1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2023 MediaTek Inc.
4 * Author: Balsam CHIHI <bchihi@baylibre.com>
5 */
6
7#include <linux/clk.h>
8#include <linux/clk-provider.h>
9#include <linux/delay.h>
10#include <linux/debugfs.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/iopoll.h>
14#include <linux/kernel.h>
15#include <linux/nvmem-consumer.h>
16#include <linux/of.h>
17#include <linux/platform_device.h>
18#include <linux/reset.h>
19#include <linux/thermal.h>
20#include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21
22#include "../thermal_hwmon.h"
23
24#define LVTS_MONCTL0(__base)	(__base + 0x0000)
25#define LVTS_MONCTL1(__base)	(__base + 0x0004)
26#define LVTS_MONCTL2(__base)	(__base + 0x0008)
27#define LVTS_MONINT(__base)		(__base + 0x000C)
28#define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29#define LVTS_MONIDET0(__base)	(__base + 0x0014)
30#define LVTS_MONIDET1(__base)	(__base + 0x0018)
31#define LVTS_MONIDET2(__base)	(__base + 0x001C)
32#define LVTS_MONIDET3(__base)	(__base + 0x0020)
33#define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34#define LVTS_HTHRE(__base)		(__base + 0x0028)
35#define LVTS_OFFSETH(__base)	(__base + 0x0030)
36#define LVTS_OFFSETL(__base)	(__base + 0x0034)
37#define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38#define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39#define LVTS_TSSEL(__base)		(__base + 0x0040)
40#define LVTS_CALSCALE(__base)	(__base + 0x0048)
41#define LVTS_ID(__base)			(__base + 0x004C)
42#define LVTS_CONFIG(__base)		(__base + 0x0050)
43#define LVTS_EDATA00(__base)	(__base + 0x0054)
44#define LVTS_EDATA01(__base)	(__base + 0x0058)
45#define LVTS_EDATA02(__base)	(__base + 0x005C)
46#define LVTS_EDATA03(__base)	(__base + 0x0060)
47#define LVTS_MSR0(__base)		(__base + 0x0090)
48#define LVTS_MSR1(__base)		(__base + 0x0094)
49#define LVTS_MSR2(__base)		(__base + 0x0098)
50#define LVTS_MSR3(__base)		(__base + 0x009C)
51#define LVTS_IMMD0(__base)		(__base + 0x00A0)
52#define LVTS_IMMD1(__base)		(__base + 0x00A4)
53#define LVTS_IMMD2(__base)		(__base + 0x00A8)
54#define LVTS_IMMD3(__base)		(__base + 0x00AC)
55#define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56#define LVTS_PROTTA(__base)		(__base + 0x00C4)
57#define LVTS_PROTTB(__base)		(__base + 0x00C8)
58#define LVTS_PROTTC(__base)		(__base + 0x00CC)
59#define LVTS_CLKEN(__base)		(__base + 0x00E4)
60
61#define LVTS_PERIOD_UNIT			0
62#define LVTS_GROUP_INTERVAL			0
63#define LVTS_FILTER_INTERVAL		0
64#define LVTS_SENSOR_INTERVAL		0
65#define LVTS_HW_FILTER				0x0
66#define LVTS_TSSEL_CONF				0x13121110
67#define LVTS_CALSCALE_CONF			0x300
68#define LVTS_MONINT_CONF			0x8300318C
69
70#define LVTS_MONINT_OFFSET_SENSOR0		0xC
71#define LVTS_MONINT_OFFSET_SENSOR1		0x180
72#define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73#define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74
75#define LVTS_INT_SENSOR0			0x0009001F
76#define LVTS_INT_SENSOR1			0x001203E0
77#define LVTS_INT_SENSOR2			0x00247C00
78#define LVTS_INT_SENSOR3			0x1FC00000
79
80#define LVTS_SENSOR_MAX				4
81#define LVTS_GOLDEN_TEMP_MAX		62
82#define LVTS_GOLDEN_TEMP_DEFAULT	50
83#define LVTS_COEFF_A				-250460
84#define LVTS_COEFF_B				250460
85
86#define LVTS_MSR_IMMEDIATE_MODE		0
87#define LVTS_MSR_FILTERED_MODE		1
88
89#define LVTS_MSR_READ_TIMEOUT_US	400
90#define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
91
92#define LVTS_HW_SHUTDOWN_MT8195		105000
93
94#define LVTS_MINIMUM_THRESHOLD		20000
95
96static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
97static int coeff_b = LVTS_COEFF_B;
98
99struct lvts_sensor_data {
100	int dt_id;
101};
102
103struct lvts_ctrl_data {
104	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
105	int cal_offset[LVTS_SENSOR_MAX];
106	int hw_tshut_temp;
107	int num_lvts_sensor;
108	int offset;
109	int mode;
110};
111
112struct lvts_data {
113	const struct lvts_ctrl_data *lvts_ctrl;
114	int num_lvts_ctrl;
115};
116
117struct lvts_sensor {
118	struct thermal_zone_device *tz;
119	void __iomem *msr;
120	void __iomem *base;
121	int id;
122	int dt_id;
123	int low_thresh;
124	int high_thresh;
125};
126
127struct lvts_ctrl {
128	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
129	u32 calibration[LVTS_SENSOR_MAX];
130	u32 hw_tshut_raw_temp;
131	int num_lvts_sensor;
132	int mode;
133	void __iomem *base;
134	int low_thresh;
135	int high_thresh;
136};
137
138struct lvts_domain {
139	struct lvts_ctrl *lvts_ctrl;
140	struct reset_control *reset;
141	struct clk *clk;
142	int num_lvts_ctrl;
143	void __iomem *base;
144	size_t calib_len;
145	u8 *calib;
146#ifdef CONFIG_DEBUG_FS
147	struct dentry *dom_dentry;
148#endif
149};
150
151#ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
152
153#define LVTS_DEBUG_FS_REGS(__reg)		\
154{						\
155	.name = __stringify(__reg),		\
156	.offset = __reg(0),			\
157}
158
159static const struct debugfs_reg32 lvts_regs[] = {
160	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
161	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
162	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
163	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
164	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
165	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
166	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
167	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
168	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
169	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
170	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
171	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
172	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
173	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
174	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
175	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
176	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
177	LVTS_DEBUG_FS_REGS(LVTS_ID),
178	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
179	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
180	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
181	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
182	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
183	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
184	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
185	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
186	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
187	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
188	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
189	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
190	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
191	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
192	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
193	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
194	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
195	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
196};
197
198static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
199{
200	struct debugfs_regset32 *regset;
201	struct lvts_ctrl *lvts_ctrl;
202	struct dentry *dentry;
203	char name[64];
204	int i;
205
206	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
207	if (IS_ERR(lvts_td->dom_dentry))
208		return 0;
209
210	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
211
212		lvts_ctrl = &lvts_td->lvts_ctrl[i];
213
214		sprintf(name, "controller%d", i);
215		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
216		if (!dentry)
217			continue;
218
219		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
220		if (!regset)
221			continue;
222
223		regset->base = lvts_ctrl->base;
224		regset->regs = lvts_regs;
225		regset->nregs = ARRAY_SIZE(lvts_regs);
226
227		debugfs_create_regset32("registers", 0400, dentry, regset);
228	}
229
230	return 0;
231}
232
233static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
234{
235	debugfs_remove_recursive(lvts_td->dom_dentry);
236}
237
238#else
239
240static inline int lvts_debugfs_init(struct device *dev,
241				    struct lvts_domain *lvts_td)
242{
243	return 0;
244}
245
246static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
247
248#endif
249
250static int lvts_raw_to_temp(u32 raw_temp)
251{
252	int temperature;
253
254	temperature = ((s64)(raw_temp & 0xFFFF) * LVTS_COEFF_A) >> 14;
255	temperature += coeff_b;
256
257	return temperature;
258}
259
260static u32 lvts_temp_to_raw(int temperature)
261{
262	u32 raw_temp = ((s64)(coeff_b - temperature)) << 14;
263
264	raw_temp = div_s64(raw_temp, -LVTS_COEFF_A);
265
266	return raw_temp;
267}
268
269static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
270{
271	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
272	void __iomem *msr = lvts_sensor->msr;
273	u32 value;
274	int rc;
275
276	/*
277	 * Measurement registers:
278	 *
279	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
280	 *
281	 * Bits:
282	 *
283	 * 32-17: Unused
284	 * 16	: Valid temperature
285	 * 15-0	: Raw temperature
286	 */
287	rc = readl_poll_timeout(msr, value, value & BIT(16),
288				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
289
290	/*
291	 * As the thermal zone temperature will read before the
292	 * hardware sensor is fully initialized, we have to check the
293	 * validity of the temperature returned when reading the
294	 * measurement register. The thermal controller will set the
295	 * valid bit temperature only when it is totally initialized.
296	 *
297	 * Otherwise, we may end up with garbage values out of the
298	 * functionning temperature and directly jump to a system
299	 * shutdown.
300	 */
301	if (rc)
302		return -EAGAIN;
303
304	*temp = lvts_raw_to_temp(value & 0xFFFF);
305
306	return 0;
307}
308
309static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
310{
311	u32 masks[] = {
312		LVTS_MONINT_OFFSET_SENSOR0,
313		LVTS_MONINT_OFFSET_SENSOR1,
314		LVTS_MONINT_OFFSET_SENSOR2,
315		LVTS_MONINT_OFFSET_SENSOR3,
316	};
317	u32 value = 0;
318	int i;
319
320	value = readl(LVTS_MONINT(lvts_ctrl->base));
321
322	for (i = 0; i < ARRAY_SIZE(masks); i++) {
323		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
324		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
325			value |= masks[i];
326		else
327			value &= ~masks[i];
328	}
329
330	writel(value, LVTS_MONINT(lvts_ctrl->base));
331}
332
333static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
334{
335	int i;
336
337	if (high > lvts_ctrl->high_thresh)
338		return true;
339
340	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++)
341		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
342		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
343			return false;
344
345	return true;
346}
347
348static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
349{
350	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
351	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl, sensors[lvts_sensor->id]);
352	void __iomem *base = lvts_sensor->base;
353	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD);
354	u32 raw_high = lvts_temp_to_raw(high);
355	bool should_update_thresh;
356
357	lvts_sensor->low_thresh = low;
358	lvts_sensor->high_thresh = high;
359
360	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
361	if (should_update_thresh) {
362		lvts_ctrl->high_thresh = high;
363		lvts_ctrl->low_thresh = low;
364	}
365	lvts_update_irq_mask(lvts_ctrl);
366
367	if (!should_update_thresh)
368		return 0;
369
370	/*
371	 * Low offset temperature threshold
372	 *
373	 * LVTS_OFFSETL
374	 *
375	 * Bits:
376	 *
377	 * 14-0 : Raw temperature for threshold
378	 */
379	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
380		 thermal_zone_device_type(tz), low);
381	writel(raw_low, LVTS_OFFSETL(base));
382
383	/*
384	 * High offset temperature threshold
385	 *
386	 * LVTS_OFFSETH
387	 *
388	 * Bits:
389	 *
390	 * 14-0 : Raw temperature for threshold
391	 */
392	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
393		 thermal_zone_device_type(tz), high);
394	writel(raw_high, LVTS_OFFSETH(base));
395
396	return 0;
397}
398
399static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
400{
401	irqreturn_t iret = IRQ_NONE;
402	u32 value;
403	u32 masks[] = {
404		LVTS_INT_SENSOR0,
405		LVTS_INT_SENSOR1,
406		LVTS_INT_SENSOR2,
407		LVTS_INT_SENSOR3
408	};
409	int i;
410
411	/*
412	 * Interrupt monitoring status
413	 *
414	 * LVTS_MONINTST
415	 *
416	 * Bits:
417	 *
418	 * 31 : Interrupt for stage 3
419	 * 30 : Interrupt for stage 2
420	 * 29 : Interrupt for state 1
421	 * 28 : Interrupt using filter on sensor 3
422	 *
423	 * 27 : Interrupt using immediate on sensor 3
424	 * 26 : Interrupt normal to hot on sensor 3
425	 * 25 : Interrupt high offset on sensor 3
426	 * 24 : Interrupt low offset on sensor 3
427	 *
428	 * 23 : Interrupt hot threshold on sensor 3
429	 * 22 : Interrupt cold threshold on sensor 3
430	 * 21 : Interrupt using filter on sensor 2
431	 * 20 : Interrupt using filter on sensor 1
432	 *
433	 * 19 : Interrupt using filter on sensor 0
434	 * 18 : Interrupt using immediate on sensor 2
435	 * 17 : Interrupt using immediate on sensor 1
436	 * 16 : Interrupt using immediate on sensor 0
437	 *
438	 * 15 : Interrupt device access timeout interrupt
439	 * 14 : Interrupt normal to hot on sensor 2
440	 * 13 : Interrupt high offset interrupt on sensor 2
441	 * 12 : Interrupt low offset interrupt on sensor 2
442	 *
443	 * 11 : Interrupt hot threshold on sensor 2
444	 * 10 : Interrupt cold threshold on sensor 2
445	 *  9 : Interrupt normal to hot on sensor 1
446	 *  8 : Interrupt high offset interrupt on sensor 1
447	 *
448	 *  7 : Interrupt low offset interrupt on sensor 1
449	 *  6 : Interrupt hot threshold on sensor 1
450	 *  5 : Interrupt cold threshold on sensor 1
451	 *  4 : Interrupt normal to hot on sensor 0
452	 *
453	 *  3 : Interrupt high offset interrupt on sensor 0
454	 *  2 : Interrupt low offset interrupt on sensor 0
455	 *  1 : Interrupt hot threshold on sensor 0
456	 *  0 : Interrupt cold threshold on sensor 0
457	 *
458	 * We are interested in the sensor(s) responsible of the
459	 * interrupt event. We update the thermal framework with the
460	 * thermal zone associated with the sensor. The framework will
461	 * take care of the rest whatever the kind of interrupt, we
462	 * are only interested in which sensor raised the interrupt.
463	 *
464	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
465	 *                  => 0x1FC00000
466	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
467	 *                  => 0x00247C00
468	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
469	 *                  => 0X001203E0
470	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
471	 *                  => 0x0009001F
472	 */
473	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
474
475	/*
476	 * Let's figure out which sensors raised the interrupt
477	 *
478	 * NOTE: the masks array must be ordered with the index
479	 * corresponding to the sensor id eg. index=0, mask for
480	 * sensor0.
481	 */
482	for (i = 0; i < ARRAY_SIZE(masks); i++) {
483
484		if (!(value & masks[i]))
485			continue;
486
487		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
488					   THERMAL_TRIP_VIOLATED);
489		iret = IRQ_HANDLED;
490	}
491
492	/*
493	 * Write back to clear the interrupt status (W1C)
494	 */
495	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
496
497	return iret;
498}
499
500/*
501 * Temperature interrupt handler. Even if the driver supports more
502 * interrupt modes, we use the interrupt when the temperature crosses
503 * the hot threshold the way up and the way down (modulo the
504 * hysteresis).
505 *
506 * Each thermal domain has a couple of interrupts, one for hardware
507 * reset and another one for all the thermal events happening on the
508 * different sensors.
509 *
510 * The interrupt is configured for thermal events when crossing the
511 * hot temperature limit. At each interrupt, we check in every
512 * controller if there is an interrupt pending.
513 */
514static irqreturn_t lvts_irq_handler(int irq, void *data)
515{
516	struct lvts_domain *lvts_td = data;
517	irqreturn_t aux, iret = IRQ_NONE;
518	int i;
519
520	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
521
522		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
523		if (aux != IRQ_HANDLED)
524			continue;
525
526		iret = IRQ_HANDLED;
527	}
528
529	return iret;
530}
531
532static struct thermal_zone_device_ops lvts_ops = {
533	.get_temp = lvts_get_temp,
534	.set_trips = lvts_set_trips,
535};
536
537static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
538					const struct lvts_ctrl_data *lvts_ctrl_data)
539{
540	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
541	void __iomem *msr_regs[] = {
542		LVTS_MSR0(lvts_ctrl->base),
543		LVTS_MSR1(lvts_ctrl->base),
544		LVTS_MSR2(lvts_ctrl->base),
545		LVTS_MSR3(lvts_ctrl->base)
546	};
547
548	void __iomem *imm_regs[] = {
549		LVTS_IMMD0(lvts_ctrl->base),
550		LVTS_IMMD1(lvts_ctrl->base),
551		LVTS_IMMD2(lvts_ctrl->base),
552		LVTS_IMMD3(lvts_ctrl->base)
553	};
554
555	int i;
556
557	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
558
559		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
560
561		/*
562		 * At this point, we don't know which id matches which
563		 * sensor. Let's set arbitrally the id from the index.
564		 */
565		lvts_sensor[i].id = i;
566
567		/*
568		 * The thermal zone registration will set the trip
569		 * point interrupt in the thermal controller
570		 * register. But this one will be reset in the
571		 * initialization after. So we need to post pone the
572		 * thermal zone creation after the controller is
573		 * setup. For this reason, we store the device tree
574		 * node id from the data in the sensor structure
575		 */
576		lvts_sensor[i].dt_id = dt_id;
577
578		/*
579		 * We assign the base address of the thermal
580		 * controller as a back pointer. So it will be
581		 * accessible from the different thermal framework ops
582		 * as we pass the lvts_sensor pointer as thermal zone
583		 * private data.
584		 */
585		lvts_sensor[i].base = lvts_ctrl->base;
586
587		/*
588		 * Each sensor has its own register address to read from.
589		 */
590		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
591			imm_regs[i] : msr_regs[i];
592
593		lvts_sensor[i].low_thresh = INT_MIN;
594		lvts_sensor[i].high_thresh = INT_MIN;
595	};
596
597	lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;
598
599	return 0;
600}
601
602/*
603 * The efuse blob values follows the sensor enumeration per thermal
604 * controller. The decoding of the stream is as follow:
605 *
606 * stream index map for MCU Domain :
607 *
608 * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
609 *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
610 *
611 * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
612 *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
613 *
614 * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
615 *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
616 *
617 * stream index map for AP Domain :
618 *
619 * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
620 *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
621 *
622 * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
623 *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
624 *
625 * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
626 *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
627 *
628 * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
629 *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
630 *
631 * The data description gives the offset of the calibration data in
632 * this bytes stream for each sensor.
633 */
634static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
635					const struct lvts_ctrl_data *lvts_ctrl_data,
636					u8 *efuse_calibration)
637{
638	int i;
639
640	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++)
641		memcpy(&lvts_ctrl->calibration[i],
642		       efuse_calibration + lvts_ctrl_data->cal_offset[i], 2);
643
644	return 0;
645}
646
647/*
648 * The efuse bytes stream can be split into different chunk of
649 * nvmems. This function reads and concatenate those into a single
650 * buffer so it can be read sequentially when initializing the
651 * calibration data.
652 */
653static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
654					const struct lvts_data *lvts_data)
655{
656	struct device_node *np = dev_of_node(dev);
657	struct nvmem_cell *cell;
658	struct property *prop;
659	const char *cell_name;
660
661	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
662		size_t len;
663		u8 *efuse;
664
665		cell = of_nvmem_cell_get(np, cell_name);
666		if (IS_ERR(cell)) {
667			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
668			return PTR_ERR(cell);
669		}
670
671		efuse = nvmem_cell_read(cell, &len);
672
673		nvmem_cell_put(cell);
674
675		if (IS_ERR(efuse)) {
676			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
677			return PTR_ERR(efuse);
678		}
679
680		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
681					       lvts_td->calib_len + len, GFP_KERNEL);
682		if (!lvts_td->calib) {
683			kfree(efuse);
684			return -ENOMEM;
685		}
686
687		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
688
689		lvts_td->calib_len += len;
690
691		kfree(efuse);
692	}
693
694	return 0;
695}
696
697static int lvts_golden_temp_init(struct device *dev, u32 *value)
698{
699	u32 gt;
700
701	gt = (*value) >> 24;
702
703	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
704		golden_temp = gt;
705
706	coeff_b = golden_temp * 500 + LVTS_COEFF_B;
707
708	return 0;
709}
710
711static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
712					const struct lvts_data *lvts_data)
713{
714	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
715	struct lvts_ctrl *lvts_ctrl;
716	int i, ret;
717
718	/*
719	 * Create the calibration bytes stream from efuse data
720	 */
721	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
722	if (ret)
723		return ret;
724
725	/*
726	 * The golden temp information is contained in the first chunk
727	 * of efuse data.
728	 */
729	ret = lvts_golden_temp_init(dev, (u32 *)lvts_td->calib);
730	if (ret)
731		return ret;
732
733	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
734	if (!lvts_ctrl)
735		return -ENOMEM;
736
737	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
738
739		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
740
741		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
742				       &lvts_data->lvts_ctrl[i]);
743		if (ret)
744			return ret;
745
746		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
747					    &lvts_data->lvts_ctrl[i],
748					    lvts_td->calib);
749		if (ret)
750			return ret;
751
752		/*
753		 * The mode the ctrl will use to read the temperature
754		 * (filtered or immediate)
755		 */
756		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
757
758		/*
759		 * The temperature to raw temperature must be done
760		 * after initializing the calibration.
761		 */
762		lvts_ctrl[i].hw_tshut_raw_temp =
763			lvts_temp_to_raw(lvts_data->lvts_ctrl[i].hw_tshut_temp);
764
765		lvts_ctrl[i].low_thresh = INT_MIN;
766		lvts_ctrl[i].high_thresh = INT_MIN;
767	}
768
769	/*
770	 * We no longer need the efuse bytes stream, let's free it
771	 */
772	devm_kfree(dev, lvts_td->calib);
773
774	lvts_td->lvts_ctrl = lvts_ctrl;
775	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
776
777	return 0;
778}
779
780/*
781 * At this point the configuration register is the only place in the
782 * driver where we write multiple values. Per hardware constraint,
783 * each write in the configuration register must be separated by a
784 * delay of 2 us.
785 */
786static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
787{
788	int i;
789
790	/*
791	 * Configuration register
792	 */
793	for (i = 0; i < nr_cmds; i++) {
794		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
795		usleep_range(2, 4);
796	}
797}
798
799static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
800{
801	/*
802	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
803	 *
804	 * Bits:
805	 *
806	 * 19-18 : Sensor to base the protection on
807	 * 17-16 : Strategy:
808	 *         00 : Average of 4 sensors
809	 *         01 : Max of 4 sensors
810	 *         10 : Selected sensor with bits 19-18
811	 *         11 : Reserved
812	 */
813	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
814
815	/*
816	 * LVTS_PROTTA : Stage 1 temperature threshold
817	 * LVTS_PROTTB : Stage 2 temperature threshold
818	 * LVTS_PROTTC : Stage 3 temperature threshold
819	 *
820	 * Bits:
821	 *
822	 * 14-0: Raw temperature threshold
823	 *
824	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
825	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
826	 */
827	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
828
829	/*
830	 * LVTS_MONINT : Interrupt configuration register
831	 *
832	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
833	 * register, except we set the bits to enable the interrupt.
834	 */
835	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
836
837	return 0;
838}
839
840static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
841{
842	int ret;
843
844	ret = reset_control_assert(reset);
845	if (ret)
846		return ret;
847
848	return reset_control_deassert(reset);
849}
850
851/*
852 * Enable or disable the clocks of a specified thermal controller
853 */
854static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
855{
856	/*
857	 * LVTS_CLKEN : Internal LVTS clock
858	 *
859	 * Bits:
860	 *
861	 * 0 : enable / disable clock
862	 */
863	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
864
865	return 0;
866}
867
868static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
869{
870	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
871
872	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
873
874	/*
875	 * LVTS_ID : Get ID and status of the thermal controller
876	 *
877	 * Bits:
878	 *
879	 * 0-5	: thermal controller id
880	 *   7	: thermal controller connection is valid
881	 */
882	id = readl(LVTS_ID(lvts_ctrl->base));
883	if (!(id & BIT(7)))
884		return -EIO;
885
886	return 0;
887}
888
889static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
890{
891	/*
892	 * Write device mask: 0xC1030000
893	 */
894	u32 cmds[] = {
895		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
896		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
897		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
898		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
899	};
900
901	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
902
903	return 0;
904}
905
906static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
907{
908	int i;
909	void __iomem *lvts_edata[] = {
910		LVTS_EDATA00(lvts_ctrl->base),
911		LVTS_EDATA01(lvts_ctrl->base),
912		LVTS_EDATA02(lvts_ctrl->base),
913		LVTS_EDATA03(lvts_ctrl->base)
914	};
915
916	/*
917	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
918	 *
919	 * Bits:
920	 *
921	 * 20-0 : Efuse value for normalization data
922	 */
923	for (i = 0; i < LVTS_SENSOR_MAX; i++)
924		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
925
926	return 0;
927}
928
929static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
930{
931	u32 value;
932
933	/*
934	 * LVTS_TSSEL : Sensing point index numbering
935	 *
936	 * Bits:
937	 *
938	 * 31-24: ADC Sense 3
939	 * 23-16: ADC Sense 2
940	 * 15-8	: ADC Sense 1
941	 * 7-0	: ADC Sense 0
942	 */
943	value = LVTS_TSSEL_CONF;
944	writel(value, LVTS_TSSEL(lvts_ctrl->base));
945
946	/*
947	 * LVTS_CALSCALE : ADC voltage round
948	 */
949	value = 0x300;
950	value = LVTS_CALSCALE_CONF;
951
952	/*
953	 * LVTS_MSRCTL0 : Sensor filtering strategy
954	 *
955	 * Filters:
956	 *
957	 * 000 : One sample
958	 * 001 : Avg 2 samples
959	 * 010 : 4 samples, drop min and max, avg 2 samples
960	 * 011 : 6 samples, drop min and max, avg 4 samples
961	 * 100 : 10 samples, drop min and max, avg 8 samples
962	 * 101 : 18 samples, drop min and max, avg 16 samples
963	 *
964	 * Bits:
965	 *
966	 * 0-2  : Sensor0 filter
967	 * 3-5  : Sensor1 filter
968	 * 6-8  : Sensor2 filter
969	 * 9-11 : Sensor3 filter
970	 */
971	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
972			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
973	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
974
975	/*
976	 * LVTS_MONCTL1 : Period unit and group interval configuration
977	 *
978	 * The clock source of LVTS thermal controller is 26MHz.
979	 *
980	 * The period unit is a time base for all the interval delays
981	 * specified in the registers. By default we use 12. The time
982	 * conversion is done by multiplying by 256 and 1/26.10^6
983	 *
984	 * An interval delay multiplied by the period unit gives the
985	 * duration in seconds.
986	 *
987	 * - Filter interval delay is a delay between two samples of
988	 * the same sensor.
989	 *
990	 * - Sensor interval delay is a delay between two samples of
991	 * different sensors.
992	 *
993	 * - Group interval delay is a delay between different rounds.
994	 *
995	 * For example:
996	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
997	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
998	 *     and then
999	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
1000	 *     Filter interval delay = 1 * Period unit = 118.149us
1001	 *     Sensor interval delay = 2 * Period unit = 236.298us
1002	 *     Group interval delay = 1 * Period unit = 118.149us
1003	 *
1004	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1005	 *        <--> Filter interval delay
1006	 *                       <--> Sensor interval delay
1007	 *                                             <--> Group interval delay
1008	 * Bits:
1009	 *      29 - 20 : Group interval
1010	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1011	 *                or an interrupt everytime the hot threshold is crossed (0)
1012	 *       9 - 0  : Period unit
1013	 *
1014	 */
1015	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1016	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1017
1018	/*
1019	 * LVTS_MONCTL2 : Filtering and sensor interval
1020	 *
1021	 * Bits:
1022	 *
1023	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1024	 *              the same sensor, filter interval
1025	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1026	 *
1027	 */
1028	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1029	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1030
1031	return lvts_irq_init(lvts_ctrl);
1032}
1033
1034static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1035{
1036	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1037	struct thermal_zone_device *tz;
1038	u32 sensor_map = 0;
1039	int i;
1040	/*
1041	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1042	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1043	 */
1044	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1045	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1046
1047	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1048			     sensor_imm_bitmap : sensor_filt_bitmap;
1049
1050	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {
1051
1052		int dt_id = lvts_sensors[i].dt_id;
1053
1054		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1055						   &lvts_ops);
1056		if (IS_ERR(tz)) {
1057			/*
1058			 * This thermal zone is not described in the
1059			 * device tree. It is not an error from the
1060			 * thermal OF code POV, we just continue.
1061			 */
1062			if (PTR_ERR(tz) == -ENODEV)
1063				continue;
1064
1065			return PTR_ERR(tz);
1066		}
1067
1068		devm_thermal_add_hwmon_sysfs(dev, tz);
1069
1070		/*
1071		 * The thermal zone pointer will be needed in the
1072		 * interrupt handler, we store it in the sensor
1073		 * structure. The thermal domain structure will be
1074		 * passed to the interrupt handler private data as the
1075		 * interrupt is shared for all the controller
1076		 * belonging to the thermal domain.
1077		 */
1078		lvts_sensors[i].tz = tz;
1079
1080		/*
1081		 * This sensor was correctly associated with a thermal
1082		 * zone, let's set the corresponding bit in the sensor
1083		 * map, so we can enable the temperature monitoring in
1084		 * the hardware thermal controller.
1085		 */
1086		sensor_map |= sensor_bitmap[i];
1087	}
1088
1089	/*
1090	 * The initialization of the thermal zones give us
1091	 * which sensor point to enable. If any thermal zone
1092	 * was not described in the device tree, it won't be
1093	 * enabled here in the sensor map.
1094	 */
1095	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1096		/*
1097		 * LVTS_MSRCTL1 : Measurement control
1098		 *
1099		 * Bits:
1100		 *
1101		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1102		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1103		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1104		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1105		 *
1106		 * That configuration will ignore the filtering and the delays
1107		 * introduced in MONCTL1 and MONCTL2
1108		 */
1109		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1110	} else {
1111		/*
1112		 * Bits:
1113		 *      9: Single point access flow
1114		 *    0-3: Enable sensing point 0-3
1115		 */
1116		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1117	}
1118
1119	return 0;
1120}
1121
1122static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1123					const struct lvts_data *lvts_data)
1124{
1125	struct lvts_ctrl *lvts_ctrl;
1126	int i, ret;
1127
1128	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1129	if (ret)
1130		return ret;
1131
1132	ret = lvts_domain_reset(dev, lvts_td->reset);
1133	if (ret) {
1134		dev_dbg(dev, "Failed to reset domain");
1135		return ret;
1136	}
1137
1138	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1139
1140		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1141
1142		/*
1143		 * Initialization steps:
1144		 *
1145		 * - Enable the clock
1146		 * - Connect to the LVTS
1147		 * - Initialize the LVTS
1148		 * - Prepare the calibration data
1149		 * - Select monitored sensors
1150		 * [ Configure sampling ]
1151		 * [ Configure the interrupt ]
1152		 * - Start measurement
1153		 */
1154		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1155		if (ret) {
1156			dev_dbg(dev, "Failed to enable LVTS clock");
1157			return ret;
1158		}
1159
1160		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1161		if (ret) {
1162			dev_dbg(dev, "Failed to connect to LVTS controller");
1163			return ret;
1164		}
1165
1166		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1167		if (ret) {
1168			dev_dbg(dev, "Failed to initialize controller");
1169			return ret;
1170		}
1171
1172		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1173		if (ret) {
1174			dev_dbg(dev, "Failed to calibrate controller");
1175			return ret;
1176		}
1177
1178		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1179		if (ret) {
1180			dev_dbg(dev, "Failed to configure controller");
1181			return ret;
1182		}
1183
1184		ret = lvts_ctrl_start(dev, lvts_ctrl);
1185		if (ret) {
1186			dev_dbg(dev, "Failed to start controller");
1187			return ret;
1188		}
1189	}
1190
1191	return lvts_debugfs_init(dev, lvts_td);
1192}
1193
1194static int lvts_probe(struct platform_device *pdev)
1195{
1196	const struct lvts_data *lvts_data;
1197	struct lvts_domain *lvts_td;
1198	struct device *dev = &pdev->dev;
1199	struct resource *res;
1200	int irq, ret;
1201
1202	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1203	if (!lvts_td)
1204		return -ENOMEM;
1205
1206	lvts_data = of_device_get_match_data(dev);
1207
1208	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1209	if (IS_ERR(lvts_td->clk))
1210		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1211
1212	res = platform_get_mem_or_io(pdev, 0);
1213	if (!res)
1214		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1215
1216	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1217	if (IS_ERR(lvts_td->base))
1218		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1219
1220	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1221	if (IS_ERR(lvts_td->reset))
1222		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1223
1224	irq = platform_get_irq(pdev, 0);
1225	if (irq < 0)
1226		return irq;
1227
1228	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1229	if (ret)
1230		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1231
1232	/*
1233	 * At this point the LVTS is initialized and enabled. We can
1234	 * safely enable the interrupt.
1235	 */
1236	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1237					IRQF_ONESHOT, dev_name(dev), lvts_td);
1238	if (ret)
1239		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1240
1241	platform_set_drvdata(pdev, lvts_td);
1242
1243	return 0;
1244}
1245
1246static int lvts_remove(struct platform_device *pdev)
1247{
1248	struct lvts_domain *lvts_td;
1249	int i;
1250
1251	lvts_td = platform_get_drvdata(pdev);
1252
1253	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1254		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1255
1256	lvts_debugfs_exit(lvts_td);
1257
1258	return 0;
1259}
1260
1261static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1262	{
1263		.cal_offset = { 0x04, 0x07 },
1264		.lvts_sensor = {
1265			{ .dt_id = MT8195_MCU_BIG_CPU0 },
1266			{ .dt_id = MT8195_MCU_BIG_CPU1 }
1267		},
1268		.num_lvts_sensor = 2,
1269		.offset = 0x0,
1270		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1271	},
1272	{
1273		.cal_offset = { 0x0d, 0x10 },
1274		.lvts_sensor = {
1275			{ .dt_id = MT8195_MCU_BIG_CPU2 },
1276			{ .dt_id = MT8195_MCU_BIG_CPU3 }
1277		},
1278		.num_lvts_sensor = 2,
1279		.offset = 0x100,
1280		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1281	},
1282	{
1283		.cal_offset = { 0x16, 0x19, 0x1c, 0x1f },
1284		.lvts_sensor = {
1285			{ .dt_id = MT8195_MCU_LITTLE_CPU0 },
1286			{ .dt_id = MT8195_MCU_LITTLE_CPU1 },
1287			{ .dt_id = MT8195_MCU_LITTLE_CPU2 },
1288			{ .dt_id = MT8195_MCU_LITTLE_CPU3 }
1289		},
1290		.num_lvts_sensor = 4,
1291		.offset = 0x200,
1292		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1293	}
1294};
1295
1296static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1297		{
1298		.cal_offset = { 0x25, 0x28 },
1299		.lvts_sensor = {
1300			{ .dt_id = MT8195_AP_VPU0 },
1301			{ .dt_id = MT8195_AP_VPU1 }
1302		},
1303		.num_lvts_sensor = 2,
1304		.offset = 0x0,
1305		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1306	},
1307	{
1308		.cal_offset = { 0x2e, 0x31 },
1309		.lvts_sensor = {
1310			{ .dt_id = MT8195_AP_GPU0 },
1311			{ .dt_id = MT8195_AP_GPU1 }
1312		},
1313		.num_lvts_sensor = 2,
1314		.offset = 0x100,
1315		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1316	},
1317	{
1318		.cal_offset = { 0x37, 0x3a, 0x3d },
1319		.lvts_sensor = {
1320			{ .dt_id = MT8195_AP_VDEC },
1321			{ .dt_id = MT8195_AP_IMG },
1322			{ .dt_id = MT8195_AP_INFRA },
1323		},
1324		.num_lvts_sensor = 3,
1325		.offset = 0x200,
1326		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1327	},
1328	{
1329		.cal_offset = { 0x43, 0x46 },
1330		.lvts_sensor = {
1331			{ .dt_id = MT8195_AP_CAM0 },
1332			{ .dt_id = MT8195_AP_CAM1 }
1333		},
1334		.num_lvts_sensor = 2,
1335		.offset = 0x300,
1336		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1337	}
1338};
1339
1340static const struct lvts_data mt8195_lvts_mcu_data = {
1341	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1342	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1343};
1344
1345static const struct lvts_data mt8195_lvts_ap_data = {
1346	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1347	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1348};
1349
1350static const struct of_device_id lvts_of_match[] = {
1351	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1352	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1353	{},
1354};
1355MODULE_DEVICE_TABLE(of, lvts_of_match);
1356
1357static struct platform_driver lvts_driver = {
1358	.probe = lvts_probe,
1359	.remove = lvts_remove,
1360	.driver = {
1361		.name = "mtk-lvts-thermal",
1362		.of_match_table = lvts_of_match,
1363	},
1364};
1365module_platform_driver(lvts_driver);
1366
1367MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1368MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1369MODULE_LICENSE("GPL");
1370