1// SPDX-License-Identifier: GPL-2.0
2/*
3 * A power allocator to manage temperature
4 *
5 * Copyright (C) 2014 ARM Ltd.
6 *
7 */
8
9#define pr_fmt(fmt) "Power allocator: " fmt
10
11#include <linux/slab.h>
12#include <linux/thermal.h>
13
14#define CREATE_TRACE_POINTS
15#include "thermal_trace_ipa.h"
16
17#include "thermal_core.h"
18
19#define INVALID_TRIP -1
20
21#define FRAC_BITS 10
22#define int_to_frac(x) ((x) << FRAC_BITS)
23#define frac_to_int(x) ((x) >> FRAC_BITS)
24
25/**
26 * mul_frac() - multiply two fixed-point numbers
27 * @x:	first multiplicand
28 * @y:	second multiplicand
29 *
30 * Return: the result of multiplying two fixed-point numbers.  The
31 * result is also a fixed-point number.
32 */
33static inline s64 mul_frac(s64 x, s64 y)
34{
35	return (x * y) >> FRAC_BITS;
36}
37
38/**
39 * div_frac() - divide two fixed-point numbers
40 * @x:	the dividend
41 * @y:	the divisor
42 *
43 * Return: the result of dividing two fixed-point numbers.  The
44 * result is also a fixed-point number.
45 */
46static inline s64 div_frac(s64 x, s64 y)
47{
48	return div_s64(x << FRAC_BITS, y);
49}
50
51/**
52 * struct power_allocator_params - parameters for the power allocator governor
53 * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
54 *			it needs to be freed on unbind
55 * @err_integral:	accumulated error in the PID controller.
56 * @prev_err:	error in the previous iteration of the PID controller.
57 *		Used to calculate the derivative term.
58 * @trip_switch_on:	first passive trip point of the thermal zone.  The
59 *			governor switches on when this trip point is crossed.
60 *			If the thermal zone only has one passive trip point,
61 *			@trip_switch_on should be INVALID_TRIP.
62 * @trip_max_desired_temperature:	last passive trip point of the thermal
63 *					zone.  The temperature we are
64 *					controlling for.
65 * @sustainable_power:	Sustainable power (heat) that this thermal zone can
66 *			dissipate
67 */
68struct power_allocator_params {
69	bool allocated_tzp;
70	s64 err_integral;
71	s32 prev_err;
72	int trip_switch_on;
73	int trip_max_desired_temperature;
74	u32 sustainable_power;
75};
76
77/**
78 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
79 * @tz: thermal zone we are operating in
80 *
81 * For thermal zones that don't provide a sustainable_power in their
82 * thermal_zone_params, estimate one.  Calculate it using the minimum
83 * power of all the cooling devices as that gives a valid value that
84 * can give some degree of functionality.  For optimal performance of
85 * this governor, provide a sustainable_power in the thermal zone's
86 * thermal_zone_params.
87 */
88static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
89{
90	u32 sustainable_power = 0;
91	struct thermal_instance *instance;
92	struct power_allocator_params *params = tz->governor_data;
93	const struct thermal_trip *trip_max_desired_temperature =
94			&tz->trips[params->trip_max_desired_temperature];
95
96	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
97		struct thermal_cooling_device *cdev = instance->cdev;
98		u32 min_power;
99
100		if (instance->trip != trip_max_desired_temperature)
101			continue;
102
103		if (!cdev_is_power_actor(cdev))
104			continue;
105
106		if (cdev->ops->state2power(cdev, instance->upper, &min_power))
107			continue;
108
109		sustainable_power += min_power;
110	}
111
112	return sustainable_power;
113}
114
115/**
116 * estimate_pid_constants() - Estimate the constants for the PID controller
117 * @tz:		thermal zone for which to estimate the constants
118 * @sustainable_power:	sustainable power for the thermal zone
119 * @trip_switch_on:	trip point number for the switch on temperature
120 * @control_temp:	target temperature for the power allocator governor
121 *
122 * This function is used to update the estimation of the PID
123 * controller constants in struct thermal_zone_parameters.
124 */
125static void estimate_pid_constants(struct thermal_zone_device *tz,
126				   u32 sustainable_power, int trip_switch_on,
127				   int control_temp)
128{
129	struct thermal_trip trip;
130	u32 temperature_threshold = control_temp;
131	int ret;
132	s32 k_i;
133
134	ret = __thermal_zone_get_trip(tz, trip_switch_on, &trip);
135	if (!ret)
136		temperature_threshold -= trip.temperature;
137
138	/*
139	 * estimate_pid_constants() tries to find appropriate default
140	 * values for thermal zones that don't provide them. If a
141	 * system integrator has configured a thermal zone with two
142	 * passive trip points at the same temperature, that person
143	 * hasn't put any effort to set up the thermal zone properly
144	 * so just give up.
145	 */
146	if (!temperature_threshold)
147		return;
148
149	tz->tzp->k_po = int_to_frac(sustainable_power) /
150		temperature_threshold;
151
152	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
153		temperature_threshold;
154
155	k_i = tz->tzp->k_pu / 10;
156	tz->tzp->k_i = k_i > 0 ? k_i : 1;
157
158	/*
159	 * The default for k_d and integral_cutoff is 0, so we can
160	 * leave them as they are.
161	 */
162}
163
164/**
165 * get_sustainable_power() - Get the right sustainable power
166 * @tz:		thermal zone for which to estimate the constants
167 * @params:	parameters for the power allocator governor
168 * @control_temp:	target temperature for the power allocator governor
169 *
170 * This function is used for getting the proper sustainable power value based
171 * on variables which might be updated by the user sysfs interface. If that
172 * happen the new value is going to be estimated and updated. It is also used
173 * after thermal zone binding, where the initial values where set to 0.
174 */
175static u32 get_sustainable_power(struct thermal_zone_device *tz,
176				 struct power_allocator_params *params,
177				 int control_temp)
178{
179	u32 sustainable_power;
180
181	if (!tz->tzp->sustainable_power)
182		sustainable_power = estimate_sustainable_power(tz);
183	else
184		sustainable_power = tz->tzp->sustainable_power;
185
186	/* Check if it's init value 0 or there was update via sysfs */
187	if (sustainable_power != params->sustainable_power) {
188		estimate_pid_constants(tz, sustainable_power,
189				       params->trip_switch_on, control_temp);
190
191		/* Do the estimation only once and make available in sysfs */
192		tz->tzp->sustainable_power = sustainable_power;
193		params->sustainable_power = sustainable_power;
194	}
195
196	return sustainable_power;
197}
198
199/**
200 * pid_controller() - PID controller
201 * @tz:	thermal zone we are operating in
202 * @control_temp:	the target temperature in millicelsius
203 * @max_allocatable_power:	maximum allocatable power for this thermal zone
204 *
205 * This PID controller increases the available power budget so that the
206 * temperature of the thermal zone gets as close as possible to
207 * @control_temp and limits the power if it exceeds it.  k_po is the
208 * proportional term when we are overshooting, k_pu is the
209 * proportional term when we are undershooting.  integral_cutoff is a
210 * threshold below which we stop accumulating the error.  The
211 * accumulated error is only valid if the requested power will make
212 * the system warmer.  If the system is mostly idle, there's no point
213 * in accumulating positive error.
214 *
215 * Return: The power budget for the next period.
216 */
217static u32 pid_controller(struct thermal_zone_device *tz,
218			  int control_temp,
219			  u32 max_allocatable_power)
220{
221	s64 p, i, d, power_range;
222	s32 err, max_power_frac;
223	u32 sustainable_power;
224	struct power_allocator_params *params = tz->governor_data;
225
226	max_power_frac = int_to_frac(max_allocatable_power);
227
228	sustainable_power = get_sustainable_power(tz, params, control_temp);
229
230	err = control_temp - tz->temperature;
231	err = int_to_frac(err);
232
233	/* Calculate the proportional term */
234	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
235
236	/*
237	 * Calculate the integral term
238	 *
239	 * if the error is less than cut off allow integration (but
240	 * the integral is limited to max power)
241	 */
242	i = mul_frac(tz->tzp->k_i, params->err_integral);
243
244	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
245		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
246
247		if (abs(i_next) < max_power_frac) {
248			i = i_next;
249			params->err_integral += err;
250		}
251	}
252
253	/*
254	 * Calculate the derivative term
255	 *
256	 * We do err - prev_err, so with a positive k_d, a decreasing
257	 * error (i.e. driving closer to the line) results in less
258	 * power being applied, slowing down the controller)
259	 */
260	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
261	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies));
262	params->prev_err = err;
263
264	power_range = p + i + d;
265
266	/* feed-forward the known sustainable dissipatable power */
267	power_range = sustainable_power + frac_to_int(power_range);
268
269	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
270
271	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
272					  frac_to_int(params->err_integral),
273					  frac_to_int(p), frac_to_int(i),
274					  frac_to_int(d), power_range);
275
276	return power_range;
277}
278
279/**
280 * power_actor_set_power() - limit the maximum power a cooling device consumes
281 * @cdev:	pointer to &thermal_cooling_device
282 * @instance:	thermal instance to update
283 * @power:	the power in milliwatts
284 *
285 * Set the cooling device to consume at most @power milliwatts. The limit is
286 * expected to be a cap at the maximum power consumption.
287 *
288 * Return: 0 on success, -EINVAL if the cooling device does not
289 * implement the power actor API or -E* for other failures.
290 */
291static int
292power_actor_set_power(struct thermal_cooling_device *cdev,
293		      struct thermal_instance *instance, u32 power)
294{
295	unsigned long state;
296	int ret;
297
298	ret = cdev->ops->power2state(cdev, power, &state);
299	if (ret)
300		return ret;
301
302	instance->target = clamp_val(state, instance->lower, instance->upper);
303	mutex_lock(&cdev->lock);
304	__thermal_cdev_update(cdev);
305	mutex_unlock(&cdev->lock);
306
307	return 0;
308}
309
310/**
311 * divvy_up_power() - divvy the allocated power between the actors
312 * @req_power:	each actor's requested power
313 * @max_power:	each actor's maximum available power
314 * @num_actors:	size of the @req_power, @max_power and @granted_power's array
315 * @total_req_power: sum of @req_power
316 * @power_range:	total allocated power
317 * @granted_power:	output array: each actor's granted power
318 * @extra_actor_power:	an appropriately sized array to be used in the
319 *			function as temporary storage of the extra power given
320 *			to the actors
321 *
322 * This function divides the total allocated power (@power_range)
323 * fairly between the actors.  It first tries to give each actor a
324 * share of the @power_range according to how much power it requested
325 * compared to the rest of the actors.  For example, if only one actor
326 * requests power, then it receives all the @power_range.  If
327 * three actors each requests 1mW, each receives a third of the
328 * @power_range.
329 *
330 * If any actor received more than their maximum power, then that
331 * surplus is re-divvied among the actors based on how far they are
332 * from their respective maximums.
333 *
334 * Granted power for each actor is written to @granted_power, which
335 * should've been allocated by the calling function.
336 */
337static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
338			   u32 total_req_power, u32 power_range,
339			   u32 *granted_power, u32 *extra_actor_power)
340{
341	u32 extra_power, capped_extra_power;
342	int i;
343
344	/*
345	 * Prevent division by 0 if none of the actors request power.
346	 */
347	if (!total_req_power)
348		total_req_power = 1;
349
350	capped_extra_power = 0;
351	extra_power = 0;
352	for (i = 0; i < num_actors; i++) {
353		u64 req_range = (u64)req_power[i] * power_range;
354
355		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
356							 total_req_power);
357
358		if (granted_power[i] > max_power[i]) {
359			extra_power += granted_power[i] - max_power[i];
360			granted_power[i] = max_power[i];
361		}
362
363		extra_actor_power[i] = max_power[i] - granted_power[i];
364		capped_extra_power += extra_actor_power[i];
365	}
366
367	if (!extra_power)
368		return;
369
370	/*
371	 * Re-divvy the reclaimed extra among actors based on
372	 * how far they are from the max
373	 */
374	extra_power = min(extra_power, capped_extra_power);
375	if (capped_extra_power > 0)
376		for (i = 0; i < num_actors; i++) {
377			u64 extra_range = (u64)extra_actor_power[i] * extra_power;
378			granted_power[i] += DIV_ROUND_CLOSEST_ULL(extra_range,
379							 capped_extra_power);
380		}
381}
382
383static int allocate_power(struct thermal_zone_device *tz,
384			  int control_temp)
385{
386	struct thermal_instance *instance;
387	struct power_allocator_params *params = tz->governor_data;
388	const struct thermal_trip *trip_max_desired_temperature =
389			&tz->trips[params->trip_max_desired_temperature];
390	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
391	u32 *weighted_req_power;
392	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
393	u32 total_granted_power, power_range;
394	int i, num_actors, total_weight, ret = 0;
395
396	num_actors = 0;
397	total_weight = 0;
398	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
399		if ((instance->trip == trip_max_desired_temperature) &&
400		    cdev_is_power_actor(instance->cdev)) {
401			num_actors++;
402			total_weight += instance->weight;
403		}
404	}
405
406	if (!num_actors)
407		return -ENODEV;
408
409	/*
410	 * We need to allocate five arrays of the same size:
411	 * req_power, max_power, granted_power, extra_actor_power and
412	 * weighted_req_power.  They are going to be needed until this
413	 * function returns.  Allocate them all in one go to simplify
414	 * the allocation and deallocation logic.
415	 */
416	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
417	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
418	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
419	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
420	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
421	if (!req_power)
422		return -ENOMEM;
423
424	max_power = &req_power[num_actors];
425	granted_power = &req_power[2 * num_actors];
426	extra_actor_power = &req_power[3 * num_actors];
427	weighted_req_power = &req_power[4 * num_actors];
428
429	i = 0;
430	total_weighted_req_power = 0;
431	total_req_power = 0;
432	max_allocatable_power = 0;
433
434	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
435		int weight;
436		struct thermal_cooling_device *cdev = instance->cdev;
437
438		if (instance->trip != trip_max_desired_temperature)
439			continue;
440
441		if (!cdev_is_power_actor(cdev))
442			continue;
443
444		if (cdev->ops->get_requested_power(cdev, &req_power[i]))
445			continue;
446
447		if (!total_weight)
448			weight = 1 << FRAC_BITS;
449		else
450			weight = instance->weight;
451
452		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
453
454		if (cdev->ops->state2power(cdev, instance->lower,
455					   &max_power[i]))
456			continue;
457
458		total_req_power += req_power[i];
459		max_allocatable_power += max_power[i];
460		total_weighted_req_power += weighted_req_power[i];
461
462		i++;
463	}
464
465	power_range = pid_controller(tz, control_temp, max_allocatable_power);
466
467	divvy_up_power(weighted_req_power, max_power, num_actors,
468		       total_weighted_req_power, power_range, granted_power,
469		       extra_actor_power);
470
471	total_granted_power = 0;
472	i = 0;
473	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
474		if (instance->trip != trip_max_desired_temperature)
475			continue;
476
477		if (!cdev_is_power_actor(instance->cdev))
478			continue;
479
480		power_actor_set_power(instance->cdev, instance,
481				      granted_power[i]);
482		total_granted_power += granted_power[i];
483
484		i++;
485	}
486
487	trace_thermal_power_allocator(tz, req_power, total_req_power,
488				      granted_power, total_granted_power,
489				      num_actors, power_range,
490				      max_allocatable_power, tz->temperature,
491				      control_temp - tz->temperature);
492
493	kfree(req_power);
494
495	return ret;
496}
497
498/**
499 * get_governor_trips() - get the number of the two trip points that are key for this governor
500 * @tz:	thermal zone to operate on
501 * @params:	pointer to private data for this governor
502 *
503 * The power allocator governor works optimally with two trips points:
504 * a "switch on" trip point and a "maximum desired temperature".  These
505 * are defined as the first and last passive trip points.
506 *
507 * If there is only one trip point, then that's considered to be the
508 * "maximum desired temperature" trip point and the governor is always
509 * on.  If there are no passive or active trip points, then the
510 * governor won't do anything.  In fact, its throttle function
511 * won't be called at all.
512 */
513static void get_governor_trips(struct thermal_zone_device *tz,
514			       struct power_allocator_params *params)
515{
516	int i, last_active, last_passive;
517	bool found_first_passive;
518
519	found_first_passive = false;
520	last_active = INVALID_TRIP;
521	last_passive = INVALID_TRIP;
522
523	for (i = 0; i < tz->num_trips; i++) {
524		struct thermal_trip trip;
525		int ret;
526
527		ret = __thermal_zone_get_trip(tz, i, &trip);
528		if (ret) {
529			dev_warn(&tz->device,
530				 "Failed to get trip point %d type: %d\n", i,
531				 ret);
532			continue;
533		}
534
535		if (trip.type == THERMAL_TRIP_PASSIVE) {
536			if (!found_first_passive) {
537				params->trip_switch_on = i;
538				found_first_passive = true;
539			} else  {
540				last_passive = i;
541			}
542		} else if (trip.type == THERMAL_TRIP_ACTIVE) {
543			last_active = i;
544		} else {
545			break;
546		}
547	}
548
549	if (last_passive != INVALID_TRIP) {
550		params->trip_max_desired_temperature = last_passive;
551	} else if (found_first_passive) {
552		params->trip_max_desired_temperature = params->trip_switch_on;
553		params->trip_switch_on = INVALID_TRIP;
554	} else {
555		params->trip_switch_on = INVALID_TRIP;
556		params->trip_max_desired_temperature = last_active;
557	}
558}
559
560static void reset_pid_controller(struct power_allocator_params *params)
561{
562	params->err_integral = 0;
563	params->prev_err = 0;
564}
565
566static void allow_maximum_power(struct thermal_zone_device *tz, bool update)
567{
568	struct thermal_instance *instance;
569	struct power_allocator_params *params = tz->governor_data;
570	const struct thermal_trip *trip_max_desired_temperature =
571			&tz->trips[params->trip_max_desired_temperature];
572	u32 req_power;
573
574	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
575		struct thermal_cooling_device *cdev = instance->cdev;
576
577		if ((instance->trip != trip_max_desired_temperature) ||
578		    (!cdev_is_power_actor(instance->cdev)))
579			continue;
580
581		instance->target = 0;
582		mutex_lock(&instance->cdev->lock);
583		/*
584		 * Call for updating the cooling devices local stats and avoid
585		 * periods of dozen of seconds when those have not been
586		 * maintained.
587		 */
588		cdev->ops->get_requested_power(cdev, &req_power);
589
590		if (update)
591			__thermal_cdev_update(instance->cdev);
592
593		mutex_unlock(&instance->cdev->lock);
594	}
595}
596
597/**
598 * check_power_actors() - Check all cooling devices and warn when they are
599 *			not power actors
600 * @tz:		thermal zone to operate on
601 *
602 * Check all cooling devices in the @tz and warn every time they are missing
603 * power actor API. The warning should help to investigate the issue, which
604 * could be e.g. lack of Energy Model for a given device.
605 *
606 * Return: 0 on success, -EINVAL if any cooling device does not implement
607 * the power actor API.
608 */
609static int check_power_actors(struct thermal_zone_device *tz)
610{
611	struct thermal_instance *instance;
612	int ret = 0;
613
614	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
615		if (!cdev_is_power_actor(instance->cdev)) {
616			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n",
617				 instance->cdev->type);
618			ret = -EINVAL;
619		}
620	}
621
622	return ret;
623}
624
625/**
626 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
627 * @tz:	thermal zone to bind it to
628 *
629 * Initialize the PID controller parameters and bind it to the thermal
630 * zone.
631 *
632 * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
633 * when there are unsupported cooling devices in the @tz.
634 */
635static int power_allocator_bind(struct thermal_zone_device *tz)
636{
637	int ret;
638	struct power_allocator_params *params;
639	struct thermal_trip trip;
640
641	ret = check_power_actors(tz);
642	if (ret)
643		return ret;
644
645	params = kzalloc(sizeof(*params), GFP_KERNEL);
646	if (!params)
647		return -ENOMEM;
648
649	if (!tz->tzp) {
650		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
651		if (!tz->tzp) {
652			ret = -ENOMEM;
653			goto free_params;
654		}
655
656		params->allocated_tzp = true;
657	}
658
659	if (!tz->tzp->sustainable_power)
660		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
661
662	get_governor_trips(tz, params);
663
664	if (tz->num_trips > 0) {
665		ret = __thermal_zone_get_trip(tz, params->trip_max_desired_temperature,
666					      &trip);
667		if (!ret)
668			estimate_pid_constants(tz, tz->tzp->sustainable_power,
669					       params->trip_switch_on,
670					       trip.temperature);
671	}
672
673	reset_pid_controller(params);
674
675	tz->governor_data = params;
676
677	return 0;
678
679free_params:
680	kfree(params);
681
682	return ret;
683}
684
685static void power_allocator_unbind(struct thermal_zone_device *tz)
686{
687	struct power_allocator_params *params = tz->governor_data;
688
689	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
690
691	if (params->allocated_tzp) {
692		kfree(tz->tzp);
693		tz->tzp = NULL;
694	}
695
696	kfree(tz->governor_data);
697	tz->governor_data = NULL;
698}
699
700static int power_allocator_throttle(struct thermal_zone_device *tz, int trip_id)
701{
702	struct power_allocator_params *params = tz->governor_data;
703	struct thermal_trip trip;
704	int ret;
705	bool update;
706
707	lockdep_assert_held(&tz->lock);
708
709	/*
710	 * We get called for every trip point but we only need to do
711	 * our calculations once
712	 */
713	if (trip_id != params->trip_max_desired_temperature)
714		return 0;
715
716	ret = __thermal_zone_get_trip(tz, params->trip_switch_on, &trip);
717	if (!ret && (tz->temperature < trip.temperature)) {
718		update = tz->passive;
719		tz->passive = 0;
720		reset_pid_controller(params);
721		allow_maximum_power(tz, update);
722		return 0;
723	}
724
725	tz->passive = 1;
726
727	ret = __thermal_zone_get_trip(tz, params->trip_max_desired_temperature, &trip);
728	if (ret) {
729		dev_warn(&tz->device, "Failed to get the maximum desired temperature: %d\n",
730			 ret);
731		return ret;
732	}
733
734	return allocate_power(tz, trip.temperature);
735}
736
737static struct thermal_governor thermal_gov_power_allocator = {
738	.name		= "power_allocator",
739	.bind_to_tz	= power_allocator_bind,
740	.unbind_from_tz	= power_allocator_unbind,
741	.throttle	= power_allocator_throttle,
742};
743THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);
744