xref: /kernel/linux/linux-6.6/drivers/tee/optee/call.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015-2021, Linaro Limited
4 */
5#include <linux/device.h>
6#include <linux/err.h>
7#include <linux/errno.h>
8#include <linux/mm.h>
9#include <linux/slab.h>
10#include <linux/tee_drv.h>
11#include <linux/types.h>
12#include "optee_private.h"
13
14#define MAX_ARG_PARAM_COUNT	6
15
16/*
17 * How much memory we allocate for each entry. This doesn't have to be a
18 * single page, but it makes sense to keep at least keep it as multiples of
19 * the page size.
20 */
21#define SHM_ENTRY_SIZE		PAGE_SIZE
22
23/*
24 * We need to have a compile time constant to be able to determine the
25 * maximum needed size of the bit field.
26 */
27#define MIN_ARG_SIZE		OPTEE_MSG_GET_ARG_SIZE(MAX_ARG_PARAM_COUNT)
28#define MAX_ARG_COUNT_PER_ENTRY	(SHM_ENTRY_SIZE / MIN_ARG_SIZE)
29
30/*
31 * Shared memory for argument structs are cached here. The number of
32 * arguments structs that can fit is determined at runtime depending on the
33 * needed RPC parameter count reported by secure world
34 * (optee->rpc_param_count).
35 */
36struct optee_shm_arg_entry {
37	struct list_head list_node;
38	struct tee_shm *shm;
39	DECLARE_BITMAP(map, MAX_ARG_COUNT_PER_ENTRY);
40};
41
42void optee_cq_wait_init(struct optee_call_queue *cq,
43			struct optee_call_waiter *w)
44{
45	/*
46	 * We're preparing to make a call to secure world. In case we can't
47	 * allocate a thread in secure world we'll end up waiting in
48	 * optee_cq_wait_for_completion().
49	 *
50	 * Normally if there's no contention in secure world the call will
51	 * complete and we can cleanup directly with optee_cq_wait_final().
52	 */
53	mutex_lock(&cq->mutex);
54
55	/*
56	 * We add ourselves to the queue, but we don't wait. This
57	 * guarantees that we don't lose a completion if secure world
58	 * returns busy and another thread just exited and try to complete
59	 * someone.
60	 */
61	init_completion(&w->c);
62	list_add_tail(&w->list_node, &cq->waiters);
63
64	mutex_unlock(&cq->mutex);
65}
66
67void optee_cq_wait_for_completion(struct optee_call_queue *cq,
68				  struct optee_call_waiter *w)
69{
70	wait_for_completion(&w->c);
71
72	mutex_lock(&cq->mutex);
73
74	/* Move to end of list to get out of the way for other waiters */
75	list_del(&w->list_node);
76	reinit_completion(&w->c);
77	list_add_tail(&w->list_node, &cq->waiters);
78
79	mutex_unlock(&cq->mutex);
80}
81
82static void optee_cq_complete_one(struct optee_call_queue *cq)
83{
84	struct optee_call_waiter *w;
85
86	list_for_each_entry(w, &cq->waiters, list_node) {
87		if (!completion_done(&w->c)) {
88			complete(&w->c);
89			break;
90		}
91	}
92}
93
94void optee_cq_wait_final(struct optee_call_queue *cq,
95			 struct optee_call_waiter *w)
96{
97	/*
98	 * We're done with the call to secure world. The thread in secure
99	 * world that was used for this call is now available for some
100	 * other task to use.
101	 */
102	mutex_lock(&cq->mutex);
103
104	/* Get out of the list */
105	list_del(&w->list_node);
106
107	/* Wake up one eventual waiting task */
108	optee_cq_complete_one(cq);
109
110	/*
111	 * If we're completed we've got a completion from another task that
112	 * was just done with its call to secure world. Since yet another
113	 * thread now is available in secure world wake up another eventual
114	 * waiting task.
115	 */
116	if (completion_done(&w->c))
117		optee_cq_complete_one(cq);
118
119	mutex_unlock(&cq->mutex);
120}
121
122/* Requires the filpstate mutex to be held */
123static struct optee_session *find_session(struct optee_context_data *ctxdata,
124					  u32 session_id)
125{
126	struct optee_session *sess;
127
128	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
129		if (sess->session_id == session_id)
130			return sess;
131
132	return NULL;
133}
134
135void optee_shm_arg_cache_init(struct optee *optee, u32 flags)
136{
137	INIT_LIST_HEAD(&optee->shm_arg_cache.shm_args);
138	mutex_init(&optee->shm_arg_cache.mutex);
139	optee->shm_arg_cache.flags = flags;
140}
141
142void optee_shm_arg_cache_uninit(struct optee *optee)
143{
144	struct list_head *head = &optee->shm_arg_cache.shm_args;
145	struct optee_shm_arg_entry *entry;
146
147	mutex_destroy(&optee->shm_arg_cache.mutex);
148	while (!list_empty(head)) {
149		entry = list_first_entry(head, struct optee_shm_arg_entry,
150					 list_node);
151		list_del(&entry->list_node);
152		if (find_first_bit(entry->map, MAX_ARG_COUNT_PER_ENTRY) !=
153		     MAX_ARG_COUNT_PER_ENTRY) {
154			pr_err("Freeing non-free entry\n");
155		}
156		tee_shm_free(entry->shm);
157		kfree(entry);
158	}
159}
160
161size_t optee_msg_arg_size(size_t rpc_param_count)
162{
163	size_t sz = OPTEE_MSG_GET_ARG_SIZE(MAX_ARG_PARAM_COUNT);
164
165	if (rpc_param_count)
166		sz += OPTEE_MSG_GET_ARG_SIZE(rpc_param_count);
167
168	return sz;
169}
170
171/**
172 * optee_get_msg_arg() - Provide shared memory for argument struct
173 * @ctx:	Caller TEE context
174 * @num_params:	Number of parameter to store
175 * @entry_ret:	Entry pointer, needed when freeing the buffer
176 * @shm_ret:	Shared memory buffer
177 * @offs_ret:	Offset of argument strut in shared memory buffer
178 *
179 * @returns a pointer to the argument struct in memory, else an ERR_PTR
180 */
181struct optee_msg_arg *optee_get_msg_arg(struct tee_context *ctx,
182					size_t num_params,
183					struct optee_shm_arg_entry **entry_ret,
184					struct tee_shm **shm_ret,
185					u_int *offs_ret)
186{
187	struct optee *optee = tee_get_drvdata(ctx->teedev);
188	size_t sz = optee_msg_arg_size(optee->rpc_param_count);
189	struct optee_shm_arg_entry *entry;
190	struct optee_msg_arg *ma;
191	size_t args_per_entry;
192	u_long bit;
193	u_int offs;
194	void *res;
195
196	if (num_params > MAX_ARG_PARAM_COUNT)
197		return ERR_PTR(-EINVAL);
198
199	if (optee->shm_arg_cache.flags & OPTEE_SHM_ARG_SHARED)
200		args_per_entry = SHM_ENTRY_SIZE / sz;
201	else
202		args_per_entry = 1;
203
204	mutex_lock(&optee->shm_arg_cache.mutex);
205	list_for_each_entry(entry, &optee->shm_arg_cache.shm_args, list_node) {
206		bit = find_first_zero_bit(entry->map, MAX_ARG_COUNT_PER_ENTRY);
207		if (bit < args_per_entry)
208			goto have_entry;
209	}
210
211	/*
212	 * No entry was found, let's allocate a new.
213	 */
214	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
215	if (!entry) {
216		res = ERR_PTR(-ENOMEM);
217		goto out;
218	}
219
220	if (optee->shm_arg_cache.flags & OPTEE_SHM_ARG_ALLOC_PRIV)
221		res = tee_shm_alloc_priv_buf(ctx, SHM_ENTRY_SIZE);
222	else
223		res = tee_shm_alloc_kernel_buf(ctx, SHM_ENTRY_SIZE);
224
225	if (IS_ERR(res)) {
226		kfree(entry);
227		goto out;
228	}
229	entry->shm = res;
230	list_add(&entry->list_node, &optee->shm_arg_cache.shm_args);
231	bit = 0;
232
233have_entry:
234	offs = bit * sz;
235	res = tee_shm_get_va(entry->shm, offs);
236	if (IS_ERR(res))
237		goto out;
238	ma = res;
239	set_bit(bit, entry->map);
240	memset(ma, 0, sz);
241	ma->num_params = num_params;
242	*entry_ret = entry;
243	*shm_ret = entry->shm;
244	*offs_ret = offs;
245out:
246	mutex_unlock(&optee->shm_arg_cache.mutex);
247	return res;
248}
249
250/**
251 * optee_free_msg_arg() - Free previsouly obtained shared memory
252 * @ctx:	Caller TEE context
253 * @entry:	Pointer returned when the shared memory was obtained
254 * @offs:	Offset of shared memory buffer to free
255 *
256 * This function frees the shared memory obtained with optee_get_msg_arg().
257 */
258void optee_free_msg_arg(struct tee_context *ctx,
259			struct optee_shm_arg_entry *entry, u_int offs)
260{
261	struct optee *optee = tee_get_drvdata(ctx->teedev);
262	size_t sz = optee_msg_arg_size(optee->rpc_param_count);
263	u_long bit;
264
265	if (offs > SHM_ENTRY_SIZE || offs % sz) {
266		pr_err("Invalid offs %u\n", offs);
267		return;
268	}
269	bit = offs / sz;
270
271	mutex_lock(&optee->shm_arg_cache.mutex);
272
273	if (!test_bit(bit, entry->map))
274		pr_err("Bit pos %lu is already free\n", bit);
275	clear_bit(bit, entry->map);
276
277	mutex_unlock(&optee->shm_arg_cache.mutex);
278}
279
280int optee_open_session(struct tee_context *ctx,
281		       struct tee_ioctl_open_session_arg *arg,
282		       struct tee_param *param)
283{
284	struct optee *optee = tee_get_drvdata(ctx->teedev);
285	struct optee_context_data *ctxdata = ctx->data;
286	struct optee_shm_arg_entry *entry;
287	struct tee_shm *shm;
288	struct optee_msg_arg *msg_arg;
289	struct optee_session *sess = NULL;
290	uuid_t client_uuid;
291	u_int offs;
292	int rc;
293
294	/* +2 for the meta parameters added below */
295	msg_arg = optee_get_msg_arg(ctx, arg->num_params + 2,
296				    &entry, &shm, &offs);
297	if (IS_ERR(msg_arg))
298		return PTR_ERR(msg_arg);
299
300	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
301	msg_arg->cancel_id = arg->cancel_id;
302
303	/*
304	 * Initialize and add the meta parameters needed when opening a
305	 * session.
306	 */
307	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
308				  OPTEE_MSG_ATTR_META;
309	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
310				  OPTEE_MSG_ATTR_META;
311	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
312	msg_arg->params[1].u.value.c = arg->clnt_login;
313
314	rc = tee_session_calc_client_uuid(&client_uuid, arg->clnt_login,
315					  arg->clnt_uuid);
316	if (rc)
317		goto out;
318	export_uuid(msg_arg->params[1].u.octets, &client_uuid);
319
320	rc = optee->ops->to_msg_param(optee, msg_arg->params + 2,
321				      arg->num_params, param);
322	if (rc)
323		goto out;
324
325	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
326	if (!sess) {
327		rc = -ENOMEM;
328		goto out;
329	}
330
331	if (optee->ops->do_call_with_arg(ctx, shm, offs)) {
332		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
333		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
334	}
335
336	if (msg_arg->ret == TEEC_SUCCESS) {
337		/* A new session has been created, add it to the list. */
338		sess->session_id = msg_arg->session;
339		mutex_lock(&ctxdata->mutex);
340		list_add(&sess->list_node, &ctxdata->sess_list);
341		mutex_unlock(&ctxdata->mutex);
342	} else {
343		kfree(sess);
344	}
345
346	if (optee->ops->from_msg_param(optee, param, arg->num_params,
347				       msg_arg->params + 2)) {
348		arg->ret = TEEC_ERROR_COMMUNICATION;
349		arg->ret_origin = TEEC_ORIGIN_COMMS;
350		/* Close session again to avoid leakage */
351		optee_close_session(ctx, msg_arg->session);
352	} else {
353		arg->session = msg_arg->session;
354		arg->ret = msg_arg->ret;
355		arg->ret_origin = msg_arg->ret_origin;
356	}
357out:
358	optee_free_msg_arg(ctx, entry, offs);
359
360	return rc;
361}
362
363int optee_close_session_helper(struct tee_context *ctx, u32 session)
364{
365	struct optee *optee = tee_get_drvdata(ctx->teedev);
366	struct optee_shm_arg_entry *entry;
367	struct optee_msg_arg *msg_arg;
368	struct tee_shm *shm;
369	u_int offs;
370
371	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
372	if (IS_ERR(msg_arg))
373		return PTR_ERR(msg_arg);
374
375	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
376	msg_arg->session = session;
377	optee->ops->do_call_with_arg(ctx, shm, offs);
378
379	optee_free_msg_arg(ctx, entry, offs);
380
381	return 0;
382}
383
384int optee_close_session(struct tee_context *ctx, u32 session)
385{
386	struct optee_context_data *ctxdata = ctx->data;
387	struct optee_session *sess;
388
389	/* Check that the session is valid and remove it from the list */
390	mutex_lock(&ctxdata->mutex);
391	sess = find_session(ctxdata, session);
392	if (sess)
393		list_del(&sess->list_node);
394	mutex_unlock(&ctxdata->mutex);
395	if (!sess)
396		return -EINVAL;
397	kfree(sess);
398
399	return optee_close_session_helper(ctx, session);
400}
401
402int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
403		      struct tee_param *param)
404{
405	struct optee *optee = tee_get_drvdata(ctx->teedev);
406	struct optee_context_data *ctxdata = ctx->data;
407	struct optee_shm_arg_entry *entry;
408	struct optee_msg_arg *msg_arg;
409	struct optee_session *sess;
410	struct tee_shm *shm;
411	u_int offs;
412	int rc;
413
414	/* Check that the session is valid */
415	mutex_lock(&ctxdata->mutex);
416	sess = find_session(ctxdata, arg->session);
417	mutex_unlock(&ctxdata->mutex);
418	if (!sess)
419		return -EINVAL;
420
421	msg_arg = optee_get_msg_arg(ctx, arg->num_params,
422				    &entry, &shm, &offs);
423	if (IS_ERR(msg_arg))
424		return PTR_ERR(msg_arg);
425	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
426	msg_arg->func = arg->func;
427	msg_arg->session = arg->session;
428	msg_arg->cancel_id = arg->cancel_id;
429
430	rc = optee->ops->to_msg_param(optee, msg_arg->params, arg->num_params,
431				      param);
432	if (rc)
433		goto out;
434
435	if (optee->ops->do_call_with_arg(ctx, shm, offs)) {
436		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
437		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
438	}
439
440	if (optee->ops->from_msg_param(optee, param, arg->num_params,
441				       msg_arg->params)) {
442		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
443		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
444	}
445
446	arg->ret = msg_arg->ret;
447	arg->ret_origin = msg_arg->ret_origin;
448out:
449	optee_free_msg_arg(ctx, entry, offs);
450	return rc;
451}
452
453int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
454{
455	struct optee *optee = tee_get_drvdata(ctx->teedev);
456	struct optee_context_data *ctxdata = ctx->data;
457	struct optee_shm_arg_entry *entry;
458	struct optee_msg_arg *msg_arg;
459	struct optee_session *sess;
460	struct tee_shm *shm;
461	u_int offs;
462
463	/* Check that the session is valid */
464	mutex_lock(&ctxdata->mutex);
465	sess = find_session(ctxdata, session);
466	mutex_unlock(&ctxdata->mutex);
467	if (!sess)
468		return -EINVAL;
469
470	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
471	if (IS_ERR(msg_arg))
472		return PTR_ERR(msg_arg);
473
474	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
475	msg_arg->session = session;
476	msg_arg->cancel_id = cancel_id;
477	optee->ops->do_call_with_arg(ctx, shm, offs);
478
479	optee_free_msg_arg(ctx, entry, offs);
480	return 0;
481}
482
483static bool is_normal_memory(pgprot_t p)
484{
485#if defined(CONFIG_ARM)
486	return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
487		((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
488#elif defined(CONFIG_ARM64)
489	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
490#else
491#error "Unsupported architecture"
492#endif
493}
494
495static int __check_mem_type(struct mm_struct *mm, unsigned long start,
496				unsigned long end)
497{
498	struct vm_area_struct *vma;
499	VMA_ITERATOR(vmi, mm, start);
500
501	for_each_vma_range(vmi, vma, end) {
502		if (!is_normal_memory(vma->vm_page_prot))
503			return -EINVAL;
504	}
505
506	return 0;
507}
508
509int optee_check_mem_type(unsigned long start, size_t num_pages)
510{
511	struct mm_struct *mm = current->mm;
512	int rc;
513
514	/*
515	 * Allow kernel address to register with OP-TEE as kernel
516	 * pages are configured as normal memory only.
517	 */
518	if (virt_addr_valid((void *)start) || is_vmalloc_addr((void *)start))
519		return 0;
520
521	mmap_read_lock(mm);
522	rc = __check_mem_type(mm, start, start + num_pages * PAGE_SIZE);
523	mmap_read_unlock(mm);
524
525	return rc;
526}
527