1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015-2021, Linaro Limited
4 * Copyright (c) 2016, EPAM Systems
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/arm-smccc.h>
10#include <linux/cpuhotplug.h>
11#include <linux/errno.h>
12#include <linux/firmware.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/irqdomain.h>
16#include <linux/kernel.h>
17#include <linux/mm.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_irq.h>
21#include <linux/of_platform.h>
22#include <linux/platform_device.h>
23#include <linux/sched.h>
24#include <linux/slab.h>
25#include <linux/string.h>
26#include <linux/tee_drv.h>
27#include <linux/types.h>
28#include <linux/workqueue.h>
29#include "optee_private.h"
30#include "optee_smc.h"
31#include "optee_rpc_cmd.h"
32#include <linux/kmemleak.h>
33#define CREATE_TRACE_POINTS
34#include "optee_trace.h"
35
36/*
37 * This file implement the SMC ABI used when communicating with secure world
38 * OP-TEE OS via raw SMCs.
39 * This file is divided into the following sections:
40 * 1. Convert between struct tee_param and struct optee_msg_param
41 * 2. Low level support functions to register shared memory in secure world
42 * 3. Dynamic shared memory pool based on alloc_pages()
43 * 4. Do a normal scheduled call into secure world
44 * 5. Asynchronous notification
45 * 6. Driver initialization.
46 */
47
48/*
49 * A typical OP-TEE private shm allocation is 224 bytes (argument struct
50 * with 6 parameters, needed for open session). So with an alignment of 512
51 * we'll waste a bit more than 50%. However, it's only expected that we'll
52 * have a handful of these structs allocated at a time. Most memory will
53 * be allocated aligned to the page size, So all in all this should scale
54 * up and down quite well.
55 */
56#define OPTEE_MIN_STATIC_POOL_ALIGN    9 /* 512 bytes aligned */
57
58/* SMC ABI considers at most a single TEE firmware */
59static unsigned int pcpu_irq_num;
60
61static int optee_cpuhp_enable_pcpu_irq(unsigned int cpu)
62{
63	enable_percpu_irq(pcpu_irq_num, IRQ_TYPE_NONE);
64
65	return 0;
66}
67
68static int optee_cpuhp_disable_pcpu_irq(unsigned int cpu)
69{
70	disable_percpu_irq(pcpu_irq_num);
71
72	return 0;
73}
74
75/*
76 * 1. Convert between struct tee_param and struct optee_msg_param
77 *
78 * optee_from_msg_param() and optee_to_msg_param() are the main
79 * functions.
80 */
81
82static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr,
83				  const struct optee_msg_param *mp)
84{
85	struct tee_shm *shm;
86	phys_addr_t pa;
87	int rc;
88
89	p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
90		  attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT;
91	p->u.memref.size = mp->u.tmem.size;
92	shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref;
93	if (!shm) {
94		p->u.memref.shm_offs = 0;
95		p->u.memref.shm = NULL;
96		return 0;
97	}
98
99	rc = tee_shm_get_pa(shm, 0, &pa);
100	if (rc)
101		return rc;
102
103	p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa;
104	p->u.memref.shm = shm;
105
106	return 0;
107}
108
109static void from_msg_param_reg_mem(struct tee_param *p, u32 attr,
110				   const struct optee_msg_param *mp)
111{
112	struct tee_shm *shm;
113
114	p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
115		  attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
116	p->u.memref.size = mp->u.rmem.size;
117	shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref;
118
119	if (shm) {
120		p->u.memref.shm_offs = mp->u.rmem.offs;
121		p->u.memref.shm = shm;
122	} else {
123		p->u.memref.shm_offs = 0;
124		p->u.memref.shm = NULL;
125	}
126}
127
128/**
129 * optee_from_msg_param() - convert from OPTEE_MSG parameters to
130 *			    struct tee_param
131 * @optee:	main service struct
132 * @params:	subsystem internal parameter representation
133 * @num_params:	number of elements in the parameter arrays
134 * @msg_params:	OPTEE_MSG parameters
135 * Returns 0 on success or <0 on failure
136 */
137static int optee_from_msg_param(struct optee *optee, struct tee_param *params,
138				size_t num_params,
139				const struct optee_msg_param *msg_params)
140{
141	int rc;
142	size_t n;
143
144	for (n = 0; n < num_params; n++) {
145		struct tee_param *p = params + n;
146		const struct optee_msg_param *mp = msg_params + n;
147		u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
148
149		switch (attr) {
150		case OPTEE_MSG_ATTR_TYPE_NONE:
151			p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
152			memset(&p->u, 0, sizeof(p->u));
153			break;
154		case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
155		case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
156		case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
157			optee_from_msg_param_value(p, attr, mp);
158			break;
159		case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT:
160		case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
161		case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
162			rc = from_msg_param_tmp_mem(p, attr, mp);
163			if (rc)
164				return rc;
165			break;
166		case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT:
167		case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
168		case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
169			from_msg_param_reg_mem(p, attr, mp);
170			break;
171
172		default:
173			return -EINVAL;
174		}
175	}
176	return 0;
177}
178
179static int to_msg_param_tmp_mem(struct optee_msg_param *mp,
180				const struct tee_param *p)
181{
182	int rc;
183	phys_addr_t pa;
184
185	mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr -
186		   TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
187
188	mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm;
189	mp->u.tmem.size = p->u.memref.size;
190
191	if (!p->u.memref.shm) {
192		mp->u.tmem.buf_ptr = 0;
193		return 0;
194	}
195
196	rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa);
197	if (rc)
198		return rc;
199
200	mp->u.tmem.buf_ptr = pa;
201	mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED <<
202		    OPTEE_MSG_ATTR_CACHE_SHIFT;
203
204	return 0;
205}
206
207static int to_msg_param_reg_mem(struct optee_msg_param *mp,
208				const struct tee_param *p)
209{
210	mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr -
211		   TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
212
213	mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm;
214	mp->u.rmem.size = p->u.memref.size;
215	mp->u.rmem.offs = p->u.memref.shm_offs;
216	return 0;
217}
218
219/**
220 * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters
221 * @optee:	main service struct
222 * @msg_params:	OPTEE_MSG parameters
223 * @num_params:	number of elements in the parameter arrays
224 * @params:	subsystem itnernal parameter representation
225 * Returns 0 on success or <0 on failure
226 */
227static int optee_to_msg_param(struct optee *optee,
228			      struct optee_msg_param *msg_params,
229			      size_t num_params, const struct tee_param *params)
230{
231	int rc;
232	size_t n;
233
234	for (n = 0; n < num_params; n++) {
235		const struct tee_param *p = params + n;
236		struct optee_msg_param *mp = msg_params + n;
237
238		switch (p->attr) {
239		case TEE_IOCTL_PARAM_ATTR_TYPE_NONE:
240			mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
241			memset(&mp->u, 0, sizeof(mp->u));
242			break;
243		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT:
244		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT:
245		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT:
246			optee_to_msg_param_value(mp, p);
247			break;
248		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
249		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
250		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
251			if (tee_shm_is_dynamic(p->u.memref.shm))
252				rc = to_msg_param_reg_mem(mp, p);
253			else
254				rc = to_msg_param_tmp_mem(mp, p);
255			if (rc)
256				return rc;
257			break;
258		default:
259			return -EINVAL;
260		}
261	}
262	return 0;
263}
264
265/*
266 * 2. Low level support functions to register shared memory in secure world
267 *
268 * Functions to enable/disable shared memory caching in secure world, that
269 * is, lazy freeing of previously allocated shared memory. Freeing is
270 * performed when a request has been compled.
271 *
272 * Functions to register and unregister shared memory both for normal
273 * clients and for tee-supplicant.
274 */
275
276/**
277 * optee_enable_shm_cache() - Enables caching of some shared memory allocation
278 *			      in OP-TEE
279 * @optee:	main service struct
280 */
281static void optee_enable_shm_cache(struct optee *optee)
282{
283	struct optee_call_waiter w;
284
285	/* We need to retry until secure world isn't busy. */
286	optee_cq_wait_init(&optee->call_queue, &w);
287	while (true) {
288		struct arm_smccc_res res;
289
290		optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE,
291				     0, 0, 0, 0, 0, 0, 0, &res);
292		if (res.a0 == OPTEE_SMC_RETURN_OK)
293			break;
294		optee_cq_wait_for_completion(&optee->call_queue, &w);
295	}
296	optee_cq_wait_final(&optee->call_queue, &w);
297}
298
299/**
300 * __optee_disable_shm_cache() - Disables caching of some shared memory
301 *				 allocation in OP-TEE
302 * @optee:	main service struct
303 * @is_mapped:	true if the cached shared memory addresses were mapped by this
304 *		kernel, are safe to dereference, and should be freed
305 */
306static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped)
307{
308	struct optee_call_waiter w;
309
310	/* We need to retry until secure world isn't busy. */
311	optee_cq_wait_init(&optee->call_queue, &w);
312	while (true) {
313		union {
314			struct arm_smccc_res smccc;
315			struct optee_smc_disable_shm_cache_result result;
316		} res;
317
318		optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE,
319				     0, 0, 0, 0, 0, 0, 0, &res.smccc);
320		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
321			break; /* All shm's freed */
322		if (res.result.status == OPTEE_SMC_RETURN_OK) {
323			struct tee_shm *shm;
324
325			/*
326			 * Shared memory references that were not mapped by
327			 * this kernel must be ignored to prevent a crash.
328			 */
329			if (!is_mapped)
330				continue;
331
332			shm = reg_pair_to_ptr(res.result.shm_upper32,
333					      res.result.shm_lower32);
334			tee_shm_free(shm);
335		} else {
336			optee_cq_wait_for_completion(&optee->call_queue, &w);
337		}
338	}
339	optee_cq_wait_final(&optee->call_queue, &w);
340}
341
342/**
343 * optee_disable_shm_cache() - Disables caching of mapped shared memory
344 *			       allocations in OP-TEE
345 * @optee:	main service struct
346 */
347static void optee_disable_shm_cache(struct optee *optee)
348{
349	return __optee_disable_shm_cache(optee, true);
350}
351
352/**
353 * optee_disable_unmapped_shm_cache() - Disables caching of shared memory
354 *					allocations in OP-TEE which are not
355 *					currently mapped
356 * @optee:	main service struct
357 */
358static void optee_disable_unmapped_shm_cache(struct optee *optee)
359{
360	return __optee_disable_shm_cache(optee, false);
361}
362
363#define PAGELIST_ENTRIES_PER_PAGE				\
364	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
365
366/*
367 * The final entry in each pagelist page is a pointer to the next
368 * pagelist page.
369 */
370static size_t get_pages_list_size(size_t num_entries)
371{
372	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
373
374	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
375}
376
377static u64 *optee_allocate_pages_list(size_t num_entries)
378{
379	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
380}
381
382static void optee_free_pages_list(void *list, size_t num_entries)
383{
384	free_pages_exact(list, get_pages_list_size(num_entries));
385}
386
387/**
388 * optee_fill_pages_list() - write list of user pages to given shared
389 * buffer.
390 *
391 * @dst: page-aligned buffer where list of pages will be stored
392 * @pages: array of pages that represents shared buffer
393 * @num_pages: number of entries in @pages
394 * @page_offset: offset of user buffer from page start
395 *
396 * @dst should be big enough to hold list of user page addresses and
397 *	links to the next pages of buffer
398 */
399static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
400				  size_t page_offset)
401{
402	int n = 0;
403	phys_addr_t optee_page;
404	/*
405	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
406	 * for details.
407	 */
408	struct {
409		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
410		u64 next_page_data;
411	} *pages_data;
412
413	/*
414	 * Currently OP-TEE uses 4k page size and it does not looks
415	 * like this will change in the future.  On other hand, there are
416	 * no know ARM architectures with page size < 4k.
417	 * Thus the next built assert looks redundant. But the following
418	 * code heavily relies on this assumption, so it is better be
419	 * safe than sorry.
420	 */
421	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
422
423	pages_data = (void *)dst;
424	/*
425	 * If linux page is bigger than 4k, and user buffer offset is
426	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
427	 * because they bear no value data for OP-TEE.
428	 */
429	optee_page = page_to_phys(*pages) +
430		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
431
432	while (true) {
433		pages_data->pages_list[n++] = optee_page;
434
435		if (n == PAGELIST_ENTRIES_PER_PAGE) {
436			pages_data->next_page_data =
437				virt_to_phys(pages_data + 1);
438			pages_data++;
439			n = 0;
440		}
441
442		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
443		if (!(optee_page & ~PAGE_MASK)) {
444			if (!--num_pages)
445				break;
446			pages++;
447			optee_page = page_to_phys(*pages);
448		}
449	}
450}
451
452static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
453			      struct page **pages, size_t num_pages,
454			      unsigned long start)
455{
456	struct optee *optee = tee_get_drvdata(ctx->teedev);
457	struct optee_msg_arg *msg_arg;
458	struct tee_shm *shm_arg;
459	u64 *pages_list;
460	size_t sz;
461	int rc;
462
463	if (!num_pages)
464		return -EINVAL;
465
466	rc = optee_check_mem_type(start, num_pages);
467	if (rc)
468		return rc;
469
470	pages_list = optee_allocate_pages_list(num_pages);
471	if (!pages_list)
472		return -ENOMEM;
473
474	/*
475	 * We're about to register shared memory we can't register shared
476	 * memory for this request or there's a catch-22.
477	 *
478	 * So in this we'll have to do the good old temporary private
479	 * allocation instead of using optee_get_msg_arg().
480	 */
481	sz = optee_msg_arg_size(optee->rpc_param_count);
482	shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
483	if (IS_ERR(shm_arg)) {
484		rc = PTR_ERR(shm_arg);
485		goto out;
486	}
487	msg_arg = tee_shm_get_va(shm_arg, 0);
488	if (IS_ERR(msg_arg)) {
489		rc = PTR_ERR(msg_arg);
490		goto out;
491	}
492
493	optee_fill_pages_list(pages_list, pages, num_pages,
494			      tee_shm_get_page_offset(shm));
495
496	memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
497	msg_arg->num_params = 1;
498	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
499	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
500				OPTEE_MSG_ATTR_NONCONTIG;
501	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
502	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
503	/*
504	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
505	 * store buffer offset from 4k page, as described in OP-TEE ABI.
506	 */
507	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
508	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
509
510	if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) ||
511	    msg_arg->ret != TEEC_SUCCESS)
512		rc = -EINVAL;
513
514	tee_shm_free(shm_arg);
515out:
516	optee_free_pages_list(pages_list, num_pages);
517	return rc;
518}
519
520static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
521{
522	struct optee *optee = tee_get_drvdata(ctx->teedev);
523	struct optee_msg_arg *msg_arg;
524	struct tee_shm *shm_arg;
525	int rc = 0;
526	size_t sz;
527
528	/*
529	 * We're about to unregister shared memory and we may not be able
530	 * register shared memory for this request in case we're called
531	 * from optee_shm_arg_cache_uninit().
532	 *
533	 * So in order to keep things simple in this function just as in
534	 * optee_shm_register() we'll use temporary private allocation
535	 * instead of using optee_get_msg_arg().
536	 */
537	sz = optee_msg_arg_size(optee->rpc_param_count);
538	shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
539	if (IS_ERR(shm_arg))
540		return PTR_ERR(shm_arg);
541	msg_arg = tee_shm_get_va(shm_arg, 0);
542	if (IS_ERR(msg_arg)) {
543		rc = PTR_ERR(msg_arg);
544		goto out;
545	}
546
547	memset(msg_arg, 0, sz);
548	msg_arg->num_params = 1;
549	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
550	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
551	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
552
553	if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) ||
554	    msg_arg->ret != TEEC_SUCCESS)
555		rc = -EINVAL;
556out:
557	tee_shm_free(shm_arg);
558	return rc;
559}
560
561static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
562				   struct page **pages, size_t num_pages,
563				   unsigned long start)
564{
565	/*
566	 * We don't want to register supplicant memory in OP-TEE.
567	 * Instead information about it will be passed in RPC code.
568	 */
569	return optee_check_mem_type(start, num_pages);
570}
571
572static int optee_shm_unregister_supp(struct tee_context *ctx,
573				     struct tee_shm *shm)
574{
575	return 0;
576}
577
578/*
579 * 3. Dynamic shared memory pool based on alloc_pages()
580 *
581 * Implements an OP-TEE specific shared memory pool which is used
582 * when dynamic shared memory is supported by secure world.
583 *
584 * The main function is optee_shm_pool_alloc_pages().
585 */
586
587static int pool_op_alloc(struct tee_shm_pool *pool,
588			 struct tee_shm *shm, size_t size, size_t align)
589{
590	/*
591	 * Shared memory private to the OP-TEE driver doesn't need
592	 * to be registered with OP-TEE.
593	 */
594	if (shm->flags & TEE_SHM_PRIV)
595		return optee_pool_op_alloc_helper(pool, shm, size, align, NULL);
596
597	return optee_pool_op_alloc_helper(pool, shm, size, align,
598					  optee_shm_register);
599}
600
601static void pool_op_free(struct tee_shm_pool *pool,
602			 struct tee_shm *shm)
603{
604	if (!(shm->flags & TEE_SHM_PRIV))
605		optee_pool_op_free_helper(pool, shm, optee_shm_unregister);
606	else
607		optee_pool_op_free_helper(pool, shm, NULL);
608}
609
610static void pool_op_destroy_pool(struct tee_shm_pool *pool)
611{
612	kfree(pool);
613}
614
615static const struct tee_shm_pool_ops pool_ops = {
616	.alloc = pool_op_alloc,
617	.free = pool_op_free,
618	.destroy_pool = pool_op_destroy_pool,
619};
620
621/**
622 * optee_shm_pool_alloc_pages() - create page-based allocator pool
623 *
624 * This pool is used when OP-TEE supports dymanic SHM. In this case
625 * command buffers and such are allocated from kernel's own memory.
626 */
627static struct tee_shm_pool *optee_shm_pool_alloc_pages(void)
628{
629	struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL);
630
631	if (!pool)
632		return ERR_PTR(-ENOMEM);
633
634	pool->ops = &pool_ops;
635
636	return pool;
637}
638
639/*
640 * 4. Do a normal scheduled call into secure world
641 *
642 * The function optee_smc_do_call_with_arg() performs a normal scheduled
643 * call into secure world. During this call may normal world request help
644 * from normal world using RPCs, Remote Procedure Calls. This includes
645 * delivery of non-secure interrupts to for instance allow rescheduling of
646 * the current task.
647 */
648
649static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx,
650					 struct optee_msg_arg *arg)
651{
652	struct tee_shm *shm;
653
654	arg->ret_origin = TEEC_ORIGIN_COMMS;
655
656	if (arg->num_params != 1 ||
657	    arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
658		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
659		return;
660	}
661
662	shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b;
663	switch (arg->params[0].u.value.a) {
664	case OPTEE_RPC_SHM_TYPE_APPL:
665		optee_rpc_cmd_free_suppl(ctx, shm);
666		break;
667	case OPTEE_RPC_SHM_TYPE_KERNEL:
668		tee_shm_free(shm);
669		break;
670	default:
671		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
672	}
673	arg->ret = TEEC_SUCCESS;
674}
675
676static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx,
677					  struct optee *optee,
678					  struct optee_msg_arg *arg,
679					  struct optee_call_ctx *call_ctx)
680{
681	phys_addr_t pa;
682	struct tee_shm *shm;
683	size_t sz;
684	size_t n;
685
686	arg->ret_origin = TEEC_ORIGIN_COMMS;
687
688	if (!arg->num_params ||
689	    arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
690		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
691		return;
692	}
693
694	for (n = 1; n < arg->num_params; n++) {
695		if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) {
696			arg->ret = TEEC_ERROR_BAD_PARAMETERS;
697			return;
698		}
699	}
700
701	sz = arg->params[0].u.value.b;
702	switch (arg->params[0].u.value.a) {
703	case OPTEE_RPC_SHM_TYPE_APPL:
704		shm = optee_rpc_cmd_alloc_suppl(ctx, sz);
705		break;
706	case OPTEE_RPC_SHM_TYPE_KERNEL:
707		shm = tee_shm_alloc_priv_buf(optee->ctx, sz);
708		break;
709	default:
710		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
711		return;
712	}
713
714	if (IS_ERR(shm)) {
715		arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
716		return;
717	}
718
719	if (tee_shm_get_pa(shm, 0, &pa)) {
720		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
721		goto bad;
722	}
723
724	sz = tee_shm_get_size(shm);
725
726	if (tee_shm_is_dynamic(shm)) {
727		struct page **pages;
728		u64 *pages_list;
729		size_t page_num;
730
731		pages = tee_shm_get_pages(shm, &page_num);
732		if (!pages || !page_num) {
733			arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
734			goto bad;
735		}
736
737		pages_list = optee_allocate_pages_list(page_num);
738		if (!pages_list) {
739			arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
740			goto bad;
741		}
742
743		call_ctx->pages_list = pages_list;
744		call_ctx->num_entries = page_num;
745
746		arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
747				      OPTEE_MSG_ATTR_NONCONTIG;
748		/*
749		 * In the least bits of u.tmem.buf_ptr we store buffer offset
750		 * from 4k page, as described in OP-TEE ABI.
751		 */
752		arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) |
753			(tee_shm_get_page_offset(shm) &
754			 (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
755		arg->params[0].u.tmem.size = tee_shm_get_size(shm);
756		arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
757
758		optee_fill_pages_list(pages_list, pages, page_num,
759				      tee_shm_get_page_offset(shm));
760	} else {
761		arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT;
762		arg->params[0].u.tmem.buf_ptr = pa;
763		arg->params[0].u.tmem.size = sz;
764		arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
765	}
766
767	arg->ret = TEEC_SUCCESS;
768	return;
769bad:
770	tee_shm_free(shm);
771}
772
773static void free_pages_list(struct optee_call_ctx *call_ctx)
774{
775	if (call_ctx->pages_list) {
776		optee_free_pages_list(call_ctx->pages_list,
777				      call_ctx->num_entries);
778		call_ctx->pages_list = NULL;
779		call_ctx->num_entries = 0;
780	}
781}
782
783static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx)
784{
785	free_pages_list(call_ctx);
786}
787
788static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee,
789				struct optee_msg_arg *arg,
790				struct optee_call_ctx *call_ctx)
791{
792
793	switch (arg->cmd) {
794	case OPTEE_RPC_CMD_SHM_ALLOC:
795		free_pages_list(call_ctx);
796		handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx);
797		break;
798	case OPTEE_RPC_CMD_SHM_FREE:
799		handle_rpc_func_cmd_shm_free(ctx, arg);
800		break;
801	default:
802		optee_rpc_cmd(ctx, optee, arg);
803	}
804}
805
806/**
807 * optee_handle_rpc() - handle RPC from secure world
808 * @ctx:	context doing the RPC
809 * @param:	value of registers for the RPC
810 * @call_ctx:	call context. Preserved during one OP-TEE invocation
811 *
812 * Result of RPC is written back into @param.
813 */
814static void optee_handle_rpc(struct tee_context *ctx,
815			     struct optee_msg_arg *rpc_arg,
816			     struct optee_rpc_param *param,
817			     struct optee_call_ctx *call_ctx)
818{
819	struct tee_device *teedev = ctx->teedev;
820	struct optee *optee = tee_get_drvdata(teedev);
821	struct optee_msg_arg *arg;
822	struct tee_shm *shm;
823	phys_addr_t pa;
824
825	switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) {
826	case OPTEE_SMC_RPC_FUNC_ALLOC:
827		shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1);
828		if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) {
829			reg_pair_from_64(&param->a1, &param->a2, pa);
830			reg_pair_from_64(&param->a4, &param->a5,
831					 (unsigned long)shm);
832		} else {
833			param->a1 = 0;
834			param->a2 = 0;
835			param->a4 = 0;
836			param->a5 = 0;
837		}
838		kmemleak_not_leak(shm);
839		break;
840	case OPTEE_SMC_RPC_FUNC_FREE:
841		shm = reg_pair_to_ptr(param->a1, param->a2);
842		tee_shm_free(shm);
843		break;
844	case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR:
845		/*
846		 * A foreign interrupt was raised while secure world was
847		 * executing, since they are handled in Linux a dummy RPC is
848		 * performed to let Linux take the interrupt through the normal
849		 * vector.
850		 */
851		break;
852	case OPTEE_SMC_RPC_FUNC_CMD:
853		if (rpc_arg) {
854			arg = rpc_arg;
855		} else {
856			shm = reg_pair_to_ptr(param->a1, param->a2);
857			arg = tee_shm_get_va(shm, 0);
858			if (IS_ERR(arg)) {
859				pr_err("%s: tee_shm_get_va %p failed\n",
860				       __func__, shm);
861				break;
862			}
863		}
864
865		handle_rpc_func_cmd(ctx, optee, arg, call_ctx);
866		break;
867	default:
868		pr_warn("Unknown RPC func 0x%x\n",
869			(u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0));
870		break;
871	}
872
873	param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC;
874}
875
876/**
877 * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world
878 * @ctx:	calling context
879 * @shm:	shared memory holding the message to pass to secure world
880 * @offs:	offset of the message in @shm
881 *
882 * Does and SMC to OP-TEE in secure world and handles eventual resulting
883 * Remote Procedure Calls (RPC) from OP-TEE.
884 *
885 * Returns return code from secure world, 0 is OK
886 */
887static int optee_smc_do_call_with_arg(struct tee_context *ctx,
888				      struct tee_shm *shm, u_int offs)
889{
890	struct optee *optee = tee_get_drvdata(ctx->teedev);
891	struct optee_call_waiter w;
892	struct optee_rpc_param param = { };
893	struct optee_call_ctx call_ctx = { };
894	struct optee_msg_arg *rpc_arg = NULL;
895	int rc;
896
897	if (optee->rpc_param_count) {
898		struct optee_msg_arg *arg;
899		unsigned int rpc_arg_offs;
900
901		arg = tee_shm_get_va(shm, offs);
902		if (IS_ERR(arg))
903			return PTR_ERR(arg);
904
905		rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params);
906		rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs);
907		if (IS_ERR(rpc_arg))
908			return PTR_ERR(rpc_arg);
909	}
910
911	if  (rpc_arg && tee_shm_is_dynamic(shm)) {
912		param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG;
913		reg_pair_from_64(&param.a1, &param.a2, (u_long)shm);
914		param.a3 = offs;
915	} else {
916		phys_addr_t parg;
917
918		rc = tee_shm_get_pa(shm, offs, &parg);
919		if (rc)
920			return rc;
921
922		if (rpc_arg)
923			param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG;
924		else
925			param.a0 = OPTEE_SMC_CALL_WITH_ARG;
926		reg_pair_from_64(&param.a1, &param.a2, parg);
927	}
928	/* Initialize waiter */
929	optee_cq_wait_init(&optee->call_queue, &w);
930	while (true) {
931		struct arm_smccc_res res;
932
933		trace_optee_invoke_fn_begin(&param);
934		optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3,
935				     param.a4, param.a5, param.a6, param.a7,
936				     &res);
937		trace_optee_invoke_fn_end(&param, &res);
938
939		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
940			/*
941			 * Out of threads in secure world, wait for a thread
942			 * become available.
943			 */
944			optee_cq_wait_for_completion(&optee->call_queue, &w);
945		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
946			cond_resched();
947			param.a0 = res.a0;
948			param.a1 = res.a1;
949			param.a2 = res.a2;
950			param.a3 = res.a3;
951			optee_handle_rpc(ctx, rpc_arg, &param, &call_ctx);
952		} else {
953			rc = res.a0;
954			break;
955		}
956	}
957
958	optee_rpc_finalize_call(&call_ctx);
959	/*
960	 * We're done with our thread in secure world, if there's any
961	 * thread waiters wake up one.
962	 */
963	optee_cq_wait_final(&optee->call_queue, &w);
964
965	return rc;
966}
967
968static int simple_call_with_arg(struct tee_context *ctx, u32 cmd)
969{
970	struct optee_shm_arg_entry *entry;
971	struct optee_msg_arg *msg_arg;
972	struct tee_shm *shm;
973	u_int offs;
974
975	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
976	if (IS_ERR(msg_arg))
977		return PTR_ERR(msg_arg);
978
979	msg_arg->cmd = cmd;
980	optee_smc_do_call_with_arg(ctx, shm, offs);
981
982	optee_free_msg_arg(ctx, entry, offs);
983	return 0;
984}
985
986static int optee_smc_do_bottom_half(struct tee_context *ctx)
987{
988	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_DO_BOTTOM_HALF);
989}
990
991static int optee_smc_stop_async_notif(struct tee_context *ctx)
992{
993	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_STOP_ASYNC_NOTIF);
994}
995
996/*
997 * 5. Asynchronous notification
998 */
999
1000static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid,
1001				 bool *value_pending)
1002{
1003	struct arm_smccc_res res;
1004
1005	invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res);
1006
1007	if (res.a0) {
1008		*value_valid = false;
1009		return 0;
1010	}
1011	*value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID);
1012	*value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING);
1013	return res.a1;
1014}
1015
1016static irqreturn_t irq_handler(struct optee *optee)
1017{
1018	bool do_bottom_half = false;
1019	bool value_valid;
1020	bool value_pending;
1021	u32 value;
1022
1023	do {
1024		value = get_async_notif_value(optee->smc.invoke_fn,
1025					      &value_valid, &value_pending);
1026		if (!value_valid)
1027			break;
1028
1029		if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF)
1030			do_bottom_half = true;
1031		else
1032			optee_notif_send(optee, value);
1033	} while (value_pending);
1034
1035	if (do_bottom_half)
1036		return IRQ_WAKE_THREAD;
1037	return IRQ_HANDLED;
1038}
1039
1040static irqreturn_t notif_irq_handler(int irq, void *dev_id)
1041{
1042	struct optee *optee = dev_id;
1043
1044	return irq_handler(optee);
1045}
1046
1047static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id)
1048{
1049	struct optee *optee = dev_id;
1050
1051	optee_smc_do_bottom_half(optee->ctx);
1052
1053	return IRQ_HANDLED;
1054}
1055
1056static int init_irq(struct optee *optee, u_int irq)
1057{
1058	int rc;
1059
1060	rc = request_threaded_irq(irq, notif_irq_handler,
1061				  notif_irq_thread_fn,
1062				  0, "optee_notification", optee);
1063	if (rc)
1064		return rc;
1065
1066	optee->smc.notif_irq = irq;
1067
1068	return 0;
1069}
1070
1071static irqreturn_t notif_pcpu_irq_handler(int irq, void *dev_id)
1072{
1073	struct optee_pcpu *pcpu = dev_id;
1074	struct optee *optee = pcpu->optee;
1075
1076	if (irq_handler(optee) == IRQ_WAKE_THREAD)
1077		queue_work(optee->smc.notif_pcpu_wq,
1078			   &optee->smc.notif_pcpu_work);
1079
1080	return IRQ_HANDLED;
1081}
1082
1083static void notif_pcpu_irq_work_fn(struct work_struct *work)
1084{
1085	struct optee_smc *optee_smc = container_of(work, struct optee_smc,
1086						   notif_pcpu_work);
1087	struct optee *optee = container_of(optee_smc, struct optee, smc);
1088
1089	optee_smc_do_bottom_half(optee->ctx);
1090}
1091
1092static int init_pcpu_irq(struct optee *optee, u_int irq)
1093{
1094	struct optee_pcpu __percpu *optee_pcpu;
1095	int cpu, rc;
1096
1097	optee_pcpu = alloc_percpu(struct optee_pcpu);
1098	if (!optee_pcpu)
1099		return -ENOMEM;
1100
1101	for_each_present_cpu(cpu)
1102		per_cpu_ptr(optee_pcpu, cpu)->optee = optee;
1103
1104	rc = request_percpu_irq(irq, notif_pcpu_irq_handler,
1105				"optee_pcpu_notification", optee_pcpu);
1106	if (rc)
1107		goto err_free_pcpu;
1108
1109	INIT_WORK(&optee->smc.notif_pcpu_work, notif_pcpu_irq_work_fn);
1110	optee->smc.notif_pcpu_wq = create_workqueue("optee_pcpu_notification");
1111	if (!optee->smc.notif_pcpu_wq) {
1112		rc = -EINVAL;
1113		goto err_free_pcpu_irq;
1114	}
1115
1116	optee->smc.optee_pcpu = optee_pcpu;
1117	optee->smc.notif_irq = irq;
1118
1119	pcpu_irq_num = irq;
1120	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee/pcpu-notif:starting",
1121			       optee_cpuhp_enable_pcpu_irq,
1122			       optee_cpuhp_disable_pcpu_irq);
1123	if (!rc)
1124		rc = -EINVAL;
1125	if (rc < 0)
1126		goto err_free_pcpu_irq;
1127
1128	optee->smc.notif_cpuhp_state = rc;
1129
1130	return 0;
1131
1132err_free_pcpu_irq:
1133	free_percpu_irq(irq, optee_pcpu);
1134err_free_pcpu:
1135	free_percpu(optee_pcpu);
1136
1137	return rc;
1138}
1139
1140static int optee_smc_notif_init_irq(struct optee *optee, u_int irq)
1141{
1142	if (irq_is_percpu_devid(irq))
1143		return init_pcpu_irq(optee, irq);
1144	else
1145		return init_irq(optee, irq);
1146}
1147
1148static void uninit_pcpu_irq(struct optee *optee)
1149{
1150	cpuhp_remove_state(optee->smc.notif_cpuhp_state);
1151
1152	destroy_workqueue(optee->smc.notif_pcpu_wq);
1153
1154	free_percpu_irq(optee->smc.notif_irq, optee->smc.optee_pcpu);
1155	free_percpu(optee->smc.optee_pcpu);
1156}
1157
1158static void optee_smc_notif_uninit_irq(struct optee *optee)
1159{
1160	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1161		optee_smc_stop_async_notif(optee->ctx);
1162		if (optee->smc.notif_irq) {
1163			if (irq_is_percpu_devid(optee->smc.notif_irq))
1164				uninit_pcpu_irq(optee);
1165			else
1166				free_irq(optee->smc.notif_irq, optee);
1167
1168			irq_dispose_mapping(optee->smc.notif_irq);
1169		}
1170	}
1171}
1172
1173/*
1174 * 6. Driver initialization
1175 *
1176 * During driver initialization is secure world probed to find out which
1177 * features it supports so the driver can be initialized with a matching
1178 * configuration. This involves for instance support for dynamic shared
1179 * memory instead of a static memory carvout.
1180 */
1181
1182static void optee_get_version(struct tee_device *teedev,
1183			      struct tee_ioctl_version_data *vers)
1184{
1185	struct tee_ioctl_version_data v = {
1186		.impl_id = TEE_IMPL_ID_OPTEE,
1187		.impl_caps = TEE_OPTEE_CAP_TZ,
1188		.gen_caps = TEE_GEN_CAP_GP,
1189	};
1190	struct optee *optee = tee_get_drvdata(teedev);
1191
1192	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1193		v.gen_caps |= TEE_GEN_CAP_REG_MEM;
1194	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL)
1195		v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL;
1196	*vers = v;
1197}
1198
1199static int optee_smc_open(struct tee_context *ctx)
1200{
1201	struct optee *optee = tee_get_drvdata(ctx->teedev);
1202	u32 sec_caps = optee->smc.sec_caps;
1203
1204	return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL);
1205}
1206
1207static const struct tee_driver_ops optee_clnt_ops = {
1208	.get_version = optee_get_version,
1209	.open = optee_smc_open,
1210	.release = optee_release,
1211	.open_session = optee_open_session,
1212	.close_session = optee_close_session,
1213	.invoke_func = optee_invoke_func,
1214	.cancel_req = optee_cancel_req,
1215	.shm_register = optee_shm_register,
1216	.shm_unregister = optee_shm_unregister,
1217};
1218
1219static const struct tee_desc optee_clnt_desc = {
1220	.name = DRIVER_NAME "-clnt",
1221	.ops = &optee_clnt_ops,
1222	.owner = THIS_MODULE,
1223};
1224
1225static const struct tee_driver_ops optee_supp_ops = {
1226	.get_version = optee_get_version,
1227	.open = optee_smc_open,
1228	.release = optee_release_supp,
1229	.supp_recv = optee_supp_recv,
1230	.supp_send = optee_supp_send,
1231	.shm_register = optee_shm_register_supp,
1232	.shm_unregister = optee_shm_unregister_supp,
1233};
1234
1235static const struct tee_desc optee_supp_desc = {
1236	.name = DRIVER_NAME "-supp",
1237	.ops = &optee_supp_ops,
1238	.owner = THIS_MODULE,
1239	.flags = TEE_DESC_PRIVILEGED,
1240};
1241
1242static const struct optee_ops optee_ops = {
1243	.do_call_with_arg = optee_smc_do_call_with_arg,
1244	.to_msg_param = optee_to_msg_param,
1245	.from_msg_param = optee_from_msg_param,
1246};
1247
1248static int enable_async_notif(optee_invoke_fn *invoke_fn)
1249{
1250	struct arm_smccc_res res;
1251
1252	invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res);
1253
1254	if (res.a0)
1255		return -EINVAL;
1256	return 0;
1257}
1258
1259static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn)
1260{
1261	struct arm_smccc_res res;
1262
1263	invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1264
1265	if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 &&
1266	    res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3)
1267		return true;
1268	return false;
1269}
1270
1271#ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE
1272static bool optee_msg_api_uid_is_optee_image_load(optee_invoke_fn *invoke_fn)
1273{
1274	struct arm_smccc_res res;
1275
1276	invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1277
1278	if (res.a0 == OPTEE_MSG_IMAGE_LOAD_UID_0 &&
1279	    res.a1 == OPTEE_MSG_IMAGE_LOAD_UID_1 &&
1280	    res.a2 == OPTEE_MSG_IMAGE_LOAD_UID_2 &&
1281	    res.a3 == OPTEE_MSG_IMAGE_LOAD_UID_3)
1282		return true;
1283	return false;
1284}
1285#endif
1286
1287static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn)
1288{
1289	union {
1290		struct arm_smccc_res smccc;
1291		struct optee_smc_call_get_os_revision_result result;
1292	} res = {
1293		.result = {
1294			.build_id = 0
1295		}
1296	};
1297
1298	invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0,
1299		  &res.smccc);
1300
1301	if (res.result.build_id)
1302		pr_info("revision %lu.%lu (%08lx)", res.result.major,
1303			res.result.minor, res.result.build_id);
1304	else
1305		pr_info("revision %lu.%lu", res.result.major, res.result.minor);
1306}
1307
1308static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn)
1309{
1310	union {
1311		struct arm_smccc_res smccc;
1312		struct optee_smc_calls_revision_result result;
1313	} res;
1314
1315	invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1316
1317	if (res.result.major == OPTEE_MSG_REVISION_MAJOR &&
1318	    (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR)
1319		return true;
1320	return false;
1321}
1322
1323static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn,
1324					    u32 *sec_caps, u32 *max_notif_value,
1325					    unsigned int *rpc_param_count)
1326{
1327	union {
1328		struct arm_smccc_res smccc;
1329		struct optee_smc_exchange_capabilities_result result;
1330	} res;
1331	u32 a1 = 0;
1332
1333	/*
1334	 * TODO This isn't enough to tell if it's UP system (from kernel
1335	 * point of view) or not, is_smp() returns the information
1336	 * needed, but can't be called directly from here.
1337	 */
1338	if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1)
1339		a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR;
1340
1341	invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0,
1342		  &res.smccc);
1343
1344	if (res.result.status != OPTEE_SMC_RETURN_OK)
1345		return false;
1346
1347	*sec_caps = res.result.capabilities;
1348	if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF)
1349		*max_notif_value = res.result.max_notif_value;
1350	else
1351		*max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE;
1352	if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1353		*rpc_param_count = (u8)res.result.data;
1354	else
1355		*rpc_param_count = 0;
1356
1357	return true;
1358}
1359
1360static struct tee_shm_pool *
1361optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm)
1362{
1363	union {
1364		struct arm_smccc_res smccc;
1365		struct optee_smc_get_shm_config_result result;
1366	} res;
1367	unsigned long vaddr;
1368	phys_addr_t paddr;
1369	size_t size;
1370	phys_addr_t begin;
1371	phys_addr_t end;
1372	void *va;
1373	void *rc;
1374
1375	invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1376	if (res.result.status != OPTEE_SMC_RETURN_OK) {
1377		pr_err("static shm service not available\n");
1378		return ERR_PTR(-ENOENT);
1379	}
1380
1381	if (res.result.settings != OPTEE_SMC_SHM_CACHED) {
1382		pr_err("only normal cached shared memory supported\n");
1383		return ERR_PTR(-EINVAL);
1384	}
1385
1386	begin = roundup(res.result.start, PAGE_SIZE);
1387	end = rounddown(res.result.start + res.result.size, PAGE_SIZE);
1388	paddr = begin;
1389	size = end - begin;
1390
1391	va = memremap(paddr, size, MEMREMAP_WB);
1392	if (!va) {
1393		pr_err("shared memory ioremap failed\n");
1394		return ERR_PTR(-EINVAL);
1395	}
1396	vaddr = (unsigned long)va;
1397
1398	rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size,
1399					OPTEE_MIN_STATIC_POOL_ALIGN);
1400	if (IS_ERR(rc))
1401		memunmap(va);
1402	else
1403		*memremaped_shm = va;
1404
1405	return rc;
1406}
1407
1408/* Simple wrapper functions to be able to use a function pointer */
1409static void optee_smccc_smc(unsigned long a0, unsigned long a1,
1410			    unsigned long a2, unsigned long a3,
1411			    unsigned long a4, unsigned long a5,
1412			    unsigned long a6, unsigned long a7,
1413			    struct arm_smccc_res *res)
1414{
1415	arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1416}
1417
1418static void optee_smccc_hvc(unsigned long a0, unsigned long a1,
1419			    unsigned long a2, unsigned long a3,
1420			    unsigned long a4, unsigned long a5,
1421			    unsigned long a6, unsigned long a7,
1422			    struct arm_smccc_res *res)
1423{
1424	arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1425}
1426
1427static optee_invoke_fn *get_invoke_func(struct device *dev)
1428{
1429	const char *method;
1430
1431	pr_info("probing for conduit method.\n");
1432
1433	if (device_property_read_string(dev, "method", &method)) {
1434		pr_warn("missing \"method\" property\n");
1435		return ERR_PTR(-ENXIO);
1436	}
1437
1438	if (!strcmp("hvc", method))
1439		return optee_smccc_hvc;
1440	else if (!strcmp("smc", method))
1441		return optee_smccc_smc;
1442
1443	pr_warn("invalid \"method\" property: %s\n", method);
1444	return ERR_PTR(-EINVAL);
1445}
1446
1447/* optee_remove - Device Removal Routine
1448 * @pdev: platform device information struct
1449 *
1450 * optee_remove is called by platform subsystem to alert the driver
1451 * that it should release the device
1452 */
1453static int optee_smc_remove(struct platform_device *pdev)
1454{
1455	struct optee *optee = platform_get_drvdata(pdev);
1456
1457	/*
1458	 * Ask OP-TEE to free all cached shared memory objects to decrease
1459	 * reference counters and also avoid wild pointers in secure world
1460	 * into the old shared memory range.
1461	 */
1462	if (!optee->rpc_param_count)
1463		optee_disable_shm_cache(optee);
1464
1465	optee_smc_notif_uninit_irq(optee);
1466
1467	optee_remove_common(optee);
1468
1469	if (optee->smc.memremaped_shm)
1470		memunmap(optee->smc.memremaped_shm);
1471
1472	kfree(optee);
1473
1474	return 0;
1475}
1476
1477/* optee_shutdown - Device Removal Routine
1478 * @pdev: platform device information struct
1479 *
1480 * platform_shutdown is called by the platform subsystem to alert
1481 * the driver that a shutdown, reboot, or kexec is happening and
1482 * device must be disabled.
1483 */
1484static void optee_shutdown(struct platform_device *pdev)
1485{
1486	struct optee *optee = platform_get_drvdata(pdev);
1487
1488	if (!optee->rpc_param_count)
1489		optee_disable_shm_cache(optee);
1490}
1491
1492#ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE
1493
1494#define OPTEE_FW_IMAGE "optee/tee.bin"
1495
1496static optee_invoke_fn *cpuhp_invoke_fn;
1497
1498static int optee_cpuhp_probe(unsigned int cpu)
1499{
1500	/*
1501	 * Invoking a call on a CPU will cause OP-TEE to perform the required
1502	 * setup for that CPU. Just invoke the call to get the UID since that
1503	 * has no side effects.
1504	 */
1505	if (optee_msg_api_uid_is_optee_api(cpuhp_invoke_fn))
1506		return 0;
1507	else
1508		return -EINVAL;
1509}
1510
1511static int optee_load_fw(struct platform_device *pdev,
1512			 optee_invoke_fn *invoke_fn)
1513{
1514	const struct firmware *fw = NULL;
1515	struct arm_smccc_res res;
1516	phys_addr_t data_pa;
1517	u8 *data_buf = NULL;
1518	u64 data_size;
1519	u32 data_pa_high, data_pa_low;
1520	u32 data_size_high, data_size_low;
1521	int rc;
1522	int hp_state;
1523
1524	if (!optee_msg_api_uid_is_optee_image_load(invoke_fn))
1525		return 0;
1526
1527	rc = request_firmware(&fw, OPTEE_FW_IMAGE, &pdev->dev);
1528	if (rc) {
1529		/*
1530		 * The firmware in the rootfs will not be accessible until we
1531		 * are in the SYSTEM_RUNNING state, so return EPROBE_DEFER until
1532		 * that point.
1533		 */
1534		if (system_state < SYSTEM_RUNNING)
1535			return -EPROBE_DEFER;
1536		goto fw_err;
1537	}
1538
1539	data_size = fw->size;
1540	/*
1541	 * This uses the GFP_DMA flag to ensure we are allocated memory in the
1542	 * 32-bit space since TF-A cannot map memory beyond the 32-bit boundary.
1543	 */
1544	data_buf = kmemdup(fw->data, fw->size, GFP_KERNEL | GFP_DMA);
1545	if (!data_buf) {
1546		rc = -ENOMEM;
1547		goto fw_err;
1548	}
1549	data_pa = virt_to_phys(data_buf);
1550	reg_pair_from_64(&data_pa_high, &data_pa_low, data_pa);
1551	reg_pair_from_64(&data_size_high, &data_size_low, data_size);
1552	goto fw_load;
1553
1554fw_err:
1555	pr_warn("image loading failed\n");
1556	data_pa_high = 0;
1557	data_pa_low = 0;
1558	data_size_high = 0;
1559	data_size_low = 0;
1560
1561fw_load:
1562	/*
1563	 * Always invoke the SMC, even if loading the image fails, to indicate
1564	 * to EL3 that we have passed the point where it should allow invoking
1565	 * this SMC.
1566	 */
1567	pr_warn("OP-TEE image loaded from kernel, this can be insecure");
1568	invoke_fn(OPTEE_SMC_CALL_LOAD_IMAGE, data_size_high, data_size_low,
1569		  data_pa_high, data_pa_low, 0, 0, 0, &res);
1570	if (!rc)
1571		rc = res.a0;
1572	if (fw)
1573		release_firmware(fw);
1574	kfree(data_buf);
1575
1576	if (!rc) {
1577		/*
1578		 * We need to initialize OP-TEE on all other running cores as
1579		 * well. Any cores that aren't running yet will get initialized
1580		 * when they are brought up by the power management functions in
1581		 * TF-A which are registered by the OP-TEE SPD. Due to that we
1582		 * can un-register the callback right after registering it.
1583		 */
1584		cpuhp_invoke_fn = invoke_fn;
1585		hp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee:probe",
1586					     optee_cpuhp_probe, NULL);
1587		if (hp_state < 0) {
1588			pr_warn("Failed with CPU hotplug setup for OP-TEE");
1589			return -EINVAL;
1590		}
1591		cpuhp_remove_state(hp_state);
1592		cpuhp_invoke_fn = NULL;
1593	}
1594
1595	return rc;
1596}
1597#else
1598static inline int optee_load_fw(struct platform_device *pdev,
1599				optee_invoke_fn *invoke_fn)
1600{
1601	return 0;
1602}
1603#endif
1604
1605static int optee_probe(struct platform_device *pdev)
1606{
1607	optee_invoke_fn *invoke_fn;
1608	struct tee_shm_pool *pool = ERR_PTR(-EINVAL);
1609	struct optee *optee = NULL;
1610	void *memremaped_shm = NULL;
1611	unsigned int rpc_param_count;
1612	struct tee_device *teedev;
1613	struct tee_context *ctx;
1614	u32 max_notif_value;
1615	u32 arg_cache_flags;
1616	u32 sec_caps;
1617	int rc;
1618
1619	invoke_fn = get_invoke_func(&pdev->dev);
1620	if (IS_ERR(invoke_fn))
1621		return PTR_ERR(invoke_fn);
1622
1623	rc = optee_load_fw(pdev, invoke_fn);
1624	if (rc)
1625		return rc;
1626
1627	if (!optee_msg_api_uid_is_optee_api(invoke_fn)) {
1628		pr_warn("api uid mismatch\n");
1629		return -EINVAL;
1630	}
1631
1632	optee_msg_get_os_revision(invoke_fn);
1633
1634	if (!optee_msg_api_revision_is_compatible(invoke_fn)) {
1635		pr_warn("api revision mismatch\n");
1636		return -EINVAL;
1637	}
1638
1639	if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps,
1640					     &max_notif_value,
1641					     &rpc_param_count)) {
1642		pr_warn("capabilities mismatch\n");
1643		return -EINVAL;
1644	}
1645
1646	/*
1647	 * Try to use dynamic shared memory if possible
1648	 */
1649	if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) {
1650		/*
1651		 * If we have OPTEE_SMC_SEC_CAP_RPC_ARG we can ask
1652		 * optee_get_msg_arg() to pre-register (by having
1653		 * OPTEE_SHM_ARG_ALLOC_PRIV cleared) the page used to pass
1654		 * an argument struct.
1655		 *
1656		 * With the page is pre-registered we can use a non-zero
1657		 * offset for argument struct, this is indicated with
1658		 * OPTEE_SHM_ARG_SHARED.
1659		 *
1660		 * This means that optee_smc_do_call_with_arg() will use
1661		 * OPTEE_SMC_CALL_WITH_REGD_ARG for pre-registered pages.
1662		 */
1663		if (sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1664			arg_cache_flags = OPTEE_SHM_ARG_SHARED;
1665		else
1666			arg_cache_flags = OPTEE_SHM_ARG_ALLOC_PRIV;
1667
1668		pool = optee_shm_pool_alloc_pages();
1669	}
1670
1671	/*
1672	 * If dynamic shared memory is not available or failed - try static one
1673	 */
1674	if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) {
1675		/*
1676		 * The static memory pool can use non-zero page offsets so
1677		 * let optee_get_msg_arg() know that with OPTEE_SHM_ARG_SHARED.
1678		 *
1679		 * optee_get_msg_arg() should not pre-register the
1680		 * allocated page used to pass an argument struct, this is
1681		 * indicated with OPTEE_SHM_ARG_ALLOC_PRIV.
1682		 *
1683		 * This means that optee_smc_do_call_with_arg() will use
1684		 * OPTEE_SMC_CALL_WITH_ARG if rpc_param_count is 0, else
1685		 * OPTEE_SMC_CALL_WITH_RPC_ARG.
1686		 */
1687		arg_cache_flags = OPTEE_SHM_ARG_SHARED |
1688				  OPTEE_SHM_ARG_ALLOC_PRIV;
1689		pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm);
1690	}
1691
1692	if (IS_ERR(pool))
1693		return PTR_ERR(pool);
1694
1695	optee = kzalloc(sizeof(*optee), GFP_KERNEL);
1696	if (!optee) {
1697		rc = -ENOMEM;
1698		goto err_free_pool;
1699	}
1700
1701	optee->ops = &optee_ops;
1702	optee->smc.invoke_fn = invoke_fn;
1703	optee->smc.sec_caps = sec_caps;
1704	optee->rpc_param_count = rpc_param_count;
1705
1706	teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee);
1707	if (IS_ERR(teedev)) {
1708		rc = PTR_ERR(teedev);
1709		goto err_free_optee;
1710	}
1711	optee->teedev = teedev;
1712
1713	teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee);
1714	if (IS_ERR(teedev)) {
1715		rc = PTR_ERR(teedev);
1716		goto err_unreg_teedev;
1717	}
1718	optee->supp_teedev = teedev;
1719
1720	rc = tee_device_register(optee->teedev);
1721	if (rc)
1722		goto err_unreg_supp_teedev;
1723
1724	rc = tee_device_register(optee->supp_teedev);
1725	if (rc)
1726		goto err_unreg_supp_teedev;
1727
1728	mutex_init(&optee->call_queue.mutex);
1729	INIT_LIST_HEAD(&optee->call_queue.waiters);
1730	optee_supp_init(&optee->supp);
1731	optee->smc.memremaped_shm = memremaped_shm;
1732	optee->pool = pool;
1733	optee_shm_arg_cache_init(optee, arg_cache_flags);
1734
1735	platform_set_drvdata(pdev, optee);
1736	ctx = teedev_open(optee->teedev);
1737	if (IS_ERR(ctx)) {
1738		rc = PTR_ERR(ctx);
1739		goto err_supp_uninit;
1740	}
1741	optee->ctx = ctx;
1742	rc = optee_notif_init(optee, max_notif_value);
1743	if (rc)
1744		goto err_close_ctx;
1745
1746	if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1747		unsigned int irq;
1748
1749		rc = platform_get_irq(pdev, 0);
1750		if (rc < 0) {
1751			pr_err("platform_get_irq: ret %d\n", rc);
1752			goto err_notif_uninit;
1753		}
1754		irq = rc;
1755
1756		rc = optee_smc_notif_init_irq(optee, irq);
1757		if (rc) {
1758			irq_dispose_mapping(irq);
1759			goto err_notif_uninit;
1760		}
1761		enable_async_notif(optee->smc.invoke_fn);
1762		pr_info("Asynchronous notifications enabled\n");
1763	}
1764
1765	/*
1766	 * Ensure that there are no pre-existing shm objects before enabling
1767	 * the shm cache so that there's no chance of receiving an invalid
1768	 * address during shutdown. This could occur, for example, if we're
1769	 * kexec booting from an older kernel that did not properly cleanup the
1770	 * shm cache.
1771	 */
1772	optee_disable_unmapped_shm_cache(optee);
1773
1774	/*
1775	 * Only enable the shm cache in case we're not able to pass the RPC
1776	 * arg struct right after the normal arg struct.
1777	 */
1778	if (!optee->rpc_param_count)
1779		optee_enable_shm_cache(optee);
1780
1781	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1782		pr_info("dynamic shared memory is enabled\n");
1783
1784	rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES);
1785	if (rc)
1786		goto err_disable_shm_cache;
1787
1788	pr_info("initialized driver\n");
1789	return 0;
1790
1791err_disable_shm_cache:
1792	if (!optee->rpc_param_count)
1793		optee_disable_shm_cache(optee);
1794	optee_smc_notif_uninit_irq(optee);
1795	optee_unregister_devices();
1796err_notif_uninit:
1797	optee_notif_uninit(optee);
1798err_close_ctx:
1799	teedev_close_context(ctx);
1800err_supp_uninit:
1801	optee_shm_arg_cache_uninit(optee);
1802	optee_supp_uninit(&optee->supp);
1803	mutex_destroy(&optee->call_queue.mutex);
1804err_unreg_supp_teedev:
1805	tee_device_unregister(optee->supp_teedev);
1806err_unreg_teedev:
1807	tee_device_unregister(optee->teedev);
1808err_free_optee:
1809	kfree(optee);
1810err_free_pool:
1811	tee_shm_pool_free(pool);
1812	if (memremaped_shm)
1813		memunmap(memremaped_shm);
1814	return rc;
1815}
1816
1817static const struct of_device_id optee_dt_match[] = {
1818	{ .compatible = "linaro,optee-tz" },
1819	{},
1820};
1821MODULE_DEVICE_TABLE(of, optee_dt_match);
1822
1823static struct platform_driver optee_driver = {
1824	.probe  = optee_probe,
1825	.remove = optee_smc_remove,
1826	.shutdown = optee_shutdown,
1827	.driver = {
1828		.name = "optee",
1829		.of_match_table = optee_dt_match,
1830	},
1831};
1832
1833int optee_smc_abi_register(void)
1834{
1835	return platform_driver_register(&optee_driver);
1836}
1837
1838void optee_smc_abi_unregister(void)
1839{
1840	platform_driver_unregister(&optee_driver);
1841}
1842