ts->soc->use_ccroc)
1913		throttlectl_cpu_level_select(ts, throt);
1914	else
1915		throttlectl_cpu_mn(ts, throt);
1916
1917	throttlectl_gpu_level_select(ts, throt);
1918
1919	r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1920	writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1921
1922	r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1923	writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1924
1925	r = readl(ts->regs + THROT_PRIORITY_LOCK);
1926	r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1927	if (r >= stc.priority)
1928		return;
1929	r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1930			 stc.priority);
1931	writel(r, ts->regs + THROT_PRIORITY_LOCK);
1932}
1933
1934static void tegra_soctherm_throttle(struct device *dev)
1935{
1936	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1937	u32 v;
1938	int i;
1939
1940	/* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1941	if (ts->soc->use_ccroc) {
1942		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1943		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1944		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1945	}
1946
1947	/* Thermal HW throttle programming */
1948	for (i = 0; i < THROTTLE_SIZE; i++)
1949		soctherm_throttle_program(ts, i);
1950
1951	v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1952	if (ts->soc->use_ccroc) {
1953		ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1954
1955		v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1956		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1957		ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1958	} else {
1959		writel(v, ts->regs + THROT_GLOBAL_CFG);
1960
1961		v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1962		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1963		writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1964	}
1965
1966	/* initialize stats collection */
1967	v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
1968	    STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
1969	writel(v, ts->regs + THERMCTL_STATS_CTL);
1970}
1971
1972static int soctherm_interrupts_init(struct platform_device *pdev,
1973				    struct tegra_soctherm *tegra)
1974{
1975	struct device_node *np = pdev->dev.of_node;
1976	int ret;
1977
1978	ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
1979	if (ret < 0) {
1980		dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
1981		return ret;
1982	}
1983
1984	tegra->thermal_irq = platform_get_irq(pdev, 0);
1985	if (tegra->thermal_irq < 0) {
1986		dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
1987		return 0;
1988	}
1989
1990	tegra->edp_irq = platform_get_irq(pdev, 1);
1991	if (tegra->edp_irq < 0) {
1992		dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
1993		return 0;
1994	}
1995
1996	ret = devm_request_threaded_irq(&pdev->dev,
1997					tegra->thermal_irq,
1998					soctherm_thermal_isr,
1999					soctherm_thermal_isr_thread,
2000					IRQF_ONESHOT,
2001					dev_name(&pdev->dev),
2002					tegra);
2003	if (ret < 0) {
2004		dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2005		return ret;
2006	}
2007
2008	ret = devm_request_threaded_irq(&pdev->dev,
2009					tegra->edp_irq,
2010					soctherm_edp_isr,
2011					soctherm_edp_isr_thread,
2012					IRQF_ONESHOT,
2013					"soctherm_edp",
2014					tegra);
2015	if (ret < 0) {
2016		dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2017		return ret;
2018	}
2019
2020	return 0;
2021}
2022
2023static void soctherm_init(struct platform_device *pdev)
2024{
2025	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2026	const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2027	int i;
2028	u32 pdiv, hotspot;
2029
2030	/* Initialize raw sensors */
2031	for (i = 0; i < tegra->soc->num_tsensors; ++i)
2032		enable_tsensor(tegra, i);
2033
2034	/* program pdiv and hotspot offsets per THERM */
2035	pdiv = readl(tegra->regs + SENSOR_PDIV);
2036	hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2037	for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2038		pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2039				    ttgs[i]->pdiv);
2040		/* hotspot offset from PLLX, doesn't need to configure PLLX */
2041		if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2042			continue;
2043		hotspot =  REG_SET_MASK(hotspot,
2044					ttgs[i]->pllx_hotspot_mask,
2045					ttgs[i]->pllx_hotspot_diff);
2046	}
2047	writel(pdiv, tegra->regs + SENSOR_PDIV);
2048	writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2049
2050	/* Configure hw throttle */
2051	tegra_soctherm_throttle(&pdev->dev);
2052}
2053
2054static const struct of_device_id tegra_soctherm_of_match[] = {
2055#ifdef CONFIG_ARCH_TEGRA_124_SOC
2056	{
2057		.compatible = "nvidia,tegra124-soctherm",
2058		.data = &tegra124_soctherm,
2059	},
2060#endif
2061#ifdef CONFIG_ARCH_TEGRA_132_SOC
2062	{
2063		.compatible = "nvidia,tegra132-soctherm",
2064		.data = &tegra132_soctherm,
2065	},
2066#endif
2067#ifdef CONFIG_ARCH_TEGRA_210_SOC
2068	{
2069		.compatible = "nvidia,tegra210-soctherm",
2070		.data = &tegra210_soctherm,
2071	},
2072#endif
2073	{ },
2074};
2075MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2076
2077static int tegra_soctherm_probe(struct platform_device *pdev)
2078{
2079	const struct of_device_id *match;
2080	struct tegra_soctherm *tegra;
2081	struct thermal_zone_device *z;
2082	struct tsensor_shared_calib shared_calib;
2083	struct tegra_soctherm_soc *soc;
2084	unsigned int i;
2085	int err;
2086
2087	match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2088	if (!match)
2089		return -ENODEV;
2090
2091	soc = (struct tegra_soctherm_soc *)match->data;
2092	if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2093		return -EINVAL;
2094
2095	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2096	if (!tegra)
2097		return -ENOMEM;
2098
2099	mutex_init(&tegra->thermctl_lock);
2100	dev_set_drvdata(&pdev->dev, tegra);
2101
2102	tegra->soc = soc;
2103
2104	tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg");
2105	if (IS_ERR(tegra->regs)) {
2106		dev_err(&pdev->dev, "can't get soctherm registers");
2107		return PTR_ERR(tegra->regs);
2108	}
2109
2110	if (!tegra->soc->use_ccroc) {
2111		tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg");
2112		if (IS_ERR(tegra->clk_regs)) {
2113			dev_err(&pdev->dev, "can't get car clk registers");
2114			return PTR_ERR(tegra->clk_regs);
2115		}
2116	} else {
2117		tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg");
2118		if (IS_ERR(tegra->ccroc_regs)) {
2119			dev_err(&pdev->dev, "can't get ccroc registers");
2120			return PTR_ERR(tegra->ccroc_regs);
2121		}
2122	}
2123
2124	tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2125	if (IS_ERR(tegra->reset)) {
2126		dev_err(&pdev->dev, "can't get soctherm reset\n");
2127		return PTR_ERR(tegra->reset);
2128	}
2129
2130	tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2131	if (IS_ERR(tegra->clock_tsensor)) {
2132		dev_err(&pdev->dev, "can't get tsensor clock\n");
2133		return PTR_ERR(tegra->clock_tsensor);
2134	}
2135
2136	tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2137	if (IS_ERR(tegra->clock_soctherm)) {
2138		dev_err(&pdev->dev, "can't get soctherm clock\n");
2139		return PTR_ERR(tegra->clock_soctherm);
2140	}
2141
2142	tegra->calib = devm_kcalloc(&pdev->dev,
2143				    soc->num_tsensors, sizeof(u32),
2144				    GFP_KERNEL);
2145	if (!tegra->calib)
2146		return -ENOMEM;
2147
2148	/* calculate shared calibration data */
2149	err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2150	if (err)
2151		return err;
2152
2153	/* calculate tsensor calibration data */
2154	for (i = 0; i < soc->num_tsensors; ++i) {
2155		err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2156					       &shared_calib,
2157					       &tegra->calib[i]);
2158		if (err)
2159			return err;
2160	}
2161
2162	tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2163					   soc->num_ttgs, sizeof(z),
2164					   GFP_KERNEL);
2165	if (!tegra->thermctl_tzs)
2166		return -ENOMEM;
2167
2168	err = soctherm_clk_enable(pdev, true);
2169	if (err)
2170		return err;
2171
2172	soctherm_thermtrips_parse(pdev);
2173
2174	soctherm_init_hw_throt_cdev(pdev);
2175
2176	soctherm_init(pdev);
2177
2178	for (i = 0; i < soc->num_ttgs; ++i) {
2179		struct tegra_thermctl_zone *zone =
2180			devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2181		if (!zone) {
2182			err = -ENOMEM;
2183			goto disable_clocks;
2184		}
2185
2186		zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2187		zone->dev = &pdev->dev;
2188		zone->sg = soc->ttgs[i];
2189		zone->ts = tegra;
2190
2191		z = devm_thermal_of_zone_register(&pdev->dev,
2192						  soc->ttgs[i]->id, zone,
2193						  &tegra_of_thermal_ops);
2194		if (IS_ERR(z)) {
2195			err = PTR_ERR(z);
2196			dev_err(&pdev->dev, "failed to register sensor: %d\n",
2197				err);
2198			goto disable_clocks;
2199		}
2200
2201		zone->tz = z;
2202		tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2203
2204		/* Configure hw trip points */
2205		err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2206		if (err)
2207			goto disable_clocks;
2208	}
2209
2210	err = soctherm_interrupts_init(pdev, tegra);
2211
2212	soctherm_debug_init(pdev);
2213
2214	return 0;
2215
2216disable_clocks:
2217	soctherm_clk_enable(pdev, false);
2218
2219	return err;
2220}
2221
2222static int tegra_soctherm_remove(struct platform_device *pdev)
2223{
2224	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2225
2226	debugfs_remove_recursive(tegra->debugfs_dir);
2227
2228	soctherm_clk_enable(pdev, false);
2229
2230	return 0;
2231}
2232
2233static int __maybe_unused soctherm_suspend(struct device *dev)
2234{
2235	struct platform_device *pdev = to_platform_device(dev);
2236
2237	soctherm_clk_enable(pdev, false);
2238
2239	return 0;
2240}
2241
2242static int __maybe_unused soctherm_resume(struct device *dev)
2243{
2244	struct platform_device *pdev = to_platform_device(dev);
2245	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2246	struct tegra_soctherm_soc *soc = tegra->soc;
2247	int err, i;
2248
2249	err = soctherm_clk_enable(pdev, true);
2250	if (err) {
2251		dev_err(&pdev->dev,
2252			"Resume failed: enable clocks failed\n");
2253		return err;
2254	}
2255
2256	soctherm_init(pdev);
2257
2258	for (i = 0; i < soc->num_ttgs; ++i) {
2259		struct thermal_zone_device *tz;
2260
2261		tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2262		err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2263		if (err) {
2264			dev_err(&pdev->dev,
2265				"Resume failed: set hwtrips failed\n");
2266			return err;
2267		}
2268	}
2269
2270	return 0;
2271}
2272
2273static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2274
2275static struct platform_driver tegra_soctherm_driver = {
2276	.probe = tegra_soctherm_probe,
2277	.remove = tegra_soctherm_remove,
2278	.driver = {
2279		.name = "tegra_soctherm",
2280		.pm = &tegra_soctherm_pm,
2281		.of_match_table = tegra_soctherm_of_match,
2282	},
2283};
2284module_platform_driver(tegra_soctherm_driver);
2285
2286MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
2287MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2288MODULE_LICENSE("GPL v2");
2289