1// SPDX-License-Identifier: GPL-2.0
2/*
3 * devfreq_cooling: Thermal cooling device implementation for devices using
4 *                  devfreq
5 *
6 * Copyright (C) 2014-2015 ARM Limited
7 *
8 * TODO:
9 *    - If OPPs are added or removed after devfreq cooling has
10 *      registered, the devfreq cooling won't react to it.
11 */
12
13#include <linux/devfreq.h>
14#include <linux/devfreq_cooling.h>
15#include <linux/energy_model.h>
16#include <linux/export.h>
17#include <linux/slab.h>
18#include <linux/pm_opp.h>
19#include <linux/pm_qos.h>
20#include <linux/thermal.h>
21#include <linux/units.h>
22
23#include "thermal_trace.h"
24
25#define SCALE_ERROR_MITIGATION	100
26
27/**
28 * struct devfreq_cooling_device - Devfreq cooling device
29 *		devfreq_cooling_device registered.
30 * @cdev:	Pointer to associated thermal cooling device.
31 * @cooling_ops: devfreq callbacks to thermal cooling device ops
32 * @devfreq:	Pointer to associated devfreq device.
33 * @cooling_state:	Current cooling state.
34 * @freq_table:	Pointer to a table with the frequencies sorted in descending
35 *		order.  You can index the table by cooling device state
36 * @max_state:	It is the last index, that is, one less than the number of the
37 *		OPPs
38 * @power_ops:	Pointer to devfreq_cooling_power, a more precised model.
39 * @res_util:	Resource utilization scaling factor for the power.
40 *		It is multiplied by 100 to minimize the error. It is used
41 *		for estimation of the power budget instead of using
42 *		'utilization' (which is	'busy_time' / 'total_time').
43 *		The 'res_util' range is from 100 to power * 100	for the
44 *		corresponding 'state'.
45 * @capped_state:	index to cooling state with in dynamic power budget
46 * @req_max_freq:	PM QoS request for limiting the maximum frequency
47 *			of the devfreq device.
48 * @em_pd:		Energy Model for the associated Devfreq device
49 */
50struct devfreq_cooling_device {
51	struct thermal_cooling_device *cdev;
52	struct thermal_cooling_device_ops cooling_ops;
53	struct devfreq *devfreq;
54	unsigned long cooling_state;
55	u32 *freq_table;
56	size_t max_state;
57	struct devfreq_cooling_power *power_ops;
58	u32 res_util;
59	int capped_state;
60	struct dev_pm_qos_request req_max_freq;
61	struct em_perf_domain *em_pd;
62};
63
64static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
65					 unsigned long *state)
66{
67	struct devfreq_cooling_device *dfc = cdev->devdata;
68
69	*state = dfc->max_state;
70
71	return 0;
72}
73
74static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
75					 unsigned long *state)
76{
77	struct devfreq_cooling_device *dfc = cdev->devdata;
78
79	*state = dfc->cooling_state;
80
81	return 0;
82}
83
84static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
85					 unsigned long state)
86{
87	struct devfreq_cooling_device *dfc = cdev->devdata;
88	struct devfreq *df = dfc->devfreq;
89	struct device *dev = df->dev.parent;
90	unsigned long freq;
91	int perf_idx;
92
93	if (state == dfc->cooling_state)
94		return 0;
95
96	dev_dbg(dev, "Setting cooling state %lu\n", state);
97
98	if (state > dfc->max_state)
99		return -EINVAL;
100
101	if (dfc->em_pd) {
102		perf_idx = dfc->max_state - state;
103		freq = dfc->em_pd->table[perf_idx].frequency * 1000;
104	} else {
105		freq = dfc->freq_table[state];
106	}
107
108	dev_pm_qos_update_request(&dfc->req_max_freq,
109				  DIV_ROUND_UP(freq, HZ_PER_KHZ));
110
111	dfc->cooling_state = state;
112
113	return 0;
114}
115
116/**
117 * get_perf_idx() - get the performance index corresponding to a frequency
118 * @em_pd:	Pointer to device's Energy Model
119 * @freq:	frequency in kHz
120 *
121 * Return: the performance index associated with the @freq, or
122 * -EINVAL if it wasn't found.
123 */
124static int get_perf_idx(struct em_perf_domain *em_pd, unsigned long freq)
125{
126	int i;
127
128	for (i = 0; i < em_pd->nr_perf_states; i++) {
129		if (em_pd->table[i].frequency == freq)
130			return i;
131	}
132
133	return -EINVAL;
134}
135
136static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
137{
138	struct device *dev = df->dev.parent;
139	unsigned long voltage;
140	struct dev_pm_opp *opp;
141
142	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
143	if (PTR_ERR(opp) == -ERANGE)
144		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
145
146	if (IS_ERR(opp)) {
147		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
148				    freq, PTR_ERR(opp));
149		return 0;
150	}
151
152	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
153	dev_pm_opp_put(opp);
154
155	if (voltage == 0) {
156		dev_err_ratelimited(dev,
157				    "Failed to get voltage for frequency %lu\n",
158				    freq);
159	}
160
161	return voltage;
162}
163
164static void _normalize_load(struct devfreq_dev_status *status)
165{
166	if (status->total_time > 0xfffff) {
167		status->total_time >>= 10;
168		status->busy_time >>= 10;
169	}
170
171	status->busy_time <<= 10;
172	status->busy_time /= status->total_time ? : 1;
173
174	status->busy_time = status->busy_time ? : 1;
175	status->total_time = 1024;
176}
177
178static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
179					       u32 *power)
180{
181	struct devfreq_cooling_device *dfc = cdev->devdata;
182	struct devfreq *df = dfc->devfreq;
183	struct devfreq_dev_status status;
184	unsigned long state;
185	unsigned long freq;
186	unsigned long voltage;
187	int res, perf_idx;
188
189	mutex_lock(&df->lock);
190	status = df->last_status;
191	mutex_unlock(&df->lock);
192
193	freq = status.current_frequency;
194
195	if (dfc->power_ops && dfc->power_ops->get_real_power) {
196		voltage = get_voltage(df, freq);
197		if (voltage == 0) {
198			res = -EINVAL;
199			goto fail;
200		}
201
202		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
203		if (!res) {
204			state = dfc->capped_state;
205
206			/* Convert EM power into milli-Watts first */
207			dfc->res_util = dfc->em_pd->table[state].power;
208			dfc->res_util /= MICROWATT_PER_MILLIWATT;
209
210			dfc->res_util *= SCALE_ERROR_MITIGATION;
211
212			if (*power > 1)
213				dfc->res_util /= *power;
214		} else {
215			goto fail;
216		}
217	} else {
218		/* Energy Model frequencies are in kHz */
219		perf_idx = get_perf_idx(dfc->em_pd, freq / 1000);
220		if (perf_idx < 0) {
221			res = -EAGAIN;
222			goto fail;
223		}
224
225		_normalize_load(&status);
226
227		/* Convert EM power into milli-Watts first */
228		*power = dfc->em_pd->table[perf_idx].power;
229		*power /= MICROWATT_PER_MILLIWATT;
230		/* Scale power for utilization */
231		*power *= status.busy_time;
232		*power >>= 10;
233	}
234
235	trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power);
236
237	return 0;
238fail:
239	/* It is safe to set max in this case */
240	dfc->res_util = SCALE_ERROR_MITIGATION;
241	return res;
242}
243
244static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
245				       unsigned long state, u32 *power)
246{
247	struct devfreq_cooling_device *dfc = cdev->devdata;
248	int perf_idx;
249
250	if (state > dfc->max_state)
251		return -EINVAL;
252
253	perf_idx = dfc->max_state - state;
254	*power = dfc->em_pd->table[perf_idx].power;
255	*power /= MICROWATT_PER_MILLIWATT;
256
257	return 0;
258}
259
260static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
261				       u32 power, unsigned long *state)
262{
263	struct devfreq_cooling_device *dfc = cdev->devdata;
264	struct devfreq *df = dfc->devfreq;
265	struct devfreq_dev_status status;
266	unsigned long freq, em_power_mw;
267	s32 est_power;
268	int i;
269
270	mutex_lock(&df->lock);
271	status = df->last_status;
272	mutex_unlock(&df->lock);
273
274	freq = status.current_frequency;
275
276	if (dfc->power_ops && dfc->power_ops->get_real_power) {
277		/* Scale for resource utilization */
278		est_power = power * dfc->res_util;
279		est_power /= SCALE_ERROR_MITIGATION;
280	} else {
281		/* Scale dynamic power for utilization */
282		_normalize_load(&status);
283		est_power = power << 10;
284		est_power /= status.busy_time;
285	}
286
287	/*
288	 * Find the first cooling state that is within the power
289	 * budget. The EM power table is sorted ascending.
290	 */
291	for (i = dfc->max_state; i > 0; i--) {
292		/* Convert EM power to milli-Watts to make safe comparison */
293		em_power_mw = dfc->em_pd->table[i].power;
294		em_power_mw /= MICROWATT_PER_MILLIWATT;
295		if (est_power >= em_power_mw)
296			break;
297	}
298
299	*state = dfc->max_state - i;
300	dfc->capped_state = *state;
301
302	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
303	return 0;
304}
305
306/**
307 * devfreq_cooling_gen_tables() - Generate frequency table.
308 * @dfc:	Pointer to devfreq cooling device.
309 * @num_opps:	Number of OPPs
310 *
311 * Generate frequency table which holds the frequencies in descending
312 * order. That way its indexed by cooling device state. This is for
313 * compatibility with drivers which do not register Energy Model.
314 *
315 * Return: 0 on success, negative error code on failure.
316 */
317static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc,
318				      int num_opps)
319{
320	struct devfreq *df = dfc->devfreq;
321	struct device *dev = df->dev.parent;
322	unsigned long freq;
323	int i;
324
325	dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table),
326			     GFP_KERNEL);
327	if (!dfc->freq_table)
328		return -ENOMEM;
329
330	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
331		struct dev_pm_opp *opp;
332
333		opp = dev_pm_opp_find_freq_floor(dev, &freq);
334		if (IS_ERR(opp)) {
335			kfree(dfc->freq_table);
336			return PTR_ERR(opp);
337		}
338
339		dev_pm_opp_put(opp);
340		dfc->freq_table[i] = freq;
341	}
342
343	return 0;
344}
345
346/**
347 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
348 *                                      with OF and power information.
349 * @np:	Pointer to OF device_node.
350 * @df:	Pointer to devfreq device.
351 * @dfc_power:	Pointer to devfreq_cooling_power.
352 *
353 * Register a devfreq cooling device.  The available OPPs must be
354 * registered on the device.
355 *
356 * If @dfc_power is provided, the cooling device is registered with the
357 * power extensions.  For the power extensions to work correctly,
358 * devfreq should use the simple_ondemand governor, other governors
359 * are not currently supported.
360 */
361struct thermal_cooling_device *
362of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
363				  struct devfreq_cooling_power *dfc_power)
364{
365	struct thermal_cooling_device *cdev;
366	struct device *dev = df->dev.parent;
367	struct devfreq_cooling_device *dfc;
368	struct em_perf_domain *em;
369	struct thermal_cooling_device_ops *ops;
370	char *name;
371	int err, num_opps;
372
373
374	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
375	if (!dfc)
376		return ERR_PTR(-ENOMEM);
377
378	dfc->devfreq = df;
379
380	ops = &dfc->cooling_ops;
381	ops->get_max_state = devfreq_cooling_get_max_state;
382	ops->get_cur_state = devfreq_cooling_get_cur_state;
383	ops->set_cur_state = devfreq_cooling_set_cur_state;
384
385	em = em_pd_get(dev);
386	if (em && !em_is_artificial(em)) {
387		dfc->em_pd = em;
388		ops->get_requested_power =
389			devfreq_cooling_get_requested_power;
390		ops->state2power = devfreq_cooling_state2power;
391		ops->power2state = devfreq_cooling_power2state;
392
393		dfc->power_ops = dfc_power;
394
395		num_opps = em_pd_nr_perf_states(dfc->em_pd);
396	} else {
397		/* Backward compatibility for drivers which do not use IPA */
398		dev_dbg(dev, "missing proper EM for cooling device\n");
399
400		num_opps = dev_pm_opp_get_opp_count(dev);
401
402		err = devfreq_cooling_gen_tables(dfc, num_opps);
403		if (err)
404			goto free_dfc;
405	}
406
407	if (num_opps <= 0) {
408		err = -EINVAL;
409		goto free_dfc;
410	}
411
412	/* max_state is an index, not a counter */
413	dfc->max_state = num_opps - 1;
414
415	err = dev_pm_qos_add_request(dev, &dfc->req_max_freq,
416				     DEV_PM_QOS_MAX_FREQUENCY,
417				     PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
418	if (err < 0)
419		goto free_table;
420
421	err = -ENOMEM;
422	name = kasprintf(GFP_KERNEL, "devfreq-%s", dev_name(dev));
423	if (!name)
424		goto remove_qos_req;
425
426	cdev = thermal_of_cooling_device_register(np, name, dfc, ops);
427	kfree(name);
428
429	if (IS_ERR(cdev)) {
430		err = PTR_ERR(cdev);
431		dev_err(dev,
432			"Failed to register devfreq cooling device (%d)\n",
433			err);
434		goto remove_qos_req;
435	}
436
437	dfc->cdev = cdev;
438
439	return cdev;
440
441remove_qos_req:
442	dev_pm_qos_remove_request(&dfc->req_max_freq);
443free_table:
444	kfree(dfc->freq_table);
445free_dfc:
446	kfree(dfc);
447
448	return ERR_PTR(err);
449}
450EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
451
452/**
453 * of_devfreq_cooling_register() - Register devfreq cooling device,
454 *                                with OF information.
455 * @np: Pointer to OF device_node.
456 * @df: Pointer to devfreq device.
457 */
458struct thermal_cooling_device *
459of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
460{
461	return of_devfreq_cooling_register_power(np, df, NULL);
462}
463EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
464
465/**
466 * devfreq_cooling_register() - Register devfreq cooling device.
467 * @df: Pointer to devfreq device.
468 */
469struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
470{
471	return of_devfreq_cooling_register(NULL, df);
472}
473EXPORT_SYMBOL_GPL(devfreq_cooling_register);
474
475/**
476 * devfreq_cooling_em_register() - Register devfreq cooling device with
477 *		power information and automatically register Energy Model (EM)
478 * @df:		Pointer to devfreq device.
479 * @dfc_power:	Pointer to devfreq_cooling_power.
480 *
481 * Register a devfreq cooling device and automatically register EM. The
482 * available OPPs must be registered for the device.
483 *
484 * If @dfc_power is provided, the cooling device is registered with the
485 * power extensions. It is using the simple Energy Model which requires
486 * "dynamic-power-coefficient" a devicetree property. To not break drivers
487 * which miss that DT property, the function won't bail out when the EM
488 * registration failed. The cooling device will be registered if everything
489 * else is OK.
490 */
491struct thermal_cooling_device *
492devfreq_cooling_em_register(struct devfreq *df,
493			    struct devfreq_cooling_power *dfc_power)
494{
495	struct thermal_cooling_device *cdev;
496	struct device *dev;
497	int ret;
498
499	if (IS_ERR_OR_NULL(df))
500		return ERR_PTR(-EINVAL);
501
502	dev = df->dev.parent;
503
504	ret = dev_pm_opp_of_register_em(dev, NULL);
505	if (ret)
506		dev_dbg(dev, "Unable to register EM for devfreq cooling device (%d)\n",
507			ret);
508
509	cdev = of_devfreq_cooling_register_power(dev->of_node, df, dfc_power);
510
511	if (IS_ERR_OR_NULL(cdev))
512		em_dev_unregister_perf_domain(dev);
513
514	return cdev;
515}
516EXPORT_SYMBOL_GPL(devfreq_cooling_em_register);
517
518/**
519 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
520 * @cdev: Pointer to devfreq cooling device to unregister.
521 *
522 * Unregisters devfreq cooling device and related Energy Model if it was
523 * present.
524 */
525void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
526{
527	struct devfreq_cooling_device *dfc;
528	struct device *dev;
529
530	if (IS_ERR_OR_NULL(cdev))
531		return;
532
533	dfc = cdev->devdata;
534	dev = dfc->devfreq->dev.parent;
535
536	thermal_cooling_device_unregister(dfc->cdev);
537	dev_pm_qos_remove_request(&dfc->req_max_freq);
538
539	em_dev_unregister_perf_domain(dev);
540
541	kfree(dfc->freq_table);
542	kfree(dfc);
543}
544EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
545