xref: /kernel/linux/linux-6.6/drivers/spi/spi.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2// SPI init/core code
3//
4// Copyright (C) 2005 David Brownell
5// Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7#include <linux/acpi.h>
8#include <linux/cache.h>
9#include <linux/clk/clk-conf.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/dmaengine.h>
13#include <linux/dma-mapping.h>
14#include <linux/export.h>
15#include <linux/gpio/consumer.h>
16#include <linux/highmem.h>
17#include <linux/idr.h>
18#include <linux/init.h>
19#include <linux/ioport.h>
20#include <linux/kernel.h>
21#include <linux/kthread.h>
22#include <linux/mod_devicetable.h>
23#include <linux/mutex.h>
24#include <linux/of_device.h>
25#include <linux/of_irq.h>
26#include <linux/percpu.h>
27#include <linux/platform_data/x86/apple.h>
28#include <linux/pm_domain.h>
29#include <linux/pm_runtime.h>
30#include <linux/property.h>
31#include <linux/ptp_clock_kernel.h>
32#include <linux/sched/rt.h>
33#include <linux/slab.h>
34#include <linux/spi/spi.h>
35#include <linux/spi/spi-mem.h>
36#include <uapi/linux/sched/types.h>
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/spi.h>
40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43#include "internals.h"
44
45static DEFINE_IDR(spi_master_idr);
46
47static void spidev_release(struct device *dev)
48{
49	struct spi_device	*spi = to_spi_device(dev);
50
51	spi_controller_put(spi->controller);
52	kfree(spi->driver_override);
53	free_percpu(spi->pcpu_statistics);
54	kfree(spi);
55}
56
57static ssize_t
58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59{
60	const struct spi_device	*spi = to_spi_device(dev);
61	int len;
62
63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64	if (len != -ENODEV)
65		return len;
66
67	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68}
69static DEVICE_ATTR_RO(modalias);
70
71static ssize_t driver_override_store(struct device *dev,
72				     struct device_attribute *a,
73				     const char *buf, size_t count)
74{
75	struct spi_device *spi = to_spi_device(dev);
76	int ret;
77
78	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79	if (ret)
80		return ret;
81
82	return count;
83}
84
85static ssize_t driver_override_show(struct device *dev,
86				    struct device_attribute *a, char *buf)
87{
88	const struct spi_device *spi = to_spi_device(dev);
89	ssize_t len;
90
91	device_lock(dev);
92	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93	device_unlock(dev);
94	return len;
95}
96static DEVICE_ATTR_RW(driver_override);
97
98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99{
100	struct spi_statistics __percpu *pcpu_stats;
101
102	if (dev)
103		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104	else
105		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107	if (pcpu_stats) {
108		int cpu;
109
110		for_each_possible_cpu(cpu) {
111			struct spi_statistics *stat;
112
113			stat = per_cpu_ptr(pcpu_stats, cpu);
114			u64_stats_init(&stat->syncp);
115		}
116	}
117	return pcpu_stats;
118}
119
120static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121				   char *buf, size_t offset)
122{
123	u64 val = 0;
124	int i;
125
126	for_each_possible_cpu(i) {
127		const struct spi_statistics *pcpu_stats;
128		u64_stats_t *field;
129		unsigned int start;
130		u64 inc;
131
132		pcpu_stats = per_cpu_ptr(stat, i);
133		field = (void *)pcpu_stats + offset;
134		do {
135			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136			inc = u64_stats_read(field);
137		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138		val += inc;
139	}
140	return sysfs_emit(buf, "%llu\n", val);
141}
142
143#define SPI_STATISTICS_ATTRS(field, file)				\
144static ssize_t spi_controller_##field##_show(struct device *dev,	\
145					     struct device_attribute *attr, \
146					     char *buf)			\
147{									\
148	struct spi_controller *ctlr = container_of(dev,			\
149					 struct spi_controller, dev);	\
150	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151}									\
152static struct device_attribute dev_attr_spi_controller_##field = {	\
153	.attr = { .name = file, .mode = 0444 },				\
154	.show = spi_controller_##field##_show,				\
155};									\
156static ssize_t spi_device_##field##_show(struct device *dev,		\
157					 struct device_attribute *attr,	\
158					char *buf)			\
159{									\
160	struct spi_device *spi = to_spi_device(dev);			\
161	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162}									\
163static struct device_attribute dev_attr_spi_device_##field = {		\
164	.attr = { .name = file, .mode = 0444 },				\
165	.show = spi_device_##field##_show,				\
166}
167
168#define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
169static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170					    char *buf)			\
171{									\
172	return spi_emit_pcpu_stats(stat, buf,				\
173			offsetof(struct spi_statistics, field));	\
174}									\
175SPI_STATISTICS_ATTRS(name, file)
176
177#define SPI_STATISTICS_SHOW(field)					\
178	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
179				 field)
180
181SPI_STATISTICS_SHOW(messages);
182SPI_STATISTICS_SHOW(transfers);
183SPI_STATISTICS_SHOW(errors);
184SPI_STATISTICS_SHOW(timedout);
185
186SPI_STATISTICS_SHOW(spi_sync);
187SPI_STATISTICS_SHOW(spi_sync_immediate);
188SPI_STATISTICS_SHOW(spi_async);
189
190SPI_STATISTICS_SHOW(bytes);
191SPI_STATISTICS_SHOW(bytes_rx);
192SPI_STATISTICS_SHOW(bytes_tx);
193
194#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
195	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
196				 "transfer_bytes_histo_" number,	\
197				 transfer_bytes_histo[index])
198SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218static struct attribute *spi_dev_attrs[] = {
219	&dev_attr_modalias.attr,
220	&dev_attr_driver_override.attr,
221	NULL,
222};
223
224static const struct attribute_group spi_dev_group = {
225	.attrs  = spi_dev_attrs,
226};
227
228static struct attribute *spi_device_statistics_attrs[] = {
229	&dev_attr_spi_device_messages.attr,
230	&dev_attr_spi_device_transfers.attr,
231	&dev_attr_spi_device_errors.attr,
232	&dev_attr_spi_device_timedout.attr,
233	&dev_attr_spi_device_spi_sync.attr,
234	&dev_attr_spi_device_spi_sync_immediate.attr,
235	&dev_attr_spi_device_spi_async.attr,
236	&dev_attr_spi_device_bytes.attr,
237	&dev_attr_spi_device_bytes_rx.attr,
238	&dev_attr_spi_device_bytes_tx.attr,
239	&dev_attr_spi_device_transfer_bytes_histo0.attr,
240	&dev_attr_spi_device_transfer_bytes_histo1.attr,
241	&dev_attr_spi_device_transfer_bytes_histo2.attr,
242	&dev_attr_spi_device_transfer_bytes_histo3.attr,
243	&dev_attr_spi_device_transfer_bytes_histo4.attr,
244	&dev_attr_spi_device_transfer_bytes_histo5.attr,
245	&dev_attr_spi_device_transfer_bytes_histo6.attr,
246	&dev_attr_spi_device_transfer_bytes_histo7.attr,
247	&dev_attr_spi_device_transfer_bytes_histo8.attr,
248	&dev_attr_spi_device_transfer_bytes_histo9.attr,
249	&dev_attr_spi_device_transfer_bytes_histo10.attr,
250	&dev_attr_spi_device_transfer_bytes_histo11.attr,
251	&dev_attr_spi_device_transfer_bytes_histo12.attr,
252	&dev_attr_spi_device_transfer_bytes_histo13.attr,
253	&dev_attr_spi_device_transfer_bytes_histo14.attr,
254	&dev_attr_spi_device_transfer_bytes_histo15.attr,
255	&dev_attr_spi_device_transfer_bytes_histo16.attr,
256	&dev_attr_spi_device_transfers_split_maxsize.attr,
257	NULL,
258};
259
260static const struct attribute_group spi_device_statistics_group = {
261	.name  = "statistics",
262	.attrs  = spi_device_statistics_attrs,
263};
264
265static const struct attribute_group *spi_dev_groups[] = {
266	&spi_dev_group,
267	&spi_device_statistics_group,
268	NULL,
269};
270
271static struct attribute *spi_controller_statistics_attrs[] = {
272	&dev_attr_spi_controller_messages.attr,
273	&dev_attr_spi_controller_transfers.attr,
274	&dev_attr_spi_controller_errors.attr,
275	&dev_attr_spi_controller_timedout.attr,
276	&dev_attr_spi_controller_spi_sync.attr,
277	&dev_attr_spi_controller_spi_sync_immediate.attr,
278	&dev_attr_spi_controller_spi_async.attr,
279	&dev_attr_spi_controller_bytes.attr,
280	&dev_attr_spi_controller_bytes_rx.attr,
281	&dev_attr_spi_controller_bytes_tx.attr,
282	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
283	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
284	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
285	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
286	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
287	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
288	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
289	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
290	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
291	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
292	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
293	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
294	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
295	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
296	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
297	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
298	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
299	&dev_attr_spi_controller_transfers_split_maxsize.attr,
300	NULL,
301};
302
303static const struct attribute_group spi_controller_statistics_group = {
304	.name  = "statistics",
305	.attrs  = spi_controller_statistics_attrs,
306};
307
308static const struct attribute_group *spi_master_groups[] = {
309	&spi_controller_statistics_group,
310	NULL,
311};
312
313static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314					      struct spi_transfer *xfer,
315					      struct spi_controller *ctlr)
316{
317	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318	struct spi_statistics *stats;
319
320	if (l2len < 0)
321		l2len = 0;
322
323	get_cpu();
324	stats = this_cpu_ptr(pcpu_stats);
325	u64_stats_update_begin(&stats->syncp);
326
327	u64_stats_inc(&stats->transfers);
328	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330	u64_stats_add(&stats->bytes, xfer->len);
331	if ((xfer->tx_buf) &&
332	    (xfer->tx_buf != ctlr->dummy_tx))
333		u64_stats_add(&stats->bytes_tx, xfer->len);
334	if ((xfer->rx_buf) &&
335	    (xfer->rx_buf != ctlr->dummy_rx))
336		u64_stats_add(&stats->bytes_rx, xfer->len);
337
338	u64_stats_update_end(&stats->syncp);
339	put_cpu();
340}
341
342/*
343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344 * and the sysfs version makes coldplug work too.
345 */
346static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347{
348	while (id->name[0]) {
349		if (!strcmp(name, id->name))
350			return id;
351		id++;
352	}
353	return NULL;
354}
355
356const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357{
358	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359
360	return spi_match_id(sdrv->id_table, sdev->modalias);
361}
362EXPORT_SYMBOL_GPL(spi_get_device_id);
363
364const void *spi_get_device_match_data(const struct spi_device *sdev)
365{
366	const void *match;
367
368	match = device_get_match_data(&sdev->dev);
369	if (match)
370		return match;
371
372	return (const void *)spi_get_device_id(sdev)->driver_data;
373}
374EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375
376static int spi_match_device(struct device *dev, struct device_driver *drv)
377{
378	const struct spi_device	*spi = to_spi_device(dev);
379	const struct spi_driver	*sdrv = to_spi_driver(drv);
380
381	/* Check override first, and if set, only use the named driver */
382	if (spi->driver_override)
383		return strcmp(spi->driver_override, drv->name) == 0;
384
385	/* Attempt an OF style match */
386	if (of_driver_match_device(dev, drv))
387		return 1;
388
389	/* Then try ACPI */
390	if (acpi_driver_match_device(dev, drv))
391		return 1;
392
393	if (sdrv->id_table)
394		return !!spi_match_id(sdrv->id_table, spi->modalias);
395
396	return strcmp(spi->modalias, drv->name) == 0;
397}
398
399static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400{
401	const struct spi_device		*spi = to_spi_device(dev);
402	int rc;
403
404	rc = acpi_device_uevent_modalias(dev, env);
405	if (rc != -ENODEV)
406		return rc;
407
408	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409}
410
411static int spi_probe(struct device *dev)
412{
413	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
414	struct spi_device		*spi = to_spi_device(dev);
415	int ret;
416
417	ret = of_clk_set_defaults(dev->of_node, false);
418	if (ret)
419		return ret;
420
421	if (dev->of_node) {
422		spi->irq = of_irq_get(dev->of_node, 0);
423		if (spi->irq == -EPROBE_DEFER)
424			return -EPROBE_DEFER;
425		if (spi->irq < 0)
426			spi->irq = 0;
427	}
428
429	ret = dev_pm_domain_attach(dev, true);
430	if (ret)
431		return ret;
432
433	if (sdrv->probe) {
434		ret = sdrv->probe(spi);
435		if (ret)
436			dev_pm_domain_detach(dev, true);
437	}
438
439	return ret;
440}
441
442static void spi_remove(struct device *dev)
443{
444	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
445
446	if (sdrv->remove)
447		sdrv->remove(to_spi_device(dev));
448
449	dev_pm_domain_detach(dev, true);
450}
451
452static void spi_shutdown(struct device *dev)
453{
454	if (dev->driver) {
455		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
456
457		if (sdrv->shutdown)
458			sdrv->shutdown(to_spi_device(dev));
459	}
460}
461
462struct bus_type spi_bus_type = {
463	.name		= "spi",
464	.dev_groups	= spi_dev_groups,
465	.match		= spi_match_device,
466	.uevent		= spi_uevent,
467	.probe		= spi_probe,
468	.remove		= spi_remove,
469	.shutdown	= spi_shutdown,
470};
471EXPORT_SYMBOL_GPL(spi_bus_type);
472
473/**
474 * __spi_register_driver - register a SPI driver
475 * @owner: owner module of the driver to register
476 * @sdrv: the driver to register
477 * Context: can sleep
478 *
479 * Return: zero on success, else a negative error code.
480 */
481int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482{
483	sdrv->driver.owner = owner;
484	sdrv->driver.bus = &spi_bus_type;
485
486	/*
487	 * For Really Good Reasons we use spi: modaliases not of:
488	 * modaliases for DT so module autoloading won't work if we
489	 * don't have a spi_device_id as well as a compatible string.
490	 */
491	if (sdrv->driver.of_match_table) {
492		const struct of_device_id *of_id;
493
494		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495		     of_id++) {
496			const char *of_name;
497
498			/* Strip off any vendor prefix */
499			of_name = strnchr(of_id->compatible,
500					  sizeof(of_id->compatible), ',');
501			if (of_name)
502				of_name++;
503			else
504				of_name = of_id->compatible;
505
506			if (sdrv->id_table) {
507				const struct spi_device_id *spi_id;
508
509				spi_id = spi_match_id(sdrv->id_table, of_name);
510				if (spi_id)
511					continue;
512			} else {
513				if (strcmp(sdrv->driver.name, of_name) == 0)
514					continue;
515			}
516
517			pr_warn("SPI driver %s has no spi_device_id for %s\n",
518				sdrv->driver.name, of_id->compatible);
519		}
520	}
521
522	return driver_register(&sdrv->driver);
523}
524EXPORT_SYMBOL_GPL(__spi_register_driver);
525
526/*-------------------------------------------------------------------------*/
527
528/*
529 * SPI devices should normally not be created by SPI device drivers; that
530 * would make them board-specific.  Similarly with SPI controller drivers.
531 * Device registration normally goes into like arch/.../mach.../board-YYY.c
532 * with other readonly (flashable) information about mainboard devices.
533 */
534
535struct boardinfo {
536	struct list_head	list;
537	struct spi_board_info	board_info;
538};
539
540static LIST_HEAD(board_list);
541static LIST_HEAD(spi_controller_list);
542
543/*
544 * Used to protect add/del operation for board_info list and
545 * spi_controller list, and their matching process also used
546 * to protect object of type struct idr.
547 */
548static DEFINE_MUTEX(board_lock);
549
550/**
551 * spi_alloc_device - Allocate a new SPI device
552 * @ctlr: Controller to which device is connected
553 * Context: can sleep
554 *
555 * Allows a driver to allocate and initialize a spi_device without
556 * registering it immediately.  This allows a driver to directly
557 * fill the spi_device with device parameters before calling
558 * spi_add_device() on it.
559 *
560 * Caller is responsible to call spi_add_device() on the returned
561 * spi_device structure to add it to the SPI controller.  If the caller
562 * needs to discard the spi_device without adding it, then it should
563 * call spi_dev_put() on it.
564 *
565 * Return: a pointer to the new device, or NULL.
566 */
567struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568{
569	struct spi_device	*spi;
570
571	if (!spi_controller_get(ctlr))
572		return NULL;
573
574	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575	if (!spi) {
576		spi_controller_put(ctlr);
577		return NULL;
578	}
579
580	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581	if (!spi->pcpu_statistics) {
582		kfree(spi);
583		spi_controller_put(ctlr);
584		return NULL;
585	}
586
587	spi->master = spi->controller = ctlr;
588	spi->dev.parent = &ctlr->dev;
589	spi->dev.bus = &spi_bus_type;
590	spi->dev.release = spidev_release;
591	spi->mode = ctlr->buswidth_override_bits;
592
593	device_initialize(&spi->dev);
594	return spi;
595}
596EXPORT_SYMBOL_GPL(spi_alloc_device);
597
598static void spi_dev_set_name(struct spi_device *spi)
599{
600	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601
602	if (adev) {
603		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604		return;
605	}
606
607	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608		     spi_get_chipselect(spi, 0));
609}
610
611static int spi_dev_check(struct device *dev, void *data)
612{
613	struct spi_device *spi = to_spi_device(dev);
614	struct spi_device *new_spi = data;
615
616	if (spi->controller == new_spi->controller &&
617	    spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
618		return -EBUSY;
619	return 0;
620}
621
622static void spi_cleanup(struct spi_device *spi)
623{
624	if (spi->controller->cleanup)
625		spi->controller->cleanup(spi);
626}
627
628static int __spi_add_device(struct spi_device *spi)
629{
630	struct spi_controller *ctlr = spi->controller;
631	struct device *dev = ctlr->dev.parent;
632	int status;
633
634	/* Chipselects are numbered 0..max; validate. */
635	if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
636		dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
637			ctlr->num_chipselect);
638		return -EINVAL;
639	}
640
641	/* Set the bus ID string */
642	spi_dev_set_name(spi);
643
644	/*
645	 * We need to make sure there's no other device with this
646	 * chipselect **BEFORE** we call setup(), else we'll trash
647	 * its configuration.
648	 */
649	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
650	if (status) {
651		dev_err(dev, "chipselect %d already in use\n",
652				spi_get_chipselect(spi, 0));
653		return status;
654	}
655
656	/* Controller may unregister concurrently */
657	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
658	    !device_is_registered(&ctlr->dev)) {
659		return -ENODEV;
660	}
661
662	if (ctlr->cs_gpiods)
663		spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
664
665	/*
666	 * Drivers may modify this initial i/o setup, but will
667	 * normally rely on the device being setup.  Devices
668	 * using SPI_CS_HIGH can't coexist well otherwise...
669	 */
670	status = spi_setup(spi);
671	if (status < 0) {
672		dev_err(dev, "can't setup %s, status %d\n",
673				dev_name(&spi->dev), status);
674		return status;
675	}
676
677	/* Device may be bound to an active driver when this returns */
678	status = device_add(&spi->dev);
679	if (status < 0) {
680		dev_err(dev, "can't add %s, status %d\n",
681				dev_name(&spi->dev), status);
682		spi_cleanup(spi);
683	} else {
684		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
685	}
686
687	return status;
688}
689
690/**
691 * spi_add_device - Add spi_device allocated with spi_alloc_device
692 * @spi: spi_device to register
693 *
694 * Companion function to spi_alloc_device.  Devices allocated with
695 * spi_alloc_device can be added onto the SPI bus with this function.
696 *
697 * Return: 0 on success; negative errno on failure
698 */
699int spi_add_device(struct spi_device *spi)
700{
701	struct spi_controller *ctlr = spi->controller;
702	int status;
703
704	mutex_lock(&ctlr->add_lock);
705	status = __spi_add_device(spi);
706	mutex_unlock(&ctlr->add_lock);
707	return status;
708}
709EXPORT_SYMBOL_GPL(spi_add_device);
710
711/**
712 * spi_new_device - instantiate one new SPI device
713 * @ctlr: Controller to which device is connected
714 * @chip: Describes the SPI device
715 * Context: can sleep
716 *
717 * On typical mainboards, this is purely internal; and it's not needed
718 * after board init creates the hard-wired devices.  Some development
719 * platforms may not be able to use spi_register_board_info though, and
720 * this is exported so that for example a USB or parport based adapter
721 * driver could add devices (which it would learn about out-of-band).
722 *
723 * Return: the new device, or NULL.
724 */
725struct spi_device *spi_new_device(struct spi_controller *ctlr,
726				  struct spi_board_info *chip)
727{
728	struct spi_device	*proxy;
729	int			status;
730
731	/*
732	 * NOTE:  caller did any chip->bus_num checks necessary.
733	 *
734	 * Also, unless we change the return value convention to use
735	 * error-or-pointer (not NULL-or-pointer), troubleshootability
736	 * suggests syslogged diagnostics are best here (ugh).
737	 */
738
739	proxy = spi_alloc_device(ctlr);
740	if (!proxy)
741		return NULL;
742
743	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
744
745	spi_set_chipselect(proxy, 0, chip->chip_select);
746	proxy->max_speed_hz = chip->max_speed_hz;
747	proxy->mode = chip->mode;
748	proxy->irq = chip->irq;
749	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
750	proxy->dev.platform_data = (void *) chip->platform_data;
751	proxy->controller_data = chip->controller_data;
752	proxy->controller_state = NULL;
753
754	if (chip->swnode) {
755		status = device_add_software_node(&proxy->dev, chip->swnode);
756		if (status) {
757			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
758				chip->modalias, status);
759			goto err_dev_put;
760		}
761	}
762
763	status = spi_add_device(proxy);
764	if (status < 0)
765		goto err_dev_put;
766
767	return proxy;
768
769err_dev_put:
770	device_remove_software_node(&proxy->dev);
771	spi_dev_put(proxy);
772	return NULL;
773}
774EXPORT_SYMBOL_GPL(spi_new_device);
775
776/**
777 * spi_unregister_device - unregister a single SPI device
778 * @spi: spi_device to unregister
779 *
780 * Start making the passed SPI device vanish. Normally this would be handled
781 * by spi_unregister_controller().
782 */
783void spi_unregister_device(struct spi_device *spi)
784{
785	if (!spi)
786		return;
787
788	if (spi->dev.of_node) {
789		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
790		of_node_put(spi->dev.of_node);
791	}
792	if (ACPI_COMPANION(&spi->dev))
793		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
794	device_remove_software_node(&spi->dev);
795	device_del(&spi->dev);
796	spi_cleanup(spi);
797	put_device(&spi->dev);
798}
799EXPORT_SYMBOL_GPL(spi_unregister_device);
800
801static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
802					      struct spi_board_info *bi)
803{
804	struct spi_device *dev;
805
806	if (ctlr->bus_num != bi->bus_num)
807		return;
808
809	dev = spi_new_device(ctlr, bi);
810	if (!dev)
811		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
812			bi->modalias);
813}
814
815/**
816 * spi_register_board_info - register SPI devices for a given board
817 * @info: array of chip descriptors
818 * @n: how many descriptors are provided
819 * Context: can sleep
820 *
821 * Board-specific early init code calls this (probably during arch_initcall)
822 * with segments of the SPI device table.  Any device nodes are created later,
823 * after the relevant parent SPI controller (bus_num) is defined.  We keep
824 * this table of devices forever, so that reloading a controller driver will
825 * not make Linux forget about these hard-wired devices.
826 *
827 * Other code can also call this, e.g. a particular add-on board might provide
828 * SPI devices through its expansion connector, so code initializing that board
829 * would naturally declare its SPI devices.
830 *
831 * The board info passed can safely be __initdata ... but be careful of
832 * any embedded pointers (platform_data, etc), they're copied as-is.
833 *
834 * Return: zero on success, else a negative error code.
835 */
836int spi_register_board_info(struct spi_board_info const *info, unsigned n)
837{
838	struct boardinfo *bi;
839	int i;
840
841	if (!n)
842		return 0;
843
844	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
845	if (!bi)
846		return -ENOMEM;
847
848	for (i = 0; i < n; i++, bi++, info++) {
849		struct spi_controller *ctlr;
850
851		memcpy(&bi->board_info, info, sizeof(*info));
852
853		mutex_lock(&board_lock);
854		list_add_tail(&bi->list, &board_list);
855		list_for_each_entry(ctlr, &spi_controller_list, list)
856			spi_match_controller_to_boardinfo(ctlr,
857							  &bi->board_info);
858		mutex_unlock(&board_lock);
859	}
860
861	return 0;
862}
863
864/*-------------------------------------------------------------------------*/
865
866/* Core methods for SPI resource management */
867
868/**
869 * spi_res_alloc - allocate a spi resource that is life-cycle managed
870 *                 during the processing of a spi_message while using
871 *                 spi_transfer_one
872 * @spi:     the SPI device for which we allocate memory
873 * @release: the release code to execute for this resource
874 * @size:    size to alloc and return
875 * @gfp:     GFP allocation flags
876 *
877 * Return: the pointer to the allocated data
878 *
879 * This may get enhanced in the future to allocate from a memory pool
880 * of the @spi_device or @spi_controller to avoid repeated allocations.
881 */
882static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
883			   size_t size, gfp_t gfp)
884{
885	struct spi_res *sres;
886
887	sres = kzalloc(sizeof(*sres) + size, gfp);
888	if (!sres)
889		return NULL;
890
891	INIT_LIST_HEAD(&sres->entry);
892	sres->release = release;
893
894	return sres->data;
895}
896
897/**
898 * spi_res_free - free an SPI resource
899 * @res: pointer to the custom data of a resource
900 */
901static void spi_res_free(void *res)
902{
903	struct spi_res *sres = container_of(res, struct spi_res, data);
904
905	if (!res)
906		return;
907
908	WARN_ON(!list_empty(&sres->entry));
909	kfree(sres);
910}
911
912/**
913 * spi_res_add - add a spi_res to the spi_message
914 * @message: the SPI message
915 * @res:     the spi_resource
916 */
917static void spi_res_add(struct spi_message *message, void *res)
918{
919	struct spi_res *sres = container_of(res, struct spi_res, data);
920
921	WARN_ON(!list_empty(&sres->entry));
922	list_add_tail(&sres->entry, &message->resources);
923}
924
925/**
926 * spi_res_release - release all SPI resources for this message
927 * @ctlr:  the @spi_controller
928 * @message: the @spi_message
929 */
930static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
931{
932	struct spi_res *res, *tmp;
933
934	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
935		if (res->release)
936			res->release(ctlr, message, res->data);
937
938		list_del(&res->entry);
939
940		kfree(res);
941	}
942}
943
944/*-------------------------------------------------------------------------*/
945
946static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
947{
948	bool activate = enable;
949
950	/*
951	 * Avoid calling into the driver (or doing delays) if the chip select
952	 * isn't actually changing from the last time this was called.
953	 */
954	if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
955		       (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
956	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
957		return;
958
959	trace_spi_set_cs(spi, activate);
960
961	spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
962	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
963
964	if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
965		spi_delay_exec(&spi->cs_hold, NULL);
966
967	if (spi->mode & SPI_CS_HIGH)
968		enable = !enable;
969
970	if (spi_get_csgpiod(spi, 0)) {
971		if (!(spi->mode & SPI_NO_CS)) {
972			/*
973			 * Historically ACPI has no means of the GPIO polarity and
974			 * thus the SPISerialBus() resource defines it on the per-chip
975			 * basis. In order to avoid a chain of negations, the GPIO
976			 * polarity is considered being Active High. Even for the cases
977			 * when _DSD() is involved (in the updated versions of ACPI)
978			 * the GPIO CS polarity must be defined Active High to avoid
979			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
980			 * into account.
981			 */
982			if (has_acpi_companion(&spi->dev))
983				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
984			else
985				/* Polarity handled by GPIO library */
986				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
987		}
988		/* Some SPI masters need both GPIO CS & slave_select */
989		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
990		    spi->controller->set_cs)
991			spi->controller->set_cs(spi, !enable);
992	} else if (spi->controller->set_cs) {
993		spi->controller->set_cs(spi, !enable);
994	}
995
996	if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
997		if (activate)
998			spi_delay_exec(&spi->cs_setup, NULL);
999		else
1000			spi_delay_exec(&spi->cs_inactive, NULL);
1001	}
1002}
1003
1004#ifdef CONFIG_HAS_DMA
1005static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1006			     struct sg_table *sgt, void *buf, size_t len,
1007			     enum dma_data_direction dir, unsigned long attrs)
1008{
1009	const bool vmalloced_buf = is_vmalloc_addr(buf);
1010	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1011#ifdef CONFIG_HIGHMEM
1012	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1013				(unsigned long)buf < (PKMAP_BASE +
1014					(LAST_PKMAP * PAGE_SIZE)));
1015#else
1016	const bool kmap_buf = false;
1017#endif
1018	int desc_len;
1019	int sgs;
1020	struct page *vm_page;
1021	struct scatterlist *sg;
1022	void *sg_buf;
1023	size_t min;
1024	int i, ret;
1025
1026	if (vmalloced_buf || kmap_buf) {
1027		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1028		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1029	} else if (virt_addr_valid(buf)) {
1030		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1031		sgs = DIV_ROUND_UP(len, desc_len);
1032	} else {
1033		return -EINVAL;
1034	}
1035
1036	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1037	if (ret != 0)
1038		return ret;
1039
1040	sg = &sgt->sgl[0];
1041	for (i = 0; i < sgs; i++) {
1042
1043		if (vmalloced_buf || kmap_buf) {
1044			/*
1045			 * Next scatterlist entry size is the minimum between
1046			 * the desc_len and the remaining buffer length that
1047			 * fits in a page.
1048			 */
1049			min = min_t(size_t, desc_len,
1050				    min_t(size_t, len,
1051					  PAGE_SIZE - offset_in_page(buf)));
1052			if (vmalloced_buf)
1053				vm_page = vmalloc_to_page(buf);
1054			else
1055				vm_page = kmap_to_page(buf);
1056			if (!vm_page) {
1057				sg_free_table(sgt);
1058				return -ENOMEM;
1059			}
1060			sg_set_page(sg, vm_page,
1061				    min, offset_in_page(buf));
1062		} else {
1063			min = min_t(size_t, len, desc_len);
1064			sg_buf = buf;
1065			sg_set_buf(sg, sg_buf, min);
1066		}
1067
1068		buf += min;
1069		len -= min;
1070		sg = sg_next(sg);
1071	}
1072
1073	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1074	if (ret < 0) {
1075		sg_free_table(sgt);
1076		return ret;
1077	}
1078
1079	return 0;
1080}
1081
1082int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1083		struct sg_table *sgt, void *buf, size_t len,
1084		enum dma_data_direction dir)
1085{
1086	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1087}
1088
1089static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1090				struct device *dev, struct sg_table *sgt,
1091				enum dma_data_direction dir,
1092				unsigned long attrs)
1093{
1094	if (sgt->orig_nents) {
1095		dma_unmap_sgtable(dev, sgt, dir, attrs);
1096		sg_free_table(sgt);
1097		sgt->orig_nents = 0;
1098		sgt->nents = 0;
1099	}
1100}
1101
1102void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1103		   struct sg_table *sgt, enum dma_data_direction dir)
1104{
1105	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1106}
1107
1108static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1109{
1110	struct device *tx_dev, *rx_dev;
1111	struct spi_transfer *xfer;
1112	int ret;
1113
1114	if (!ctlr->can_dma)
1115		return 0;
1116
1117	if (ctlr->dma_tx)
1118		tx_dev = ctlr->dma_tx->device->dev;
1119	else if (ctlr->dma_map_dev)
1120		tx_dev = ctlr->dma_map_dev;
1121	else
1122		tx_dev = ctlr->dev.parent;
1123
1124	if (ctlr->dma_rx)
1125		rx_dev = ctlr->dma_rx->device->dev;
1126	else if (ctlr->dma_map_dev)
1127		rx_dev = ctlr->dma_map_dev;
1128	else
1129		rx_dev = ctlr->dev.parent;
1130
1131	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1132		/* The sync is done before each transfer. */
1133		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1134
1135		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1136			continue;
1137
1138		if (xfer->tx_buf != NULL) {
1139			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1140						(void *)xfer->tx_buf,
1141						xfer->len, DMA_TO_DEVICE,
1142						attrs);
1143			if (ret != 0)
1144				return ret;
1145		}
1146
1147		if (xfer->rx_buf != NULL) {
1148			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1149						xfer->rx_buf, xfer->len,
1150						DMA_FROM_DEVICE, attrs);
1151			if (ret != 0) {
1152				spi_unmap_buf_attrs(ctlr, tx_dev,
1153						&xfer->tx_sg, DMA_TO_DEVICE,
1154						attrs);
1155
1156				return ret;
1157			}
1158		}
1159	}
1160
1161	ctlr->cur_rx_dma_dev = rx_dev;
1162	ctlr->cur_tx_dma_dev = tx_dev;
1163	ctlr->cur_msg_mapped = true;
1164
1165	return 0;
1166}
1167
1168static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1169{
1170	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1171	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1172	struct spi_transfer *xfer;
1173
1174	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1175		return 0;
1176
1177	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178		/* The sync has already been done after each transfer. */
1179		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1180
1181		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1182			continue;
1183
1184		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1185				    DMA_FROM_DEVICE, attrs);
1186		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1187				    DMA_TO_DEVICE, attrs);
1188	}
1189
1190	ctlr->cur_msg_mapped = false;
1191
1192	return 0;
1193}
1194
1195static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1196				    struct spi_transfer *xfer)
1197{
1198	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1199	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1200
1201	if (!ctlr->cur_msg_mapped)
1202		return;
1203
1204	if (xfer->tx_sg.orig_nents)
1205		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1206	if (xfer->rx_sg.orig_nents)
1207		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1208}
1209
1210static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1211				 struct spi_transfer *xfer)
1212{
1213	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1214	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1215
1216	if (!ctlr->cur_msg_mapped)
1217		return;
1218
1219	if (xfer->rx_sg.orig_nents)
1220		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1221	if (xfer->tx_sg.orig_nents)
1222		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1223}
1224#else /* !CONFIG_HAS_DMA */
1225static inline int __spi_map_msg(struct spi_controller *ctlr,
1226				struct spi_message *msg)
1227{
1228	return 0;
1229}
1230
1231static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1232				  struct spi_message *msg)
1233{
1234	return 0;
1235}
1236
1237static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1238				    struct spi_transfer *xfer)
1239{
1240}
1241
1242static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1243				 struct spi_transfer *xfer)
1244{
1245}
1246#endif /* !CONFIG_HAS_DMA */
1247
1248static inline int spi_unmap_msg(struct spi_controller *ctlr,
1249				struct spi_message *msg)
1250{
1251	struct spi_transfer *xfer;
1252
1253	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1254		/*
1255		 * Restore the original value of tx_buf or rx_buf if they are
1256		 * NULL.
1257		 */
1258		if (xfer->tx_buf == ctlr->dummy_tx)
1259			xfer->tx_buf = NULL;
1260		if (xfer->rx_buf == ctlr->dummy_rx)
1261			xfer->rx_buf = NULL;
1262	}
1263
1264	return __spi_unmap_msg(ctlr, msg);
1265}
1266
1267static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1268{
1269	struct spi_transfer *xfer;
1270	void *tmp;
1271	unsigned int max_tx, max_rx;
1272
1273	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1274		&& !(msg->spi->mode & SPI_3WIRE)) {
1275		max_tx = 0;
1276		max_rx = 0;
1277
1278		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1279			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1280			    !xfer->tx_buf)
1281				max_tx = max(xfer->len, max_tx);
1282			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1283			    !xfer->rx_buf)
1284				max_rx = max(xfer->len, max_rx);
1285		}
1286
1287		if (max_tx) {
1288			tmp = krealloc(ctlr->dummy_tx, max_tx,
1289				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1290			if (!tmp)
1291				return -ENOMEM;
1292			ctlr->dummy_tx = tmp;
1293		}
1294
1295		if (max_rx) {
1296			tmp = krealloc(ctlr->dummy_rx, max_rx,
1297				       GFP_KERNEL | GFP_DMA);
1298			if (!tmp)
1299				return -ENOMEM;
1300			ctlr->dummy_rx = tmp;
1301		}
1302
1303		if (max_tx || max_rx) {
1304			list_for_each_entry(xfer, &msg->transfers,
1305					    transfer_list) {
1306				if (!xfer->len)
1307					continue;
1308				if (!xfer->tx_buf)
1309					xfer->tx_buf = ctlr->dummy_tx;
1310				if (!xfer->rx_buf)
1311					xfer->rx_buf = ctlr->dummy_rx;
1312			}
1313		}
1314	}
1315
1316	return __spi_map_msg(ctlr, msg);
1317}
1318
1319static int spi_transfer_wait(struct spi_controller *ctlr,
1320			     struct spi_message *msg,
1321			     struct spi_transfer *xfer)
1322{
1323	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1324	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1325	u32 speed_hz = xfer->speed_hz;
1326	unsigned long long ms;
1327
1328	if (spi_controller_is_slave(ctlr)) {
1329		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1330			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1331			return -EINTR;
1332		}
1333	} else {
1334		if (!speed_hz)
1335			speed_hz = 100000;
1336
1337		/*
1338		 * For each byte we wait for 8 cycles of the SPI clock.
1339		 * Since speed is defined in Hz and we want milliseconds,
1340		 * use respective multiplier, but before the division,
1341		 * otherwise we may get 0 for short transfers.
1342		 */
1343		ms = 8LL * MSEC_PER_SEC * xfer->len;
1344		do_div(ms, speed_hz);
1345
1346		/*
1347		 * Increase it twice and add 200 ms tolerance, use
1348		 * predefined maximum in case of overflow.
1349		 */
1350		ms += ms + 200;
1351		if (ms > UINT_MAX)
1352			ms = UINT_MAX;
1353
1354		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1355						 msecs_to_jiffies(ms));
1356
1357		if (ms == 0) {
1358			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1359			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1360			dev_err(&msg->spi->dev,
1361				"SPI transfer timed out\n");
1362			return -ETIMEDOUT;
1363		}
1364	}
1365
1366	return 0;
1367}
1368
1369static void _spi_transfer_delay_ns(u32 ns)
1370{
1371	if (!ns)
1372		return;
1373	if (ns <= NSEC_PER_USEC) {
1374		ndelay(ns);
1375	} else {
1376		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1377
1378		if (us <= 10)
1379			udelay(us);
1380		else
1381			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1382	}
1383}
1384
1385int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1386{
1387	u32 delay = _delay->value;
1388	u32 unit = _delay->unit;
1389	u32 hz;
1390
1391	if (!delay)
1392		return 0;
1393
1394	switch (unit) {
1395	case SPI_DELAY_UNIT_USECS:
1396		delay *= NSEC_PER_USEC;
1397		break;
1398	case SPI_DELAY_UNIT_NSECS:
1399		/* Nothing to do here */
1400		break;
1401	case SPI_DELAY_UNIT_SCK:
1402		/* Clock cycles need to be obtained from spi_transfer */
1403		if (!xfer)
1404			return -EINVAL;
1405		/*
1406		 * If there is unknown effective speed, approximate it
1407		 * by underestimating with half of the requested Hz.
1408		 */
1409		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1410		if (!hz)
1411			return -EINVAL;
1412
1413		/* Convert delay to nanoseconds */
1414		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1415		break;
1416	default:
1417		return -EINVAL;
1418	}
1419
1420	return delay;
1421}
1422EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1423
1424int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1425{
1426	int delay;
1427
1428	might_sleep();
1429
1430	if (!_delay)
1431		return -EINVAL;
1432
1433	delay = spi_delay_to_ns(_delay, xfer);
1434	if (delay < 0)
1435		return delay;
1436
1437	_spi_transfer_delay_ns(delay);
1438
1439	return 0;
1440}
1441EXPORT_SYMBOL_GPL(spi_delay_exec);
1442
1443static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1444					  struct spi_transfer *xfer)
1445{
1446	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1447	u32 delay = xfer->cs_change_delay.value;
1448	u32 unit = xfer->cs_change_delay.unit;
1449	int ret;
1450
1451	/* Return early on "fast" mode - for everything but USECS */
1452	if (!delay) {
1453		if (unit == SPI_DELAY_UNIT_USECS)
1454			_spi_transfer_delay_ns(default_delay_ns);
1455		return;
1456	}
1457
1458	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1459	if (ret) {
1460		dev_err_once(&msg->spi->dev,
1461			     "Use of unsupported delay unit %i, using default of %luus\n",
1462			     unit, default_delay_ns / NSEC_PER_USEC);
1463		_spi_transfer_delay_ns(default_delay_ns);
1464	}
1465}
1466
1467void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1468						  struct spi_transfer *xfer)
1469{
1470	_spi_transfer_cs_change_delay(msg, xfer);
1471}
1472EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1473
1474/*
1475 * spi_transfer_one_message - Default implementation of transfer_one_message()
1476 *
1477 * This is a standard implementation of transfer_one_message() for
1478 * drivers which implement a transfer_one() operation.  It provides
1479 * standard handling of delays and chip select management.
1480 */
1481static int spi_transfer_one_message(struct spi_controller *ctlr,
1482				    struct spi_message *msg)
1483{
1484	struct spi_transfer *xfer;
1485	bool keep_cs = false;
1486	int ret = 0;
1487	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1488	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1489
1490	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1491	spi_set_cs(msg->spi, !xfer->cs_off, false);
1492
1493	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1494	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1495
1496	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1497		trace_spi_transfer_start(msg, xfer);
1498
1499		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1500		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1501
1502		if (!ctlr->ptp_sts_supported) {
1503			xfer->ptp_sts_word_pre = 0;
1504			ptp_read_system_prets(xfer->ptp_sts);
1505		}
1506
1507		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1508			reinit_completion(&ctlr->xfer_completion);
1509
1510fallback_pio:
1511			spi_dma_sync_for_device(ctlr, xfer);
1512			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1513			if (ret < 0) {
1514				spi_dma_sync_for_cpu(ctlr, xfer);
1515
1516				if (ctlr->cur_msg_mapped &&
1517				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1518					__spi_unmap_msg(ctlr, msg);
1519					ctlr->fallback = true;
1520					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1521					goto fallback_pio;
1522				}
1523
1524				SPI_STATISTICS_INCREMENT_FIELD(statm,
1525							       errors);
1526				SPI_STATISTICS_INCREMENT_FIELD(stats,
1527							       errors);
1528				dev_err(&msg->spi->dev,
1529					"SPI transfer failed: %d\n", ret);
1530				goto out;
1531			}
1532
1533			if (ret > 0) {
1534				ret = spi_transfer_wait(ctlr, msg, xfer);
1535				if (ret < 0)
1536					msg->status = ret;
1537			}
1538
1539			spi_dma_sync_for_cpu(ctlr, xfer);
1540		} else {
1541			if (xfer->len)
1542				dev_err(&msg->spi->dev,
1543					"Bufferless transfer has length %u\n",
1544					xfer->len);
1545		}
1546
1547		if (!ctlr->ptp_sts_supported) {
1548			ptp_read_system_postts(xfer->ptp_sts);
1549			xfer->ptp_sts_word_post = xfer->len;
1550		}
1551
1552		trace_spi_transfer_stop(msg, xfer);
1553
1554		if (msg->status != -EINPROGRESS)
1555			goto out;
1556
1557		spi_transfer_delay_exec(xfer);
1558
1559		if (xfer->cs_change) {
1560			if (list_is_last(&xfer->transfer_list,
1561					 &msg->transfers)) {
1562				keep_cs = true;
1563			} else {
1564				if (!xfer->cs_off)
1565					spi_set_cs(msg->spi, false, false);
1566				_spi_transfer_cs_change_delay(msg, xfer);
1567				if (!list_next_entry(xfer, transfer_list)->cs_off)
1568					spi_set_cs(msg->spi, true, false);
1569			}
1570		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1571			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1572			spi_set_cs(msg->spi, xfer->cs_off, false);
1573		}
1574
1575		msg->actual_length += xfer->len;
1576	}
1577
1578out:
1579	if (ret != 0 || !keep_cs)
1580		spi_set_cs(msg->spi, false, false);
1581
1582	if (msg->status == -EINPROGRESS)
1583		msg->status = ret;
1584
1585	if (msg->status && ctlr->handle_err)
1586		ctlr->handle_err(ctlr, msg);
1587
1588	spi_finalize_current_message(ctlr);
1589
1590	return ret;
1591}
1592
1593/**
1594 * spi_finalize_current_transfer - report completion of a transfer
1595 * @ctlr: the controller reporting completion
1596 *
1597 * Called by SPI drivers using the core transfer_one_message()
1598 * implementation to notify it that the current interrupt driven
1599 * transfer has finished and the next one may be scheduled.
1600 */
1601void spi_finalize_current_transfer(struct spi_controller *ctlr)
1602{
1603	complete(&ctlr->xfer_completion);
1604}
1605EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1606
1607static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1608{
1609	if (ctlr->auto_runtime_pm) {
1610		pm_runtime_mark_last_busy(ctlr->dev.parent);
1611		pm_runtime_put_autosuspend(ctlr->dev.parent);
1612	}
1613}
1614
1615static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1616		struct spi_message *msg, bool was_busy)
1617{
1618	struct spi_transfer *xfer;
1619	int ret;
1620
1621	if (!was_busy && ctlr->auto_runtime_pm) {
1622		ret = pm_runtime_get_sync(ctlr->dev.parent);
1623		if (ret < 0) {
1624			pm_runtime_put_noidle(ctlr->dev.parent);
1625			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1626				ret);
1627
1628			msg->status = ret;
1629			spi_finalize_current_message(ctlr);
1630
1631			return ret;
1632		}
1633	}
1634
1635	if (!was_busy)
1636		trace_spi_controller_busy(ctlr);
1637
1638	if (!was_busy && ctlr->prepare_transfer_hardware) {
1639		ret = ctlr->prepare_transfer_hardware(ctlr);
1640		if (ret) {
1641			dev_err(&ctlr->dev,
1642				"failed to prepare transfer hardware: %d\n",
1643				ret);
1644
1645			if (ctlr->auto_runtime_pm)
1646				pm_runtime_put(ctlr->dev.parent);
1647
1648			msg->status = ret;
1649			spi_finalize_current_message(ctlr);
1650
1651			return ret;
1652		}
1653	}
1654
1655	trace_spi_message_start(msg);
1656
1657	ret = spi_split_transfers_maxsize(ctlr, msg,
1658					  spi_max_transfer_size(msg->spi),
1659					  GFP_KERNEL | GFP_DMA);
1660	if (ret) {
1661		msg->status = ret;
1662		spi_finalize_current_message(ctlr);
1663		return ret;
1664	}
1665
1666	if (ctlr->prepare_message) {
1667		ret = ctlr->prepare_message(ctlr, msg);
1668		if (ret) {
1669			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1670				ret);
1671			msg->status = ret;
1672			spi_finalize_current_message(ctlr);
1673			return ret;
1674		}
1675		msg->prepared = true;
1676	}
1677
1678	ret = spi_map_msg(ctlr, msg);
1679	if (ret) {
1680		msg->status = ret;
1681		spi_finalize_current_message(ctlr);
1682		return ret;
1683	}
1684
1685	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1686		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1687			xfer->ptp_sts_word_pre = 0;
1688			ptp_read_system_prets(xfer->ptp_sts);
1689		}
1690	}
1691
1692	/*
1693	 * Drivers implementation of transfer_one_message() must arrange for
1694	 * spi_finalize_current_message() to get called. Most drivers will do
1695	 * this in the calling context, but some don't. For those cases, a
1696	 * completion is used to guarantee that this function does not return
1697	 * until spi_finalize_current_message() is done accessing
1698	 * ctlr->cur_msg.
1699	 * Use of the following two flags enable to opportunistically skip the
1700	 * use of the completion since its use involves expensive spin locks.
1701	 * In case of a race with the context that calls
1702	 * spi_finalize_current_message() the completion will always be used,
1703	 * due to strict ordering of these flags using barriers.
1704	 */
1705	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1706	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1707	reinit_completion(&ctlr->cur_msg_completion);
1708	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1709
1710	ret = ctlr->transfer_one_message(ctlr, msg);
1711	if (ret) {
1712		dev_err(&ctlr->dev,
1713			"failed to transfer one message from queue\n");
1714		return ret;
1715	}
1716
1717	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1718	smp_mb(); /* See spi_finalize_current_message()... */
1719	if (READ_ONCE(ctlr->cur_msg_incomplete))
1720		wait_for_completion(&ctlr->cur_msg_completion);
1721
1722	return 0;
1723}
1724
1725/**
1726 * __spi_pump_messages - function which processes SPI message queue
1727 * @ctlr: controller to process queue for
1728 * @in_kthread: true if we are in the context of the message pump thread
1729 *
1730 * This function checks if there is any SPI message in the queue that
1731 * needs processing and if so call out to the driver to initialize hardware
1732 * and transfer each message.
1733 *
1734 * Note that it is called both from the kthread itself and also from
1735 * inside spi_sync(); the queue extraction handling at the top of the
1736 * function should deal with this safely.
1737 */
1738static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1739{
1740	struct spi_message *msg;
1741	bool was_busy = false;
1742	unsigned long flags;
1743	int ret;
1744
1745	/* Take the I/O mutex */
1746	mutex_lock(&ctlr->io_mutex);
1747
1748	/* Lock queue */
1749	spin_lock_irqsave(&ctlr->queue_lock, flags);
1750
1751	/* Make sure we are not already running a message */
1752	if (ctlr->cur_msg)
1753		goto out_unlock;
1754
1755	/* Check if the queue is idle */
1756	if (list_empty(&ctlr->queue) || !ctlr->running) {
1757		if (!ctlr->busy)
1758			goto out_unlock;
1759
1760		/* Defer any non-atomic teardown to the thread */
1761		if (!in_kthread) {
1762			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1763			    !ctlr->unprepare_transfer_hardware) {
1764				spi_idle_runtime_pm(ctlr);
1765				ctlr->busy = false;
1766				ctlr->queue_empty = true;
1767				trace_spi_controller_idle(ctlr);
1768			} else {
1769				kthread_queue_work(ctlr->kworker,
1770						   &ctlr->pump_messages);
1771			}
1772			goto out_unlock;
1773		}
1774
1775		ctlr->busy = false;
1776		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1777
1778		kfree(ctlr->dummy_rx);
1779		ctlr->dummy_rx = NULL;
1780		kfree(ctlr->dummy_tx);
1781		ctlr->dummy_tx = NULL;
1782		if (ctlr->unprepare_transfer_hardware &&
1783		    ctlr->unprepare_transfer_hardware(ctlr))
1784			dev_err(&ctlr->dev,
1785				"failed to unprepare transfer hardware\n");
1786		spi_idle_runtime_pm(ctlr);
1787		trace_spi_controller_idle(ctlr);
1788
1789		spin_lock_irqsave(&ctlr->queue_lock, flags);
1790		ctlr->queue_empty = true;
1791		goto out_unlock;
1792	}
1793
1794	/* Extract head of queue */
1795	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1796	ctlr->cur_msg = msg;
1797
1798	list_del_init(&msg->queue);
1799	if (ctlr->busy)
1800		was_busy = true;
1801	else
1802		ctlr->busy = true;
1803	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1804
1805	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1806	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1807
1808	ctlr->cur_msg = NULL;
1809	ctlr->fallback = false;
1810
1811	mutex_unlock(&ctlr->io_mutex);
1812
1813	/* Prod the scheduler in case transfer_one() was busy waiting */
1814	if (!ret)
1815		cond_resched();
1816	return;
1817
1818out_unlock:
1819	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1820	mutex_unlock(&ctlr->io_mutex);
1821}
1822
1823/**
1824 * spi_pump_messages - kthread work function which processes spi message queue
1825 * @work: pointer to kthread work struct contained in the controller struct
1826 */
1827static void spi_pump_messages(struct kthread_work *work)
1828{
1829	struct spi_controller *ctlr =
1830		container_of(work, struct spi_controller, pump_messages);
1831
1832	__spi_pump_messages(ctlr, true);
1833}
1834
1835/**
1836 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1837 * @ctlr: Pointer to the spi_controller structure of the driver
1838 * @xfer: Pointer to the transfer being timestamped
1839 * @progress: How many words (not bytes) have been transferred so far
1840 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1841 *	      transfer, for less jitter in time measurement. Only compatible
1842 *	      with PIO drivers. If true, must follow up with
1843 *	      spi_take_timestamp_post or otherwise system will crash.
1844 *	      WARNING: for fully predictable results, the CPU frequency must
1845 *	      also be under control (governor).
1846 *
1847 * This is a helper for drivers to collect the beginning of the TX timestamp
1848 * for the requested byte from the SPI transfer. The frequency with which this
1849 * function must be called (once per word, once for the whole transfer, once
1850 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1851 * greater than or equal to the requested byte at the time of the call. The
1852 * timestamp is only taken once, at the first such call. It is assumed that
1853 * the driver advances its @tx buffer pointer monotonically.
1854 */
1855void spi_take_timestamp_pre(struct spi_controller *ctlr,
1856			    struct spi_transfer *xfer,
1857			    size_t progress, bool irqs_off)
1858{
1859	if (!xfer->ptp_sts)
1860		return;
1861
1862	if (xfer->timestamped)
1863		return;
1864
1865	if (progress > xfer->ptp_sts_word_pre)
1866		return;
1867
1868	/* Capture the resolution of the timestamp */
1869	xfer->ptp_sts_word_pre = progress;
1870
1871	if (irqs_off) {
1872		local_irq_save(ctlr->irq_flags);
1873		preempt_disable();
1874	}
1875
1876	ptp_read_system_prets(xfer->ptp_sts);
1877}
1878EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1879
1880/**
1881 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1882 * @ctlr: Pointer to the spi_controller structure of the driver
1883 * @xfer: Pointer to the transfer being timestamped
1884 * @progress: How many words (not bytes) have been transferred so far
1885 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1886 *
1887 * This is a helper for drivers to collect the end of the TX timestamp for
1888 * the requested byte from the SPI transfer. Can be called with an arbitrary
1889 * frequency: only the first call where @tx exceeds or is equal to the
1890 * requested word will be timestamped.
1891 */
1892void spi_take_timestamp_post(struct spi_controller *ctlr,
1893			     struct spi_transfer *xfer,
1894			     size_t progress, bool irqs_off)
1895{
1896	if (!xfer->ptp_sts)
1897		return;
1898
1899	if (xfer->timestamped)
1900		return;
1901
1902	if (progress < xfer->ptp_sts_word_post)
1903		return;
1904
1905	ptp_read_system_postts(xfer->ptp_sts);
1906
1907	if (irqs_off) {
1908		local_irq_restore(ctlr->irq_flags);
1909		preempt_enable();
1910	}
1911
1912	/* Capture the resolution of the timestamp */
1913	xfer->ptp_sts_word_post = progress;
1914
1915	xfer->timestamped = 1;
1916}
1917EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1918
1919/**
1920 * spi_set_thread_rt - set the controller to pump at realtime priority
1921 * @ctlr: controller to boost priority of
1922 *
1923 * This can be called because the controller requested realtime priority
1924 * (by setting the ->rt value before calling spi_register_controller()) or
1925 * because a device on the bus said that its transfers needed realtime
1926 * priority.
1927 *
1928 * NOTE: at the moment if any device on a bus says it needs realtime then
1929 * the thread will be at realtime priority for all transfers on that
1930 * controller.  If this eventually becomes a problem we may see if we can
1931 * find a way to boost the priority only temporarily during relevant
1932 * transfers.
1933 */
1934static void spi_set_thread_rt(struct spi_controller *ctlr)
1935{
1936	dev_info(&ctlr->dev,
1937		"will run message pump with realtime priority\n");
1938	sched_set_fifo(ctlr->kworker->task);
1939}
1940
1941static int spi_init_queue(struct spi_controller *ctlr)
1942{
1943	ctlr->running = false;
1944	ctlr->busy = false;
1945	ctlr->queue_empty = true;
1946
1947	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1948	if (IS_ERR(ctlr->kworker)) {
1949		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1950		return PTR_ERR(ctlr->kworker);
1951	}
1952
1953	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1954
1955	/*
1956	 * Controller config will indicate if this controller should run the
1957	 * message pump with high (realtime) priority to reduce the transfer
1958	 * latency on the bus by minimising the delay between a transfer
1959	 * request and the scheduling of the message pump thread. Without this
1960	 * setting the message pump thread will remain at default priority.
1961	 */
1962	if (ctlr->rt)
1963		spi_set_thread_rt(ctlr);
1964
1965	return 0;
1966}
1967
1968/**
1969 * spi_get_next_queued_message() - called by driver to check for queued
1970 * messages
1971 * @ctlr: the controller to check for queued messages
1972 *
1973 * If there are more messages in the queue, the next message is returned from
1974 * this call.
1975 *
1976 * Return: the next message in the queue, else NULL if the queue is empty.
1977 */
1978struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1979{
1980	struct spi_message *next;
1981	unsigned long flags;
1982
1983	/* Get a pointer to the next message, if any */
1984	spin_lock_irqsave(&ctlr->queue_lock, flags);
1985	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1986					queue);
1987	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1988
1989	return next;
1990}
1991EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1992
1993/**
1994 * spi_finalize_current_message() - the current message is complete
1995 * @ctlr: the controller to return the message to
1996 *
1997 * Called by the driver to notify the core that the message in the front of the
1998 * queue is complete and can be removed from the queue.
1999 */
2000void spi_finalize_current_message(struct spi_controller *ctlr)
2001{
2002	struct spi_transfer *xfer;
2003	struct spi_message *mesg;
2004	int ret;
2005
2006	mesg = ctlr->cur_msg;
2007
2008	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2009		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2010			ptp_read_system_postts(xfer->ptp_sts);
2011			xfer->ptp_sts_word_post = xfer->len;
2012		}
2013	}
2014
2015	if (unlikely(ctlr->ptp_sts_supported))
2016		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2017			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2018
2019	spi_unmap_msg(ctlr, mesg);
2020
2021	/*
2022	 * In the prepare_messages callback the SPI bus has the opportunity
2023	 * to split a transfer to smaller chunks.
2024	 *
2025	 * Release the split transfers here since spi_map_msg() is done on
2026	 * the split transfers.
2027	 */
2028	spi_res_release(ctlr, mesg);
2029
2030	if (mesg->prepared && ctlr->unprepare_message) {
2031		ret = ctlr->unprepare_message(ctlr, mesg);
2032		if (ret) {
2033			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2034				ret);
2035		}
2036	}
2037
2038	mesg->prepared = false;
2039
2040	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2041	smp_mb(); /* See __spi_pump_transfer_message()... */
2042	if (READ_ONCE(ctlr->cur_msg_need_completion))
2043		complete(&ctlr->cur_msg_completion);
2044
2045	trace_spi_message_done(mesg);
2046
2047	mesg->state = NULL;
2048	if (mesg->complete)
2049		mesg->complete(mesg->context);
2050}
2051EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2052
2053static int spi_start_queue(struct spi_controller *ctlr)
2054{
2055	unsigned long flags;
2056
2057	spin_lock_irqsave(&ctlr->queue_lock, flags);
2058
2059	if (ctlr->running || ctlr->busy) {
2060		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2061		return -EBUSY;
2062	}
2063
2064	ctlr->running = true;
2065	ctlr->cur_msg = NULL;
2066	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2067
2068	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2069
2070	return 0;
2071}
2072
2073static int spi_stop_queue(struct spi_controller *ctlr)
2074{
2075	unsigned long flags;
2076	unsigned limit = 500;
2077	int ret = 0;
2078
2079	spin_lock_irqsave(&ctlr->queue_lock, flags);
2080
2081	/*
2082	 * This is a bit lame, but is optimized for the common execution path.
2083	 * A wait_queue on the ctlr->busy could be used, but then the common
2084	 * execution path (pump_messages) would be required to call wake_up or
2085	 * friends on every SPI message. Do this instead.
2086	 */
2087	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2088		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2089		usleep_range(10000, 11000);
2090		spin_lock_irqsave(&ctlr->queue_lock, flags);
2091	}
2092
2093	if (!list_empty(&ctlr->queue) || ctlr->busy)
2094		ret = -EBUSY;
2095	else
2096		ctlr->running = false;
2097
2098	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2099
2100	if (ret) {
2101		dev_warn(&ctlr->dev, "could not stop message queue\n");
2102		return ret;
2103	}
2104	return ret;
2105}
2106
2107static int spi_destroy_queue(struct spi_controller *ctlr)
2108{
2109	int ret;
2110
2111	ret = spi_stop_queue(ctlr);
2112
2113	/*
2114	 * kthread_flush_worker will block until all work is done.
2115	 * If the reason that stop_queue timed out is that the work will never
2116	 * finish, then it does no good to call flush/stop thread, so
2117	 * return anyway.
2118	 */
2119	if (ret) {
2120		dev_err(&ctlr->dev, "problem destroying queue\n");
2121		return ret;
2122	}
2123
2124	kthread_destroy_worker(ctlr->kworker);
2125
2126	return 0;
2127}
2128
2129static int __spi_queued_transfer(struct spi_device *spi,
2130				 struct spi_message *msg,
2131				 bool need_pump)
2132{
2133	struct spi_controller *ctlr = spi->controller;
2134	unsigned long flags;
2135
2136	spin_lock_irqsave(&ctlr->queue_lock, flags);
2137
2138	if (!ctlr->running) {
2139		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2140		return -ESHUTDOWN;
2141	}
2142	msg->actual_length = 0;
2143	msg->status = -EINPROGRESS;
2144
2145	list_add_tail(&msg->queue, &ctlr->queue);
2146	ctlr->queue_empty = false;
2147	if (!ctlr->busy && need_pump)
2148		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2149
2150	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2151	return 0;
2152}
2153
2154/**
2155 * spi_queued_transfer - transfer function for queued transfers
2156 * @spi: SPI device which is requesting transfer
2157 * @msg: SPI message which is to handled is queued to driver queue
2158 *
2159 * Return: zero on success, else a negative error code.
2160 */
2161static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2162{
2163	return __spi_queued_transfer(spi, msg, true);
2164}
2165
2166static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2167{
2168	int ret;
2169
2170	ctlr->transfer = spi_queued_transfer;
2171	if (!ctlr->transfer_one_message)
2172		ctlr->transfer_one_message = spi_transfer_one_message;
2173
2174	/* Initialize and start queue */
2175	ret = spi_init_queue(ctlr);
2176	if (ret) {
2177		dev_err(&ctlr->dev, "problem initializing queue\n");
2178		goto err_init_queue;
2179	}
2180	ctlr->queued = true;
2181	ret = spi_start_queue(ctlr);
2182	if (ret) {
2183		dev_err(&ctlr->dev, "problem starting queue\n");
2184		goto err_start_queue;
2185	}
2186
2187	return 0;
2188
2189err_start_queue:
2190	spi_destroy_queue(ctlr);
2191err_init_queue:
2192	return ret;
2193}
2194
2195/**
2196 * spi_flush_queue - Send all pending messages in the queue from the callers'
2197 *		     context
2198 * @ctlr: controller to process queue for
2199 *
2200 * This should be used when one wants to ensure all pending messages have been
2201 * sent before doing something. Is used by the spi-mem code to make sure SPI
2202 * memory operations do not preempt regular SPI transfers that have been queued
2203 * before the spi-mem operation.
2204 */
2205void spi_flush_queue(struct spi_controller *ctlr)
2206{
2207	if (ctlr->transfer == spi_queued_transfer)
2208		__spi_pump_messages(ctlr, false);
2209}
2210
2211/*-------------------------------------------------------------------------*/
2212
2213#if defined(CONFIG_OF)
2214static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2215				     struct spi_delay *delay, const char *prop)
2216{
2217	u32 value;
2218
2219	if (!of_property_read_u32(nc, prop, &value)) {
2220		if (value > U16_MAX) {
2221			delay->value = DIV_ROUND_UP(value, 1000);
2222			delay->unit = SPI_DELAY_UNIT_USECS;
2223		} else {
2224			delay->value = value;
2225			delay->unit = SPI_DELAY_UNIT_NSECS;
2226		}
2227	}
2228}
2229
2230static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2231			   struct device_node *nc)
2232{
2233	u32 value;
2234	int rc;
2235
2236	/* Mode (clock phase/polarity/etc.) */
2237	if (of_property_read_bool(nc, "spi-cpha"))
2238		spi->mode |= SPI_CPHA;
2239	if (of_property_read_bool(nc, "spi-cpol"))
2240		spi->mode |= SPI_CPOL;
2241	if (of_property_read_bool(nc, "spi-3wire"))
2242		spi->mode |= SPI_3WIRE;
2243	if (of_property_read_bool(nc, "spi-lsb-first"))
2244		spi->mode |= SPI_LSB_FIRST;
2245	if (of_property_read_bool(nc, "spi-cs-high"))
2246		spi->mode |= SPI_CS_HIGH;
2247
2248	/* Device DUAL/QUAD mode */
2249	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2250		switch (value) {
2251		case 0:
2252			spi->mode |= SPI_NO_TX;
2253			break;
2254		case 1:
2255			break;
2256		case 2:
2257			spi->mode |= SPI_TX_DUAL;
2258			break;
2259		case 4:
2260			spi->mode |= SPI_TX_QUAD;
2261			break;
2262		case 8:
2263			spi->mode |= SPI_TX_OCTAL;
2264			break;
2265		default:
2266			dev_warn(&ctlr->dev,
2267				"spi-tx-bus-width %d not supported\n",
2268				value);
2269			break;
2270		}
2271	}
2272
2273	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2274		switch (value) {
2275		case 0:
2276			spi->mode |= SPI_NO_RX;
2277			break;
2278		case 1:
2279			break;
2280		case 2:
2281			spi->mode |= SPI_RX_DUAL;
2282			break;
2283		case 4:
2284			spi->mode |= SPI_RX_QUAD;
2285			break;
2286		case 8:
2287			spi->mode |= SPI_RX_OCTAL;
2288			break;
2289		default:
2290			dev_warn(&ctlr->dev,
2291				"spi-rx-bus-width %d not supported\n",
2292				value);
2293			break;
2294		}
2295	}
2296
2297	if (spi_controller_is_slave(ctlr)) {
2298		if (!of_node_name_eq(nc, "slave")) {
2299			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2300				nc);
2301			return -EINVAL;
2302		}
2303		return 0;
2304	}
2305
2306	/* Device address */
2307	rc = of_property_read_u32(nc, "reg", &value);
2308	if (rc) {
2309		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2310			nc, rc);
2311		return rc;
2312	}
2313	spi_set_chipselect(spi, 0, value);
2314
2315	/* Device speed */
2316	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2317		spi->max_speed_hz = value;
2318
2319	/* Device CS delays */
2320	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2321	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2322	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2323
2324	return 0;
2325}
2326
2327static struct spi_device *
2328of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2329{
2330	struct spi_device *spi;
2331	int rc;
2332
2333	/* Alloc an spi_device */
2334	spi = spi_alloc_device(ctlr);
2335	if (!spi) {
2336		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2337		rc = -ENOMEM;
2338		goto err_out;
2339	}
2340
2341	/* Select device driver */
2342	rc = of_alias_from_compatible(nc, spi->modalias,
2343				      sizeof(spi->modalias));
2344	if (rc < 0) {
2345		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2346		goto err_out;
2347	}
2348
2349	rc = of_spi_parse_dt(ctlr, spi, nc);
2350	if (rc)
2351		goto err_out;
2352
2353	/* Store a pointer to the node in the device structure */
2354	of_node_get(nc);
2355
2356	device_set_node(&spi->dev, of_fwnode_handle(nc));
2357
2358	/* Register the new device */
2359	rc = spi_add_device(spi);
2360	if (rc) {
2361		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2362		goto err_of_node_put;
2363	}
2364
2365	return spi;
2366
2367err_of_node_put:
2368	of_node_put(nc);
2369err_out:
2370	spi_dev_put(spi);
2371	return ERR_PTR(rc);
2372}
2373
2374/**
2375 * of_register_spi_devices() - Register child devices onto the SPI bus
2376 * @ctlr:	Pointer to spi_controller device
2377 *
2378 * Registers an spi_device for each child node of controller node which
2379 * represents a valid SPI slave.
2380 */
2381static void of_register_spi_devices(struct spi_controller *ctlr)
2382{
2383	struct spi_device *spi;
2384	struct device_node *nc;
2385
2386	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2387		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2388			continue;
2389		spi = of_register_spi_device(ctlr, nc);
2390		if (IS_ERR(spi)) {
2391			dev_warn(&ctlr->dev,
2392				 "Failed to create SPI device for %pOF\n", nc);
2393			of_node_clear_flag(nc, OF_POPULATED);
2394		}
2395	}
2396}
2397#else
2398static void of_register_spi_devices(struct spi_controller *ctlr) { }
2399#endif
2400
2401/**
2402 * spi_new_ancillary_device() - Register ancillary SPI device
2403 * @spi:         Pointer to the main SPI device registering the ancillary device
2404 * @chip_select: Chip Select of the ancillary device
2405 *
2406 * Register an ancillary SPI device; for example some chips have a chip-select
2407 * for normal device usage and another one for setup/firmware upload.
2408 *
2409 * This may only be called from main SPI device's probe routine.
2410 *
2411 * Return: 0 on success; negative errno on failure
2412 */
2413struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2414					     u8 chip_select)
2415{
2416	struct spi_controller *ctlr = spi->controller;
2417	struct spi_device *ancillary;
2418	int rc = 0;
2419
2420	/* Alloc an spi_device */
2421	ancillary = spi_alloc_device(ctlr);
2422	if (!ancillary) {
2423		rc = -ENOMEM;
2424		goto err_out;
2425	}
2426
2427	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2428
2429	/* Use provided chip-select for ancillary device */
2430	spi_set_chipselect(ancillary, 0, chip_select);
2431
2432	/* Take over SPI mode/speed from SPI main device */
2433	ancillary->max_speed_hz = spi->max_speed_hz;
2434	ancillary->mode = spi->mode;
2435
2436	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2437
2438	/* Register the new device */
2439	rc = __spi_add_device(ancillary);
2440	if (rc) {
2441		dev_err(&spi->dev, "failed to register ancillary device\n");
2442		goto err_out;
2443	}
2444
2445	return ancillary;
2446
2447err_out:
2448	spi_dev_put(ancillary);
2449	return ERR_PTR(rc);
2450}
2451EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2452
2453#ifdef CONFIG_ACPI
2454struct acpi_spi_lookup {
2455	struct spi_controller 	*ctlr;
2456	u32			max_speed_hz;
2457	u32			mode;
2458	int			irq;
2459	u8			bits_per_word;
2460	u8			chip_select;
2461	int			n;
2462	int			index;
2463};
2464
2465static int acpi_spi_count(struct acpi_resource *ares, void *data)
2466{
2467	struct acpi_resource_spi_serialbus *sb;
2468	int *count = data;
2469
2470	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2471		return 1;
2472
2473	sb = &ares->data.spi_serial_bus;
2474	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2475		return 1;
2476
2477	*count = *count + 1;
2478
2479	return 1;
2480}
2481
2482/**
2483 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2484 * @adev:	ACPI device
2485 *
2486 * Return: the number of SpiSerialBus resources in the ACPI-device's
2487 * resource-list; or a negative error code.
2488 */
2489int acpi_spi_count_resources(struct acpi_device *adev)
2490{
2491	LIST_HEAD(r);
2492	int count = 0;
2493	int ret;
2494
2495	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2496	if (ret < 0)
2497		return ret;
2498
2499	acpi_dev_free_resource_list(&r);
2500
2501	return count;
2502}
2503EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2504
2505static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2506					    struct acpi_spi_lookup *lookup)
2507{
2508	const union acpi_object *obj;
2509
2510	if (!x86_apple_machine)
2511		return;
2512
2513	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2514	    && obj->buffer.length >= 4)
2515		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2516
2517	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2518	    && obj->buffer.length == 8)
2519		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2520
2521	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2522	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2523		lookup->mode |= SPI_LSB_FIRST;
2524
2525	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2526	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2527		lookup->mode |= SPI_CPOL;
2528
2529	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2530	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2531		lookup->mode |= SPI_CPHA;
2532}
2533
2534static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2535
2536static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2537{
2538	struct acpi_spi_lookup *lookup = data;
2539	struct spi_controller *ctlr = lookup->ctlr;
2540
2541	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2542		struct acpi_resource_spi_serialbus *sb;
2543		acpi_handle parent_handle;
2544		acpi_status status;
2545
2546		sb = &ares->data.spi_serial_bus;
2547		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2548
2549			if (lookup->index != -1 && lookup->n++ != lookup->index)
2550				return 1;
2551
2552			status = acpi_get_handle(NULL,
2553						 sb->resource_source.string_ptr,
2554						 &parent_handle);
2555
2556			if (ACPI_FAILURE(status))
2557				return -ENODEV;
2558
2559			if (ctlr) {
2560				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2561					return -ENODEV;
2562			} else {
2563				struct acpi_device *adev;
2564
2565				adev = acpi_fetch_acpi_dev(parent_handle);
2566				if (!adev)
2567					return -ENODEV;
2568
2569				ctlr = acpi_spi_find_controller_by_adev(adev);
2570				if (!ctlr)
2571					return -EPROBE_DEFER;
2572
2573				lookup->ctlr = ctlr;
2574			}
2575
2576			/*
2577			 * ACPI DeviceSelection numbering is handled by the
2578			 * host controller driver in Windows and can vary
2579			 * from driver to driver. In Linux we always expect
2580			 * 0 .. max - 1 so we need to ask the driver to
2581			 * translate between the two schemes.
2582			 */
2583			if (ctlr->fw_translate_cs) {
2584				int cs = ctlr->fw_translate_cs(ctlr,
2585						sb->device_selection);
2586				if (cs < 0)
2587					return cs;
2588				lookup->chip_select = cs;
2589			} else {
2590				lookup->chip_select = sb->device_selection;
2591			}
2592
2593			lookup->max_speed_hz = sb->connection_speed;
2594			lookup->bits_per_word = sb->data_bit_length;
2595
2596			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2597				lookup->mode |= SPI_CPHA;
2598			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2599				lookup->mode |= SPI_CPOL;
2600			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2601				lookup->mode |= SPI_CS_HIGH;
2602		}
2603	} else if (lookup->irq < 0) {
2604		struct resource r;
2605
2606		if (acpi_dev_resource_interrupt(ares, 0, &r))
2607			lookup->irq = r.start;
2608	}
2609
2610	/* Always tell the ACPI core to skip this resource */
2611	return 1;
2612}
2613
2614/**
2615 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2616 * @ctlr: controller to which the spi device belongs
2617 * @adev: ACPI Device for the spi device
2618 * @index: Index of the spi resource inside the ACPI Node
2619 *
2620 * This should be used to allocate a new SPI device from and ACPI Device node.
2621 * The caller is responsible for calling spi_add_device to register the SPI device.
2622 *
2623 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2624 * using the resource.
2625 * If index is set to -1, index is not used.
2626 * Note: If index is -1, ctlr must be set.
2627 *
2628 * Return: a pointer to the new device, or ERR_PTR on error.
2629 */
2630struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2631					 struct acpi_device *adev,
2632					 int index)
2633{
2634	acpi_handle parent_handle = NULL;
2635	struct list_head resource_list;
2636	struct acpi_spi_lookup lookup = {};
2637	struct spi_device *spi;
2638	int ret;
2639
2640	if (!ctlr && index == -1)
2641		return ERR_PTR(-EINVAL);
2642
2643	lookup.ctlr		= ctlr;
2644	lookup.irq		= -1;
2645	lookup.index		= index;
2646	lookup.n		= 0;
2647
2648	INIT_LIST_HEAD(&resource_list);
2649	ret = acpi_dev_get_resources(adev, &resource_list,
2650				     acpi_spi_add_resource, &lookup);
2651	acpi_dev_free_resource_list(&resource_list);
2652
2653	if (ret < 0)
2654		/* Found SPI in _CRS but it points to another controller */
2655		return ERR_PTR(ret);
2656
2657	if (!lookup.max_speed_hz &&
2658	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2659	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2660		/* Apple does not use _CRS but nested devices for SPI slaves */
2661		acpi_spi_parse_apple_properties(adev, &lookup);
2662	}
2663
2664	if (!lookup.max_speed_hz)
2665		return ERR_PTR(-ENODEV);
2666
2667	spi = spi_alloc_device(lookup.ctlr);
2668	if (!spi) {
2669		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2670			dev_name(&adev->dev));
2671		return ERR_PTR(-ENOMEM);
2672	}
2673
2674	ACPI_COMPANION_SET(&spi->dev, adev);
2675	spi->max_speed_hz	= lookup.max_speed_hz;
2676	spi->mode		|= lookup.mode;
2677	spi->irq		= lookup.irq;
2678	spi->bits_per_word	= lookup.bits_per_word;
2679	spi_set_chipselect(spi, 0, lookup.chip_select);
2680
2681	return spi;
2682}
2683EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2684
2685static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2686					    struct acpi_device *adev)
2687{
2688	struct spi_device *spi;
2689
2690	if (acpi_bus_get_status(adev) || !adev->status.present ||
2691	    acpi_device_enumerated(adev))
2692		return AE_OK;
2693
2694	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2695	if (IS_ERR(spi)) {
2696		if (PTR_ERR(spi) == -ENOMEM)
2697			return AE_NO_MEMORY;
2698		else
2699			return AE_OK;
2700	}
2701
2702	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2703			  sizeof(spi->modalias));
2704
2705	if (spi->irq < 0)
2706		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2707
2708	acpi_device_set_enumerated(adev);
2709
2710	adev->power.flags.ignore_parent = true;
2711	if (spi_add_device(spi)) {
2712		adev->power.flags.ignore_parent = false;
2713		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2714			dev_name(&adev->dev));
2715		spi_dev_put(spi);
2716	}
2717
2718	return AE_OK;
2719}
2720
2721static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2722				       void *data, void **return_value)
2723{
2724	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2725	struct spi_controller *ctlr = data;
2726
2727	if (!adev)
2728		return AE_OK;
2729
2730	return acpi_register_spi_device(ctlr, adev);
2731}
2732
2733#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2734
2735static void acpi_register_spi_devices(struct spi_controller *ctlr)
2736{
2737	acpi_status status;
2738	acpi_handle handle;
2739
2740	handle = ACPI_HANDLE(ctlr->dev.parent);
2741	if (!handle)
2742		return;
2743
2744	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2745				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2746				     acpi_spi_add_device, NULL, ctlr, NULL);
2747	if (ACPI_FAILURE(status))
2748		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2749}
2750#else
2751static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2752#endif /* CONFIG_ACPI */
2753
2754static void spi_controller_release(struct device *dev)
2755{
2756	struct spi_controller *ctlr;
2757
2758	ctlr = container_of(dev, struct spi_controller, dev);
2759	kfree(ctlr);
2760}
2761
2762static struct class spi_master_class = {
2763	.name		= "spi_master",
2764	.dev_release	= spi_controller_release,
2765	.dev_groups	= spi_master_groups,
2766};
2767
2768#ifdef CONFIG_SPI_SLAVE
2769/**
2770 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2771 *		     controller
2772 * @spi: device used for the current transfer
2773 */
2774int spi_slave_abort(struct spi_device *spi)
2775{
2776	struct spi_controller *ctlr = spi->controller;
2777
2778	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2779		return ctlr->slave_abort(ctlr);
2780
2781	return -ENOTSUPP;
2782}
2783EXPORT_SYMBOL_GPL(spi_slave_abort);
2784
2785int spi_target_abort(struct spi_device *spi)
2786{
2787	struct spi_controller *ctlr = spi->controller;
2788
2789	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2790		return ctlr->target_abort(ctlr);
2791
2792	return -ENOTSUPP;
2793}
2794EXPORT_SYMBOL_GPL(spi_target_abort);
2795
2796static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2797			  char *buf)
2798{
2799	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2800						   dev);
2801	struct device *child;
2802
2803	child = device_find_any_child(&ctlr->dev);
2804	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2805}
2806
2807static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2808			   const char *buf, size_t count)
2809{
2810	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2811						   dev);
2812	struct spi_device *spi;
2813	struct device *child;
2814	char name[32];
2815	int rc;
2816
2817	rc = sscanf(buf, "%31s", name);
2818	if (rc != 1 || !name[0])
2819		return -EINVAL;
2820
2821	child = device_find_any_child(&ctlr->dev);
2822	if (child) {
2823		/* Remove registered slave */
2824		device_unregister(child);
2825		put_device(child);
2826	}
2827
2828	if (strcmp(name, "(null)")) {
2829		/* Register new slave */
2830		spi = spi_alloc_device(ctlr);
2831		if (!spi)
2832			return -ENOMEM;
2833
2834		strscpy(spi->modalias, name, sizeof(spi->modalias));
2835
2836		rc = spi_add_device(spi);
2837		if (rc) {
2838			spi_dev_put(spi);
2839			return rc;
2840		}
2841	}
2842
2843	return count;
2844}
2845
2846static DEVICE_ATTR_RW(slave);
2847
2848static struct attribute *spi_slave_attrs[] = {
2849	&dev_attr_slave.attr,
2850	NULL,
2851};
2852
2853static const struct attribute_group spi_slave_group = {
2854	.attrs = spi_slave_attrs,
2855};
2856
2857static const struct attribute_group *spi_slave_groups[] = {
2858	&spi_controller_statistics_group,
2859	&spi_slave_group,
2860	NULL,
2861};
2862
2863static struct class spi_slave_class = {
2864	.name		= "spi_slave",
2865	.dev_release	= spi_controller_release,
2866	.dev_groups	= spi_slave_groups,
2867};
2868#else
2869extern struct class spi_slave_class;	/* dummy */
2870#endif
2871
2872/**
2873 * __spi_alloc_controller - allocate an SPI master or slave controller
2874 * @dev: the controller, possibly using the platform_bus
2875 * @size: how much zeroed driver-private data to allocate; the pointer to this
2876 *	memory is in the driver_data field of the returned device, accessible
2877 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2878 *	drivers granting DMA access to portions of their private data need to
2879 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2880 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2881 *	slave (true) controller
2882 * Context: can sleep
2883 *
2884 * This call is used only by SPI controller drivers, which are the
2885 * only ones directly touching chip registers.  It's how they allocate
2886 * an spi_controller structure, prior to calling spi_register_controller().
2887 *
2888 * This must be called from context that can sleep.
2889 *
2890 * The caller is responsible for assigning the bus number and initializing the
2891 * controller's methods before calling spi_register_controller(); and (after
2892 * errors adding the device) calling spi_controller_put() to prevent a memory
2893 * leak.
2894 *
2895 * Return: the SPI controller structure on success, else NULL.
2896 */
2897struct spi_controller *__spi_alloc_controller(struct device *dev,
2898					      unsigned int size, bool slave)
2899{
2900	struct spi_controller	*ctlr;
2901	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2902
2903	if (!dev)
2904		return NULL;
2905
2906	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2907	if (!ctlr)
2908		return NULL;
2909
2910	device_initialize(&ctlr->dev);
2911	INIT_LIST_HEAD(&ctlr->queue);
2912	spin_lock_init(&ctlr->queue_lock);
2913	spin_lock_init(&ctlr->bus_lock_spinlock);
2914	mutex_init(&ctlr->bus_lock_mutex);
2915	mutex_init(&ctlr->io_mutex);
2916	mutex_init(&ctlr->add_lock);
2917	ctlr->bus_num = -1;
2918	ctlr->num_chipselect = 1;
2919	ctlr->slave = slave;
2920	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2921		ctlr->dev.class = &spi_slave_class;
2922	else
2923		ctlr->dev.class = &spi_master_class;
2924	ctlr->dev.parent = dev;
2925	pm_suspend_ignore_children(&ctlr->dev, true);
2926	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2927
2928	return ctlr;
2929}
2930EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2931
2932static void devm_spi_release_controller(struct device *dev, void *ctlr)
2933{
2934	spi_controller_put(*(struct spi_controller **)ctlr);
2935}
2936
2937/**
2938 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2939 * @dev: physical device of SPI controller
2940 * @size: how much zeroed driver-private data to allocate
2941 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2942 * Context: can sleep
2943 *
2944 * Allocate an SPI controller and automatically release a reference on it
2945 * when @dev is unbound from its driver.  Drivers are thus relieved from
2946 * having to call spi_controller_put().
2947 *
2948 * The arguments to this function are identical to __spi_alloc_controller().
2949 *
2950 * Return: the SPI controller structure on success, else NULL.
2951 */
2952struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2953						   unsigned int size,
2954						   bool slave)
2955{
2956	struct spi_controller **ptr, *ctlr;
2957
2958	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2959			   GFP_KERNEL);
2960	if (!ptr)
2961		return NULL;
2962
2963	ctlr = __spi_alloc_controller(dev, size, slave);
2964	if (ctlr) {
2965		ctlr->devm_allocated = true;
2966		*ptr = ctlr;
2967		devres_add(dev, ptr);
2968	} else {
2969		devres_free(ptr);
2970	}
2971
2972	return ctlr;
2973}
2974EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2975
2976/**
2977 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2978 * @ctlr: The SPI master to grab GPIO descriptors for
2979 */
2980static int spi_get_gpio_descs(struct spi_controller *ctlr)
2981{
2982	int nb, i;
2983	struct gpio_desc **cs;
2984	struct device *dev = &ctlr->dev;
2985	unsigned long native_cs_mask = 0;
2986	unsigned int num_cs_gpios = 0;
2987
2988	nb = gpiod_count(dev, "cs");
2989	if (nb < 0) {
2990		/* No GPIOs at all is fine, else return the error */
2991		if (nb == -ENOENT)
2992			return 0;
2993		return nb;
2994	}
2995
2996	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2997
2998	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2999			  GFP_KERNEL);
3000	if (!cs)
3001		return -ENOMEM;
3002	ctlr->cs_gpiods = cs;
3003
3004	for (i = 0; i < nb; i++) {
3005		/*
3006		 * Most chipselects are active low, the inverted
3007		 * semantics are handled by special quirks in gpiolib,
3008		 * so initializing them GPIOD_OUT_LOW here means
3009		 * "unasserted", in most cases this will drive the physical
3010		 * line high.
3011		 */
3012		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3013						      GPIOD_OUT_LOW);
3014		if (IS_ERR(cs[i]))
3015			return PTR_ERR(cs[i]);
3016
3017		if (cs[i]) {
3018			/*
3019			 * If we find a CS GPIO, name it after the device and
3020			 * chip select line.
3021			 */
3022			char *gpioname;
3023
3024			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3025						  dev_name(dev), i);
3026			if (!gpioname)
3027				return -ENOMEM;
3028			gpiod_set_consumer_name(cs[i], gpioname);
3029			num_cs_gpios++;
3030			continue;
3031		}
3032
3033		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3034			dev_err(dev, "Invalid native chip select %d\n", i);
3035			return -EINVAL;
3036		}
3037		native_cs_mask |= BIT(i);
3038	}
3039
3040	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3041
3042	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3043	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3044		dev_err(dev, "No unused native chip select available\n");
3045		return -EINVAL;
3046	}
3047
3048	return 0;
3049}
3050
3051static int spi_controller_check_ops(struct spi_controller *ctlr)
3052{
3053	/*
3054	 * The controller may implement only the high-level SPI-memory like
3055	 * operations if it does not support regular SPI transfers, and this is
3056	 * valid use case.
3057	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3058	 * one of the ->transfer_xxx() method be implemented.
3059	 */
3060	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3061		if (!ctlr->transfer && !ctlr->transfer_one &&
3062		   !ctlr->transfer_one_message) {
3063			return -EINVAL;
3064		}
3065	}
3066
3067	return 0;
3068}
3069
3070/* Allocate dynamic bus number using Linux idr */
3071static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3072{
3073	int id;
3074
3075	mutex_lock(&board_lock);
3076	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3077	mutex_unlock(&board_lock);
3078	if (WARN(id < 0, "couldn't get idr"))
3079		return id == -ENOSPC ? -EBUSY : id;
3080	ctlr->bus_num = id;
3081	return 0;
3082}
3083
3084/**
3085 * spi_register_controller - register SPI master or slave controller
3086 * @ctlr: initialized master, originally from spi_alloc_master() or
3087 *	spi_alloc_slave()
3088 * Context: can sleep
3089 *
3090 * SPI controllers connect to their drivers using some non-SPI bus,
3091 * such as the platform bus.  The final stage of probe() in that code
3092 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3093 *
3094 * SPI controllers use board specific (often SOC specific) bus numbers,
3095 * and board-specific addressing for SPI devices combines those numbers
3096 * with chip select numbers.  Since SPI does not directly support dynamic
3097 * device identification, boards need configuration tables telling which
3098 * chip is at which address.
3099 *
3100 * This must be called from context that can sleep.  It returns zero on
3101 * success, else a negative error code (dropping the controller's refcount).
3102 * After a successful return, the caller is responsible for calling
3103 * spi_unregister_controller().
3104 *
3105 * Return: zero on success, else a negative error code.
3106 */
3107int spi_register_controller(struct spi_controller *ctlr)
3108{
3109	struct device		*dev = ctlr->dev.parent;
3110	struct boardinfo	*bi;
3111	int			first_dynamic;
3112	int			status;
3113
3114	if (!dev)
3115		return -ENODEV;
3116
3117	/*
3118	 * Make sure all necessary hooks are implemented before registering
3119	 * the SPI controller.
3120	 */
3121	status = spi_controller_check_ops(ctlr);
3122	if (status)
3123		return status;
3124
3125	if (ctlr->bus_num < 0)
3126		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3127	if (ctlr->bus_num >= 0) {
3128		/* Devices with a fixed bus num must check-in with the num */
3129		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3130		if (status)
3131			return status;
3132	}
3133	if (ctlr->bus_num < 0) {
3134		first_dynamic = of_alias_get_highest_id("spi");
3135		if (first_dynamic < 0)
3136			first_dynamic = 0;
3137		else
3138			first_dynamic++;
3139
3140		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3141		if (status)
3142			return status;
3143	}
3144	ctlr->bus_lock_flag = 0;
3145	init_completion(&ctlr->xfer_completion);
3146	init_completion(&ctlr->cur_msg_completion);
3147	if (!ctlr->max_dma_len)
3148		ctlr->max_dma_len = INT_MAX;
3149
3150	/*
3151	 * Register the device, then userspace will see it.
3152	 * Registration fails if the bus ID is in use.
3153	 */
3154	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3155
3156	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3157		status = spi_get_gpio_descs(ctlr);
3158		if (status)
3159			goto free_bus_id;
3160		/*
3161		 * A controller using GPIO descriptors always
3162		 * supports SPI_CS_HIGH if need be.
3163		 */
3164		ctlr->mode_bits |= SPI_CS_HIGH;
3165	}
3166
3167	/*
3168	 * Even if it's just one always-selected device, there must
3169	 * be at least one chipselect.
3170	 */
3171	if (!ctlr->num_chipselect) {
3172		status = -EINVAL;
3173		goto free_bus_id;
3174	}
3175
3176	/* Setting last_cs to -1 means no chip selected */
3177	ctlr->last_cs = -1;
3178
3179	status = device_add(&ctlr->dev);
3180	if (status < 0)
3181		goto free_bus_id;
3182	dev_dbg(dev, "registered %s %s\n",
3183			spi_controller_is_slave(ctlr) ? "slave" : "master",
3184			dev_name(&ctlr->dev));
3185
3186	/*
3187	 * If we're using a queued driver, start the queue. Note that we don't
3188	 * need the queueing logic if the driver is only supporting high-level
3189	 * memory operations.
3190	 */
3191	if (ctlr->transfer) {
3192		dev_info(dev, "controller is unqueued, this is deprecated\n");
3193	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3194		status = spi_controller_initialize_queue(ctlr);
3195		if (status) {
3196			device_del(&ctlr->dev);
3197			goto free_bus_id;
3198		}
3199	}
3200	/* Add statistics */
3201	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3202	if (!ctlr->pcpu_statistics) {
3203		dev_err(dev, "Error allocating per-cpu statistics\n");
3204		status = -ENOMEM;
3205		goto destroy_queue;
3206	}
3207
3208	mutex_lock(&board_lock);
3209	list_add_tail(&ctlr->list, &spi_controller_list);
3210	list_for_each_entry(bi, &board_list, list)
3211		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3212	mutex_unlock(&board_lock);
3213
3214	/* Register devices from the device tree and ACPI */
3215	of_register_spi_devices(ctlr);
3216	acpi_register_spi_devices(ctlr);
3217	return status;
3218
3219destroy_queue:
3220	spi_destroy_queue(ctlr);
3221free_bus_id:
3222	mutex_lock(&board_lock);
3223	idr_remove(&spi_master_idr, ctlr->bus_num);
3224	mutex_unlock(&board_lock);
3225	return status;
3226}
3227EXPORT_SYMBOL_GPL(spi_register_controller);
3228
3229static void devm_spi_unregister(struct device *dev, void *res)
3230{
3231	spi_unregister_controller(*(struct spi_controller **)res);
3232}
3233
3234/**
3235 * devm_spi_register_controller - register managed SPI master or slave
3236 *	controller
3237 * @dev:    device managing SPI controller
3238 * @ctlr: initialized controller, originally from spi_alloc_master() or
3239 *	spi_alloc_slave()
3240 * Context: can sleep
3241 *
3242 * Register a SPI device as with spi_register_controller() which will
3243 * automatically be unregistered and freed.
3244 *
3245 * Return: zero on success, else a negative error code.
3246 */
3247int devm_spi_register_controller(struct device *dev,
3248				 struct spi_controller *ctlr)
3249{
3250	struct spi_controller **ptr;
3251	int ret;
3252
3253	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3254	if (!ptr)
3255		return -ENOMEM;
3256
3257	ret = spi_register_controller(ctlr);
3258	if (!ret) {
3259		*ptr = ctlr;
3260		devres_add(dev, ptr);
3261	} else {
3262		devres_free(ptr);
3263	}
3264
3265	return ret;
3266}
3267EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3268
3269static int __unregister(struct device *dev, void *null)
3270{
3271	spi_unregister_device(to_spi_device(dev));
3272	return 0;
3273}
3274
3275/**
3276 * spi_unregister_controller - unregister SPI master or slave controller
3277 * @ctlr: the controller being unregistered
3278 * Context: can sleep
3279 *
3280 * This call is used only by SPI controller drivers, which are the
3281 * only ones directly touching chip registers.
3282 *
3283 * This must be called from context that can sleep.
3284 *
3285 * Note that this function also drops a reference to the controller.
3286 */
3287void spi_unregister_controller(struct spi_controller *ctlr)
3288{
3289	struct spi_controller *found;
3290	int id = ctlr->bus_num;
3291
3292	/* Prevent addition of new devices, unregister existing ones */
3293	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3294		mutex_lock(&ctlr->add_lock);
3295
3296	device_for_each_child(&ctlr->dev, NULL, __unregister);
3297
3298	/* First make sure that this controller was ever added */
3299	mutex_lock(&board_lock);
3300	found = idr_find(&spi_master_idr, id);
3301	mutex_unlock(&board_lock);
3302	if (ctlr->queued) {
3303		if (spi_destroy_queue(ctlr))
3304			dev_err(&ctlr->dev, "queue remove failed\n");
3305	}
3306	mutex_lock(&board_lock);
3307	list_del(&ctlr->list);
3308	mutex_unlock(&board_lock);
3309
3310	device_del(&ctlr->dev);
3311
3312	/* Free bus id */
3313	mutex_lock(&board_lock);
3314	if (found == ctlr)
3315		idr_remove(&spi_master_idr, id);
3316	mutex_unlock(&board_lock);
3317
3318	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3319		mutex_unlock(&ctlr->add_lock);
3320
3321	/*
3322	 * Release the last reference on the controller if its driver
3323	 * has not yet been converted to devm_spi_alloc_master/slave().
3324	 */
3325	if (!ctlr->devm_allocated)
3326		put_device(&ctlr->dev);
3327}
3328EXPORT_SYMBOL_GPL(spi_unregister_controller);
3329
3330static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3331{
3332	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3333}
3334
3335static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3336{
3337	mutex_lock(&ctlr->bus_lock_mutex);
3338	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3339	mutex_unlock(&ctlr->bus_lock_mutex);
3340}
3341
3342static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3343{
3344	mutex_lock(&ctlr->bus_lock_mutex);
3345	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3346	mutex_unlock(&ctlr->bus_lock_mutex);
3347}
3348
3349int spi_controller_suspend(struct spi_controller *ctlr)
3350{
3351	int ret = 0;
3352
3353	/* Basically no-ops for non-queued controllers */
3354	if (ctlr->queued) {
3355		ret = spi_stop_queue(ctlr);
3356		if (ret)
3357			dev_err(&ctlr->dev, "queue stop failed\n");
3358	}
3359
3360	__spi_mark_suspended(ctlr);
3361	return ret;
3362}
3363EXPORT_SYMBOL_GPL(spi_controller_suspend);
3364
3365int spi_controller_resume(struct spi_controller *ctlr)
3366{
3367	int ret = 0;
3368
3369	__spi_mark_resumed(ctlr);
3370
3371	if (ctlr->queued) {
3372		ret = spi_start_queue(ctlr);
3373		if (ret)
3374			dev_err(&ctlr->dev, "queue restart failed\n");
3375	}
3376	return ret;
3377}
3378EXPORT_SYMBOL_GPL(spi_controller_resume);
3379
3380/*-------------------------------------------------------------------------*/
3381
3382/* Core methods for spi_message alterations */
3383
3384static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3385					    struct spi_message *msg,
3386					    void *res)
3387{
3388	struct spi_replaced_transfers *rxfer = res;
3389	size_t i;
3390
3391	/* Call extra callback if requested */
3392	if (rxfer->release)
3393		rxfer->release(ctlr, msg, res);
3394
3395	/* Insert replaced transfers back into the message */
3396	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3397
3398	/* Remove the formerly inserted entries */
3399	for (i = 0; i < rxfer->inserted; i++)
3400		list_del(&rxfer->inserted_transfers[i].transfer_list);
3401}
3402
3403/**
3404 * spi_replace_transfers - replace transfers with several transfers
3405 *                         and register change with spi_message.resources
3406 * @msg:           the spi_message we work upon
3407 * @xfer_first:    the first spi_transfer we want to replace
3408 * @remove:        number of transfers to remove
3409 * @insert:        the number of transfers we want to insert instead
3410 * @release:       extra release code necessary in some circumstances
3411 * @extradatasize: extra data to allocate (with alignment guarantees
3412 *                 of struct @spi_transfer)
3413 * @gfp:           gfp flags
3414 *
3415 * Returns: pointer to @spi_replaced_transfers,
3416 *          PTR_ERR(...) in case of errors.
3417 */
3418static struct spi_replaced_transfers *spi_replace_transfers(
3419	struct spi_message *msg,
3420	struct spi_transfer *xfer_first,
3421	size_t remove,
3422	size_t insert,
3423	spi_replaced_release_t release,
3424	size_t extradatasize,
3425	gfp_t gfp)
3426{
3427	struct spi_replaced_transfers *rxfer;
3428	struct spi_transfer *xfer;
3429	size_t i;
3430
3431	/* Allocate the structure using spi_res */
3432	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3433			      struct_size(rxfer, inserted_transfers, insert)
3434			      + extradatasize,
3435			      gfp);
3436	if (!rxfer)
3437		return ERR_PTR(-ENOMEM);
3438
3439	/* The release code to invoke before running the generic release */
3440	rxfer->release = release;
3441
3442	/* Assign extradata */
3443	if (extradatasize)
3444		rxfer->extradata =
3445			&rxfer->inserted_transfers[insert];
3446
3447	/* Init the replaced_transfers list */
3448	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3449
3450	/*
3451	 * Assign the list_entry after which we should reinsert
3452	 * the @replaced_transfers - it may be spi_message.messages!
3453	 */
3454	rxfer->replaced_after = xfer_first->transfer_list.prev;
3455
3456	/* Remove the requested number of transfers */
3457	for (i = 0; i < remove; i++) {
3458		/*
3459		 * If the entry after replaced_after it is msg->transfers
3460		 * then we have been requested to remove more transfers
3461		 * than are in the list.
3462		 */
3463		if (rxfer->replaced_after->next == &msg->transfers) {
3464			dev_err(&msg->spi->dev,
3465				"requested to remove more spi_transfers than are available\n");
3466			/* Insert replaced transfers back into the message */
3467			list_splice(&rxfer->replaced_transfers,
3468				    rxfer->replaced_after);
3469
3470			/* Free the spi_replace_transfer structure... */
3471			spi_res_free(rxfer);
3472
3473			/* ...and return with an error */
3474			return ERR_PTR(-EINVAL);
3475		}
3476
3477		/*
3478		 * Remove the entry after replaced_after from list of
3479		 * transfers and add it to list of replaced_transfers.
3480		 */
3481		list_move_tail(rxfer->replaced_after->next,
3482			       &rxfer->replaced_transfers);
3483	}
3484
3485	/*
3486	 * Create copy of the given xfer with identical settings
3487	 * based on the first transfer to get removed.
3488	 */
3489	for (i = 0; i < insert; i++) {
3490		/* We need to run in reverse order */
3491		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3492
3493		/* Copy all spi_transfer data */
3494		memcpy(xfer, xfer_first, sizeof(*xfer));
3495
3496		/* Add to list */
3497		list_add(&xfer->transfer_list, rxfer->replaced_after);
3498
3499		/* Clear cs_change and delay for all but the last */
3500		if (i) {
3501			xfer->cs_change = false;
3502			xfer->delay.value = 0;
3503		}
3504	}
3505
3506	/* Set up inserted... */
3507	rxfer->inserted = insert;
3508
3509	/* ...and register it with spi_res/spi_message */
3510	spi_res_add(msg, rxfer);
3511
3512	return rxfer;
3513}
3514
3515static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3516					struct spi_message *msg,
3517					struct spi_transfer **xferp,
3518					size_t maxsize,
3519					gfp_t gfp)
3520{
3521	struct spi_transfer *xfer = *xferp, *xfers;
3522	struct spi_replaced_transfers *srt;
3523	size_t offset;
3524	size_t count, i;
3525
3526	/* Calculate how many we have to replace */
3527	count = DIV_ROUND_UP(xfer->len, maxsize);
3528
3529	/* Create replacement */
3530	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3531	if (IS_ERR(srt))
3532		return PTR_ERR(srt);
3533	xfers = srt->inserted_transfers;
3534
3535	/*
3536	 * Now handle each of those newly inserted spi_transfers.
3537	 * Note that the replacements spi_transfers all are preset
3538	 * to the same values as *xferp, so tx_buf, rx_buf and len
3539	 * are all identical (as well as most others)
3540	 * so we just have to fix up len and the pointers.
3541	 *
3542	 * This also includes support for the depreciated
3543	 * spi_message.is_dma_mapped interface.
3544	 */
3545
3546	/*
3547	 * The first transfer just needs the length modified, so we
3548	 * run it outside the loop.
3549	 */
3550	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3551
3552	/* All the others need rx_buf/tx_buf also set */
3553	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3554		/* Update rx_buf, tx_buf and DMA */
3555		if (xfers[i].rx_buf)
3556			xfers[i].rx_buf += offset;
3557		if (xfers[i].rx_dma)
3558			xfers[i].rx_dma += offset;
3559		if (xfers[i].tx_buf)
3560			xfers[i].tx_buf += offset;
3561		if (xfers[i].tx_dma)
3562			xfers[i].tx_dma += offset;
3563
3564		/* Update length */
3565		xfers[i].len = min(maxsize, xfers[i].len - offset);
3566	}
3567
3568	/*
3569	 * We set up xferp to the last entry we have inserted,
3570	 * so that we skip those already split transfers.
3571	 */
3572	*xferp = &xfers[count - 1];
3573
3574	/* Increment statistics counters */
3575	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3576				       transfers_split_maxsize);
3577	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3578				       transfers_split_maxsize);
3579
3580	return 0;
3581}
3582
3583/**
3584 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3585 *                               when an individual transfer exceeds a
3586 *                               certain size
3587 * @ctlr:    the @spi_controller for this transfer
3588 * @msg:   the @spi_message to transform
3589 * @maxsize:  the maximum when to apply this
3590 * @gfp: GFP allocation flags
3591 *
3592 * Return: status of transformation
3593 */
3594int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3595				struct spi_message *msg,
3596				size_t maxsize,
3597				gfp_t gfp)
3598{
3599	struct spi_transfer *xfer;
3600	int ret;
3601
3602	/*
3603	 * Iterate over the transfer_list,
3604	 * but note that xfer is advanced to the last transfer inserted
3605	 * to avoid checking sizes again unnecessarily (also xfer does
3606	 * potentially belong to a different list by the time the
3607	 * replacement has happened).
3608	 */
3609	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3610		if (xfer->len > maxsize) {
3611			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3612							   maxsize, gfp);
3613			if (ret)
3614				return ret;
3615		}
3616	}
3617
3618	return 0;
3619}
3620EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3621
3622
3623/**
3624 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3625 *                                when an individual transfer exceeds a
3626 *                                certain number of SPI words
3627 * @ctlr:     the @spi_controller for this transfer
3628 * @msg:      the @spi_message to transform
3629 * @maxwords: the number of words to limit each transfer to
3630 * @gfp:      GFP allocation flags
3631 *
3632 * Return: status of transformation
3633 */
3634int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3635				 struct spi_message *msg,
3636				 size_t maxwords,
3637				 gfp_t gfp)
3638{
3639	struct spi_transfer *xfer;
3640
3641	/*
3642	 * Iterate over the transfer_list,
3643	 * but note that xfer is advanced to the last transfer inserted
3644	 * to avoid checking sizes again unnecessarily (also xfer does
3645	 * potentially belong to a different list by the time the
3646	 * replacement has happened).
3647	 */
3648	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3649		size_t maxsize;
3650		int ret;
3651
3652		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3653		if (xfer->len > maxsize) {
3654			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3655							   maxsize, gfp);
3656			if (ret)
3657				return ret;
3658		}
3659	}
3660
3661	return 0;
3662}
3663EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3664
3665/*-------------------------------------------------------------------------*/
3666
3667/*
3668 * Core methods for SPI controller protocol drivers. Some of the
3669 * other core methods are currently defined as inline functions.
3670 */
3671
3672static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3673					u8 bits_per_word)
3674{
3675	if (ctlr->bits_per_word_mask) {
3676		/* Only 32 bits fit in the mask */
3677		if (bits_per_word > 32)
3678			return -EINVAL;
3679		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3680			return -EINVAL;
3681	}
3682
3683	return 0;
3684}
3685
3686/**
3687 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3688 * @spi: the device that requires specific CS timing configuration
3689 *
3690 * Return: zero on success, else a negative error code.
3691 */
3692static int spi_set_cs_timing(struct spi_device *spi)
3693{
3694	struct device *parent = spi->controller->dev.parent;
3695	int status = 0;
3696
3697	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3698		if (spi->controller->auto_runtime_pm) {
3699			status = pm_runtime_get_sync(parent);
3700			if (status < 0) {
3701				pm_runtime_put_noidle(parent);
3702				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3703					status);
3704				return status;
3705			}
3706
3707			status = spi->controller->set_cs_timing(spi);
3708			pm_runtime_mark_last_busy(parent);
3709			pm_runtime_put_autosuspend(parent);
3710		} else {
3711			status = spi->controller->set_cs_timing(spi);
3712		}
3713	}
3714	return status;
3715}
3716
3717/**
3718 * spi_setup - setup SPI mode and clock rate
3719 * @spi: the device whose settings are being modified
3720 * Context: can sleep, and no requests are queued to the device
3721 *
3722 * SPI protocol drivers may need to update the transfer mode if the
3723 * device doesn't work with its default.  They may likewise need
3724 * to update clock rates or word sizes from initial values.  This function
3725 * changes those settings, and must be called from a context that can sleep.
3726 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3727 * effect the next time the device is selected and data is transferred to
3728 * or from it.  When this function returns, the SPI device is deselected.
3729 *
3730 * Note that this call will fail if the protocol driver specifies an option
3731 * that the underlying controller or its driver does not support.  For
3732 * example, not all hardware supports wire transfers using nine bit words,
3733 * LSB-first wire encoding, or active-high chipselects.
3734 *
3735 * Return: zero on success, else a negative error code.
3736 */
3737int spi_setup(struct spi_device *spi)
3738{
3739	unsigned	bad_bits, ugly_bits;
3740	int		status = 0;
3741
3742	/*
3743	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3744	 * are set at the same time.
3745	 */
3746	if ((hweight_long(spi->mode &
3747		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3748	    (hweight_long(spi->mode &
3749		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3750		dev_err(&spi->dev,
3751		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3752		return -EINVAL;
3753	}
3754	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3755	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3756		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3757		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3758		return -EINVAL;
3759	/*
3760	 * Help drivers fail *cleanly* when they need options
3761	 * that aren't supported with their current controller.
3762	 * SPI_CS_WORD has a fallback software implementation,
3763	 * so it is ignored here.
3764	 */
3765	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3766				 SPI_NO_TX | SPI_NO_RX);
3767	ugly_bits = bad_bits &
3768		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3769		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3770	if (ugly_bits) {
3771		dev_warn(&spi->dev,
3772			 "setup: ignoring unsupported mode bits %x\n",
3773			 ugly_bits);
3774		spi->mode &= ~ugly_bits;
3775		bad_bits &= ~ugly_bits;
3776	}
3777	if (bad_bits) {
3778		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3779			bad_bits);
3780		return -EINVAL;
3781	}
3782
3783	if (!spi->bits_per_word) {
3784		spi->bits_per_word = 8;
3785	} else {
3786		/*
3787		 * Some controllers may not support the default 8 bits-per-word
3788		 * so only perform the check when this is explicitly provided.
3789		 */
3790		status = __spi_validate_bits_per_word(spi->controller,
3791						      spi->bits_per_word);
3792		if (status)
3793			return status;
3794	}
3795
3796	if (spi->controller->max_speed_hz &&
3797	    (!spi->max_speed_hz ||
3798	     spi->max_speed_hz > spi->controller->max_speed_hz))
3799		spi->max_speed_hz = spi->controller->max_speed_hz;
3800
3801	mutex_lock(&spi->controller->io_mutex);
3802
3803	if (spi->controller->setup) {
3804		status = spi->controller->setup(spi);
3805		if (status) {
3806			mutex_unlock(&spi->controller->io_mutex);
3807			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3808				status);
3809			return status;
3810		}
3811	}
3812
3813	status = spi_set_cs_timing(spi);
3814	if (status) {
3815		mutex_unlock(&spi->controller->io_mutex);
3816		return status;
3817	}
3818
3819	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3820		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3821		if (status < 0) {
3822			mutex_unlock(&spi->controller->io_mutex);
3823			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3824				status);
3825			return status;
3826		}
3827
3828		/*
3829		 * We do not want to return positive value from pm_runtime_get,
3830		 * there are many instances of devices calling spi_setup() and
3831		 * checking for a non-zero return value instead of a negative
3832		 * return value.
3833		 */
3834		status = 0;
3835
3836		spi_set_cs(spi, false, true);
3837		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3838		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3839	} else {
3840		spi_set_cs(spi, false, true);
3841	}
3842
3843	mutex_unlock(&spi->controller->io_mutex);
3844
3845	if (spi->rt && !spi->controller->rt) {
3846		spi->controller->rt = true;
3847		spi_set_thread_rt(spi->controller);
3848	}
3849
3850	trace_spi_setup(spi, status);
3851
3852	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3853			spi->mode & SPI_MODE_X_MASK,
3854			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3855			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3856			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3857			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3858			spi->bits_per_word, spi->max_speed_hz,
3859			status);
3860
3861	return status;
3862}
3863EXPORT_SYMBOL_GPL(spi_setup);
3864
3865static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3866				       struct spi_device *spi)
3867{
3868	int delay1, delay2;
3869
3870	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3871	if (delay1 < 0)
3872		return delay1;
3873
3874	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3875	if (delay2 < 0)
3876		return delay2;
3877
3878	if (delay1 < delay2)
3879		memcpy(&xfer->word_delay, &spi->word_delay,
3880		       sizeof(xfer->word_delay));
3881
3882	return 0;
3883}
3884
3885static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3886{
3887	struct spi_controller *ctlr = spi->controller;
3888	struct spi_transfer *xfer;
3889	int w_size;
3890
3891	if (list_empty(&message->transfers))
3892		return -EINVAL;
3893
3894	/*
3895	 * If an SPI controller does not support toggling the CS line on each
3896	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3897	 * for the CS line, we can emulate the CS-per-word hardware function by
3898	 * splitting transfers into one-word transfers and ensuring that
3899	 * cs_change is set for each transfer.
3900	 */
3901	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3902					  spi_get_csgpiod(spi, 0))) {
3903		size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
3904		int ret;
3905
3906		/* spi_split_transfers_maxsize() requires message->spi */
3907		message->spi = spi;
3908
3909		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3910						  GFP_KERNEL);
3911		if (ret)
3912			return ret;
3913
3914		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3915			/* Don't change cs_change on the last entry in the list */
3916			if (list_is_last(&xfer->transfer_list, &message->transfers))
3917				break;
3918			xfer->cs_change = 1;
3919		}
3920	}
3921
3922	/*
3923	 * Half-duplex links include original MicroWire, and ones with
3924	 * only one data pin like SPI_3WIRE (switches direction) or where
3925	 * either MOSI or MISO is missing.  They can also be caused by
3926	 * software limitations.
3927	 */
3928	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3929	    (spi->mode & SPI_3WIRE)) {
3930		unsigned flags = ctlr->flags;
3931
3932		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3933			if (xfer->rx_buf && xfer->tx_buf)
3934				return -EINVAL;
3935			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3936				return -EINVAL;
3937			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3938				return -EINVAL;
3939		}
3940	}
3941
3942	/*
3943	 * Set transfer bits_per_word and max speed as spi device default if
3944	 * it is not set for this transfer.
3945	 * Set transfer tx_nbits and rx_nbits as single transfer default
3946	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3947	 * Ensure transfer word_delay is at least as long as that required by
3948	 * device itself.
3949	 */
3950	message->frame_length = 0;
3951	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3952		xfer->effective_speed_hz = 0;
3953		message->frame_length += xfer->len;
3954		if (!xfer->bits_per_word)
3955			xfer->bits_per_word = spi->bits_per_word;
3956
3957		if (!xfer->speed_hz)
3958			xfer->speed_hz = spi->max_speed_hz;
3959
3960		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3961			xfer->speed_hz = ctlr->max_speed_hz;
3962
3963		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3964			return -EINVAL;
3965
3966		/*
3967		 * SPI transfer length should be multiple of SPI word size
3968		 * where SPI word size should be power-of-two multiple.
3969		 */
3970		if (xfer->bits_per_word <= 8)
3971			w_size = 1;
3972		else if (xfer->bits_per_word <= 16)
3973			w_size = 2;
3974		else
3975			w_size = 4;
3976
3977		/* No partial transfers accepted */
3978		if (xfer->len % w_size)
3979			return -EINVAL;
3980
3981		if (xfer->speed_hz && ctlr->min_speed_hz &&
3982		    xfer->speed_hz < ctlr->min_speed_hz)
3983			return -EINVAL;
3984
3985		if (xfer->tx_buf && !xfer->tx_nbits)
3986			xfer->tx_nbits = SPI_NBITS_SINGLE;
3987		if (xfer->rx_buf && !xfer->rx_nbits)
3988			xfer->rx_nbits = SPI_NBITS_SINGLE;
3989		/*
3990		 * Check transfer tx/rx_nbits:
3991		 * 1. check the value matches one of single, dual and quad
3992		 * 2. check tx/rx_nbits match the mode in spi_device
3993		 */
3994		if (xfer->tx_buf) {
3995			if (spi->mode & SPI_NO_TX)
3996				return -EINVAL;
3997			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3998				xfer->tx_nbits != SPI_NBITS_DUAL &&
3999				xfer->tx_nbits != SPI_NBITS_QUAD)
4000				return -EINVAL;
4001			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4002				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4003				return -EINVAL;
4004			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4005				!(spi->mode & SPI_TX_QUAD))
4006				return -EINVAL;
4007		}
4008		/* Check transfer rx_nbits */
4009		if (xfer->rx_buf) {
4010			if (spi->mode & SPI_NO_RX)
4011				return -EINVAL;
4012			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4013				xfer->rx_nbits != SPI_NBITS_DUAL &&
4014				xfer->rx_nbits != SPI_NBITS_QUAD)
4015				return -EINVAL;
4016			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4017				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4018				return -EINVAL;
4019			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4020				!(spi->mode & SPI_RX_QUAD))
4021				return -EINVAL;
4022		}
4023
4024		if (_spi_xfer_word_delay_update(xfer, spi))
4025			return -EINVAL;
4026	}
4027
4028	message->status = -EINPROGRESS;
4029
4030	return 0;
4031}
4032
4033static int __spi_async(struct spi_device *spi, struct spi_message *message)
4034{
4035	struct spi_controller *ctlr = spi->controller;
4036	struct spi_transfer *xfer;
4037
4038	/*
4039	 * Some controllers do not support doing regular SPI transfers. Return
4040	 * ENOTSUPP when this is the case.
4041	 */
4042	if (!ctlr->transfer)
4043		return -ENOTSUPP;
4044
4045	message->spi = spi;
4046
4047	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4048	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4049
4050	trace_spi_message_submit(message);
4051
4052	if (!ctlr->ptp_sts_supported) {
4053		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4054			xfer->ptp_sts_word_pre = 0;
4055			ptp_read_system_prets(xfer->ptp_sts);
4056		}
4057	}
4058
4059	return ctlr->transfer(spi, message);
4060}
4061
4062/**
4063 * spi_async - asynchronous SPI transfer
4064 * @spi: device with which data will be exchanged
4065 * @message: describes the data transfers, including completion callback
4066 * Context: any (IRQs may be blocked, etc)
4067 *
4068 * This call may be used in_irq and other contexts which can't sleep,
4069 * as well as from task contexts which can sleep.
4070 *
4071 * The completion callback is invoked in a context which can't sleep.
4072 * Before that invocation, the value of message->status is undefined.
4073 * When the callback is issued, message->status holds either zero (to
4074 * indicate complete success) or a negative error code.  After that
4075 * callback returns, the driver which issued the transfer request may
4076 * deallocate the associated memory; it's no longer in use by any SPI
4077 * core or controller driver code.
4078 *
4079 * Note that although all messages to a spi_device are handled in
4080 * FIFO order, messages may go to different devices in other orders.
4081 * Some device might be higher priority, or have various "hard" access
4082 * time requirements, for example.
4083 *
4084 * On detection of any fault during the transfer, processing of
4085 * the entire message is aborted, and the device is deselected.
4086 * Until returning from the associated message completion callback,
4087 * no other spi_message queued to that device will be processed.
4088 * (This rule applies equally to all the synchronous transfer calls,
4089 * which are wrappers around this core asynchronous primitive.)
4090 *
4091 * Return: zero on success, else a negative error code.
4092 */
4093int spi_async(struct spi_device *spi, struct spi_message *message)
4094{
4095	struct spi_controller *ctlr = spi->controller;
4096	int ret;
4097	unsigned long flags;
4098
4099	ret = __spi_validate(spi, message);
4100	if (ret != 0)
4101		return ret;
4102
4103	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4104
4105	if (ctlr->bus_lock_flag)
4106		ret = -EBUSY;
4107	else
4108		ret = __spi_async(spi, message);
4109
4110	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4111
4112	return ret;
4113}
4114EXPORT_SYMBOL_GPL(spi_async);
4115
4116/**
4117 * spi_async_locked - version of spi_async with exclusive bus usage
4118 * @spi: device with which data will be exchanged
4119 * @message: describes the data transfers, including completion callback
4120 * Context: any (IRQs may be blocked, etc)
4121 *
4122 * This call may be used in_irq and other contexts which can't sleep,
4123 * as well as from task contexts which can sleep.
4124 *
4125 * The completion callback is invoked in a context which can't sleep.
4126 * Before that invocation, the value of message->status is undefined.
4127 * When the callback is issued, message->status holds either zero (to
4128 * indicate complete success) or a negative error code.  After that
4129 * callback returns, the driver which issued the transfer request may
4130 * deallocate the associated memory; it's no longer in use by any SPI
4131 * core or controller driver code.
4132 *
4133 * Note that although all messages to a spi_device are handled in
4134 * FIFO order, messages may go to different devices in other orders.
4135 * Some device might be higher priority, or have various "hard" access
4136 * time requirements, for example.
4137 *
4138 * On detection of any fault during the transfer, processing of
4139 * the entire message is aborted, and the device is deselected.
4140 * Until returning from the associated message completion callback,
4141 * no other spi_message queued to that device will be processed.
4142 * (This rule applies equally to all the synchronous transfer calls,
4143 * which are wrappers around this core asynchronous primitive.)
4144 *
4145 * Return: zero on success, else a negative error code.
4146 */
4147static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4148{
4149	struct spi_controller *ctlr = spi->controller;
4150	int ret;
4151	unsigned long flags;
4152
4153	ret = __spi_validate(spi, message);
4154	if (ret != 0)
4155		return ret;
4156
4157	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4158
4159	ret = __spi_async(spi, message);
4160
4161	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4162
4163	return ret;
4164
4165}
4166
4167static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4168{
4169	bool was_busy;
4170	int ret;
4171
4172	mutex_lock(&ctlr->io_mutex);
4173
4174	was_busy = ctlr->busy;
4175
4176	ctlr->cur_msg = msg;
4177	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4178	if (ret)
4179		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4180	ctlr->cur_msg = NULL;
4181	ctlr->fallback = false;
4182
4183	if (!was_busy) {
4184		kfree(ctlr->dummy_rx);
4185		ctlr->dummy_rx = NULL;
4186		kfree(ctlr->dummy_tx);
4187		ctlr->dummy_tx = NULL;
4188		if (ctlr->unprepare_transfer_hardware &&
4189		    ctlr->unprepare_transfer_hardware(ctlr))
4190			dev_err(&ctlr->dev,
4191				"failed to unprepare transfer hardware\n");
4192		spi_idle_runtime_pm(ctlr);
4193	}
4194
4195	mutex_unlock(&ctlr->io_mutex);
4196}
4197
4198/*-------------------------------------------------------------------------*/
4199
4200/*
4201 * Utility methods for SPI protocol drivers, layered on
4202 * top of the core.  Some other utility methods are defined as
4203 * inline functions.
4204 */
4205
4206static void spi_complete(void *arg)
4207{
4208	complete(arg);
4209}
4210
4211static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4212{
4213	DECLARE_COMPLETION_ONSTACK(done);
4214	int status;
4215	struct spi_controller *ctlr = spi->controller;
4216
4217	if (__spi_check_suspended(ctlr)) {
4218		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4219		return -ESHUTDOWN;
4220	}
4221
4222	status = __spi_validate(spi, message);
4223	if (status != 0)
4224		return status;
4225
4226	message->spi = spi;
4227
4228	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4229	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4230
4231	/*
4232	 * Checking queue_empty here only guarantees async/sync message
4233	 * ordering when coming from the same context. It does not need to
4234	 * guard against reentrancy from a different context. The io_mutex
4235	 * will catch those cases.
4236	 */
4237	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4238		message->actual_length = 0;
4239		message->status = -EINPROGRESS;
4240
4241		trace_spi_message_submit(message);
4242
4243		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4244		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4245
4246		__spi_transfer_message_noqueue(ctlr, message);
4247
4248		return message->status;
4249	}
4250
4251	/*
4252	 * There are messages in the async queue that could have originated
4253	 * from the same context, so we need to preserve ordering.
4254	 * Therefor we send the message to the async queue and wait until they
4255	 * are completed.
4256	 */
4257	message->complete = spi_complete;
4258	message->context = &done;
4259	status = spi_async_locked(spi, message);
4260	if (status == 0) {
4261		wait_for_completion(&done);
4262		status = message->status;
4263	}
4264	message->context = NULL;
4265
4266	return status;
4267}
4268
4269/**
4270 * spi_sync - blocking/synchronous SPI data transfers
4271 * @spi: device with which data will be exchanged
4272 * @message: describes the data transfers
4273 * Context: can sleep
4274 *
4275 * This call may only be used from a context that may sleep.  The sleep
4276 * is non-interruptible, and has no timeout.  Low-overhead controller
4277 * drivers may DMA directly into and out of the message buffers.
4278 *
4279 * Note that the SPI device's chip select is active during the message,
4280 * and then is normally disabled between messages.  Drivers for some
4281 * frequently-used devices may want to minimize costs of selecting a chip,
4282 * by leaving it selected in anticipation that the next message will go
4283 * to the same chip.  (That may increase power usage.)
4284 *
4285 * Also, the caller is guaranteeing that the memory associated with the
4286 * message will not be freed before this call returns.
4287 *
4288 * Return: zero on success, else a negative error code.
4289 */
4290int spi_sync(struct spi_device *spi, struct spi_message *message)
4291{
4292	int ret;
4293
4294	mutex_lock(&spi->controller->bus_lock_mutex);
4295	ret = __spi_sync(spi, message);
4296	mutex_unlock(&spi->controller->bus_lock_mutex);
4297
4298	return ret;
4299}
4300EXPORT_SYMBOL_GPL(spi_sync);
4301
4302/**
4303 * spi_sync_locked - version of spi_sync with exclusive bus usage
4304 * @spi: device with which data will be exchanged
4305 * @message: describes the data transfers
4306 * Context: can sleep
4307 *
4308 * This call may only be used from a context that may sleep.  The sleep
4309 * is non-interruptible, and has no timeout.  Low-overhead controller
4310 * drivers may DMA directly into and out of the message buffers.
4311 *
4312 * This call should be used by drivers that require exclusive access to the
4313 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4314 * be released by a spi_bus_unlock call when the exclusive access is over.
4315 *
4316 * Return: zero on success, else a negative error code.
4317 */
4318int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4319{
4320	return __spi_sync(spi, message);
4321}
4322EXPORT_SYMBOL_GPL(spi_sync_locked);
4323
4324/**
4325 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4326 * @ctlr: SPI bus master that should be locked for exclusive bus access
4327 * Context: can sleep
4328 *
4329 * This call may only be used from a context that may sleep.  The sleep
4330 * is non-interruptible, and has no timeout.
4331 *
4332 * This call should be used by drivers that require exclusive access to the
4333 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4334 * exclusive access is over. Data transfer must be done by spi_sync_locked
4335 * and spi_async_locked calls when the SPI bus lock is held.
4336 *
4337 * Return: always zero.
4338 */
4339int spi_bus_lock(struct spi_controller *ctlr)
4340{
4341	unsigned long flags;
4342
4343	mutex_lock(&ctlr->bus_lock_mutex);
4344
4345	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4346	ctlr->bus_lock_flag = 1;
4347	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4348
4349	/* Mutex remains locked until spi_bus_unlock() is called */
4350
4351	return 0;
4352}
4353EXPORT_SYMBOL_GPL(spi_bus_lock);
4354
4355/**
4356 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4357 * @ctlr: SPI bus master that was locked for exclusive bus access
4358 * Context: can sleep
4359 *
4360 * This call may only be used from a context that may sleep.  The sleep
4361 * is non-interruptible, and has no timeout.
4362 *
4363 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4364 * call.
4365 *
4366 * Return: always zero.
4367 */
4368int spi_bus_unlock(struct spi_controller *ctlr)
4369{
4370	ctlr->bus_lock_flag = 0;
4371
4372	mutex_unlock(&ctlr->bus_lock_mutex);
4373
4374	return 0;
4375}
4376EXPORT_SYMBOL_GPL(spi_bus_unlock);
4377
4378/* Portable code must never pass more than 32 bytes */
4379#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4380
4381static u8	*buf;
4382
4383/**
4384 * spi_write_then_read - SPI synchronous write followed by read
4385 * @spi: device with which data will be exchanged
4386 * @txbuf: data to be written (need not be DMA-safe)
4387 * @n_tx: size of txbuf, in bytes
4388 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4389 * @n_rx: size of rxbuf, in bytes
4390 * Context: can sleep
4391 *
4392 * This performs a half duplex MicroWire style transaction with the
4393 * device, sending txbuf and then reading rxbuf.  The return value
4394 * is zero for success, else a negative errno status code.
4395 * This call may only be used from a context that may sleep.
4396 *
4397 * Parameters to this routine are always copied using a small buffer.
4398 * Performance-sensitive or bulk transfer code should instead use
4399 * spi_{async,sync}() calls with DMA-safe buffers.
4400 *
4401 * Return: zero on success, else a negative error code.
4402 */
4403int spi_write_then_read(struct spi_device *spi,
4404		const void *txbuf, unsigned n_tx,
4405		void *rxbuf, unsigned n_rx)
4406{
4407	static DEFINE_MUTEX(lock);
4408
4409	int			status;
4410	struct spi_message	message;
4411	struct spi_transfer	x[2];
4412	u8			*local_buf;
4413
4414	/*
4415	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4416	 * copying here, (as a pure convenience thing), but we can
4417	 * keep heap costs out of the hot path unless someone else is
4418	 * using the pre-allocated buffer or the transfer is too large.
4419	 */
4420	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4421		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4422				    GFP_KERNEL | GFP_DMA);
4423		if (!local_buf)
4424			return -ENOMEM;
4425	} else {
4426		local_buf = buf;
4427	}
4428
4429	spi_message_init(&message);
4430	memset(x, 0, sizeof(x));
4431	if (n_tx) {
4432		x[0].len = n_tx;
4433		spi_message_add_tail(&x[0], &message);
4434	}
4435	if (n_rx) {
4436		x[1].len = n_rx;
4437		spi_message_add_tail(&x[1], &message);
4438	}
4439
4440	memcpy(local_buf, txbuf, n_tx);
4441	x[0].tx_buf = local_buf;
4442	x[1].rx_buf = local_buf + n_tx;
4443
4444	/* Do the I/O */
4445	status = spi_sync(spi, &message);
4446	if (status == 0)
4447		memcpy(rxbuf, x[1].rx_buf, n_rx);
4448
4449	if (x[0].tx_buf == buf)
4450		mutex_unlock(&lock);
4451	else
4452		kfree(local_buf);
4453
4454	return status;
4455}
4456EXPORT_SYMBOL_GPL(spi_write_then_read);
4457
4458/*-------------------------------------------------------------------------*/
4459
4460#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4461/* Must call put_device() when done with returned spi_device device */
4462static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4463{
4464	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4465
4466	return dev ? to_spi_device(dev) : NULL;
4467}
4468
4469/* The spi controllers are not using spi_bus, so we find it with another way */
4470static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4471{
4472	struct device *dev;
4473
4474	dev = class_find_device_by_of_node(&spi_master_class, node);
4475	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4476		dev = class_find_device_by_of_node(&spi_slave_class, node);
4477	if (!dev)
4478		return NULL;
4479
4480	/* Reference got in class_find_device */
4481	return container_of(dev, struct spi_controller, dev);
4482}
4483
4484static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4485			 void *arg)
4486{
4487	struct of_reconfig_data *rd = arg;
4488	struct spi_controller *ctlr;
4489	struct spi_device *spi;
4490
4491	switch (of_reconfig_get_state_change(action, arg)) {
4492	case OF_RECONFIG_CHANGE_ADD:
4493		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4494		if (ctlr == NULL)
4495			return NOTIFY_OK;	/* Not for us */
4496
4497		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4498			put_device(&ctlr->dev);
4499			return NOTIFY_OK;
4500		}
4501
4502		/*
4503		 * Clear the flag before adding the device so that fw_devlink
4504		 * doesn't skip adding consumers to this device.
4505		 */
4506		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4507		spi = of_register_spi_device(ctlr, rd->dn);
4508		put_device(&ctlr->dev);
4509
4510		if (IS_ERR(spi)) {
4511			pr_err("%s: failed to create for '%pOF'\n",
4512					__func__, rd->dn);
4513			of_node_clear_flag(rd->dn, OF_POPULATED);
4514			return notifier_from_errno(PTR_ERR(spi));
4515		}
4516		break;
4517
4518	case OF_RECONFIG_CHANGE_REMOVE:
4519		/* Already depopulated? */
4520		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4521			return NOTIFY_OK;
4522
4523		/* Find our device by node */
4524		spi = of_find_spi_device_by_node(rd->dn);
4525		if (spi == NULL)
4526			return NOTIFY_OK;	/* No? not meant for us */
4527
4528		/* Unregister takes one ref away */
4529		spi_unregister_device(spi);
4530
4531		/* And put the reference of the find */
4532		put_device(&spi->dev);
4533		break;
4534	}
4535
4536	return NOTIFY_OK;
4537}
4538
4539static struct notifier_block spi_of_notifier = {
4540	.notifier_call = of_spi_notify,
4541};
4542#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4543extern struct notifier_block spi_of_notifier;
4544#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4545
4546#if IS_ENABLED(CONFIG_ACPI)
4547static int spi_acpi_controller_match(struct device *dev, const void *data)
4548{
4549	return ACPI_COMPANION(dev->parent) == data;
4550}
4551
4552static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4553{
4554	struct device *dev;
4555
4556	dev = class_find_device(&spi_master_class, NULL, adev,
4557				spi_acpi_controller_match);
4558	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4559		dev = class_find_device(&spi_slave_class, NULL, adev,
4560					spi_acpi_controller_match);
4561	if (!dev)
4562		return NULL;
4563
4564	return container_of(dev, struct spi_controller, dev);
4565}
4566
4567static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4568{
4569	struct device *dev;
4570
4571	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4572	return to_spi_device(dev);
4573}
4574
4575static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4576			   void *arg)
4577{
4578	struct acpi_device *adev = arg;
4579	struct spi_controller *ctlr;
4580	struct spi_device *spi;
4581
4582	switch (value) {
4583	case ACPI_RECONFIG_DEVICE_ADD:
4584		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4585		if (!ctlr)
4586			break;
4587
4588		acpi_register_spi_device(ctlr, adev);
4589		put_device(&ctlr->dev);
4590		break;
4591	case ACPI_RECONFIG_DEVICE_REMOVE:
4592		if (!acpi_device_enumerated(adev))
4593			break;
4594
4595		spi = acpi_spi_find_device_by_adev(adev);
4596		if (!spi)
4597			break;
4598
4599		spi_unregister_device(spi);
4600		put_device(&spi->dev);
4601		break;
4602	}
4603
4604	return NOTIFY_OK;
4605}
4606
4607static struct notifier_block spi_acpi_notifier = {
4608	.notifier_call = acpi_spi_notify,
4609};
4610#else
4611extern struct notifier_block spi_acpi_notifier;
4612#endif
4613
4614static int __init spi_init(void)
4615{
4616	int	status;
4617
4618	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4619	if (!buf) {
4620		status = -ENOMEM;
4621		goto err0;
4622	}
4623
4624	status = bus_register(&spi_bus_type);
4625	if (status < 0)
4626		goto err1;
4627
4628	status = class_register(&spi_master_class);
4629	if (status < 0)
4630		goto err2;
4631
4632	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4633		status = class_register(&spi_slave_class);
4634		if (status < 0)
4635			goto err3;
4636	}
4637
4638	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4639		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4640	if (IS_ENABLED(CONFIG_ACPI))
4641		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4642
4643	return 0;
4644
4645err3:
4646	class_unregister(&spi_master_class);
4647err2:
4648	bus_unregister(&spi_bus_type);
4649err1:
4650	kfree(buf);
4651	buf = NULL;
4652err0:
4653	return status;
4654}
4655
4656/*
4657 * A board_info is normally registered in arch_initcall(),
4658 * but even essential drivers wait till later.
4659 *
4660 * REVISIT only boardinfo really needs static linking. The rest (device and
4661 * driver registration) _could_ be dynamically linked (modular) ... Costs
4662 * include needing to have boardinfo data structures be much more public.
4663 */
4664postcore_initcall(spi_init);
4665