xref: /kernel/linux/linux-6.6/drivers/spi/spi-stm32.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2//
3// STMicroelectronics STM32 SPI Controller driver
4//
5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8#include <linux/bitfield.h>
9#include <linux/debugfs.h>
10#include <linux/clk.h>
11#include <linux/delay.h>
12#include <linux/dmaengine.h>
13#include <linux/interrupt.h>
14#include <linux/iopoll.h>
15#include <linux/module.h>
16#include <linux/of_platform.h>
17#include <linux/pinctrl/consumer.h>
18#include <linux/pm_runtime.h>
19#include <linux/reset.h>
20#include <linux/spi/spi.h>
21
22#define DRIVER_NAME "spi_stm32"
23
24/* STM32F4 SPI registers */
25#define STM32F4_SPI_CR1			0x00
26#define STM32F4_SPI_CR2			0x04
27#define STM32F4_SPI_SR			0x08
28#define STM32F4_SPI_DR			0x0C
29#define STM32F4_SPI_I2SCFGR		0x1C
30
31/* STM32F4_SPI_CR1 bit fields */
32#define STM32F4_SPI_CR1_CPHA		BIT(0)
33#define STM32F4_SPI_CR1_CPOL		BIT(1)
34#define STM32F4_SPI_CR1_MSTR		BIT(2)
35#define STM32F4_SPI_CR1_BR_SHIFT	3
36#define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
37#define STM32F4_SPI_CR1_SPE		BIT(6)
38#define STM32F4_SPI_CR1_LSBFRST		BIT(7)
39#define STM32F4_SPI_CR1_SSI		BIT(8)
40#define STM32F4_SPI_CR1_SSM		BIT(9)
41#define STM32F4_SPI_CR1_RXONLY		BIT(10)
42#define STM32F4_SPI_CR1_DFF		BIT(11)
43#define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
44#define STM32F4_SPI_CR1_CRCEN		BIT(13)
45#define STM32F4_SPI_CR1_BIDIOE		BIT(14)
46#define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
47#define STM32F4_SPI_CR1_BR_MIN		0
48#define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
49
50/* STM32F4_SPI_CR2 bit fields */
51#define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
52#define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
53#define STM32F4_SPI_CR2_SSOE		BIT(2)
54#define STM32F4_SPI_CR2_FRF		BIT(4)
55#define STM32F4_SPI_CR2_ERRIE		BIT(5)
56#define STM32F4_SPI_CR2_RXNEIE		BIT(6)
57#define STM32F4_SPI_CR2_TXEIE		BIT(7)
58
59/* STM32F4_SPI_SR bit fields */
60#define STM32F4_SPI_SR_RXNE		BIT(0)
61#define STM32F4_SPI_SR_TXE		BIT(1)
62#define STM32F4_SPI_SR_CHSIDE		BIT(2)
63#define STM32F4_SPI_SR_UDR		BIT(3)
64#define STM32F4_SPI_SR_CRCERR		BIT(4)
65#define STM32F4_SPI_SR_MODF		BIT(5)
66#define STM32F4_SPI_SR_OVR		BIT(6)
67#define STM32F4_SPI_SR_BSY		BIT(7)
68#define STM32F4_SPI_SR_FRE		BIT(8)
69
70/* STM32F4_SPI_I2SCFGR bit fields */
71#define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
72
73/* STM32F4 SPI Baud Rate min/max divisor */
74#define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
75#define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
76
77/* STM32H7 SPI registers */
78#define STM32H7_SPI_CR1			0x00
79#define STM32H7_SPI_CR2			0x04
80#define STM32H7_SPI_CFG1		0x08
81#define STM32H7_SPI_CFG2		0x0C
82#define STM32H7_SPI_IER			0x10
83#define STM32H7_SPI_SR			0x14
84#define STM32H7_SPI_IFCR		0x18
85#define STM32H7_SPI_TXDR		0x20
86#define STM32H7_SPI_RXDR		0x30
87#define STM32H7_SPI_I2SCFGR		0x50
88
89/* STM32H7_SPI_CR1 bit fields */
90#define STM32H7_SPI_CR1_SPE		BIT(0)
91#define STM32H7_SPI_CR1_MASRX		BIT(8)
92#define STM32H7_SPI_CR1_CSTART		BIT(9)
93#define STM32H7_SPI_CR1_CSUSP		BIT(10)
94#define STM32H7_SPI_CR1_HDDIR		BIT(11)
95#define STM32H7_SPI_CR1_SSI		BIT(12)
96
97/* STM32H7_SPI_CR2 bit fields */
98#define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
99#define STM32H7_SPI_TSIZE_MAX		GENMASK(15, 0)
100
101/* STM32H7_SPI_CFG1 bit fields */
102#define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
103#define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
104#define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
105#define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
106#define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
107#define STM32H7_SPI_CFG1_MBR_SHIFT	28
108#define STM32H7_SPI_CFG1_MBR_MIN	0
109#define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
110
111/* STM32H7_SPI_CFG2 bit fields */
112#define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
113#define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
114#define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
115#define STM32H7_SPI_CFG2_MASTER		BIT(22)
116#define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
117#define STM32H7_SPI_CFG2_CPHA		BIT(24)
118#define STM32H7_SPI_CFG2_CPOL		BIT(25)
119#define STM32H7_SPI_CFG2_SSM		BIT(26)
120#define STM32H7_SPI_CFG2_SSIOP		BIT(28)
121#define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
122
123/* STM32H7_SPI_IER bit fields */
124#define STM32H7_SPI_IER_RXPIE		BIT(0)
125#define STM32H7_SPI_IER_TXPIE		BIT(1)
126#define STM32H7_SPI_IER_DXPIE		BIT(2)
127#define STM32H7_SPI_IER_EOTIE		BIT(3)
128#define STM32H7_SPI_IER_TXTFIE		BIT(4)
129#define STM32H7_SPI_IER_OVRIE		BIT(6)
130#define STM32H7_SPI_IER_MODFIE		BIT(9)
131#define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
132
133/* STM32H7_SPI_SR bit fields */
134#define STM32H7_SPI_SR_RXP		BIT(0)
135#define STM32H7_SPI_SR_TXP		BIT(1)
136#define STM32H7_SPI_SR_EOT		BIT(3)
137#define STM32H7_SPI_SR_OVR		BIT(6)
138#define STM32H7_SPI_SR_MODF		BIT(9)
139#define STM32H7_SPI_SR_SUSP		BIT(11)
140#define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
141#define STM32H7_SPI_SR_RXWNE		BIT(15)
142
143/* STM32H7_SPI_IFCR bit fields */
144#define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
145
146/* STM32H7_SPI_I2SCFGR bit fields */
147#define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
148
149/* STM32H7 SPI Master Baud Rate min/max divisor */
150#define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
151#define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
152
153/* STM32H7 SPI Communication mode */
154#define STM32H7_SPI_FULL_DUPLEX		0
155#define STM32H7_SPI_SIMPLEX_TX		1
156#define STM32H7_SPI_SIMPLEX_RX		2
157#define STM32H7_SPI_HALF_DUPLEX		3
158
159/* SPI Communication type */
160#define SPI_FULL_DUPLEX		0
161#define SPI_SIMPLEX_TX		1
162#define SPI_SIMPLEX_RX		2
163#define SPI_3WIRE_TX		3
164#define SPI_3WIRE_RX		4
165
166#define STM32_SPI_AUTOSUSPEND_DELAY		1	/* 1 ms */
167
168/*
169 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
170 * without fifo buffers.
171 */
172#define SPI_DMA_MIN_BYTES	16
173
174/* STM32 SPI driver helpers */
175#define STM32_SPI_MASTER_MODE(stm32_spi) (!(stm32_spi)->device_mode)
176#define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode)
177
178/**
179 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180 * @reg:		register offset
181 * @mask:		bitfield mask
182 * @shift:		left shift
183 */
184struct stm32_spi_reg {
185	int reg;
186	int mask;
187	int shift;
188};
189
190/**
191 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192 * @en: enable register and SPI enable bit
193 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195 * @cpol: clock polarity register and polarity bit
196 * @cpha: clock phase register and phase bit
197 * @lsb_first: LSB transmitted first register and bit
198 * @cs_high: chips select active value
199 * @br: baud rate register and bitfields
200 * @rx: SPI RX data register
201 * @tx: SPI TX data register
202 */
203struct stm32_spi_regspec {
204	const struct stm32_spi_reg en;
205	const struct stm32_spi_reg dma_rx_en;
206	const struct stm32_spi_reg dma_tx_en;
207	const struct stm32_spi_reg cpol;
208	const struct stm32_spi_reg cpha;
209	const struct stm32_spi_reg lsb_first;
210	const struct stm32_spi_reg cs_high;
211	const struct stm32_spi_reg br;
212	const struct stm32_spi_reg rx;
213	const struct stm32_spi_reg tx;
214};
215
216struct stm32_spi;
217
218/**
219 * struct stm32_spi_cfg - stm32 compatible configuration data
220 * @regs: registers descriptions
221 * @get_fifo_size: routine to get fifo size
222 * @get_bpw_mask: routine to get bits per word mask
223 * @disable: routine to disable controller
224 * @config: routine to configure controller as SPI Master
225 * @set_bpw: routine to configure registers to for bits per word
226 * @set_mode: routine to configure registers to desired mode
227 * @set_data_idleness: optional routine to configure registers to desired idle
228 * time between frames (if driver has this functionality)
229 * @set_number_of_data: optional routine to configure registers to desired
230 * number of data (if driver has this functionality)
231 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
232 * using DMA
233 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
234 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
235 * @transfer_one_irq: routine to configure interrupts for driver
236 * @irq_handler_event: Interrupt handler for SPI controller events
237 * @irq_handler_thread: thread of interrupt handler for SPI controller
238 * @baud_rate_div_min: minimum baud rate divisor
239 * @baud_rate_div_max: maximum baud rate divisor
240 * @has_fifo: boolean to know if fifo is used for driver
241 * @has_device_mode: is this compatible capable to switch on device mode
242 * @flags: compatible specific SPI controller flags used at registration time
243 */
244struct stm32_spi_cfg {
245	const struct stm32_spi_regspec *regs;
246	int (*get_fifo_size)(struct stm32_spi *spi);
247	int (*get_bpw_mask)(struct stm32_spi *spi);
248	void (*disable)(struct stm32_spi *spi);
249	int (*config)(struct stm32_spi *spi);
250	void (*set_bpw)(struct stm32_spi *spi);
251	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
252	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
253	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
254	void (*transfer_one_dma_start)(struct stm32_spi *spi);
255	void (*dma_rx_cb)(void *data);
256	void (*dma_tx_cb)(void *data);
257	int (*transfer_one_irq)(struct stm32_spi *spi);
258	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
259	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
260	unsigned int baud_rate_div_min;
261	unsigned int baud_rate_div_max;
262	bool has_fifo;
263	bool has_device_mode;
264	u16 flags;
265};
266
267/**
268 * struct stm32_spi - private data of the SPI controller
269 * @dev: driver model representation of the controller
270 * @ctrl: controller interface
271 * @cfg: compatible configuration data
272 * @base: virtual memory area
273 * @clk: hw kernel clock feeding the SPI clock generator
274 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
275 * @lock: prevent I/O concurrent access
276 * @irq: SPI controller interrupt line
277 * @fifo_size: size of the embedded fifo in bytes
278 * @cur_midi: master inter-data idleness in ns
279 * @cur_speed: speed configured in Hz
280 * @cur_half_period: time of a half bit in us
281 * @cur_bpw: number of bits in a single SPI data frame
282 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
283 * @cur_comm: SPI communication mode
284 * @cur_xferlen: current transfer length in bytes
285 * @cur_usedma: boolean to know if dma is used in current transfer
286 * @tx_buf: data to be written, or NULL
287 * @rx_buf: data to be read, or NULL
288 * @tx_len: number of data to be written in bytes
289 * @rx_len: number of data to be read in bytes
290 * @dma_tx: dma channel for TX transfer
291 * @dma_rx: dma channel for RX transfer
292 * @phys_addr: SPI registers physical base address
293 * @device_mode: the controller is configured as SPI device
294 */
295struct stm32_spi {
296	struct device *dev;
297	struct spi_controller *ctrl;
298	const struct stm32_spi_cfg *cfg;
299	void __iomem *base;
300	struct clk *clk;
301	u32 clk_rate;
302	spinlock_t lock; /* prevent I/O concurrent access */
303	int irq;
304	unsigned int fifo_size;
305
306	unsigned int cur_midi;
307	unsigned int cur_speed;
308	unsigned int cur_half_period;
309	unsigned int cur_bpw;
310	unsigned int cur_fthlv;
311	unsigned int cur_comm;
312	unsigned int cur_xferlen;
313	bool cur_usedma;
314
315	const void *tx_buf;
316	void *rx_buf;
317	int tx_len;
318	int rx_len;
319	struct dma_chan *dma_tx;
320	struct dma_chan *dma_rx;
321	dma_addr_t phys_addr;
322
323	bool device_mode;
324};
325
326static const struct stm32_spi_regspec stm32f4_spi_regspec = {
327	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
328
329	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
330	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
331
332	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
333	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
334	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
335	.cs_high = {},
336	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
337
338	.rx = { STM32F4_SPI_DR },
339	.tx = { STM32F4_SPI_DR },
340};
341
342static const struct stm32_spi_regspec stm32h7_spi_regspec = {
343	/* SPI data transfer is enabled but spi_ker_ck is idle.
344	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
345	 */
346	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
347
348	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
349	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
350
351	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
352	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
353	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
354	.cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
355	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
356		STM32H7_SPI_CFG1_MBR_SHIFT },
357
358	.rx = { STM32H7_SPI_RXDR },
359	.tx = { STM32H7_SPI_TXDR },
360};
361
362static inline void stm32_spi_set_bits(struct stm32_spi *spi,
363				      u32 offset, u32 bits)
364{
365	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
366		       spi->base + offset);
367}
368
369static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
370				      u32 offset, u32 bits)
371{
372	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
373		       spi->base + offset);
374}
375
376/**
377 * stm32h7_spi_get_fifo_size - Return fifo size
378 * @spi: pointer to the spi controller data structure
379 */
380static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
381{
382	unsigned long flags;
383	u32 count = 0;
384
385	spin_lock_irqsave(&spi->lock, flags);
386
387	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
388
389	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
390		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
391
392	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
393
394	spin_unlock_irqrestore(&spi->lock, flags);
395
396	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
397
398	return count;
399}
400
401/**
402 * stm32f4_spi_get_bpw_mask - Return bits per word mask
403 * @spi: pointer to the spi controller data structure
404 */
405static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
406{
407	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
408	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
409}
410
411/**
412 * stm32h7_spi_get_bpw_mask - Return bits per word mask
413 * @spi: pointer to the spi controller data structure
414 */
415static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
416{
417	unsigned long flags;
418	u32 cfg1, max_bpw;
419
420	spin_lock_irqsave(&spi->lock, flags);
421
422	/*
423	 * The most significant bit at DSIZE bit field is reserved when the
424	 * maximum data size of periperal instances is limited to 16-bit
425	 */
426	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
427
428	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
429	max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
430
431	spin_unlock_irqrestore(&spi->lock, flags);
432
433	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
434
435	return SPI_BPW_RANGE_MASK(4, max_bpw);
436}
437
438/**
439 * stm32_spi_prepare_mbr - Determine baud rate divisor value
440 * @spi: pointer to the spi controller data structure
441 * @speed_hz: requested speed
442 * @min_div: minimum baud rate divisor
443 * @max_div: maximum baud rate divisor
444 *
445 * Return baud rate divisor value in case of success or -EINVAL
446 */
447static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
448				 u32 min_div, u32 max_div)
449{
450	u32 div, mbrdiv;
451
452	/* Ensure spi->clk_rate is even */
453	div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
454
455	/*
456	 * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if
457	 * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns
458	 * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so
459	 * no need to check it there.
460	 * However, we need to ensure the following calculations.
461	 */
462	if ((div < min_div) || (div > max_div))
463		return -EINVAL;
464
465	/* Determine the first power of 2 greater than or equal to div */
466	if (div & (div - 1))
467		mbrdiv = fls(div);
468	else
469		mbrdiv = fls(div) - 1;
470
471	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
472
473	spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed);
474
475	return mbrdiv - 1;
476}
477
478/**
479 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
480 * @spi: pointer to the spi controller data structure
481 * @xfer_len: length of the message to be transferred
482 */
483static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
484{
485	u32 packet, bpw;
486
487	/* data packet should not exceed 1/2 of fifo space */
488	packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
489
490	/* align packet size with data registers access */
491	bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
492	return DIV_ROUND_UP(packet, bpw);
493}
494
495/**
496 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
497 * @spi: pointer to the spi controller data structure
498 *
499 * Read from tx_buf depends on remaining bytes to avoid to read beyond
500 * tx_buf end.
501 */
502static void stm32f4_spi_write_tx(struct stm32_spi *spi)
503{
504	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
505				  STM32F4_SPI_SR_TXE)) {
506		u32 offs = spi->cur_xferlen - spi->tx_len;
507
508		if (spi->cur_bpw == 16) {
509			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
510
511			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
512			spi->tx_len -= sizeof(u16);
513		} else {
514			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
515
516			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
517			spi->tx_len -= sizeof(u8);
518		}
519	}
520
521	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
522}
523
524/**
525 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
526 * @spi: pointer to the spi controller data structure
527 *
528 * Read from tx_buf depends on remaining bytes to avoid to read beyond
529 * tx_buf end.
530 */
531static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
532{
533	while ((spi->tx_len > 0) &&
534		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
535			STM32H7_SPI_SR_TXP)) {
536		u32 offs = spi->cur_xferlen - spi->tx_len;
537
538		if (spi->tx_len >= sizeof(u32)) {
539			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
540
541			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
542			spi->tx_len -= sizeof(u32);
543		} else if (spi->tx_len >= sizeof(u16)) {
544			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
545
546			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
547			spi->tx_len -= sizeof(u16);
548		} else {
549			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
550
551			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
552			spi->tx_len -= sizeof(u8);
553		}
554	}
555
556	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
557}
558
559/**
560 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
561 * @spi: pointer to the spi controller data structure
562 *
563 * Write in rx_buf depends on remaining bytes to avoid to write beyond
564 * rx_buf end.
565 */
566static void stm32f4_spi_read_rx(struct stm32_spi *spi)
567{
568	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
569				  STM32F4_SPI_SR_RXNE)) {
570		u32 offs = spi->cur_xferlen - spi->rx_len;
571
572		if (spi->cur_bpw == 16) {
573			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
574
575			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
576			spi->rx_len -= sizeof(u16);
577		} else {
578			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
579
580			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
581			spi->rx_len -= sizeof(u8);
582		}
583	}
584
585	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
586}
587
588/**
589 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
590 * @spi: pointer to the spi controller data structure
591 *
592 * Write in rx_buf depends on remaining bytes to avoid to write beyond
593 * rx_buf end.
594 */
595static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
596{
597	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
598	u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
599
600	while ((spi->rx_len > 0) &&
601	       ((sr & STM32H7_SPI_SR_RXP) ||
602		((sr & STM32H7_SPI_SR_EOT) &&
603		 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
604		u32 offs = spi->cur_xferlen - spi->rx_len;
605
606		if ((spi->rx_len >= sizeof(u32)) ||
607		    (sr & STM32H7_SPI_SR_RXWNE)) {
608			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
609
610			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
611			spi->rx_len -= sizeof(u32);
612		} else if ((spi->rx_len >= sizeof(u16)) ||
613			   (!(sr & STM32H7_SPI_SR_RXWNE) &&
614			    (rxplvl >= 2 || spi->cur_bpw > 8))) {
615			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
616
617			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
618			spi->rx_len -= sizeof(u16);
619		} else {
620			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
621
622			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
623			spi->rx_len -= sizeof(u8);
624		}
625
626		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
627		rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
628	}
629
630	dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
631		__func__, spi->rx_len, sr);
632}
633
634/**
635 * stm32_spi_enable - Enable SPI controller
636 * @spi: pointer to the spi controller data structure
637 */
638static void stm32_spi_enable(struct stm32_spi *spi)
639{
640	dev_dbg(spi->dev, "enable controller\n");
641
642	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
643			   spi->cfg->regs->en.mask);
644}
645
646/**
647 * stm32f4_spi_disable - Disable SPI controller
648 * @spi: pointer to the spi controller data structure
649 */
650static void stm32f4_spi_disable(struct stm32_spi *spi)
651{
652	unsigned long flags;
653	u32 sr;
654
655	dev_dbg(spi->dev, "disable controller\n");
656
657	spin_lock_irqsave(&spi->lock, flags);
658
659	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
660	      STM32F4_SPI_CR1_SPE)) {
661		spin_unlock_irqrestore(&spi->lock, flags);
662		return;
663	}
664
665	/* Disable interrupts */
666	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
667						 STM32F4_SPI_CR2_RXNEIE |
668						 STM32F4_SPI_CR2_ERRIE);
669
670	/* Wait until BSY = 0 */
671	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
672					      sr, !(sr & STM32F4_SPI_SR_BSY),
673					      10, 100000) < 0) {
674		dev_warn(spi->dev, "disabling condition timeout\n");
675	}
676
677	if (spi->cur_usedma && spi->dma_tx)
678		dmaengine_terminate_async(spi->dma_tx);
679	if (spi->cur_usedma && spi->dma_rx)
680		dmaengine_terminate_async(spi->dma_rx);
681
682	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
683
684	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
685						 STM32F4_SPI_CR2_RXDMAEN);
686
687	/* Sequence to clear OVR flag */
688	readl_relaxed(spi->base + STM32F4_SPI_DR);
689	readl_relaxed(spi->base + STM32F4_SPI_SR);
690
691	spin_unlock_irqrestore(&spi->lock, flags);
692}
693
694/**
695 * stm32h7_spi_disable - Disable SPI controller
696 * @spi: pointer to the spi controller data structure
697 *
698 * RX-Fifo is flushed when SPI controller is disabled.
699 */
700static void stm32h7_spi_disable(struct stm32_spi *spi)
701{
702	unsigned long flags;
703	u32 cr1;
704
705	dev_dbg(spi->dev, "disable controller\n");
706
707	spin_lock_irqsave(&spi->lock, flags);
708
709	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
710
711	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
712		spin_unlock_irqrestore(&spi->lock, flags);
713		return;
714	}
715
716	/* Add a delay to make sure that transmission is ended. */
717	if (spi->cur_half_period)
718		udelay(spi->cur_half_period);
719
720	if (spi->cur_usedma && spi->dma_tx)
721		dmaengine_terminate_async(spi->dma_tx);
722	if (spi->cur_usedma && spi->dma_rx)
723		dmaengine_terminate_async(spi->dma_rx);
724
725	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
726
727	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
728						STM32H7_SPI_CFG1_RXDMAEN);
729
730	/* Disable interrupts and clear status flags */
731	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
732	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
733
734	spin_unlock_irqrestore(&spi->lock, flags);
735}
736
737/**
738 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
739 * @ctrl: controller interface
740 * @spi_dev: pointer to the spi device
741 * @transfer: pointer to spi transfer
742 *
743 * If driver has fifo and the current transfer size is greater than fifo size,
744 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
745 */
746static bool stm32_spi_can_dma(struct spi_controller *ctrl,
747			      struct spi_device *spi_dev,
748			      struct spi_transfer *transfer)
749{
750	unsigned int dma_size;
751	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
752
753	if (spi->cfg->has_fifo)
754		dma_size = spi->fifo_size;
755	else
756		dma_size = SPI_DMA_MIN_BYTES;
757
758	dev_dbg(spi->dev, "%s: %s\n", __func__,
759		(transfer->len > dma_size) ? "true" : "false");
760
761	return (transfer->len > dma_size);
762}
763
764/**
765 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
766 * @irq: interrupt line
767 * @dev_id: SPI controller ctrl interface
768 */
769static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
770{
771	struct spi_controller *ctrl = dev_id;
772	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
773	u32 sr, mask = 0;
774	bool end = false;
775
776	spin_lock(&spi->lock);
777
778	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
779	/*
780	 * BSY flag is not handled in interrupt but it is normal behavior when
781	 * this flag is set.
782	 */
783	sr &= ~STM32F4_SPI_SR_BSY;
784
785	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
786				 spi->cur_comm == SPI_3WIRE_TX)) {
787		/* OVR flag shouldn't be handled for TX only mode */
788		sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE);
789		mask |= STM32F4_SPI_SR_TXE;
790	}
791
792	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
793				spi->cur_comm == SPI_SIMPLEX_RX ||
794				spi->cur_comm == SPI_3WIRE_RX)) {
795		/* TXE flag is set and is handled when RXNE flag occurs */
796		sr &= ~STM32F4_SPI_SR_TXE;
797		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
798	}
799
800	if (!(sr & mask)) {
801		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
802		spin_unlock(&spi->lock);
803		return IRQ_NONE;
804	}
805
806	if (sr & STM32F4_SPI_SR_OVR) {
807		dev_warn(spi->dev, "Overrun: received value discarded\n");
808
809		/* Sequence to clear OVR flag */
810		readl_relaxed(spi->base + STM32F4_SPI_DR);
811		readl_relaxed(spi->base + STM32F4_SPI_SR);
812
813		/*
814		 * If overrun is detected, it means that something went wrong,
815		 * so stop the current transfer. Transfer can wait for next
816		 * RXNE but DR is already read and end never happens.
817		 */
818		end = true;
819		goto end_irq;
820	}
821
822	if (sr & STM32F4_SPI_SR_TXE) {
823		if (spi->tx_buf)
824			stm32f4_spi_write_tx(spi);
825		if (spi->tx_len == 0)
826			end = true;
827	}
828
829	if (sr & STM32F4_SPI_SR_RXNE) {
830		stm32f4_spi_read_rx(spi);
831		if (spi->rx_len == 0)
832			end = true;
833		else if (spi->tx_buf)/* Load data for discontinuous mode */
834			stm32f4_spi_write_tx(spi);
835	}
836
837end_irq:
838	if (end) {
839		/* Immediately disable interrupts to do not generate new one */
840		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
841					STM32F4_SPI_CR2_TXEIE |
842					STM32F4_SPI_CR2_RXNEIE |
843					STM32F4_SPI_CR2_ERRIE);
844		spin_unlock(&spi->lock);
845		return IRQ_WAKE_THREAD;
846	}
847
848	spin_unlock(&spi->lock);
849	return IRQ_HANDLED;
850}
851
852/**
853 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
854 * @irq: interrupt line
855 * @dev_id: SPI controller interface
856 */
857static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
858{
859	struct spi_controller *ctrl = dev_id;
860	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
861
862	spi_finalize_current_transfer(ctrl);
863	stm32f4_spi_disable(spi);
864
865	return IRQ_HANDLED;
866}
867
868/**
869 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
870 * @irq: interrupt line
871 * @dev_id: SPI controller interface
872 */
873static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
874{
875	struct spi_controller *ctrl = dev_id;
876	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
877	u32 sr, ier, mask;
878	unsigned long flags;
879	bool end = false;
880
881	spin_lock_irqsave(&spi->lock, flags);
882
883	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
884	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
885
886	mask = ier;
887	/*
888	 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
889	 * SUSP to acknowledge it later. TXC is automatically cleared
890	 */
891
892	mask |= STM32H7_SPI_SR_SUSP;
893	/*
894	 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
895	 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
896	 */
897	if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
898		mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
899
900	if (!(sr & mask)) {
901		dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
902			 sr, ier);
903		spin_unlock_irqrestore(&spi->lock, flags);
904		return IRQ_NONE;
905	}
906
907	if (sr & STM32H7_SPI_SR_SUSP) {
908		static DEFINE_RATELIMIT_STATE(rs,
909					      DEFAULT_RATELIMIT_INTERVAL * 10,
910					      1);
911		ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
912		if (__ratelimit(&rs))
913			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
914		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
915			stm32h7_spi_read_rxfifo(spi);
916		/*
917		 * If communication is suspended while using DMA, it means
918		 * that something went wrong, so stop the current transfer
919		 */
920		if (spi->cur_usedma)
921			end = true;
922	}
923
924	if (sr & STM32H7_SPI_SR_MODF) {
925		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
926		end = true;
927	}
928
929	if (sr & STM32H7_SPI_SR_OVR) {
930		dev_err(spi->dev, "Overrun: RX data lost\n");
931		end = true;
932	}
933
934	if (sr & STM32H7_SPI_SR_EOT) {
935		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
936			stm32h7_spi_read_rxfifo(spi);
937		if (!spi->cur_usedma ||
938		    (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
939			end = true;
940	}
941
942	if (sr & STM32H7_SPI_SR_TXP)
943		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
944			stm32h7_spi_write_txfifo(spi);
945
946	if (sr & STM32H7_SPI_SR_RXP)
947		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
948			stm32h7_spi_read_rxfifo(spi);
949
950	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
951
952	spin_unlock_irqrestore(&spi->lock, flags);
953
954	if (end) {
955		stm32h7_spi_disable(spi);
956		spi_finalize_current_transfer(ctrl);
957	}
958
959	return IRQ_HANDLED;
960}
961
962/**
963 * stm32_spi_prepare_msg - set up the controller to transfer a single message
964 * @ctrl: controller interface
965 * @msg: pointer to spi message
966 */
967static int stm32_spi_prepare_msg(struct spi_controller *ctrl,
968				 struct spi_message *msg)
969{
970	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
971	struct spi_device *spi_dev = msg->spi;
972	struct device_node *np = spi_dev->dev.of_node;
973	unsigned long flags;
974	u32 clrb = 0, setb = 0;
975
976	/* SPI slave device may need time between data frames */
977	spi->cur_midi = 0;
978	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
979		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
980
981	if (spi_dev->mode & SPI_CPOL)
982		setb |= spi->cfg->regs->cpol.mask;
983	else
984		clrb |= spi->cfg->regs->cpol.mask;
985
986	if (spi_dev->mode & SPI_CPHA)
987		setb |= spi->cfg->regs->cpha.mask;
988	else
989		clrb |= spi->cfg->regs->cpha.mask;
990
991	if (spi_dev->mode & SPI_LSB_FIRST)
992		setb |= spi->cfg->regs->lsb_first.mask;
993	else
994		clrb |= spi->cfg->regs->lsb_first.mask;
995
996	if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH)
997		setb |= spi->cfg->regs->cs_high.mask;
998	else
999		clrb |= spi->cfg->regs->cs_high.mask;
1000
1001	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1002		!!(spi_dev->mode & SPI_CPOL),
1003		!!(spi_dev->mode & SPI_CPHA),
1004		!!(spi_dev->mode & SPI_LSB_FIRST),
1005		!!(spi_dev->mode & SPI_CS_HIGH));
1006
1007	/* On STM32H7, messages should not exceed a maximum size setted
1008	 * afterward via the set_number_of_data function. In order to
1009	 * ensure that, split large messages into several messages
1010	 */
1011	if (spi->cfg->set_number_of_data) {
1012		int ret;
1013
1014		ret = spi_split_transfers_maxwords(ctrl, msg,
1015						   STM32H7_SPI_TSIZE_MAX,
1016						   GFP_KERNEL | GFP_DMA);
1017		if (ret)
1018			return ret;
1019	}
1020
1021	spin_lock_irqsave(&spi->lock, flags);
1022
1023	/* CPOL, CPHA and LSB FIRST bits have common register */
1024	if (clrb || setb)
1025		writel_relaxed(
1026			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1027			 ~clrb) | setb,
1028			spi->base + spi->cfg->regs->cpol.reg);
1029
1030	spin_unlock_irqrestore(&spi->lock, flags);
1031
1032	return 0;
1033}
1034
1035/**
1036 * stm32f4_spi_dma_tx_cb - dma callback
1037 * @data: pointer to the spi controller data structure
1038 *
1039 * DMA callback is called when the transfer is complete for DMA TX channel.
1040 */
1041static void stm32f4_spi_dma_tx_cb(void *data)
1042{
1043	struct stm32_spi *spi = data;
1044
1045	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1046		spi_finalize_current_transfer(spi->ctrl);
1047		stm32f4_spi_disable(spi);
1048	}
1049}
1050
1051/**
1052 * stm32_spi_dma_rx_cb - dma callback
1053 * @data: pointer to the spi controller data structure
1054 *
1055 * DMA callback is called when the transfer is complete for DMA RX channel.
1056 */
1057static void stm32_spi_dma_rx_cb(void *data)
1058{
1059	struct stm32_spi *spi = data;
1060
1061	spi_finalize_current_transfer(spi->ctrl);
1062	spi->cfg->disable(spi);
1063}
1064
1065/**
1066 * stm32_spi_dma_config - configure dma slave channel depending on current
1067 *			  transfer bits_per_word.
1068 * @spi: pointer to the spi controller data structure
1069 * @dma_conf: pointer to the dma_slave_config structure
1070 * @dir: direction of the dma transfer
1071 */
1072static void stm32_spi_dma_config(struct stm32_spi *spi,
1073				 struct dma_slave_config *dma_conf,
1074				 enum dma_transfer_direction dir)
1075{
1076	enum dma_slave_buswidth buswidth;
1077	u32 maxburst;
1078
1079	if (spi->cur_bpw <= 8)
1080		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1081	else if (spi->cur_bpw <= 16)
1082		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1083	else
1084		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1085
1086	if (spi->cfg->has_fifo) {
1087		/* Valid for DMA Half or Full Fifo threshold */
1088		if (spi->cur_fthlv == 2)
1089			maxburst = 1;
1090		else
1091			maxburst = spi->cur_fthlv;
1092	} else {
1093		maxburst = 1;
1094	}
1095
1096	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1097	dma_conf->direction = dir;
1098	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1099		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1100		dma_conf->src_addr_width = buswidth;
1101		dma_conf->src_maxburst = maxburst;
1102
1103		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1104			buswidth, maxburst);
1105	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1106		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1107		dma_conf->dst_addr_width = buswidth;
1108		dma_conf->dst_maxburst = maxburst;
1109
1110		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1111			buswidth, maxburst);
1112	}
1113}
1114
1115/**
1116 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1117 *				  interrupts
1118 * @spi: pointer to the spi controller data structure
1119 *
1120 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1121 * in progress.
1122 */
1123static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1124{
1125	unsigned long flags;
1126	u32 cr2 = 0;
1127
1128	/* Enable the interrupts relative to the current communication mode */
1129	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1130		cr2 |= STM32F4_SPI_CR2_TXEIE;
1131	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1132				spi->cur_comm == SPI_SIMPLEX_RX ||
1133				spi->cur_comm == SPI_3WIRE_RX) {
1134		/* In transmit-only mode, the OVR flag is set in the SR register
1135		 * since the received data are never read. Therefore set OVR
1136		 * interrupt only when rx buffer is available.
1137		 */
1138		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1139	} else {
1140		return -EINVAL;
1141	}
1142
1143	spin_lock_irqsave(&spi->lock, flags);
1144
1145	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1146
1147	stm32_spi_enable(spi);
1148
1149	/* starting data transfer when buffer is loaded */
1150	if (spi->tx_buf)
1151		stm32f4_spi_write_tx(spi);
1152
1153	spin_unlock_irqrestore(&spi->lock, flags);
1154
1155	return 1;
1156}
1157
1158/**
1159 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1160 *				  interrupts
1161 * @spi: pointer to the spi controller data structure
1162 *
1163 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1164 * in progress.
1165 */
1166static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1167{
1168	unsigned long flags;
1169	u32 ier = 0;
1170
1171	/* Enable the interrupts relative to the current communication mode */
1172	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1173		ier |= STM32H7_SPI_IER_DXPIE;
1174	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1175		ier |= STM32H7_SPI_IER_TXPIE;
1176	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1177		ier |= STM32H7_SPI_IER_RXPIE;
1178
1179	/* Enable the interrupts relative to the end of transfer */
1180	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1181	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1182
1183	spin_lock_irqsave(&spi->lock, flags);
1184
1185	stm32_spi_enable(spi);
1186
1187	/* Be sure to have data in fifo before starting data transfer */
1188	if (spi->tx_buf)
1189		stm32h7_spi_write_txfifo(spi);
1190
1191	if (STM32_SPI_MASTER_MODE(spi))
1192		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1193
1194	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1195
1196	spin_unlock_irqrestore(&spi->lock, flags);
1197
1198	return 1;
1199}
1200
1201/**
1202 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1203 *					transfer using DMA
1204 * @spi: pointer to the spi controller data structure
1205 */
1206static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1207{
1208	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1209	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1210	    spi->cur_comm == SPI_FULL_DUPLEX) {
1211		/*
1212		 * In transmit-only mode, the OVR flag is set in the SR register
1213		 * since the received data are never read. Therefore set OVR
1214		 * interrupt only when rx buffer is available.
1215		 */
1216		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1217	}
1218
1219	stm32_spi_enable(spi);
1220}
1221
1222/**
1223 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1224 *					transfer using DMA
1225 * @spi: pointer to the spi controller data structure
1226 */
1227static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1228{
1229	uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1230
1231	/* Enable the interrupts */
1232	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1233		ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1234
1235	stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1236
1237	stm32_spi_enable(spi);
1238
1239	if (STM32_SPI_MASTER_MODE(spi))
1240		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1241}
1242
1243/**
1244 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1245 * @spi: pointer to the spi controller data structure
1246 * @xfer: pointer to the spi_transfer structure
1247 *
1248 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1249 * in progress.
1250 */
1251static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1252				      struct spi_transfer *xfer)
1253{
1254	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1255	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1256	unsigned long flags;
1257
1258	spin_lock_irqsave(&spi->lock, flags);
1259
1260	rx_dma_desc = NULL;
1261	if (spi->rx_buf && spi->dma_rx) {
1262		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1263		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1264
1265		/* Enable Rx DMA request */
1266		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1267				   spi->cfg->regs->dma_rx_en.mask);
1268
1269		rx_dma_desc = dmaengine_prep_slave_sg(
1270					spi->dma_rx, xfer->rx_sg.sgl,
1271					xfer->rx_sg.nents,
1272					rx_dma_conf.direction,
1273					DMA_PREP_INTERRUPT);
1274	}
1275
1276	tx_dma_desc = NULL;
1277	if (spi->tx_buf && spi->dma_tx) {
1278		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1279		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1280
1281		tx_dma_desc = dmaengine_prep_slave_sg(
1282					spi->dma_tx, xfer->tx_sg.sgl,
1283					xfer->tx_sg.nents,
1284					tx_dma_conf.direction,
1285					DMA_PREP_INTERRUPT);
1286	}
1287
1288	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1289	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1290		goto dma_desc_error;
1291
1292	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1293		goto dma_desc_error;
1294
1295	if (rx_dma_desc) {
1296		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1297		rx_dma_desc->callback_param = spi;
1298
1299		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1300			dev_err(spi->dev, "Rx DMA submit failed\n");
1301			goto dma_desc_error;
1302		}
1303		/* Enable Rx DMA channel */
1304		dma_async_issue_pending(spi->dma_rx);
1305	}
1306
1307	if (tx_dma_desc) {
1308		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1309		    spi->cur_comm == SPI_3WIRE_TX) {
1310			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1311			tx_dma_desc->callback_param = spi;
1312		}
1313
1314		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1315			dev_err(spi->dev, "Tx DMA submit failed\n");
1316			goto dma_submit_error;
1317		}
1318		/* Enable Tx DMA channel */
1319		dma_async_issue_pending(spi->dma_tx);
1320
1321		/* Enable Tx DMA request */
1322		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1323				   spi->cfg->regs->dma_tx_en.mask);
1324	}
1325
1326	spi->cfg->transfer_one_dma_start(spi);
1327
1328	spin_unlock_irqrestore(&spi->lock, flags);
1329
1330	return 1;
1331
1332dma_submit_error:
1333	if (spi->dma_rx)
1334		dmaengine_terminate_sync(spi->dma_rx);
1335
1336dma_desc_error:
1337	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1338			   spi->cfg->regs->dma_rx_en.mask);
1339
1340	spin_unlock_irqrestore(&spi->lock, flags);
1341
1342	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1343
1344	spi->cur_usedma = false;
1345	return spi->cfg->transfer_one_irq(spi);
1346}
1347
1348/**
1349 * stm32f4_spi_set_bpw - Configure bits per word
1350 * @spi: pointer to the spi controller data structure
1351 */
1352static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1353{
1354	if (spi->cur_bpw == 16)
1355		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1356	else
1357		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1358}
1359
1360/**
1361 * stm32h7_spi_set_bpw - configure bits per word
1362 * @spi: pointer to the spi controller data structure
1363 */
1364static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1365{
1366	u32 bpw, fthlv;
1367	u32 cfg1_clrb = 0, cfg1_setb = 0;
1368
1369	bpw = spi->cur_bpw - 1;
1370
1371	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1372	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1373
1374	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1375	fthlv = spi->cur_fthlv - 1;
1376
1377	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1378	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1379
1380	writel_relaxed(
1381		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1382		 ~cfg1_clrb) | cfg1_setb,
1383		spi->base + STM32H7_SPI_CFG1);
1384}
1385
1386/**
1387 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1388 * @spi: pointer to the spi controller data structure
1389 * @mbrdiv: baud rate divisor value
1390 */
1391static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1392{
1393	u32 clrb = 0, setb = 0;
1394
1395	clrb |= spi->cfg->regs->br.mask;
1396	setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1397
1398	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1399			~clrb) | setb,
1400		       spi->base + spi->cfg->regs->br.reg);
1401}
1402
1403/**
1404 * stm32_spi_communication_type - return transfer communication type
1405 * @spi_dev: pointer to the spi device
1406 * @transfer: pointer to spi transfer
1407 */
1408static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1409						 struct spi_transfer *transfer)
1410{
1411	unsigned int type = SPI_FULL_DUPLEX;
1412
1413	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1414		/*
1415		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1416		 * is forbidden and unvalidated by SPI subsystem so depending
1417		 * on the valid buffer, we can determine the direction of the
1418		 * transfer.
1419		 */
1420		if (!transfer->tx_buf)
1421			type = SPI_3WIRE_RX;
1422		else
1423			type = SPI_3WIRE_TX;
1424	} else {
1425		if (!transfer->tx_buf)
1426			type = SPI_SIMPLEX_RX;
1427		else if (!transfer->rx_buf)
1428			type = SPI_SIMPLEX_TX;
1429	}
1430
1431	return type;
1432}
1433
1434/**
1435 * stm32f4_spi_set_mode - configure communication mode
1436 * @spi: pointer to the spi controller data structure
1437 * @comm_type: type of communication to configure
1438 */
1439static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1440{
1441	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1442		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1443					STM32F4_SPI_CR1_BIDIMODE |
1444					STM32F4_SPI_CR1_BIDIOE);
1445	} else if (comm_type == SPI_FULL_DUPLEX ||
1446				comm_type == SPI_SIMPLEX_RX) {
1447		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1448					STM32F4_SPI_CR1_BIDIMODE |
1449					STM32F4_SPI_CR1_BIDIOE);
1450	} else if (comm_type == SPI_3WIRE_RX) {
1451		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1452					STM32F4_SPI_CR1_BIDIMODE);
1453		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1454					STM32F4_SPI_CR1_BIDIOE);
1455	} else {
1456		return -EINVAL;
1457	}
1458
1459	return 0;
1460}
1461
1462/**
1463 * stm32h7_spi_set_mode - configure communication mode
1464 * @spi: pointer to the spi controller data structure
1465 * @comm_type: type of communication to configure
1466 */
1467static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1468{
1469	u32 mode;
1470	u32 cfg2_clrb = 0, cfg2_setb = 0;
1471
1472	if (comm_type == SPI_3WIRE_RX) {
1473		mode = STM32H7_SPI_HALF_DUPLEX;
1474		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1475	} else if (comm_type == SPI_3WIRE_TX) {
1476		mode = STM32H7_SPI_HALF_DUPLEX;
1477		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1478	} else if (comm_type == SPI_SIMPLEX_RX) {
1479		mode = STM32H7_SPI_SIMPLEX_RX;
1480	} else if (comm_type == SPI_SIMPLEX_TX) {
1481		mode = STM32H7_SPI_SIMPLEX_TX;
1482	} else {
1483		mode = STM32H7_SPI_FULL_DUPLEX;
1484	}
1485
1486	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1487	cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1488
1489	writel_relaxed(
1490		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1491		 ~cfg2_clrb) | cfg2_setb,
1492		spi->base + STM32H7_SPI_CFG2);
1493
1494	return 0;
1495}
1496
1497/**
1498 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1499 *			       consecutive data frames in master mode
1500 * @spi: pointer to the spi controller data structure
1501 * @len: transfer len
1502 */
1503static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1504{
1505	u32 cfg2_clrb = 0, cfg2_setb = 0;
1506
1507	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1508	if ((len > 1) && (spi->cur_midi > 0)) {
1509		u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1510		u32 midi = min_t(u32,
1511				 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1512				 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1513				 STM32H7_SPI_CFG2_MIDI));
1514
1515
1516		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1517			sck_period_ns, midi, midi * sck_period_ns);
1518		cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1519	}
1520
1521	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1522			~cfg2_clrb) | cfg2_setb,
1523		       spi->base + STM32H7_SPI_CFG2);
1524}
1525
1526/**
1527 * stm32h7_spi_number_of_data - configure number of data at current transfer
1528 * @spi: pointer to the spi controller data structure
1529 * @nb_words: transfer length (in words)
1530 */
1531static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1532{
1533	if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1534		writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1535			       spi->base + STM32H7_SPI_CR2);
1536	} else {
1537		return -EMSGSIZE;
1538	}
1539
1540	return 0;
1541}
1542
1543/**
1544 * stm32_spi_transfer_one_setup - common setup to transfer a single
1545 *				  spi_transfer either using DMA or
1546 *				  interrupts.
1547 * @spi: pointer to the spi controller data structure
1548 * @spi_dev: pointer to the spi device
1549 * @transfer: pointer to spi transfer
1550 */
1551static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1552					struct spi_device *spi_dev,
1553					struct spi_transfer *transfer)
1554{
1555	unsigned long flags;
1556	unsigned int comm_type;
1557	int nb_words, ret = 0;
1558	int mbr;
1559
1560	spin_lock_irqsave(&spi->lock, flags);
1561
1562	spi->cur_xferlen = transfer->len;
1563
1564	spi->cur_bpw = transfer->bits_per_word;
1565	spi->cfg->set_bpw(spi);
1566
1567	/* Update spi->cur_speed with real clock speed */
1568	if (STM32_SPI_MASTER_MODE(spi)) {
1569		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1570					    spi->cfg->baud_rate_div_min,
1571					    spi->cfg->baud_rate_div_max);
1572		if (mbr < 0) {
1573			ret = mbr;
1574			goto out;
1575		}
1576
1577		transfer->speed_hz = spi->cur_speed;
1578		stm32_spi_set_mbr(spi, mbr);
1579	}
1580
1581	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1582	ret = spi->cfg->set_mode(spi, comm_type);
1583	if (ret < 0)
1584		goto out;
1585
1586	spi->cur_comm = comm_type;
1587
1588	if (STM32_SPI_MASTER_MODE(spi) && spi->cfg->set_data_idleness)
1589		spi->cfg->set_data_idleness(spi, transfer->len);
1590
1591	if (spi->cur_bpw <= 8)
1592		nb_words = transfer->len;
1593	else if (spi->cur_bpw <= 16)
1594		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1595	else
1596		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1597
1598	if (spi->cfg->set_number_of_data) {
1599		ret = spi->cfg->set_number_of_data(spi, nb_words);
1600		if (ret < 0)
1601			goto out;
1602	}
1603
1604	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1605		spi->cur_comm);
1606	dev_dbg(spi->dev,
1607		"data frame of %d-bit, data packet of %d data frames\n",
1608		spi->cur_bpw, spi->cur_fthlv);
1609	if (STM32_SPI_MASTER_MODE(spi))
1610		dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1611	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1612		spi->cur_xferlen, nb_words);
1613	dev_dbg(spi->dev, "dma %s\n",
1614		(spi->cur_usedma) ? "enabled" : "disabled");
1615
1616out:
1617	spin_unlock_irqrestore(&spi->lock, flags);
1618
1619	return ret;
1620}
1621
1622/**
1623 * stm32_spi_transfer_one - transfer a single spi_transfer
1624 * @ctrl: controller interface
1625 * @spi_dev: pointer to the spi device
1626 * @transfer: pointer to spi transfer
1627 *
1628 * It must return 0 if the transfer is finished or 1 if the transfer is still
1629 * in progress.
1630 */
1631static int stm32_spi_transfer_one(struct spi_controller *ctrl,
1632				  struct spi_device *spi_dev,
1633				  struct spi_transfer *transfer)
1634{
1635	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1636	int ret;
1637
1638	spi->tx_buf = transfer->tx_buf;
1639	spi->rx_buf = transfer->rx_buf;
1640	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1641	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1642
1643	spi->cur_usedma = (ctrl->can_dma &&
1644			   ctrl->can_dma(ctrl, spi_dev, transfer));
1645
1646	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1647	if (ret) {
1648		dev_err(spi->dev, "SPI transfer setup failed\n");
1649		return ret;
1650	}
1651
1652	if (spi->cur_usedma)
1653		return stm32_spi_transfer_one_dma(spi, transfer);
1654	else
1655		return spi->cfg->transfer_one_irq(spi);
1656}
1657
1658/**
1659 * stm32_spi_unprepare_msg - relax the hardware
1660 * @ctrl: controller interface
1661 * @msg: pointer to the spi message
1662 */
1663static int stm32_spi_unprepare_msg(struct spi_controller *ctrl,
1664				   struct spi_message *msg)
1665{
1666	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1667
1668	spi->cfg->disable(spi);
1669
1670	return 0;
1671}
1672
1673/**
1674 * stm32f4_spi_config - Configure SPI controller as SPI master
1675 * @spi: pointer to the spi controller data structure
1676 */
1677static int stm32f4_spi_config(struct stm32_spi *spi)
1678{
1679	unsigned long flags;
1680
1681	spin_lock_irqsave(&spi->lock, flags);
1682
1683	/* Ensure I2SMOD bit is kept cleared */
1684	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1685			   STM32F4_SPI_I2SCFGR_I2SMOD);
1686
1687	/*
1688	 * - SS input value high
1689	 * - transmitter half duplex direction
1690	 * - Set the master mode (default Motorola mode)
1691	 * - Consider 1 master/n slaves configuration and
1692	 *   SS input value is determined by the SSI bit
1693	 */
1694	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1695						 STM32F4_SPI_CR1_BIDIOE |
1696						 STM32F4_SPI_CR1_MSTR |
1697						 STM32F4_SPI_CR1_SSM);
1698
1699	spin_unlock_irqrestore(&spi->lock, flags);
1700
1701	return 0;
1702}
1703
1704/**
1705 * stm32h7_spi_config - Configure SPI controller
1706 * @spi: pointer to the spi controller data structure
1707 */
1708static int stm32h7_spi_config(struct stm32_spi *spi)
1709{
1710	unsigned long flags;
1711	u32 cr1 = 0, cfg2 = 0;
1712
1713	spin_lock_irqsave(&spi->lock, flags);
1714
1715	/* Ensure I2SMOD bit is kept cleared */
1716	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1717			   STM32H7_SPI_I2SCFGR_I2SMOD);
1718
1719	if (STM32_SPI_DEVICE_MODE(spi)) {
1720		/* Use native device select */
1721		cfg2 &= ~STM32H7_SPI_CFG2_SSM;
1722	} else {
1723		/*
1724		 * - Transmitter half duplex direction
1725		 * - Automatic communication suspend when RX-Fifo is full
1726		 * - SS input value high
1727		 */
1728		cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI;
1729
1730		/*
1731		 * - Set the master mode (default Motorola mode)
1732		 * - Consider 1 master/n devices configuration and
1733		 *   SS input value is determined by the SSI bit
1734		 * - keep control of all associated GPIOs
1735		 */
1736		cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR;
1737	}
1738
1739	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1);
1740	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2);
1741
1742	spin_unlock_irqrestore(&spi->lock, flags);
1743
1744	return 0;
1745}
1746
1747static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1748	.regs = &stm32f4_spi_regspec,
1749	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1750	.disable = stm32f4_spi_disable,
1751	.config = stm32f4_spi_config,
1752	.set_bpw = stm32f4_spi_set_bpw,
1753	.set_mode = stm32f4_spi_set_mode,
1754	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1755	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1756	.dma_rx_cb = stm32_spi_dma_rx_cb,
1757	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1758	.irq_handler_event = stm32f4_spi_irq_event,
1759	.irq_handler_thread = stm32f4_spi_irq_thread,
1760	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1761	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1762	.has_fifo = false,
1763	.has_device_mode = false,
1764	.flags = SPI_CONTROLLER_MUST_TX,
1765};
1766
1767static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1768	.regs = &stm32h7_spi_regspec,
1769	.get_fifo_size = stm32h7_spi_get_fifo_size,
1770	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1771	.disable = stm32h7_spi_disable,
1772	.config = stm32h7_spi_config,
1773	.set_bpw = stm32h7_spi_set_bpw,
1774	.set_mode = stm32h7_spi_set_mode,
1775	.set_data_idleness = stm32h7_spi_data_idleness,
1776	.set_number_of_data = stm32h7_spi_number_of_data,
1777	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1778	.dma_rx_cb = stm32_spi_dma_rx_cb,
1779	/*
1780	 * dma_tx_cb is not necessary since in case of TX, dma is followed by
1781	 * SPI access hence handling is performed within the SPI interrupt
1782	 */
1783	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1784	.irq_handler_thread = stm32h7_spi_irq_thread,
1785	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1786	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1787	.has_fifo = true,
1788	.has_device_mode = true,
1789};
1790
1791static const struct of_device_id stm32_spi_of_match[] = {
1792	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1793	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1794	{},
1795};
1796MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1797
1798static int stm32h7_spi_device_abort(struct spi_controller *ctrl)
1799{
1800	spi_finalize_current_transfer(ctrl);
1801	return 0;
1802}
1803
1804static int stm32_spi_probe(struct platform_device *pdev)
1805{
1806	struct spi_controller *ctrl;
1807	struct stm32_spi *spi;
1808	struct resource *res;
1809	struct reset_control *rst;
1810	struct device_node *np = pdev->dev.of_node;
1811	bool device_mode;
1812	int ret;
1813	const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev);
1814
1815	device_mode = of_property_read_bool(np, "spi-slave");
1816	if (!cfg->has_device_mode && device_mode) {
1817		dev_err(&pdev->dev, "spi-slave not supported\n");
1818		return -EPERM;
1819	}
1820
1821	if (device_mode)
1822		ctrl = devm_spi_alloc_slave(&pdev->dev, sizeof(struct stm32_spi));
1823	else
1824		ctrl = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1825	if (!ctrl) {
1826		dev_err(&pdev->dev, "spi controller allocation failed\n");
1827		return -ENOMEM;
1828	}
1829	platform_set_drvdata(pdev, ctrl);
1830
1831	spi = spi_controller_get_devdata(ctrl);
1832	spi->dev = &pdev->dev;
1833	spi->ctrl = ctrl;
1834	spi->device_mode = device_mode;
1835	spin_lock_init(&spi->lock);
1836
1837	spi->cfg = cfg;
1838
1839	spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1840	if (IS_ERR(spi->base))
1841		return PTR_ERR(spi->base);
1842
1843	spi->phys_addr = (dma_addr_t)res->start;
1844
1845	spi->irq = platform_get_irq(pdev, 0);
1846	if (spi->irq <= 0)
1847		return spi->irq;
1848
1849	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1850					spi->cfg->irq_handler_event,
1851					spi->cfg->irq_handler_thread,
1852					IRQF_ONESHOT, pdev->name, ctrl);
1853	if (ret) {
1854		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1855			ret);
1856		return ret;
1857	}
1858
1859	spi->clk = devm_clk_get(&pdev->dev, NULL);
1860	if (IS_ERR(spi->clk)) {
1861		ret = PTR_ERR(spi->clk);
1862		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1863		return ret;
1864	}
1865
1866	ret = clk_prepare_enable(spi->clk);
1867	if (ret) {
1868		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1869		return ret;
1870	}
1871	spi->clk_rate = clk_get_rate(spi->clk);
1872	if (!spi->clk_rate) {
1873		dev_err(&pdev->dev, "clk rate = 0\n");
1874		ret = -EINVAL;
1875		goto err_clk_disable;
1876	}
1877
1878	rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1879	if (rst) {
1880		if (IS_ERR(rst)) {
1881			ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1882					    "failed to get reset\n");
1883			goto err_clk_disable;
1884		}
1885
1886		reset_control_assert(rst);
1887		udelay(2);
1888		reset_control_deassert(rst);
1889	}
1890
1891	if (spi->cfg->has_fifo)
1892		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1893
1894	ret = spi->cfg->config(spi);
1895	if (ret) {
1896		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1897			ret);
1898		goto err_clk_disable;
1899	}
1900
1901	ctrl->dev.of_node = pdev->dev.of_node;
1902	ctrl->auto_runtime_pm = true;
1903	ctrl->bus_num = pdev->id;
1904	ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1905			  SPI_3WIRE;
1906	ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1907	ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1908	ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1909	ctrl->use_gpio_descriptors = true;
1910	ctrl->prepare_message = stm32_spi_prepare_msg;
1911	ctrl->transfer_one = stm32_spi_transfer_one;
1912	ctrl->unprepare_message = stm32_spi_unprepare_msg;
1913	ctrl->flags = spi->cfg->flags;
1914	if (STM32_SPI_DEVICE_MODE(spi))
1915		ctrl->slave_abort = stm32h7_spi_device_abort;
1916
1917	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1918	if (IS_ERR(spi->dma_tx)) {
1919		ret = PTR_ERR(spi->dma_tx);
1920		spi->dma_tx = NULL;
1921		if (ret == -EPROBE_DEFER)
1922			goto err_clk_disable;
1923
1924		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1925	} else {
1926		ctrl->dma_tx = spi->dma_tx;
1927	}
1928
1929	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1930	if (IS_ERR(spi->dma_rx)) {
1931		ret = PTR_ERR(spi->dma_rx);
1932		spi->dma_rx = NULL;
1933		if (ret == -EPROBE_DEFER)
1934			goto err_dma_release;
1935
1936		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1937	} else {
1938		ctrl->dma_rx = spi->dma_rx;
1939	}
1940
1941	if (spi->dma_tx || spi->dma_rx)
1942		ctrl->can_dma = stm32_spi_can_dma;
1943
1944	pm_runtime_set_autosuspend_delay(&pdev->dev,
1945					 STM32_SPI_AUTOSUSPEND_DELAY);
1946	pm_runtime_use_autosuspend(&pdev->dev);
1947	pm_runtime_set_active(&pdev->dev);
1948	pm_runtime_get_noresume(&pdev->dev);
1949	pm_runtime_enable(&pdev->dev);
1950
1951	ret = spi_register_controller(ctrl);
1952	if (ret) {
1953		dev_err(&pdev->dev, "spi controller registration failed: %d\n",
1954			ret);
1955		goto err_pm_disable;
1956	}
1957
1958	pm_runtime_mark_last_busy(&pdev->dev);
1959	pm_runtime_put_autosuspend(&pdev->dev);
1960
1961	dev_info(&pdev->dev, "driver initialized (%s mode)\n",
1962		 STM32_SPI_MASTER_MODE(spi) ? "master" : "device");
1963
1964	return 0;
1965
1966err_pm_disable:
1967	pm_runtime_disable(&pdev->dev);
1968	pm_runtime_put_noidle(&pdev->dev);
1969	pm_runtime_set_suspended(&pdev->dev);
1970	pm_runtime_dont_use_autosuspend(&pdev->dev);
1971err_dma_release:
1972	if (spi->dma_tx)
1973		dma_release_channel(spi->dma_tx);
1974	if (spi->dma_rx)
1975		dma_release_channel(spi->dma_rx);
1976err_clk_disable:
1977	clk_disable_unprepare(spi->clk);
1978
1979	return ret;
1980}
1981
1982static void stm32_spi_remove(struct platform_device *pdev)
1983{
1984	struct spi_controller *ctrl = platform_get_drvdata(pdev);
1985	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1986
1987	pm_runtime_get_sync(&pdev->dev);
1988
1989	spi_unregister_controller(ctrl);
1990	spi->cfg->disable(spi);
1991
1992	pm_runtime_disable(&pdev->dev);
1993	pm_runtime_put_noidle(&pdev->dev);
1994	pm_runtime_set_suspended(&pdev->dev);
1995	pm_runtime_dont_use_autosuspend(&pdev->dev);
1996
1997	if (ctrl->dma_tx)
1998		dma_release_channel(ctrl->dma_tx);
1999	if (ctrl->dma_rx)
2000		dma_release_channel(ctrl->dma_rx);
2001
2002	clk_disable_unprepare(spi->clk);
2003
2004
2005	pinctrl_pm_select_sleep_state(&pdev->dev);
2006}
2007
2008static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
2009{
2010	struct spi_controller *ctrl = dev_get_drvdata(dev);
2011	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2012
2013	clk_disable_unprepare(spi->clk);
2014
2015	return pinctrl_pm_select_sleep_state(dev);
2016}
2017
2018static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
2019{
2020	struct spi_controller *ctrl = dev_get_drvdata(dev);
2021	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2022	int ret;
2023
2024	ret = pinctrl_pm_select_default_state(dev);
2025	if (ret)
2026		return ret;
2027
2028	return clk_prepare_enable(spi->clk);
2029}
2030
2031static int __maybe_unused stm32_spi_suspend(struct device *dev)
2032{
2033	struct spi_controller *ctrl = dev_get_drvdata(dev);
2034	int ret;
2035
2036	ret = spi_controller_suspend(ctrl);
2037	if (ret)
2038		return ret;
2039
2040	return pm_runtime_force_suspend(dev);
2041}
2042
2043static int __maybe_unused stm32_spi_resume(struct device *dev)
2044{
2045	struct spi_controller *ctrl = dev_get_drvdata(dev);
2046	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2047	int ret;
2048
2049	ret = pm_runtime_force_resume(dev);
2050	if (ret)
2051		return ret;
2052
2053	ret = spi_controller_resume(ctrl);
2054	if (ret) {
2055		clk_disable_unprepare(spi->clk);
2056		return ret;
2057	}
2058
2059	ret = pm_runtime_resume_and_get(dev);
2060	if (ret < 0) {
2061		dev_err(dev, "Unable to power device:%d\n", ret);
2062		return ret;
2063	}
2064
2065	spi->cfg->config(spi);
2066
2067	pm_runtime_mark_last_busy(dev);
2068	pm_runtime_put_autosuspend(dev);
2069
2070	return 0;
2071}
2072
2073static const struct dev_pm_ops stm32_spi_pm_ops = {
2074	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2075	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2076			   stm32_spi_runtime_resume, NULL)
2077};
2078
2079static struct platform_driver stm32_spi_driver = {
2080	.probe = stm32_spi_probe,
2081	.remove_new = stm32_spi_remove,
2082	.driver = {
2083		.name = DRIVER_NAME,
2084		.pm = &stm32_spi_pm_ops,
2085		.of_match_table = stm32_spi_of_match,
2086	},
2087};
2088
2089module_platform_driver(stm32_spi_driver);
2090
2091MODULE_ALIAS("platform:" DRIVER_NAME);
2092MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2093MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2094MODULE_LICENSE("GPL v2");
2095