xref: /kernel/linux/linux-6.6/drivers/spi/spi-qup.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2008-2014, The Linux foundation. All rights reserved.
4 */
5
6#include <linux/clk.h>
7#include <linux/delay.h>
8#include <linux/err.h>
9#include <linux/interrupt.h>
10#include <linux/io.h>
11#include <linux/list.h>
12#include <linux/module.h>
13#include <linux/of.h>
14#include <linux/platform_device.h>
15#include <linux/pm_runtime.h>
16#include <linux/spi/spi.h>
17#include <linux/dmaengine.h>
18#include <linux/dma-mapping.h>
19
20#define QUP_CONFIG			0x0000
21#define QUP_STATE			0x0004
22#define QUP_IO_M_MODES			0x0008
23#define QUP_SW_RESET			0x000c
24#define QUP_OPERATIONAL			0x0018
25#define QUP_ERROR_FLAGS			0x001c
26#define QUP_ERROR_FLAGS_EN		0x0020
27#define QUP_OPERATIONAL_MASK		0x0028
28#define QUP_HW_VERSION			0x0030
29#define QUP_MX_OUTPUT_CNT		0x0100
30#define QUP_OUTPUT_FIFO			0x0110
31#define QUP_MX_WRITE_CNT		0x0150
32#define QUP_MX_INPUT_CNT		0x0200
33#define QUP_MX_READ_CNT			0x0208
34#define QUP_INPUT_FIFO			0x0218
35
36#define SPI_CONFIG			0x0300
37#define SPI_IO_CONTROL			0x0304
38#define SPI_ERROR_FLAGS			0x0308
39#define SPI_ERROR_FLAGS_EN		0x030c
40
41/* QUP_CONFIG fields */
42#define QUP_CONFIG_SPI_MODE		(1 << 8)
43#define QUP_CONFIG_CLOCK_AUTO_GATE	BIT(13)
44#define QUP_CONFIG_NO_INPUT		BIT(7)
45#define QUP_CONFIG_NO_OUTPUT		BIT(6)
46#define QUP_CONFIG_N			0x001f
47
48/* QUP_STATE fields */
49#define QUP_STATE_VALID			BIT(2)
50#define QUP_STATE_RESET			0
51#define QUP_STATE_RUN			1
52#define QUP_STATE_PAUSE			3
53#define QUP_STATE_MASK			3
54#define QUP_STATE_CLEAR			2
55
56#define QUP_HW_VERSION_2_1_1		0x20010001
57
58/* QUP_IO_M_MODES fields */
59#define QUP_IO_M_PACK_EN		BIT(15)
60#define QUP_IO_M_UNPACK_EN		BIT(14)
61#define QUP_IO_M_INPUT_MODE_MASK_SHIFT	12
62#define QUP_IO_M_OUTPUT_MODE_MASK_SHIFT	10
63#define QUP_IO_M_INPUT_MODE_MASK	(3 << QUP_IO_M_INPUT_MODE_MASK_SHIFT)
64#define QUP_IO_M_OUTPUT_MODE_MASK	(3 << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT)
65
66#define QUP_IO_M_OUTPUT_BLOCK_SIZE(x)	(((x) & (0x03 << 0)) >> 0)
67#define QUP_IO_M_OUTPUT_FIFO_SIZE(x)	(((x) & (0x07 << 2)) >> 2)
68#define QUP_IO_M_INPUT_BLOCK_SIZE(x)	(((x) & (0x03 << 5)) >> 5)
69#define QUP_IO_M_INPUT_FIFO_SIZE(x)	(((x) & (0x07 << 7)) >> 7)
70
71#define QUP_IO_M_MODE_FIFO		0
72#define QUP_IO_M_MODE_BLOCK		1
73#define QUP_IO_M_MODE_DMOV		2
74#define QUP_IO_M_MODE_BAM		3
75
76/* QUP_OPERATIONAL fields */
77#define QUP_OP_IN_BLOCK_READ_REQ	BIT(13)
78#define QUP_OP_OUT_BLOCK_WRITE_REQ	BIT(12)
79#define QUP_OP_MAX_INPUT_DONE_FLAG	BIT(11)
80#define QUP_OP_MAX_OUTPUT_DONE_FLAG	BIT(10)
81#define QUP_OP_IN_SERVICE_FLAG		BIT(9)
82#define QUP_OP_OUT_SERVICE_FLAG		BIT(8)
83#define QUP_OP_IN_FIFO_FULL		BIT(7)
84#define QUP_OP_OUT_FIFO_FULL		BIT(6)
85#define QUP_OP_IN_FIFO_NOT_EMPTY	BIT(5)
86#define QUP_OP_OUT_FIFO_NOT_EMPTY	BIT(4)
87
88/* QUP_ERROR_FLAGS and QUP_ERROR_FLAGS_EN fields */
89#define QUP_ERROR_OUTPUT_OVER_RUN	BIT(5)
90#define QUP_ERROR_INPUT_UNDER_RUN	BIT(4)
91#define QUP_ERROR_OUTPUT_UNDER_RUN	BIT(3)
92#define QUP_ERROR_INPUT_OVER_RUN	BIT(2)
93
94/* SPI_CONFIG fields */
95#define SPI_CONFIG_HS_MODE		BIT(10)
96#define SPI_CONFIG_INPUT_FIRST		BIT(9)
97#define SPI_CONFIG_LOOPBACK		BIT(8)
98
99/* SPI_IO_CONTROL fields */
100#define SPI_IO_C_FORCE_CS		BIT(11)
101#define SPI_IO_C_CLK_IDLE_HIGH		BIT(10)
102#define SPI_IO_C_MX_CS_MODE		BIT(8)
103#define SPI_IO_C_CS_N_POLARITY_0	BIT(4)
104#define SPI_IO_C_CS_SELECT(x)		(((x) & 3) << 2)
105#define SPI_IO_C_CS_SELECT_MASK		0x000c
106#define SPI_IO_C_TRISTATE_CS		BIT(1)
107#define SPI_IO_C_NO_TRI_STATE		BIT(0)
108
109/* SPI_ERROR_FLAGS and SPI_ERROR_FLAGS_EN fields */
110#define SPI_ERROR_CLK_OVER_RUN		BIT(1)
111#define SPI_ERROR_CLK_UNDER_RUN		BIT(0)
112
113#define SPI_NUM_CHIPSELECTS		4
114
115#define SPI_MAX_XFER			(SZ_64K - 64)
116
117/* high speed mode is when bus rate is greater then 26MHz */
118#define SPI_HS_MIN_RATE			26000000
119#define SPI_MAX_RATE			50000000
120
121#define SPI_DELAY_THRESHOLD		1
122#define SPI_DELAY_RETRY			10
123
124struct spi_qup {
125	void __iomem		*base;
126	struct device		*dev;
127	struct clk		*cclk;	/* core clock */
128	struct clk		*iclk;	/* interface clock */
129	int			irq;
130	spinlock_t		lock;
131
132	int			in_fifo_sz;
133	int			out_fifo_sz;
134	int			in_blk_sz;
135	int			out_blk_sz;
136
137	struct spi_transfer	*xfer;
138	struct completion	done;
139	int			error;
140	int			w_size;	/* bytes per SPI word */
141	int			n_words;
142	int			tx_bytes;
143	int			rx_bytes;
144	const u8		*tx_buf;
145	u8			*rx_buf;
146	int			qup_v1;
147
148	int			mode;
149	struct dma_slave_config	rx_conf;
150	struct dma_slave_config	tx_conf;
151};
152
153static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer);
154
155static inline bool spi_qup_is_flag_set(struct spi_qup *controller, u32 flag)
156{
157	u32 opflag = readl_relaxed(controller->base + QUP_OPERATIONAL);
158
159	return (opflag & flag) != 0;
160}
161
162static inline bool spi_qup_is_dma_xfer(int mode)
163{
164	if (mode == QUP_IO_M_MODE_DMOV || mode == QUP_IO_M_MODE_BAM)
165		return true;
166
167	return false;
168}
169
170/* get's the transaction size length */
171static inline unsigned int spi_qup_len(struct spi_qup *controller)
172{
173	return controller->n_words * controller->w_size;
174}
175
176static inline bool spi_qup_is_valid_state(struct spi_qup *controller)
177{
178	u32 opstate = readl_relaxed(controller->base + QUP_STATE);
179
180	return opstate & QUP_STATE_VALID;
181}
182
183static int spi_qup_set_state(struct spi_qup *controller, u32 state)
184{
185	unsigned long loop;
186	u32 cur_state;
187
188	loop = 0;
189	while (!spi_qup_is_valid_state(controller)) {
190
191		usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2);
192
193		if (++loop > SPI_DELAY_RETRY)
194			return -EIO;
195	}
196
197	if (loop)
198		dev_dbg(controller->dev, "invalid state for %ld,us %d\n",
199			loop, state);
200
201	cur_state = readl_relaxed(controller->base + QUP_STATE);
202	/*
203	 * Per spec: for PAUSE_STATE to RESET_STATE, two writes
204	 * of (b10) are required
205	 */
206	if (((cur_state & QUP_STATE_MASK) == QUP_STATE_PAUSE) &&
207	    (state == QUP_STATE_RESET)) {
208		writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE);
209		writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE);
210	} else {
211		cur_state &= ~QUP_STATE_MASK;
212		cur_state |= state;
213		writel_relaxed(cur_state, controller->base + QUP_STATE);
214	}
215
216	loop = 0;
217	while (!spi_qup_is_valid_state(controller)) {
218
219		usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2);
220
221		if (++loop > SPI_DELAY_RETRY)
222			return -EIO;
223	}
224
225	return 0;
226}
227
228static void spi_qup_read_from_fifo(struct spi_qup *controller, u32 num_words)
229{
230	u8 *rx_buf = controller->rx_buf;
231	int i, shift, num_bytes;
232	u32 word;
233
234	for (; num_words; num_words--) {
235
236		word = readl_relaxed(controller->base + QUP_INPUT_FIFO);
237
238		num_bytes = min_t(int, spi_qup_len(controller) -
239				       controller->rx_bytes,
240				       controller->w_size);
241
242		if (!rx_buf) {
243			controller->rx_bytes += num_bytes;
244			continue;
245		}
246
247		for (i = 0; i < num_bytes; i++, controller->rx_bytes++) {
248			/*
249			 * The data format depends on bytes per SPI word:
250			 *  4 bytes: 0x12345678
251			 *  2 bytes: 0x00001234
252			 *  1 byte : 0x00000012
253			 */
254			shift = BITS_PER_BYTE;
255			shift *= (controller->w_size - i - 1);
256			rx_buf[controller->rx_bytes] = word >> shift;
257		}
258	}
259}
260
261static void spi_qup_read(struct spi_qup *controller, u32 *opflags)
262{
263	u32 remainder, words_per_block, num_words;
264	bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK;
265
266	remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->rx_bytes,
267				 controller->w_size);
268	words_per_block = controller->in_blk_sz >> 2;
269
270	do {
271		/* ACK by clearing service flag */
272		writel_relaxed(QUP_OP_IN_SERVICE_FLAG,
273			       controller->base + QUP_OPERATIONAL);
274
275		if (!remainder)
276			goto exit;
277
278		if (is_block_mode) {
279			num_words = (remainder > words_per_block) ?
280					words_per_block : remainder;
281		} else {
282			if (!spi_qup_is_flag_set(controller,
283						 QUP_OP_IN_FIFO_NOT_EMPTY))
284				break;
285
286			num_words = 1;
287		}
288
289		/* read up to the maximum transfer size available */
290		spi_qup_read_from_fifo(controller, num_words);
291
292		remainder -= num_words;
293
294		/* if block mode, check to see if next block is available */
295		if (is_block_mode && !spi_qup_is_flag_set(controller,
296					QUP_OP_IN_BLOCK_READ_REQ))
297			break;
298
299	} while (remainder);
300
301	/*
302	 * Due to extra stickiness of the QUP_OP_IN_SERVICE_FLAG during block
303	 * reads, it has to be cleared again at the very end.  However, be sure
304	 * to refresh opflags value because MAX_INPUT_DONE_FLAG may now be
305	 * present and this is used to determine if transaction is complete
306	 */
307exit:
308	if (!remainder) {
309		*opflags = readl_relaxed(controller->base + QUP_OPERATIONAL);
310		if (is_block_mode && *opflags & QUP_OP_MAX_INPUT_DONE_FLAG)
311			writel_relaxed(QUP_OP_IN_SERVICE_FLAG,
312				       controller->base + QUP_OPERATIONAL);
313	}
314}
315
316static void spi_qup_write_to_fifo(struct spi_qup *controller, u32 num_words)
317{
318	const u8 *tx_buf = controller->tx_buf;
319	int i, num_bytes;
320	u32 word, data;
321
322	for (; num_words; num_words--) {
323		word = 0;
324
325		num_bytes = min_t(int, spi_qup_len(controller) -
326				       controller->tx_bytes,
327				       controller->w_size);
328		if (tx_buf)
329			for (i = 0; i < num_bytes; i++) {
330				data = tx_buf[controller->tx_bytes + i];
331				word |= data << (BITS_PER_BYTE * (3 - i));
332			}
333
334		controller->tx_bytes += num_bytes;
335
336		writel_relaxed(word, controller->base + QUP_OUTPUT_FIFO);
337	}
338}
339
340static void spi_qup_dma_done(void *data)
341{
342	struct spi_qup *qup = data;
343
344	complete(&qup->done);
345}
346
347static void spi_qup_write(struct spi_qup *controller)
348{
349	bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK;
350	u32 remainder, words_per_block, num_words;
351
352	remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->tx_bytes,
353				 controller->w_size);
354	words_per_block = controller->out_blk_sz >> 2;
355
356	do {
357		/* ACK by clearing service flag */
358		writel_relaxed(QUP_OP_OUT_SERVICE_FLAG,
359			       controller->base + QUP_OPERATIONAL);
360
361		/* make sure the interrupt is valid */
362		if (!remainder)
363			return;
364
365		if (is_block_mode) {
366			num_words = (remainder > words_per_block) ?
367				words_per_block : remainder;
368		} else {
369			if (spi_qup_is_flag_set(controller,
370						QUP_OP_OUT_FIFO_FULL))
371				break;
372
373			num_words = 1;
374		}
375
376		spi_qup_write_to_fifo(controller, num_words);
377
378		remainder -= num_words;
379
380		/* if block mode, check to see if next block is available */
381		if (is_block_mode && !spi_qup_is_flag_set(controller,
382					QUP_OP_OUT_BLOCK_WRITE_REQ))
383			break;
384
385	} while (remainder);
386}
387
388static int spi_qup_prep_sg(struct spi_controller *host, struct scatterlist *sgl,
389			   unsigned int nents, enum dma_transfer_direction dir,
390			   dma_async_tx_callback callback)
391{
392	struct spi_qup *qup = spi_controller_get_devdata(host);
393	unsigned long flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE;
394	struct dma_async_tx_descriptor *desc;
395	struct dma_chan *chan;
396	dma_cookie_t cookie;
397
398	if (dir == DMA_MEM_TO_DEV)
399		chan = host->dma_tx;
400	else
401		chan = host->dma_rx;
402
403	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
404	if (IS_ERR_OR_NULL(desc))
405		return desc ? PTR_ERR(desc) : -EINVAL;
406
407	desc->callback = callback;
408	desc->callback_param = qup;
409
410	cookie = dmaengine_submit(desc);
411
412	return dma_submit_error(cookie);
413}
414
415static void spi_qup_dma_terminate(struct spi_controller *host,
416				  struct spi_transfer *xfer)
417{
418	if (xfer->tx_buf)
419		dmaengine_terminate_all(host->dma_tx);
420	if (xfer->rx_buf)
421		dmaengine_terminate_all(host->dma_rx);
422}
423
424static u32 spi_qup_sgl_get_nents_len(struct scatterlist *sgl, u32 max,
425				     u32 *nents)
426{
427	struct scatterlist *sg;
428	u32 total = 0;
429
430	for (sg = sgl; sg; sg = sg_next(sg)) {
431		unsigned int len = sg_dma_len(sg);
432
433		/* check for overflow as well as limit */
434		if (((total + len) < total) || ((total + len) > max))
435			break;
436
437		total += len;
438		(*nents)++;
439	}
440
441	return total;
442}
443
444static int spi_qup_do_dma(struct spi_device *spi, struct spi_transfer *xfer,
445			  unsigned long timeout)
446{
447	dma_async_tx_callback rx_done = NULL, tx_done = NULL;
448	struct spi_controller *host = spi->controller;
449	struct spi_qup *qup = spi_controller_get_devdata(host);
450	struct scatterlist *tx_sgl, *rx_sgl;
451	int ret;
452
453	if (xfer->rx_buf)
454		rx_done = spi_qup_dma_done;
455	else if (xfer->tx_buf)
456		tx_done = spi_qup_dma_done;
457
458	rx_sgl = xfer->rx_sg.sgl;
459	tx_sgl = xfer->tx_sg.sgl;
460
461	do {
462		u32 rx_nents = 0, tx_nents = 0;
463
464		if (rx_sgl)
465			qup->n_words = spi_qup_sgl_get_nents_len(rx_sgl,
466					SPI_MAX_XFER, &rx_nents) / qup->w_size;
467		if (tx_sgl)
468			qup->n_words = spi_qup_sgl_get_nents_len(tx_sgl,
469					SPI_MAX_XFER, &tx_nents) / qup->w_size;
470		if (!qup->n_words)
471			return -EIO;
472
473		ret = spi_qup_io_config(spi, xfer);
474		if (ret)
475			return ret;
476
477		/* before issuing the descriptors, set the QUP to run */
478		ret = spi_qup_set_state(qup, QUP_STATE_RUN);
479		if (ret) {
480			dev_warn(qup->dev, "cannot set RUN state\n");
481			return ret;
482		}
483		if (rx_sgl) {
484			ret = spi_qup_prep_sg(host, rx_sgl, rx_nents,
485					      DMA_DEV_TO_MEM, rx_done);
486			if (ret)
487				return ret;
488			dma_async_issue_pending(host->dma_rx);
489		}
490
491		if (tx_sgl) {
492			ret = spi_qup_prep_sg(host, tx_sgl, tx_nents,
493					      DMA_MEM_TO_DEV, tx_done);
494			if (ret)
495				return ret;
496
497			dma_async_issue_pending(host->dma_tx);
498		}
499
500		if (!wait_for_completion_timeout(&qup->done, timeout))
501			return -ETIMEDOUT;
502
503		for (; rx_sgl && rx_nents--; rx_sgl = sg_next(rx_sgl))
504			;
505		for (; tx_sgl && tx_nents--; tx_sgl = sg_next(tx_sgl))
506			;
507
508	} while (rx_sgl || tx_sgl);
509
510	return 0;
511}
512
513static int spi_qup_do_pio(struct spi_device *spi, struct spi_transfer *xfer,
514			  unsigned long timeout)
515{
516	struct spi_controller *host = spi->controller;
517	struct spi_qup *qup = spi_controller_get_devdata(host);
518	int ret, n_words, iterations, offset = 0;
519
520	n_words = qup->n_words;
521	iterations = n_words / SPI_MAX_XFER; /* round down */
522	qup->rx_buf = xfer->rx_buf;
523	qup->tx_buf = xfer->tx_buf;
524
525	do {
526		if (iterations)
527			qup->n_words = SPI_MAX_XFER;
528		else
529			qup->n_words = n_words % SPI_MAX_XFER;
530
531		if (qup->tx_buf && offset)
532			qup->tx_buf = xfer->tx_buf + offset * SPI_MAX_XFER;
533
534		if (qup->rx_buf && offset)
535			qup->rx_buf = xfer->rx_buf + offset * SPI_MAX_XFER;
536
537		/*
538		 * if the transaction is small enough, we need
539		 * to fallback to FIFO mode
540		 */
541		if (qup->n_words <= (qup->in_fifo_sz / sizeof(u32)))
542			qup->mode = QUP_IO_M_MODE_FIFO;
543
544		ret = spi_qup_io_config(spi, xfer);
545		if (ret)
546			return ret;
547
548		ret = spi_qup_set_state(qup, QUP_STATE_RUN);
549		if (ret) {
550			dev_warn(qup->dev, "cannot set RUN state\n");
551			return ret;
552		}
553
554		ret = spi_qup_set_state(qup, QUP_STATE_PAUSE);
555		if (ret) {
556			dev_warn(qup->dev, "cannot set PAUSE state\n");
557			return ret;
558		}
559
560		if (qup->mode == QUP_IO_M_MODE_FIFO)
561			spi_qup_write(qup);
562
563		ret = spi_qup_set_state(qup, QUP_STATE_RUN);
564		if (ret) {
565			dev_warn(qup->dev, "cannot set RUN state\n");
566			return ret;
567		}
568
569		if (!wait_for_completion_timeout(&qup->done, timeout))
570			return -ETIMEDOUT;
571
572		offset++;
573	} while (iterations--);
574
575	return 0;
576}
577
578static bool spi_qup_data_pending(struct spi_qup *controller)
579{
580	unsigned int remainder_tx, remainder_rx;
581
582	remainder_tx = DIV_ROUND_UP(spi_qup_len(controller) -
583				    controller->tx_bytes, controller->w_size);
584
585	remainder_rx = DIV_ROUND_UP(spi_qup_len(controller) -
586				    controller->rx_bytes, controller->w_size);
587
588	return remainder_tx || remainder_rx;
589}
590
591static irqreturn_t spi_qup_qup_irq(int irq, void *dev_id)
592{
593	struct spi_qup *controller = dev_id;
594	u32 opflags, qup_err, spi_err;
595	int error = 0;
596
597	qup_err = readl_relaxed(controller->base + QUP_ERROR_FLAGS);
598	spi_err = readl_relaxed(controller->base + SPI_ERROR_FLAGS);
599	opflags = readl_relaxed(controller->base + QUP_OPERATIONAL);
600
601	writel_relaxed(qup_err, controller->base + QUP_ERROR_FLAGS);
602	writel_relaxed(spi_err, controller->base + SPI_ERROR_FLAGS);
603
604	if (qup_err) {
605		if (qup_err & QUP_ERROR_OUTPUT_OVER_RUN)
606			dev_warn(controller->dev, "OUTPUT_OVER_RUN\n");
607		if (qup_err & QUP_ERROR_INPUT_UNDER_RUN)
608			dev_warn(controller->dev, "INPUT_UNDER_RUN\n");
609		if (qup_err & QUP_ERROR_OUTPUT_UNDER_RUN)
610			dev_warn(controller->dev, "OUTPUT_UNDER_RUN\n");
611		if (qup_err & QUP_ERROR_INPUT_OVER_RUN)
612			dev_warn(controller->dev, "INPUT_OVER_RUN\n");
613
614		error = -EIO;
615	}
616
617	if (spi_err) {
618		if (spi_err & SPI_ERROR_CLK_OVER_RUN)
619			dev_warn(controller->dev, "CLK_OVER_RUN\n");
620		if (spi_err & SPI_ERROR_CLK_UNDER_RUN)
621			dev_warn(controller->dev, "CLK_UNDER_RUN\n");
622
623		error = -EIO;
624	}
625
626	spin_lock(&controller->lock);
627	if (!controller->error)
628		controller->error = error;
629	spin_unlock(&controller->lock);
630
631	if (spi_qup_is_dma_xfer(controller->mode)) {
632		writel_relaxed(opflags, controller->base + QUP_OPERATIONAL);
633	} else {
634		if (opflags & QUP_OP_IN_SERVICE_FLAG)
635			spi_qup_read(controller, &opflags);
636
637		if (opflags & QUP_OP_OUT_SERVICE_FLAG)
638			spi_qup_write(controller);
639
640		if (!spi_qup_data_pending(controller))
641			complete(&controller->done);
642	}
643
644	if (error)
645		complete(&controller->done);
646
647	if (opflags & QUP_OP_MAX_INPUT_DONE_FLAG) {
648		if (!spi_qup_is_dma_xfer(controller->mode)) {
649			if (spi_qup_data_pending(controller))
650				return IRQ_HANDLED;
651		}
652		complete(&controller->done);
653	}
654
655	return IRQ_HANDLED;
656}
657
658/* set clock freq ... bits per word, determine mode */
659static int spi_qup_io_prep(struct spi_device *spi, struct spi_transfer *xfer)
660{
661	struct spi_qup *controller = spi_controller_get_devdata(spi->controller);
662	int ret;
663
664	if (spi->mode & SPI_LOOP && xfer->len > controller->in_fifo_sz) {
665		dev_err(controller->dev, "too big size for loopback %d > %d\n",
666			xfer->len, controller->in_fifo_sz);
667		return -EIO;
668	}
669
670	ret = clk_set_rate(controller->cclk, xfer->speed_hz);
671	if (ret) {
672		dev_err(controller->dev, "fail to set frequency %d",
673			xfer->speed_hz);
674		return -EIO;
675	}
676
677	controller->w_size = DIV_ROUND_UP(xfer->bits_per_word, 8);
678	controller->n_words = xfer->len / controller->w_size;
679
680	if (controller->n_words <= (controller->in_fifo_sz / sizeof(u32)))
681		controller->mode = QUP_IO_M_MODE_FIFO;
682	else if (spi->controller->can_dma &&
683		 spi->controller->can_dma(spi->controller, spi, xfer) &&
684		 spi->controller->cur_msg_mapped)
685		controller->mode = QUP_IO_M_MODE_BAM;
686	else
687		controller->mode = QUP_IO_M_MODE_BLOCK;
688
689	return 0;
690}
691
692/* prep qup for another spi transaction of specific type */
693static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer)
694{
695	struct spi_qup *controller = spi_controller_get_devdata(spi->controller);
696	u32 config, iomode, control;
697	unsigned long flags;
698
699	spin_lock_irqsave(&controller->lock, flags);
700	controller->xfer     = xfer;
701	controller->error    = 0;
702	controller->rx_bytes = 0;
703	controller->tx_bytes = 0;
704	spin_unlock_irqrestore(&controller->lock, flags);
705
706
707	if (spi_qup_set_state(controller, QUP_STATE_RESET)) {
708		dev_err(controller->dev, "cannot set RESET state\n");
709		return -EIO;
710	}
711
712	switch (controller->mode) {
713	case QUP_IO_M_MODE_FIFO:
714		writel_relaxed(controller->n_words,
715			       controller->base + QUP_MX_READ_CNT);
716		writel_relaxed(controller->n_words,
717			       controller->base + QUP_MX_WRITE_CNT);
718		/* must be zero for FIFO */
719		writel_relaxed(0, controller->base + QUP_MX_INPUT_CNT);
720		writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT);
721		break;
722	case QUP_IO_M_MODE_BAM:
723		writel_relaxed(controller->n_words,
724			       controller->base + QUP_MX_INPUT_CNT);
725		writel_relaxed(controller->n_words,
726			       controller->base + QUP_MX_OUTPUT_CNT);
727		/* must be zero for BLOCK and BAM */
728		writel_relaxed(0, controller->base + QUP_MX_READ_CNT);
729		writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT);
730
731		if (!controller->qup_v1) {
732			void __iomem *input_cnt;
733
734			input_cnt = controller->base + QUP_MX_INPUT_CNT;
735			/*
736			 * for DMA transfers, both QUP_MX_INPUT_CNT and
737			 * QUP_MX_OUTPUT_CNT must be zero to all cases but one.
738			 * That case is a non-balanced transfer when there is
739			 * only a rx_buf.
740			 */
741			if (xfer->tx_buf)
742				writel_relaxed(0, input_cnt);
743			else
744				writel_relaxed(controller->n_words, input_cnt);
745
746			writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT);
747		}
748		break;
749	case QUP_IO_M_MODE_BLOCK:
750		reinit_completion(&controller->done);
751		writel_relaxed(controller->n_words,
752			       controller->base + QUP_MX_INPUT_CNT);
753		writel_relaxed(controller->n_words,
754			       controller->base + QUP_MX_OUTPUT_CNT);
755		/* must be zero for BLOCK and BAM */
756		writel_relaxed(0, controller->base + QUP_MX_READ_CNT);
757		writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT);
758		break;
759	default:
760		dev_err(controller->dev, "unknown mode = %d\n",
761				controller->mode);
762		return -EIO;
763	}
764
765	iomode = readl_relaxed(controller->base + QUP_IO_M_MODES);
766	/* Set input and output transfer mode */
767	iomode &= ~(QUP_IO_M_INPUT_MODE_MASK | QUP_IO_M_OUTPUT_MODE_MASK);
768
769	if (!spi_qup_is_dma_xfer(controller->mode))
770		iomode &= ~(QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN);
771	else
772		iomode |= QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN;
773
774	iomode |= (controller->mode << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT);
775	iomode |= (controller->mode << QUP_IO_M_INPUT_MODE_MASK_SHIFT);
776
777	writel_relaxed(iomode, controller->base + QUP_IO_M_MODES);
778
779	control = readl_relaxed(controller->base + SPI_IO_CONTROL);
780
781	if (spi->mode & SPI_CPOL)
782		control |= SPI_IO_C_CLK_IDLE_HIGH;
783	else
784		control &= ~SPI_IO_C_CLK_IDLE_HIGH;
785
786	writel_relaxed(control, controller->base + SPI_IO_CONTROL);
787
788	config = readl_relaxed(controller->base + SPI_CONFIG);
789
790	if (spi->mode & SPI_LOOP)
791		config |= SPI_CONFIG_LOOPBACK;
792	else
793		config &= ~SPI_CONFIG_LOOPBACK;
794
795	if (spi->mode & SPI_CPHA)
796		config &= ~SPI_CONFIG_INPUT_FIRST;
797	else
798		config |= SPI_CONFIG_INPUT_FIRST;
799
800	/*
801	 * HS_MODE improves signal stability for spi-clk high rates,
802	 * but is invalid in loop back mode.
803	 */
804	if ((xfer->speed_hz >= SPI_HS_MIN_RATE) && !(spi->mode & SPI_LOOP))
805		config |= SPI_CONFIG_HS_MODE;
806	else
807		config &= ~SPI_CONFIG_HS_MODE;
808
809	writel_relaxed(config, controller->base + SPI_CONFIG);
810
811	config = readl_relaxed(controller->base + QUP_CONFIG);
812	config &= ~(QUP_CONFIG_NO_INPUT | QUP_CONFIG_NO_OUTPUT | QUP_CONFIG_N);
813	config |= xfer->bits_per_word - 1;
814	config |= QUP_CONFIG_SPI_MODE;
815
816	if (spi_qup_is_dma_xfer(controller->mode)) {
817		if (!xfer->tx_buf)
818			config |= QUP_CONFIG_NO_OUTPUT;
819		if (!xfer->rx_buf)
820			config |= QUP_CONFIG_NO_INPUT;
821	}
822
823	writel_relaxed(config, controller->base + QUP_CONFIG);
824
825	/* only write to OPERATIONAL_MASK when register is present */
826	if (!controller->qup_v1) {
827		u32 mask = 0;
828
829		/*
830		 * mask INPUT and OUTPUT service flags to prevent IRQs on FIFO
831		 * status change in BAM mode
832		 */
833
834		if (spi_qup_is_dma_xfer(controller->mode))
835			mask = QUP_OP_IN_SERVICE_FLAG | QUP_OP_OUT_SERVICE_FLAG;
836
837		writel_relaxed(mask, controller->base + QUP_OPERATIONAL_MASK);
838	}
839
840	return 0;
841}
842
843static int spi_qup_transfer_one(struct spi_controller *host,
844			      struct spi_device *spi,
845			      struct spi_transfer *xfer)
846{
847	struct spi_qup *controller = spi_controller_get_devdata(host);
848	unsigned long timeout, flags;
849	int ret;
850
851	ret = spi_qup_io_prep(spi, xfer);
852	if (ret)
853		return ret;
854
855	timeout = DIV_ROUND_UP(xfer->speed_hz, MSEC_PER_SEC);
856	timeout = DIV_ROUND_UP(min_t(unsigned long, SPI_MAX_XFER,
857				     xfer->len) * 8, timeout);
858	timeout = 100 * msecs_to_jiffies(timeout);
859
860	reinit_completion(&controller->done);
861
862	spin_lock_irqsave(&controller->lock, flags);
863	controller->xfer     = xfer;
864	controller->error    = 0;
865	controller->rx_bytes = 0;
866	controller->tx_bytes = 0;
867	spin_unlock_irqrestore(&controller->lock, flags);
868
869	if (spi_qup_is_dma_xfer(controller->mode))
870		ret = spi_qup_do_dma(spi, xfer, timeout);
871	else
872		ret = spi_qup_do_pio(spi, xfer, timeout);
873
874	spi_qup_set_state(controller, QUP_STATE_RESET);
875	spin_lock_irqsave(&controller->lock, flags);
876	if (!ret)
877		ret = controller->error;
878	spin_unlock_irqrestore(&controller->lock, flags);
879
880	if (ret && spi_qup_is_dma_xfer(controller->mode))
881		spi_qup_dma_terminate(host, xfer);
882
883	return ret;
884}
885
886static bool spi_qup_can_dma(struct spi_controller *host, struct spi_device *spi,
887			    struct spi_transfer *xfer)
888{
889	struct spi_qup *qup = spi_controller_get_devdata(host);
890	size_t dma_align = dma_get_cache_alignment();
891	int n_words;
892
893	if (xfer->rx_buf) {
894		if (!IS_ALIGNED((size_t)xfer->rx_buf, dma_align) ||
895		    IS_ERR_OR_NULL(host->dma_rx))
896			return false;
897		if (qup->qup_v1 && (xfer->len % qup->in_blk_sz))
898			return false;
899	}
900
901	if (xfer->tx_buf) {
902		if (!IS_ALIGNED((size_t)xfer->tx_buf, dma_align) ||
903		    IS_ERR_OR_NULL(host->dma_tx))
904			return false;
905		if (qup->qup_v1 && (xfer->len % qup->out_blk_sz))
906			return false;
907	}
908
909	n_words = xfer->len / DIV_ROUND_UP(xfer->bits_per_word, 8);
910	if (n_words <= (qup->in_fifo_sz / sizeof(u32)))
911		return false;
912
913	return true;
914}
915
916static void spi_qup_release_dma(struct spi_controller *host)
917{
918	if (!IS_ERR_OR_NULL(host->dma_rx))
919		dma_release_channel(host->dma_rx);
920	if (!IS_ERR_OR_NULL(host->dma_tx))
921		dma_release_channel(host->dma_tx);
922}
923
924static int spi_qup_init_dma(struct spi_controller *host, resource_size_t base)
925{
926	struct spi_qup *spi = spi_controller_get_devdata(host);
927	struct dma_slave_config *rx_conf = &spi->rx_conf,
928				*tx_conf = &spi->tx_conf;
929	struct device *dev = spi->dev;
930	int ret;
931
932	/* allocate dma resources, if available */
933	host->dma_rx = dma_request_chan(dev, "rx");
934	if (IS_ERR(host->dma_rx))
935		return PTR_ERR(host->dma_rx);
936
937	host->dma_tx = dma_request_chan(dev, "tx");
938	if (IS_ERR(host->dma_tx)) {
939		ret = PTR_ERR(host->dma_tx);
940		goto err_tx;
941	}
942
943	/* set DMA parameters */
944	rx_conf->direction = DMA_DEV_TO_MEM;
945	rx_conf->device_fc = 1;
946	rx_conf->src_addr = base + QUP_INPUT_FIFO;
947	rx_conf->src_maxburst = spi->in_blk_sz;
948
949	tx_conf->direction = DMA_MEM_TO_DEV;
950	tx_conf->device_fc = 1;
951	tx_conf->dst_addr = base + QUP_OUTPUT_FIFO;
952	tx_conf->dst_maxburst = spi->out_blk_sz;
953
954	ret = dmaengine_slave_config(host->dma_rx, rx_conf);
955	if (ret) {
956		dev_err(dev, "failed to configure RX channel\n");
957		goto err;
958	}
959
960	ret = dmaengine_slave_config(host->dma_tx, tx_conf);
961	if (ret) {
962		dev_err(dev, "failed to configure TX channel\n");
963		goto err;
964	}
965
966	return 0;
967
968err:
969	dma_release_channel(host->dma_tx);
970err_tx:
971	dma_release_channel(host->dma_rx);
972	return ret;
973}
974
975static void spi_qup_set_cs(struct spi_device *spi, bool val)
976{
977	struct spi_qup *controller;
978	u32 spi_ioc;
979	u32 spi_ioc_orig;
980
981	controller = spi_controller_get_devdata(spi->controller);
982	spi_ioc = readl_relaxed(controller->base + SPI_IO_CONTROL);
983	spi_ioc_orig = spi_ioc;
984	if (!val)
985		spi_ioc |= SPI_IO_C_FORCE_CS;
986	else
987		spi_ioc &= ~SPI_IO_C_FORCE_CS;
988
989	if (spi_ioc != spi_ioc_orig)
990		writel_relaxed(spi_ioc, controller->base + SPI_IO_CONTROL);
991}
992
993static int spi_qup_probe(struct platform_device *pdev)
994{
995	struct spi_controller *host;
996	struct clk *iclk, *cclk;
997	struct spi_qup *controller;
998	struct resource *res;
999	struct device *dev;
1000	void __iomem *base;
1001	u32 max_freq, iomode, num_cs;
1002	int ret, irq, size;
1003
1004	dev = &pdev->dev;
1005	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1006	if (IS_ERR(base))
1007		return PTR_ERR(base);
1008
1009	irq = platform_get_irq(pdev, 0);
1010	if (irq < 0)
1011		return irq;
1012
1013	cclk = devm_clk_get(dev, "core");
1014	if (IS_ERR(cclk))
1015		return PTR_ERR(cclk);
1016
1017	iclk = devm_clk_get(dev, "iface");
1018	if (IS_ERR(iclk))
1019		return PTR_ERR(iclk);
1020
1021	/* This is optional parameter */
1022	if (of_property_read_u32(dev->of_node, "spi-max-frequency", &max_freq))
1023		max_freq = SPI_MAX_RATE;
1024
1025	if (!max_freq || max_freq > SPI_MAX_RATE) {
1026		dev_err(dev, "invalid clock frequency %d\n", max_freq);
1027		return -ENXIO;
1028	}
1029
1030	host = spi_alloc_host(dev, sizeof(struct spi_qup));
1031	if (!host) {
1032		dev_err(dev, "cannot allocate host\n");
1033		return -ENOMEM;
1034	}
1035
1036	/* use num-cs unless not present or out of range */
1037	if (of_property_read_u32(dev->of_node, "num-cs", &num_cs) ||
1038	    num_cs > SPI_NUM_CHIPSELECTS)
1039		host->num_chipselect = SPI_NUM_CHIPSELECTS;
1040	else
1041		host->num_chipselect = num_cs;
1042
1043	host->use_gpio_descriptors = true;
1044	host->max_native_cs = SPI_NUM_CHIPSELECTS;
1045	host->bus_num = pdev->id;
1046	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1047	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1048	host->max_speed_hz = max_freq;
1049	host->transfer_one = spi_qup_transfer_one;
1050	host->dev.of_node = pdev->dev.of_node;
1051	host->auto_runtime_pm = true;
1052	host->dma_alignment = dma_get_cache_alignment();
1053	host->max_dma_len = SPI_MAX_XFER;
1054
1055	platform_set_drvdata(pdev, host);
1056
1057	controller = spi_controller_get_devdata(host);
1058
1059	controller->dev = dev;
1060	controller->base = base;
1061	controller->iclk = iclk;
1062	controller->cclk = cclk;
1063	controller->irq = irq;
1064
1065	ret = spi_qup_init_dma(host, res->start);
1066	if (ret == -EPROBE_DEFER)
1067		goto error;
1068	else if (!ret)
1069		host->can_dma = spi_qup_can_dma;
1070
1071	controller->qup_v1 = (uintptr_t)of_device_get_match_data(dev);
1072
1073	if (!controller->qup_v1)
1074		host->set_cs = spi_qup_set_cs;
1075
1076	spin_lock_init(&controller->lock);
1077	init_completion(&controller->done);
1078
1079	ret = clk_prepare_enable(cclk);
1080	if (ret) {
1081		dev_err(dev, "cannot enable core clock\n");
1082		goto error_dma;
1083	}
1084
1085	ret = clk_prepare_enable(iclk);
1086	if (ret) {
1087		clk_disable_unprepare(cclk);
1088		dev_err(dev, "cannot enable iface clock\n");
1089		goto error_dma;
1090	}
1091
1092	iomode = readl_relaxed(base + QUP_IO_M_MODES);
1093
1094	size = QUP_IO_M_OUTPUT_BLOCK_SIZE(iomode);
1095	if (size)
1096		controller->out_blk_sz = size * 16;
1097	else
1098		controller->out_blk_sz = 4;
1099
1100	size = QUP_IO_M_INPUT_BLOCK_SIZE(iomode);
1101	if (size)
1102		controller->in_blk_sz = size * 16;
1103	else
1104		controller->in_blk_sz = 4;
1105
1106	size = QUP_IO_M_OUTPUT_FIFO_SIZE(iomode);
1107	controller->out_fifo_sz = controller->out_blk_sz * (2 << size);
1108
1109	size = QUP_IO_M_INPUT_FIFO_SIZE(iomode);
1110	controller->in_fifo_sz = controller->in_blk_sz * (2 << size);
1111
1112	dev_info(dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1113		 controller->in_blk_sz, controller->in_fifo_sz,
1114		 controller->out_blk_sz, controller->out_fifo_sz);
1115
1116	writel_relaxed(1, base + QUP_SW_RESET);
1117
1118	ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1119	if (ret) {
1120		dev_err(dev, "cannot set RESET state\n");
1121		goto error_clk;
1122	}
1123
1124	writel_relaxed(0, base + QUP_OPERATIONAL);
1125	writel_relaxed(0, base + QUP_IO_M_MODES);
1126
1127	if (!controller->qup_v1)
1128		writel_relaxed(0, base + QUP_OPERATIONAL_MASK);
1129
1130	writel_relaxed(SPI_ERROR_CLK_UNDER_RUN | SPI_ERROR_CLK_OVER_RUN,
1131		       base + SPI_ERROR_FLAGS_EN);
1132
1133	/* if earlier version of the QUP, disable INPUT_OVERRUN */
1134	if (controller->qup_v1)
1135		writel_relaxed(QUP_ERROR_OUTPUT_OVER_RUN |
1136			QUP_ERROR_INPUT_UNDER_RUN | QUP_ERROR_OUTPUT_UNDER_RUN,
1137			base + QUP_ERROR_FLAGS_EN);
1138
1139	writel_relaxed(0, base + SPI_CONFIG);
1140	writel_relaxed(SPI_IO_C_NO_TRI_STATE, base + SPI_IO_CONTROL);
1141
1142	ret = devm_request_irq(dev, irq, spi_qup_qup_irq,
1143			       IRQF_TRIGGER_HIGH, pdev->name, controller);
1144	if (ret)
1145		goto error_clk;
1146
1147	pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC);
1148	pm_runtime_use_autosuspend(dev);
1149	pm_runtime_set_active(dev);
1150	pm_runtime_enable(dev);
1151
1152	ret = devm_spi_register_controller(dev, host);
1153	if (ret)
1154		goto disable_pm;
1155
1156	return 0;
1157
1158disable_pm:
1159	pm_runtime_disable(&pdev->dev);
1160error_clk:
1161	clk_disable_unprepare(cclk);
1162	clk_disable_unprepare(iclk);
1163error_dma:
1164	spi_qup_release_dma(host);
1165error:
1166	spi_controller_put(host);
1167	return ret;
1168}
1169
1170#ifdef CONFIG_PM
1171static int spi_qup_pm_suspend_runtime(struct device *device)
1172{
1173	struct spi_controller *host = dev_get_drvdata(device);
1174	struct spi_qup *controller = spi_controller_get_devdata(host);
1175	u32 config;
1176
1177	/* Enable clocks auto gaiting */
1178	config = readl(controller->base + QUP_CONFIG);
1179	config |= QUP_CONFIG_CLOCK_AUTO_GATE;
1180	writel_relaxed(config, controller->base + QUP_CONFIG);
1181
1182	clk_disable_unprepare(controller->cclk);
1183	clk_disable_unprepare(controller->iclk);
1184
1185	return 0;
1186}
1187
1188static int spi_qup_pm_resume_runtime(struct device *device)
1189{
1190	struct spi_controller *host = dev_get_drvdata(device);
1191	struct spi_qup *controller = spi_controller_get_devdata(host);
1192	u32 config;
1193	int ret;
1194
1195	ret = clk_prepare_enable(controller->iclk);
1196	if (ret)
1197		return ret;
1198
1199	ret = clk_prepare_enable(controller->cclk);
1200	if (ret) {
1201		clk_disable_unprepare(controller->iclk);
1202		return ret;
1203	}
1204
1205	/* Disable clocks auto gaiting */
1206	config = readl_relaxed(controller->base + QUP_CONFIG);
1207	config &= ~QUP_CONFIG_CLOCK_AUTO_GATE;
1208	writel_relaxed(config, controller->base + QUP_CONFIG);
1209	return 0;
1210}
1211#endif /* CONFIG_PM */
1212
1213#ifdef CONFIG_PM_SLEEP
1214static int spi_qup_suspend(struct device *device)
1215{
1216	struct spi_controller *host = dev_get_drvdata(device);
1217	struct spi_qup *controller = spi_controller_get_devdata(host);
1218	int ret;
1219
1220	if (pm_runtime_suspended(device)) {
1221		ret = spi_qup_pm_resume_runtime(device);
1222		if (ret)
1223			return ret;
1224	}
1225	ret = spi_controller_suspend(host);
1226	if (ret)
1227		return ret;
1228
1229	ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1230	if (ret)
1231		return ret;
1232
1233	clk_disable_unprepare(controller->cclk);
1234	clk_disable_unprepare(controller->iclk);
1235	return 0;
1236}
1237
1238static int spi_qup_resume(struct device *device)
1239{
1240	struct spi_controller *host = dev_get_drvdata(device);
1241	struct spi_qup *controller = spi_controller_get_devdata(host);
1242	int ret;
1243
1244	ret = clk_prepare_enable(controller->iclk);
1245	if (ret)
1246		return ret;
1247
1248	ret = clk_prepare_enable(controller->cclk);
1249	if (ret) {
1250		clk_disable_unprepare(controller->iclk);
1251		return ret;
1252	}
1253
1254	ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1255	if (ret)
1256		goto disable_clk;
1257
1258	ret = spi_controller_resume(host);
1259	if (ret)
1260		goto disable_clk;
1261
1262	return 0;
1263
1264disable_clk:
1265	clk_disable_unprepare(controller->cclk);
1266	clk_disable_unprepare(controller->iclk);
1267	return ret;
1268}
1269#endif /* CONFIG_PM_SLEEP */
1270
1271static void spi_qup_remove(struct platform_device *pdev)
1272{
1273	struct spi_controller *host = dev_get_drvdata(&pdev->dev);
1274	struct spi_qup *controller = spi_controller_get_devdata(host);
1275	int ret;
1276
1277	ret = pm_runtime_get_sync(&pdev->dev);
1278
1279	if (ret >= 0) {
1280		ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1281		if (ret)
1282			dev_warn(&pdev->dev, "failed to reset controller (%pe)\n",
1283				 ERR_PTR(ret));
1284
1285		clk_disable_unprepare(controller->cclk);
1286		clk_disable_unprepare(controller->iclk);
1287	} else {
1288		dev_warn(&pdev->dev, "failed to resume, skip hw disable (%pe)\n",
1289			 ERR_PTR(ret));
1290	}
1291
1292	spi_qup_release_dma(host);
1293
1294	pm_runtime_put_noidle(&pdev->dev);
1295	pm_runtime_disable(&pdev->dev);
1296}
1297
1298static const struct of_device_id spi_qup_dt_match[] = {
1299	{ .compatible = "qcom,spi-qup-v1.1.1", .data = (void *)1, },
1300	{ .compatible = "qcom,spi-qup-v2.1.1", },
1301	{ .compatible = "qcom,spi-qup-v2.2.1", },
1302	{ }
1303};
1304MODULE_DEVICE_TABLE(of, spi_qup_dt_match);
1305
1306static const struct dev_pm_ops spi_qup_dev_pm_ops = {
1307	SET_SYSTEM_SLEEP_PM_OPS(spi_qup_suspend, spi_qup_resume)
1308	SET_RUNTIME_PM_OPS(spi_qup_pm_suspend_runtime,
1309			   spi_qup_pm_resume_runtime,
1310			   NULL)
1311};
1312
1313static struct platform_driver spi_qup_driver = {
1314	.driver = {
1315		.name		= "spi_qup",
1316		.pm		= &spi_qup_dev_pm_ops,
1317		.of_match_table = spi_qup_dt_match,
1318	},
1319	.probe = spi_qup_probe,
1320	.remove_new = spi_qup_remove,
1321};
1322module_platform_driver(spi_qup_driver);
1323
1324MODULE_LICENSE("GPL v2");
1325MODULE_ALIAS("platform:spi_qup");
1326