xref: /kernel/linux/linux-6.6/drivers/spi/spi-pl022.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 *
5 * Copyright (C) 2008-2012 ST-Ericsson AB
6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 *
8 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 *
10 * Initial version inspired by:
11 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12 * Initial adoption to PL022 by:
13 *      Sachin Verma <sachin.verma@st.com>
14 */
15
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/device.h>
19#include <linux/ioport.h>
20#include <linux/errno.h>
21#include <linux/interrupt.h>
22#include <linux/spi/spi.h>
23#include <linux/delay.h>
24#include <linux/clk.h>
25#include <linux/err.h>
26#include <linux/amba/bus.h>
27#include <linux/amba/pl022.h>
28#include <linux/io.h>
29#include <linux/slab.h>
30#include <linux/dmaengine.h>
31#include <linux/dma-mapping.h>
32#include <linux/scatterlist.h>
33#include <linux/pm_runtime.h>
34#include <linux/of.h>
35#include <linux/pinctrl/consumer.h>
36
37/*
38 * This macro is used to define some register default values.
39 * reg is masked with mask, the OR:ed with an (again masked)
40 * val shifted sb steps to the left.
41 */
42#define SSP_WRITE_BITS(reg, val, mask, sb) \
43 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
44
45/*
46 * This macro is also used to define some default values.
47 * It will just shift val by sb steps to the left and mask
48 * the result with mask.
49 */
50#define GEN_MASK_BITS(val, mask, sb) \
51 (((val)<<(sb)) & (mask))
52
53#define DRIVE_TX		0
54#define DO_NOT_DRIVE_TX		1
55
56#define DO_NOT_QUEUE_DMA	0
57#define QUEUE_DMA		1
58
59#define RX_TRANSFER		1
60#define TX_TRANSFER		2
61
62/*
63 * Macros to access SSP Registers with their offsets
64 */
65#define SSP_CR0(r)	(r + 0x000)
66#define SSP_CR1(r)	(r + 0x004)
67#define SSP_DR(r)	(r + 0x008)
68#define SSP_SR(r)	(r + 0x00C)
69#define SSP_CPSR(r)	(r + 0x010)
70#define SSP_IMSC(r)	(r + 0x014)
71#define SSP_RIS(r)	(r + 0x018)
72#define SSP_MIS(r)	(r + 0x01C)
73#define SSP_ICR(r)	(r + 0x020)
74#define SSP_DMACR(r)	(r + 0x024)
75#define SSP_CSR(r)	(r + 0x030) /* vendor extension */
76#define SSP_ITCR(r)	(r + 0x080)
77#define SSP_ITIP(r)	(r + 0x084)
78#define SSP_ITOP(r)	(r + 0x088)
79#define SSP_TDR(r)	(r + 0x08C)
80
81#define SSP_PID0(r)	(r + 0xFE0)
82#define SSP_PID1(r)	(r + 0xFE4)
83#define SSP_PID2(r)	(r + 0xFE8)
84#define SSP_PID3(r)	(r + 0xFEC)
85
86#define SSP_CID0(r)	(r + 0xFF0)
87#define SSP_CID1(r)	(r + 0xFF4)
88#define SSP_CID2(r)	(r + 0xFF8)
89#define SSP_CID3(r)	(r + 0xFFC)
90
91/*
92 * SSP Control Register 0  - SSP_CR0
93 */
94#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
95#define SSP_CR0_MASK_FRF	(0x3UL << 4)
96#define SSP_CR0_MASK_SPO	(0x1UL << 6)
97#define SSP_CR0_MASK_SPH	(0x1UL << 7)
98#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
99
100/*
101 * The ST version of this block moves som bits
102 * in SSP_CR0 and extends it to 32 bits
103 */
104#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
105#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
106#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
107#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
108
109/*
110 * SSP Control Register 0  - SSP_CR1
111 */
112#define SSP_CR1_MASK_LBM	(0x1UL << 0)
113#define SSP_CR1_MASK_SSE	(0x1UL << 1)
114#define SSP_CR1_MASK_MS		(0x1UL << 2)
115#define SSP_CR1_MASK_SOD	(0x1UL << 3)
116
117/*
118 * The ST version of this block adds some bits
119 * in SSP_CR1
120 */
121#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
122#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
123#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
124#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
125#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
126/* This one is only in the PL023 variant */
127#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
128
129/*
130 * SSP Status Register - SSP_SR
131 */
132#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
133#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
134#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
135#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
136#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
137
138/*
139 * SSP Clock Prescale Register  - SSP_CPSR
140 */
141#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
142
143/*
144 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
145 */
146#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
147#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
148#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
149#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
150
151/*
152 * SSP Raw Interrupt Status Register - SSP_RIS
153 */
154/* Receive Overrun Raw Interrupt status */
155#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
156/* Receive Timeout Raw Interrupt status */
157#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
158/* Receive FIFO Raw Interrupt status */
159#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
160/* Transmit FIFO Raw Interrupt status */
161#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
162
163/*
164 * SSP Masked Interrupt Status Register - SSP_MIS
165 */
166/* Receive Overrun Masked Interrupt status */
167#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
168/* Receive Timeout Masked Interrupt status */
169#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
170/* Receive FIFO Masked Interrupt status */
171#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
172/* Transmit FIFO Masked Interrupt status */
173#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
174
175/*
176 * SSP Interrupt Clear Register - SSP_ICR
177 */
178/* Receive Overrun Raw Clear Interrupt bit */
179#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
180/* Receive Timeout Clear Interrupt bit */
181#define SSP_ICR_MASK_RTIC		(0x1UL << 1)
182
183/*
184 * SSP DMA Control Register - SSP_DMACR
185 */
186/* Receive DMA Enable bit */
187#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
188/* Transmit DMA Enable bit */
189#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
190
191/*
192 * SSP Chip Select Control Register - SSP_CSR
193 * (vendor extension)
194 */
195#define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
196
197/*
198 * SSP Integration Test control Register - SSP_ITCR
199 */
200#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
201#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
202
203/*
204 * SSP Integration Test Input Register - SSP_ITIP
205 */
206#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
207#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
208#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
209#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
210#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
211#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
212
213/*
214 * SSP Integration Test output Register - SSP_ITOP
215 */
216#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
217#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
218#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
219#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
220#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
221#define ITOP_MASK_RORINTR		 (0x1UL << 5)
222#define ITOP_MASK_RTINTR		 (0x1UL << 6)
223#define ITOP_MASK_RXINTR		 (0x1UL << 7)
224#define ITOP_MASK_TXINTR		 (0x1UL << 8)
225#define ITOP_MASK_INTR			 (0x1UL << 9)
226#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
227#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
228#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
229#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
230
231/*
232 * SSP Test Data Register - SSP_TDR
233 */
234#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
235
236/*
237 * Message State
238 * we use the spi_message.state (void *) pointer to
239 * hold a single state value, that's why all this
240 * (void *) casting is done here.
241 */
242#define STATE_START			((void *) 0)
243#define STATE_RUNNING			((void *) 1)
244#define STATE_DONE			((void *) 2)
245#define STATE_ERROR			((void *) -1)
246#define STATE_TIMEOUT			((void *) -2)
247
248/*
249 * SSP State - Whether Enabled or Disabled
250 */
251#define SSP_DISABLED			(0)
252#define SSP_ENABLED			(1)
253
254/*
255 * SSP DMA State - Whether DMA Enabled or Disabled
256 */
257#define SSP_DMA_DISABLED		(0)
258#define SSP_DMA_ENABLED			(1)
259
260/*
261 * SSP Clock Defaults
262 */
263#define SSP_DEFAULT_CLKRATE 0x2
264#define SSP_DEFAULT_PRESCALE 0x40
265
266/*
267 * SSP Clock Parameter ranges
268 */
269#define CPSDVR_MIN 0x02
270#define CPSDVR_MAX 0xFE
271#define SCR_MIN 0x00
272#define SCR_MAX 0xFF
273
274/*
275 * SSP Interrupt related Macros
276 */
277#define DEFAULT_SSP_REG_IMSC  0x0UL
278#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279#define ENABLE_ALL_INTERRUPTS ( \
280	SSP_IMSC_MASK_RORIM | \
281	SSP_IMSC_MASK_RTIM | \
282	SSP_IMSC_MASK_RXIM | \
283	SSP_IMSC_MASK_TXIM \
284)
285
286#define CLEAR_ALL_INTERRUPTS  0x3
287
288#define SPI_POLLING_TIMEOUT 1000
289
290/*
291 * The type of reading going on this chip
292 */
293enum ssp_reading {
294	READING_NULL,
295	READING_U8,
296	READING_U16,
297	READING_U32
298};
299
300/*
301 * The type of writing going on this chip
302 */
303enum ssp_writing {
304	WRITING_NULL,
305	WRITING_U8,
306	WRITING_U16,
307	WRITING_U32
308};
309
310/**
311 * struct vendor_data - vendor-specific config parameters
312 * for PL022 derivates
313 * @fifodepth: depth of FIFOs (both)
314 * @max_bpw: maximum number of bits per word
315 * @unidir: supports unidirection transfers
316 * @extended_cr: 32 bit wide control register 0 with extra
317 * features and extra features in CR1 as found in the ST variants
318 * @pl023: supports a subset of the ST extensions called "PL023"
319 * @loopback: supports loopback mode
320 * @internal_cs_ctrl: supports chip select control register
321 */
322struct vendor_data {
323	int fifodepth;
324	int max_bpw;
325	bool unidir;
326	bool extended_cr;
327	bool pl023;
328	bool loopback;
329	bool internal_cs_ctrl;
330};
331
332/**
333 * struct pl022 - This is the private SSP driver data structure
334 * @adev: AMBA device model hookup
335 * @vendor: vendor data for the IP block
336 * @phybase: the physical memory where the SSP device resides
337 * @virtbase: the virtual memory where the SSP is mapped
338 * @clk: outgoing clock "SPICLK" for the SPI bus
339 * @host: SPI framework hookup
340 * @host_info: controller-specific data from machine setup
341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
342 * @cur_msg: Pointer to current spi_message being processed
343 * @cur_transfer: Pointer to current spi_transfer
344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
345 * @next_msg_cs_active: the next message in the queue has been examined
346 *  and it was found that it uses the same chip select as the previous
347 *  message, so we left it active after the previous transfer, and it's
348 *  active already.
349 * @tx: current position in TX buffer to be read
350 * @tx_end: end position in TX buffer to be read
351 * @rx: current position in RX buffer to be written
352 * @rx_end: end position in RX buffer to be written
353 * @read: the type of read currently going on
354 * @write: the type of write currently going on
355 * @exp_fifo_level: expected FIFO level
356 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
357 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
358 * @dma_rx_channel: optional channel for RX DMA
359 * @dma_tx_channel: optional channel for TX DMA
360 * @sgt_rx: scattertable for the RX transfer
361 * @sgt_tx: scattertable for the TX transfer
362 * @dummypage: a dummy page used for driving data on the bus with DMA
363 * @dma_running: indicates whether DMA is in operation
364 * @cur_cs: current chip select index
365 * @cur_gpiod: current chip select GPIO descriptor
366 */
367struct pl022 {
368	struct amba_device		*adev;
369	struct vendor_data		*vendor;
370	resource_size_t			phybase;
371	void __iomem			*virtbase;
372	struct clk			*clk;
373	struct spi_controller		*host;
374	struct pl022_ssp_controller	*host_info;
375	/* Message per-transfer pump */
376	struct tasklet_struct		pump_transfers;
377	struct spi_message		*cur_msg;
378	struct spi_transfer		*cur_transfer;
379	struct chip_data		*cur_chip;
380	bool				next_msg_cs_active;
381	void				*tx;
382	void				*tx_end;
383	void				*rx;
384	void				*rx_end;
385	enum ssp_reading		read;
386	enum ssp_writing		write;
387	u32				exp_fifo_level;
388	enum ssp_rx_level_trig		rx_lev_trig;
389	enum ssp_tx_level_trig		tx_lev_trig;
390	/* DMA settings */
391#ifdef CONFIG_DMA_ENGINE
392	struct dma_chan			*dma_rx_channel;
393	struct dma_chan			*dma_tx_channel;
394	struct sg_table			sgt_rx;
395	struct sg_table			sgt_tx;
396	char				*dummypage;
397	bool				dma_running;
398#endif
399	int cur_cs;
400	struct gpio_desc *cur_gpiod;
401};
402
403/**
404 * struct chip_data - To maintain runtime state of SSP for each client chip
405 * @cr0: Value of control register CR0 of SSP - on later ST variants this
406 *       register is 32 bits wide rather than just 16
407 * @cr1: Value of control register CR1 of SSP
408 * @dmacr: Value of DMA control Register of SSP
409 * @cpsr: Value of Clock prescale register
410 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
411 * @enable_dma: Whether to enable DMA or not
412 * @read: function ptr to be used to read when doing xfer for this chip
413 * @write: function ptr to be used to write when doing xfer for this chip
414 * @xfer_type: polling/interrupt/DMA
415 *
416 * Runtime state of the SSP controller, maintained per chip,
417 * This would be set according to the current message that would be served
418 */
419struct chip_data {
420	u32 cr0;
421	u16 cr1;
422	u16 dmacr;
423	u16 cpsr;
424	u8 n_bytes;
425	bool enable_dma;
426	enum ssp_reading read;
427	enum ssp_writing write;
428	int xfer_type;
429};
430
431/**
432 * internal_cs_control - Control chip select signals via SSP_CSR.
433 * @pl022: SSP driver private data structure
434 * @command: select/delect the chip
435 *
436 * Used on controller with internal chip select control via SSP_CSR register
437 * (vendor extension). Each of the 5 LSB in the register controls one chip
438 * select signal.
439 */
440static void internal_cs_control(struct pl022 *pl022, u32 command)
441{
442	u32 tmp;
443
444	tmp = readw(SSP_CSR(pl022->virtbase));
445	if (command == SSP_CHIP_SELECT)
446		tmp &= ~BIT(pl022->cur_cs);
447	else
448		tmp |= BIT(pl022->cur_cs);
449	writew(tmp, SSP_CSR(pl022->virtbase));
450}
451
452static void pl022_cs_control(struct pl022 *pl022, u32 command)
453{
454	if (pl022->vendor->internal_cs_ctrl)
455		internal_cs_control(pl022, command);
456	else if (pl022->cur_gpiod)
457		/*
458		 * This needs to be inverted since with GPIOLIB in
459		 * control, the inversion will be handled by
460		 * GPIOLIB's active low handling. The "command"
461		 * passed into this function will be SSP_CHIP_SELECT
462		 * which is enum:ed to 0, so we need the inverse
463		 * (1) to activate chip select.
464		 */
465		gpiod_set_value(pl022->cur_gpiod, !command);
466}
467
468/**
469 * giveback - current spi_message is over, schedule next message and call
470 * callback of this message. Assumes that caller already
471 * set message->status; dma and pio irqs are blocked
472 * @pl022: SSP driver private data structure
473 */
474static void giveback(struct pl022 *pl022)
475{
476	struct spi_transfer *last_transfer;
477	pl022->next_msg_cs_active = false;
478
479	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
480					struct spi_transfer, transfer_list);
481
482	/* Delay if requested before any change in chip select */
483	/*
484	 * FIXME: This runs in interrupt context.
485	 * Is this really smart?
486	 */
487	spi_transfer_delay_exec(last_transfer);
488
489	if (!last_transfer->cs_change) {
490		struct spi_message *next_msg;
491
492		/*
493		 * cs_change was not set. We can keep the chip select
494		 * enabled if there is message in the queue and it is
495		 * for the same spi device.
496		 *
497		 * We cannot postpone this until pump_messages, because
498		 * after calling msg->complete (below) the driver that
499		 * sent the current message could be unloaded, which
500		 * could invalidate the cs_control() callback...
501		 */
502		/* get a pointer to the next message, if any */
503		next_msg = spi_get_next_queued_message(pl022->host);
504
505		/*
506		 * see if the next and current messages point
507		 * to the same spi device.
508		 */
509		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
510			next_msg = NULL;
511		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
512			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
513		else
514			pl022->next_msg_cs_active = true;
515
516	}
517
518	pl022->cur_msg = NULL;
519	pl022->cur_transfer = NULL;
520	pl022->cur_chip = NULL;
521
522	/* disable the SPI/SSP operation */
523	writew((readw(SSP_CR1(pl022->virtbase)) &
524		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
525
526	spi_finalize_current_message(pl022->host);
527}
528
529/**
530 * flush - flush the FIFO to reach a clean state
531 * @pl022: SSP driver private data structure
532 */
533static int flush(struct pl022 *pl022)
534{
535	unsigned long limit = loops_per_jiffy << 1;
536
537	dev_dbg(&pl022->adev->dev, "flush\n");
538	do {
539		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
540			readw(SSP_DR(pl022->virtbase));
541	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
542
543	pl022->exp_fifo_level = 0;
544
545	return limit;
546}
547
548/**
549 * restore_state - Load configuration of current chip
550 * @pl022: SSP driver private data structure
551 */
552static void restore_state(struct pl022 *pl022)
553{
554	struct chip_data *chip = pl022->cur_chip;
555
556	if (pl022->vendor->extended_cr)
557		writel(chip->cr0, SSP_CR0(pl022->virtbase));
558	else
559		writew(chip->cr0, SSP_CR0(pl022->virtbase));
560	writew(chip->cr1, SSP_CR1(pl022->virtbase));
561	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
562	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
563	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
564	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
565}
566
567/*
568 * Default SSP Register Values
569 */
570#define DEFAULT_SSP_REG_CR0 ( \
571	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
572	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
573	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
574	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
575	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
576)
577
578/* ST versions have slightly different bit layout */
579#define DEFAULT_SSP_REG_CR0_ST ( \
580	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
581	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
582	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
583	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
584	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
585	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
586	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
587)
588
589/* The PL023 version is slightly different again */
590#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
591	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
592	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
593	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
594	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
595)
596
597#define DEFAULT_SSP_REG_CR1 ( \
598	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
599	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
600	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
601	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
602)
603
604/* ST versions extend this register to use all 16 bits */
605#define DEFAULT_SSP_REG_CR1_ST ( \
606	DEFAULT_SSP_REG_CR1 | \
607	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
608	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
609	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
610	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
611	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
612)
613
614/*
615 * The PL023 variant has further differences: no loopback mode, no microwire
616 * support, and a new clock feedback delay setting.
617 */
618#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
619	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
620	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
621	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
622	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
623	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
624	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
625	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
626	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
627)
628
629#define DEFAULT_SSP_REG_CPSR ( \
630	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
631)
632
633#define DEFAULT_SSP_REG_DMACR (\
634	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
635	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
636)
637
638/**
639 * load_ssp_default_config - Load default configuration for SSP
640 * @pl022: SSP driver private data structure
641 */
642static void load_ssp_default_config(struct pl022 *pl022)
643{
644	if (pl022->vendor->pl023) {
645		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
646		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
647	} else if (pl022->vendor->extended_cr) {
648		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
649		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
650	} else {
651		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
652		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
653	}
654	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
655	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
656	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
657	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
658}
659
660/*
661 * This will write to TX and read from RX according to the parameters
662 * set in pl022.
663 */
664static void readwriter(struct pl022 *pl022)
665{
666
667	/*
668	 * The FIFO depth is different between primecell variants.
669	 * I believe filling in too much in the FIFO might cause
670	 * errons in 8bit wide transfers on ARM variants (just 8 words
671	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
672	 *
673	 * To prevent this issue, the TX FIFO is only filled to the
674	 * unused RX FIFO fill length, regardless of what the TX
675	 * FIFO status flag indicates.
676	 */
677	dev_dbg(&pl022->adev->dev,
678		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
679		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
680
681	/* Read as much as you can */
682	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
683	       && (pl022->rx < pl022->rx_end)) {
684		switch (pl022->read) {
685		case READING_NULL:
686			readw(SSP_DR(pl022->virtbase));
687			break;
688		case READING_U8:
689			*(u8 *) (pl022->rx) =
690				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
691			break;
692		case READING_U16:
693			*(u16 *) (pl022->rx) =
694				(u16) readw(SSP_DR(pl022->virtbase));
695			break;
696		case READING_U32:
697			*(u32 *) (pl022->rx) =
698				readl(SSP_DR(pl022->virtbase));
699			break;
700		}
701		pl022->rx += (pl022->cur_chip->n_bytes);
702		pl022->exp_fifo_level--;
703	}
704	/*
705	 * Write as much as possible up to the RX FIFO size
706	 */
707	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
708	       && (pl022->tx < pl022->tx_end)) {
709		switch (pl022->write) {
710		case WRITING_NULL:
711			writew(0x0, SSP_DR(pl022->virtbase));
712			break;
713		case WRITING_U8:
714			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
715			break;
716		case WRITING_U16:
717			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
718			break;
719		case WRITING_U32:
720			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
721			break;
722		}
723		pl022->tx += (pl022->cur_chip->n_bytes);
724		pl022->exp_fifo_level++;
725		/*
726		 * This inner reader takes care of things appearing in the RX
727		 * FIFO as we're transmitting. This will happen a lot since the
728		 * clock starts running when you put things into the TX FIFO,
729		 * and then things are continuously clocked into the RX FIFO.
730		 */
731		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
732		       && (pl022->rx < pl022->rx_end)) {
733			switch (pl022->read) {
734			case READING_NULL:
735				readw(SSP_DR(pl022->virtbase));
736				break;
737			case READING_U8:
738				*(u8 *) (pl022->rx) =
739					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
740				break;
741			case READING_U16:
742				*(u16 *) (pl022->rx) =
743					(u16) readw(SSP_DR(pl022->virtbase));
744				break;
745			case READING_U32:
746				*(u32 *) (pl022->rx) =
747					readl(SSP_DR(pl022->virtbase));
748				break;
749			}
750			pl022->rx += (pl022->cur_chip->n_bytes);
751			pl022->exp_fifo_level--;
752		}
753	}
754	/*
755	 * When we exit here the TX FIFO should be full and the RX FIFO
756	 * should be empty
757	 */
758}
759
760/**
761 * next_transfer - Move to the Next transfer in the current spi message
762 * @pl022: SSP driver private data structure
763 *
764 * This function moves though the linked list of spi transfers in the
765 * current spi message and returns with the state of current spi
766 * message i.e whether its last transfer is done(STATE_DONE) or
767 * Next transfer is ready(STATE_RUNNING)
768 */
769static void *next_transfer(struct pl022 *pl022)
770{
771	struct spi_message *msg = pl022->cur_msg;
772	struct spi_transfer *trans = pl022->cur_transfer;
773
774	/* Move to next transfer */
775	if (trans->transfer_list.next != &msg->transfers) {
776		pl022->cur_transfer =
777		    list_entry(trans->transfer_list.next,
778			       struct spi_transfer, transfer_list);
779		return STATE_RUNNING;
780	}
781	return STATE_DONE;
782}
783
784/*
785 * This DMA functionality is only compiled in if we have
786 * access to the generic DMA devices/DMA engine.
787 */
788#ifdef CONFIG_DMA_ENGINE
789static void unmap_free_dma_scatter(struct pl022 *pl022)
790{
791	/* Unmap and free the SG tables */
792	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
793		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
794	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
795		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
796	sg_free_table(&pl022->sgt_rx);
797	sg_free_table(&pl022->sgt_tx);
798}
799
800static void dma_callback(void *data)
801{
802	struct pl022 *pl022 = data;
803	struct spi_message *msg = pl022->cur_msg;
804
805	BUG_ON(!pl022->sgt_rx.sgl);
806
807#ifdef VERBOSE_DEBUG
808	/*
809	 * Optionally dump out buffers to inspect contents, this is
810	 * good if you want to convince yourself that the loopback
811	 * read/write contents are the same, when adopting to a new
812	 * DMA engine.
813	 */
814	{
815		struct scatterlist *sg;
816		unsigned int i;
817
818		dma_sync_sg_for_cpu(&pl022->adev->dev,
819				    pl022->sgt_rx.sgl,
820				    pl022->sgt_rx.nents,
821				    DMA_FROM_DEVICE);
822
823		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
824			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
825			print_hex_dump(KERN_ERR, "SPI RX: ",
826				       DUMP_PREFIX_OFFSET,
827				       16,
828				       1,
829				       sg_virt(sg),
830				       sg_dma_len(sg),
831				       1);
832		}
833		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
834			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
835			print_hex_dump(KERN_ERR, "SPI TX: ",
836				       DUMP_PREFIX_OFFSET,
837				       16,
838				       1,
839				       sg_virt(sg),
840				       sg_dma_len(sg),
841				       1);
842		}
843	}
844#endif
845
846	unmap_free_dma_scatter(pl022);
847
848	/* Update total bytes transferred */
849	msg->actual_length += pl022->cur_transfer->len;
850	/* Move to next transfer */
851	msg->state = next_transfer(pl022);
852	if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
853		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
854	tasklet_schedule(&pl022->pump_transfers);
855}
856
857static void setup_dma_scatter(struct pl022 *pl022,
858			      void *buffer,
859			      unsigned int length,
860			      struct sg_table *sgtab)
861{
862	struct scatterlist *sg;
863	int bytesleft = length;
864	void *bufp = buffer;
865	int mapbytes;
866	int i;
867
868	if (buffer) {
869		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
870			/*
871			 * If there are less bytes left than what fits
872			 * in the current page (plus page alignment offset)
873			 * we just feed in this, else we stuff in as much
874			 * as we can.
875			 */
876			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
877				mapbytes = bytesleft;
878			else
879				mapbytes = PAGE_SIZE - offset_in_page(bufp);
880			sg_set_page(sg, virt_to_page(bufp),
881				    mapbytes, offset_in_page(bufp));
882			bufp += mapbytes;
883			bytesleft -= mapbytes;
884			dev_dbg(&pl022->adev->dev,
885				"set RX/TX target page @ %p, %d bytes, %d left\n",
886				bufp, mapbytes, bytesleft);
887		}
888	} else {
889		/* Map the dummy buffer on every page */
890		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
891			if (bytesleft < PAGE_SIZE)
892				mapbytes = bytesleft;
893			else
894				mapbytes = PAGE_SIZE;
895			sg_set_page(sg, virt_to_page(pl022->dummypage),
896				    mapbytes, 0);
897			bytesleft -= mapbytes;
898			dev_dbg(&pl022->adev->dev,
899				"set RX/TX to dummy page %d bytes, %d left\n",
900				mapbytes, bytesleft);
901
902		}
903	}
904	BUG_ON(bytesleft);
905}
906
907/**
908 * configure_dma - configures the channels for the next transfer
909 * @pl022: SSP driver's private data structure
910 */
911static int configure_dma(struct pl022 *pl022)
912{
913	struct dma_slave_config rx_conf = {
914		.src_addr = SSP_DR(pl022->phybase),
915		.direction = DMA_DEV_TO_MEM,
916		.device_fc = false,
917	};
918	struct dma_slave_config tx_conf = {
919		.dst_addr = SSP_DR(pl022->phybase),
920		.direction = DMA_MEM_TO_DEV,
921		.device_fc = false,
922	};
923	unsigned int pages;
924	int ret;
925	int rx_sglen, tx_sglen;
926	struct dma_chan *rxchan = pl022->dma_rx_channel;
927	struct dma_chan *txchan = pl022->dma_tx_channel;
928	struct dma_async_tx_descriptor *rxdesc;
929	struct dma_async_tx_descriptor *txdesc;
930
931	/* Check that the channels are available */
932	if (!rxchan || !txchan)
933		return -ENODEV;
934
935	/*
936	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
937	 * Notice that the DMA engine uses one-to-one mapping. Since we can
938	 * not trigger on 2 elements this needs explicit mapping rather than
939	 * calculation.
940	 */
941	switch (pl022->rx_lev_trig) {
942	case SSP_RX_1_OR_MORE_ELEM:
943		rx_conf.src_maxburst = 1;
944		break;
945	case SSP_RX_4_OR_MORE_ELEM:
946		rx_conf.src_maxburst = 4;
947		break;
948	case SSP_RX_8_OR_MORE_ELEM:
949		rx_conf.src_maxburst = 8;
950		break;
951	case SSP_RX_16_OR_MORE_ELEM:
952		rx_conf.src_maxburst = 16;
953		break;
954	case SSP_RX_32_OR_MORE_ELEM:
955		rx_conf.src_maxburst = 32;
956		break;
957	default:
958		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
959		break;
960	}
961
962	switch (pl022->tx_lev_trig) {
963	case SSP_TX_1_OR_MORE_EMPTY_LOC:
964		tx_conf.dst_maxburst = 1;
965		break;
966	case SSP_TX_4_OR_MORE_EMPTY_LOC:
967		tx_conf.dst_maxburst = 4;
968		break;
969	case SSP_TX_8_OR_MORE_EMPTY_LOC:
970		tx_conf.dst_maxburst = 8;
971		break;
972	case SSP_TX_16_OR_MORE_EMPTY_LOC:
973		tx_conf.dst_maxburst = 16;
974		break;
975	case SSP_TX_32_OR_MORE_EMPTY_LOC:
976		tx_conf.dst_maxburst = 32;
977		break;
978	default:
979		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
980		break;
981	}
982
983	switch (pl022->read) {
984	case READING_NULL:
985		/* Use the same as for writing */
986		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
987		break;
988	case READING_U8:
989		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
990		break;
991	case READING_U16:
992		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
993		break;
994	case READING_U32:
995		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
996		break;
997	}
998
999	switch (pl022->write) {
1000	case WRITING_NULL:
1001		/* Use the same as for reading */
1002		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1003		break;
1004	case WRITING_U8:
1005		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1006		break;
1007	case WRITING_U16:
1008		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1009		break;
1010	case WRITING_U32:
1011		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1012		break;
1013	}
1014
1015	/* SPI pecularity: we need to read and write the same width */
1016	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1017		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1018	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1019		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1020	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1021
1022	dmaengine_slave_config(rxchan, &rx_conf);
1023	dmaengine_slave_config(txchan, &tx_conf);
1024
1025	/* Create sglists for the transfers */
1026	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1027	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1028
1029	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1030	if (ret)
1031		goto err_alloc_rx_sg;
1032
1033	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1034	if (ret)
1035		goto err_alloc_tx_sg;
1036
1037	/* Fill in the scatterlists for the RX+TX buffers */
1038	setup_dma_scatter(pl022, pl022->rx,
1039			  pl022->cur_transfer->len, &pl022->sgt_rx);
1040	setup_dma_scatter(pl022, pl022->tx,
1041			  pl022->cur_transfer->len, &pl022->sgt_tx);
1042
1043	/* Map DMA buffers */
1044	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1045			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1046	if (!rx_sglen)
1047		goto err_rx_sgmap;
1048
1049	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1050			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1051	if (!tx_sglen)
1052		goto err_tx_sgmap;
1053
1054	/* Send both scatterlists */
1055	rxdesc = dmaengine_prep_slave_sg(rxchan,
1056				      pl022->sgt_rx.sgl,
1057				      rx_sglen,
1058				      DMA_DEV_TO_MEM,
1059				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1060	if (!rxdesc)
1061		goto err_rxdesc;
1062
1063	txdesc = dmaengine_prep_slave_sg(txchan,
1064				      pl022->sgt_tx.sgl,
1065				      tx_sglen,
1066				      DMA_MEM_TO_DEV,
1067				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1068	if (!txdesc)
1069		goto err_txdesc;
1070
1071	/* Put the callback on the RX transfer only, that should finish last */
1072	rxdesc->callback = dma_callback;
1073	rxdesc->callback_param = pl022;
1074
1075	/* Submit and fire RX and TX with TX last so we're ready to read! */
1076	dmaengine_submit(rxdesc);
1077	dmaengine_submit(txdesc);
1078	dma_async_issue_pending(rxchan);
1079	dma_async_issue_pending(txchan);
1080	pl022->dma_running = true;
1081
1082	return 0;
1083
1084err_txdesc:
1085	dmaengine_terminate_all(txchan);
1086err_rxdesc:
1087	dmaengine_terminate_all(rxchan);
1088	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1089		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1090err_tx_sgmap:
1091	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1092		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1093err_rx_sgmap:
1094	sg_free_table(&pl022->sgt_tx);
1095err_alloc_tx_sg:
1096	sg_free_table(&pl022->sgt_rx);
1097err_alloc_rx_sg:
1098	return -ENOMEM;
1099}
1100
1101static int pl022_dma_probe(struct pl022 *pl022)
1102{
1103	dma_cap_mask_t mask;
1104
1105	/* Try to acquire a generic DMA engine slave channel */
1106	dma_cap_zero(mask);
1107	dma_cap_set(DMA_SLAVE, mask);
1108	/*
1109	 * We need both RX and TX channels to do DMA, else do none
1110	 * of them.
1111	 */
1112	pl022->dma_rx_channel = dma_request_channel(mask,
1113					    pl022->host_info->dma_filter,
1114					    pl022->host_info->dma_rx_param);
1115	if (!pl022->dma_rx_channel) {
1116		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1117		goto err_no_rxchan;
1118	}
1119
1120	pl022->dma_tx_channel = dma_request_channel(mask,
1121					    pl022->host_info->dma_filter,
1122					    pl022->host_info->dma_tx_param);
1123	if (!pl022->dma_tx_channel) {
1124		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1125		goto err_no_txchan;
1126	}
1127
1128	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1129	if (!pl022->dummypage)
1130		goto err_no_dummypage;
1131
1132	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1133		 dma_chan_name(pl022->dma_rx_channel),
1134		 dma_chan_name(pl022->dma_tx_channel));
1135
1136	return 0;
1137
1138err_no_dummypage:
1139	dma_release_channel(pl022->dma_tx_channel);
1140err_no_txchan:
1141	dma_release_channel(pl022->dma_rx_channel);
1142	pl022->dma_rx_channel = NULL;
1143err_no_rxchan:
1144	dev_err(&pl022->adev->dev,
1145			"Failed to work in dma mode, work without dma!\n");
1146	return -ENODEV;
1147}
1148
1149static int pl022_dma_autoprobe(struct pl022 *pl022)
1150{
1151	struct device *dev = &pl022->adev->dev;
1152	struct dma_chan *chan;
1153	int err;
1154
1155	/* automatically configure DMA channels from platform, normally using DT */
1156	chan = dma_request_chan(dev, "rx");
1157	if (IS_ERR(chan)) {
1158		err = PTR_ERR(chan);
1159		goto err_no_rxchan;
1160	}
1161
1162	pl022->dma_rx_channel = chan;
1163
1164	chan = dma_request_chan(dev, "tx");
1165	if (IS_ERR(chan)) {
1166		err = PTR_ERR(chan);
1167		goto err_no_txchan;
1168	}
1169
1170	pl022->dma_tx_channel = chan;
1171
1172	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1173	if (!pl022->dummypage) {
1174		err = -ENOMEM;
1175		goto err_no_dummypage;
1176	}
1177
1178	return 0;
1179
1180err_no_dummypage:
1181	dma_release_channel(pl022->dma_tx_channel);
1182	pl022->dma_tx_channel = NULL;
1183err_no_txchan:
1184	dma_release_channel(pl022->dma_rx_channel);
1185	pl022->dma_rx_channel = NULL;
1186err_no_rxchan:
1187	return err;
1188}
1189
1190static void terminate_dma(struct pl022 *pl022)
1191{
1192	struct dma_chan *rxchan = pl022->dma_rx_channel;
1193	struct dma_chan *txchan = pl022->dma_tx_channel;
1194
1195	dmaengine_terminate_all(rxchan);
1196	dmaengine_terminate_all(txchan);
1197	unmap_free_dma_scatter(pl022);
1198	pl022->dma_running = false;
1199}
1200
1201static void pl022_dma_remove(struct pl022 *pl022)
1202{
1203	if (pl022->dma_running)
1204		terminate_dma(pl022);
1205	if (pl022->dma_tx_channel)
1206		dma_release_channel(pl022->dma_tx_channel);
1207	if (pl022->dma_rx_channel)
1208		dma_release_channel(pl022->dma_rx_channel);
1209	kfree(pl022->dummypage);
1210}
1211
1212#else
1213static inline int configure_dma(struct pl022 *pl022)
1214{
1215	return -ENODEV;
1216}
1217
1218static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1219{
1220	return 0;
1221}
1222
1223static inline int pl022_dma_probe(struct pl022 *pl022)
1224{
1225	return 0;
1226}
1227
1228static inline void pl022_dma_remove(struct pl022 *pl022)
1229{
1230}
1231#endif
1232
1233/**
1234 * pl022_interrupt_handler - Interrupt handler for SSP controller
1235 * @irq: IRQ number
1236 * @dev_id: Local device data
1237 *
1238 * This function handles interrupts generated for an interrupt based transfer.
1239 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1240 * current message's state as STATE_ERROR and schedule the tasklet
1241 * pump_transfers which will do the postprocessing of the current message by
1242 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1243 * more data, and writes data in TX FIFO till it is not full. If we complete
1244 * the transfer we move to the next transfer and schedule the tasklet.
1245 */
1246static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1247{
1248	struct pl022 *pl022 = dev_id;
1249	struct spi_message *msg = pl022->cur_msg;
1250	u16 irq_status = 0;
1251
1252	if (unlikely(!msg)) {
1253		dev_err(&pl022->adev->dev,
1254			"bad message state in interrupt handler");
1255		/* Never fail */
1256		return IRQ_HANDLED;
1257	}
1258
1259	/* Read the Interrupt Status Register */
1260	irq_status = readw(SSP_MIS(pl022->virtbase));
1261
1262	if (unlikely(!irq_status))
1263		return IRQ_NONE;
1264
1265	/*
1266	 * This handles the FIFO interrupts, the timeout
1267	 * interrupts are flatly ignored, they cannot be
1268	 * trusted.
1269	 */
1270	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1271		/*
1272		 * Overrun interrupt - bail out since our Data has been
1273		 * corrupted
1274		 */
1275		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1276		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1277			dev_err(&pl022->adev->dev,
1278				"RXFIFO is full\n");
1279
1280		/*
1281		 * Disable and clear interrupts, disable SSP,
1282		 * mark message with bad status so it can be
1283		 * retried.
1284		 */
1285		writew(DISABLE_ALL_INTERRUPTS,
1286		       SSP_IMSC(pl022->virtbase));
1287		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1288		writew((readw(SSP_CR1(pl022->virtbase)) &
1289			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1290		msg->state = STATE_ERROR;
1291
1292		/* Schedule message queue handler */
1293		tasklet_schedule(&pl022->pump_transfers);
1294		return IRQ_HANDLED;
1295	}
1296
1297	readwriter(pl022);
1298
1299	if (pl022->tx == pl022->tx_end) {
1300		/* Disable Transmit interrupt, enable receive interrupt */
1301		writew((readw(SSP_IMSC(pl022->virtbase)) &
1302		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1303		       SSP_IMSC(pl022->virtbase));
1304	}
1305
1306	/*
1307	 * Since all transactions must write as much as shall be read,
1308	 * we can conclude the entire transaction once RX is complete.
1309	 * At this point, all TX will always be finished.
1310	 */
1311	if (pl022->rx >= pl022->rx_end) {
1312		writew(DISABLE_ALL_INTERRUPTS,
1313		       SSP_IMSC(pl022->virtbase));
1314		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1315		if (unlikely(pl022->rx > pl022->rx_end)) {
1316			dev_warn(&pl022->adev->dev, "read %u surplus "
1317				 "bytes (did you request an odd "
1318				 "number of bytes on a 16bit bus?)\n",
1319				 (u32) (pl022->rx - pl022->rx_end));
1320		}
1321		/* Update total bytes transferred */
1322		msg->actual_length += pl022->cur_transfer->len;
1323		/* Move to next transfer */
1324		msg->state = next_transfer(pl022);
1325		if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1326			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1327		tasklet_schedule(&pl022->pump_transfers);
1328		return IRQ_HANDLED;
1329	}
1330
1331	return IRQ_HANDLED;
1332}
1333
1334/*
1335 * This sets up the pointers to memory for the next message to
1336 * send out on the SPI bus.
1337 */
1338static int set_up_next_transfer(struct pl022 *pl022,
1339				struct spi_transfer *transfer)
1340{
1341	int residue;
1342
1343	/* Sanity check the message for this bus width */
1344	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1345	if (unlikely(residue != 0)) {
1346		dev_err(&pl022->adev->dev,
1347			"message of %u bytes to transmit but the current "
1348			"chip bus has a data width of %u bytes!\n",
1349			pl022->cur_transfer->len,
1350			pl022->cur_chip->n_bytes);
1351		dev_err(&pl022->adev->dev, "skipping this message\n");
1352		return -EIO;
1353	}
1354	pl022->tx = (void *)transfer->tx_buf;
1355	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1356	pl022->rx = (void *)transfer->rx_buf;
1357	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1358	pl022->write =
1359	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1360	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1361	return 0;
1362}
1363
1364/**
1365 * pump_transfers - Tasklet function which schedules next transfer
1366 * when running in interrupt or DMA transfer mode.
1367 * @data: SSP driver private data structure
1368 *
1369 */
1370static void pump_transfers(unsigned long data)
1371{
1372	struct pl022 *pl022 = (struct pl022 *) data;
1373	struct spi_message *message = NULL;
1374	struct spi_transfer *transfer = NULL;
1375	struct spi_transfer *previous = NULL;
1376
1377	/* Get current state information */
1378	message = pl022->cur_msg;
1379	transfer = pl022->cur_transfer;
1380
1381	/* Handle for abort */
1382	if (message->state == STATE_ERROR) {
1383		message->status = -EIO;
1384		giveback(pl022);
1385		return;
1386	}
1387
1388	/* Handle end of message */
1389	if (message->state == STATE_DONE) {
1390		message->status = 0;
1391		giveback(pl022);
1392		return;
1393	}
1394
1395	/* Delay if requested at end of transfer before CS change */
1396	if (message->state == STATE_RUNNING) {
1397		previous = list_entry(transfer->transfer_list.prev,
1398					struct spi_transfer,
1399					transfer_list);
1400		/*
1401		 * FIXME: This runs in interrupt context.
1402		 * Is this really smart?
1403		 */
1404		spi_transfer_delay_exec(previous);
1405
1406		/* Reselect chip select only if cs_change was requested */
1407		if (previous->cs_change)
1408			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1409	} else {
1410		/* STATE_START */
1411		message->state = STATE_RUNNING;
1412	}
1413
1414	if (set_up_next_transfer(pl022, transfer)) {
1415		message->state = STATE_ERROR;
1416		message->status = -EIO;
1417		giveback(pl022);
1418		return;
1419	}
1420	/* Flush the FIFOs and let's go! */
1421	flush(pl022);
1422
1423	if (pl022->cur_chip->enable_dma) {
1424		if (configure_dma(pl022)) {
1425			dev_dbg(&pl022->adev->dev,
1426				"configuration of DMA failed, fall back to interrupt mode\n");
1427			goto err_config_dma;
1428		}
1429		return;
1430	}
1431
1432err_config_dma:
1433	/* enable all interrupts except RX */
1434	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1435}
1436
1437static void do_interrupt_dma_transfer(struct pl022 *pl022)
1438{
1439	/*
1440	 * Default is to enable all interrupts except RX -
1441	 * this will be enabled once TX is complete
1442	 */
1443	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1444
1445	/* Enable target chip, if not already active */
1446	if (!pl022->next_msg_cs_active)
1447		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1448
1449	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1450		/* Error path */
1451		pl022->cur_msg->state = STATE_ERROR;
1452		pl022->cur_msg->status = -EIO;
1453		giveback(pl022);
1454		return;
1455	}
1456	/* If we're using DMA, set up DMA here */
1457	if (pl022->cur_chip->enable_dma) {
1458		/* Configure DMA transfer */
1459		if (configure_dma(pl022)) {
1460			dev_dbg(&pl022->adev->dev,
1461				"configuration of DMA failed, fall back to interrupt mode\n");
1462			goto err_config_dma;
1463		}
1464		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1465		irqflags = DISABLE_ALL_INTERRUPTS;
1466	}
1467err_config_dma:
1468	/* Enable SSP, turn on interrupts */
1469	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1470	       SSP_CR1(pl022->virtbase));
1471	writew(irqflags, SSP_IMSC(pl022->virtbase));
1472}
1473
1474static void print_current_status(struct pl022 *pl022)
1475{
1476	u32 read_cr0;
1477	u16 read_cr1, read_dmacr, read_sr;
1478
1479	if (pl022->vendor->extended_cr)
1480		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1481	else
1482		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1483	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1484	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1485	read_sr = readw(SSP_SR(pl022->virtbase));
1486
1487	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1488	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1489	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1490	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1491	dev_warn(&pl022->adev->dev,
1492			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1493			pl022->exp_fifo_level,
1494			pl022->vendor->fifodepth);
1495
1496}
1497
1498static void do_polling_transfer(struct pl022 *pl022)
1499{
1500	struct spi_message *message = NULL;
1501	struct spi_transfer *transfer = NULL;
1502	struct spi_transfer *previous = NULL;
1503	unsigned long time, timeout;
1504
1505	message = pl022->cur_msg;
1506
1507	while (message->state != STATE_DONE) {
1508		/* Handle for abort */
1509		if (message->state == STATE_ERROR)
1510			break;
1511		transfer = pl022->cur_transfer;
1512
1513		/* Delay if requested at end of transfer */
1514		if (message->state == STATE_RUNNING) {
1515			previous =
1516			    list_entry(transfer->transfer_list.prev,
1517				       struct spi_transfer, transfer_list);
1518			spi_transfer_delay_exec(previous);
1519			if (previous->cs_change)
1520				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1521		} else {
1522			/* STATE_START */
1523			message->state = STATE_RUNNING;
1524			if (!pl022->next_msg_cs_active)
1525				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1526		}
1527
1528		/* Configuration Changing Per Transfer */
1529		if (set_up_next_transfer(pl022, transfer)) {
1530			/* Error path */
1531			message->state = STATE_ERROR;
1532			break;
1533		}
1534		/* Flush FIFOs and enable SSP */
1535		flush(pl022);
1536		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1537		       SSP_CR1(pl022->virtbase));
1538
1539		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1540
1541		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1542		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1543			time = jiffies;
1544			readwriter(pl022);
1545			if (time_after(time, timeout)) {
1546				dev_warn(&pl022->adev->dev,
1547				"%s: timeout!\n", __func__);
1548				message->state = STATE_TIMEOUT;
1549				print_current_status(pl022);
1550				goto out;
1551			}
1552			cpu_relax();
1553		}
1554
1555		/* Update total byte transferred */
1556		message->actual_length += pl022->cur_transfer->len;
1557		/* Move to next transfer */
1558		message->state = next_transfer(pl022);
1559		if (message->state != STATE_DONE
1560		    && pl022->cur_transfer->cs_change)
1561			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1562	}
1563out:
1564	/* Handle end of message */
1565	if (message->state == STATE_DONE)
1566		message->status = 0;
1567	else if (message->state == STATE_TIMEOUT)
1568		message->status = -EAGAIN;
1569	else
1570		message->status = -EIO;
1571
1572	giveback(pl022);
1573	return;
1574}
1575
1576static int pl022_transfer_one_message(struct spi_controller *host,
1577				      struct spi_message *msg)
1578{
1579	struct pl022 *pl022 = spi_controller_get_devdata(host);
1580
1581	/* Initial message state */
1582	pl022->cur_msg = msg;
1583	msg->state = STATE_START;
1584
1585	pl022->cur_transfer = list_entry(msg->transfers.next,
1586					 struct spi_transfer, transfer_list);
1587
1588	/* Setup the SPI using the per chip configuration */
1589	pl022->cur_chip = spi_get_ctldata(msg->spi);
1590	pl022->cur_cs = spi_get_chipselect(msg->spi, 0);
1591	/* This is always available but may be set to -ENOENT */
1592	pl022->cur_gpiod = spi_get_csgpiod(msg->spi, 0);
1593
1594	restore_state(pl022);
1595	flush(pl022);
1596
1597	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1598		do_polling_transfer(pl022);
1599	else
1600		do_interrupt_dma_transfer(pl022);
1601
1602	return 0;
1603}
1604
1605static int pl022_unprepare_transfer_hardware(struct spi_controller *host)
1606{
1607	struct pl022 *pl022 = spi_controller_get_devdata(host);
1608
1609	/* nothing more to do - disable spi/ssp and power off */
1610	writew((readw(SSP_CR1(pl022->virtbase)) &
1611		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1612
1613	return 0;
1614}
1615
1616static int verify_controller_parameters(struct pl022 *pl022,
1617				struct pl022_config_chip const *chip_info)
1618{
1619	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1620	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1621		dev_err(&pl022->adev->dev,
1622			"interface is configured incorrectly\n");
1623		return -EINVAL;
1624	}
1625	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1626	    (!pl022->vendor->unidir)) {
1627		dev_err(&pl022->adev->dev,
1628			"unidirectional mode not supported in this "
1629			"hardware version\n");
1630		return -EINVAL;
1631	}
1632	if ((chip_info->hierarchy != SSP_MASTER)
1633	    && (chip_info->hierarchy != SSP_SLAVE)) {
1634		dev_err(&pl022->adev->dev,
1635			"hierarchy is configured incorrectly\n");
1636		return -EINVAL;
1637	}
1638	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1639	    && (chip_info->com_mode != DMA_TRANSFER)
1640	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1641		dev_err(&pl022->adev->dev,
1642			"Communication mode is configured incorrectly\n");
1643		return -EINVAL;
1644	}
1645	switch (chip_info->rx_lev_trig) {
1646	case SSP_RX_1_OR_MORE_ELEM:
1647	case SSP_RX_4_OR_MORE_ELEM:
1648	case SSP_RX_8_OR_MORE_ELEM:
1649		/* These are always OK, all variants can handle this */
1650		break;
1651	case SSP_RX_16_OR_MORE_ELEM:
1652		if (pl022->vendor->fifodepth < 16) {
1653			dev_err(&pl022->adev->dev,
1654			"RX FIFO Trigger Level is configured incorrectly\n");
1655			return -EINVAL;
1656		}
1657		break;
1658	case SSP_RX_32_OR_MORE_ELEM:
1659		if (pl022->vendor->fifodepth < 32) {
1660			dev_err(&pl022->adev->dev,
1661			"RX FIFO Trigger Level is configured incorrectly\n");
1662			return -EINVAL;
1663		}
1664		break;
1665	default:
1666		dev_err(&pl022->adev->dev,
1667			"RX FIFO Trigger Level is configured incorrectly\n");
1668		return -EINVAL;
1669	}
1670	switch (chip_info->tx_lev_trig) {
1671	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1672	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1673	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1674		/* These are always OK, all variants can handle this */
1675		break;
1676	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1677		if (pl022->vendor->fifodepth < 16) {
1678			dev_err(&pl022->adev->dev,
1679			"TX FIFO Trigger Level is configured incorrectly\n");
1680			return -EINVAL;
1681		}
1682		break;
1683	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1684		if (pl022->vendor->fifodepth < 32) {
1685			dev_err(&pl022->adev->dev,
1686			"TX FIFO Trigger Level is configured incorrectly\n");
1687			return -EINVAL;
1688		}
1689		break;
1690	default:
1691		dev_err(&pl022->adev->dev,
1692			"TX FIFO Trigger Level is configured incorrectly\n");
1693		return -EINVAL;
1694	}
1695	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1696		if ((chip_info->ctrl_len < SSP_BITS_4)
1697		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1698			dev_err(&pl022->adev->dev,
1699				"CTRL LEN is configured incorrectly\n");
1700			return -EINVAL;
1701		}
1702		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1703		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1704			dev_err(&pl022->adev->dev,
1705				"Wait State is configured incorrectly\n");
1706			return -EINVAL;
1707		}
1708		/* Half duplex is only available in the ST Micro version */
1709		if (pl022->vendor->extended_cr) {
1710			if ((chip_info->duplex !=
1711			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1712			    && (chip_info->duplex !=
1713				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1714				dev_err(&pl022->adev->dev,
1715					"Microwire duplex mode is configured incorrectly\n");
1716				return -EINVAL;
1717			}
1718		} else {
1719			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1720				dev_err(&pl022->adev->dev,
1721					"Microwire half duplex mode requested,"
1722					" but this is only available in the"
1723					" ST version of PL022\n");
1724				return -EINVAL;
1725			}
1726		}
1727	}
1728	return 0;
1729}
1730
1731static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1732{
1733	return rate / (cpsdvsr * (1 + scr));
1734}
1735
1736static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1737				    ssp_clock_params * clk_freq)
1738{
1739	/* Lets calculate the frequency parameters */
1740	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1741	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1742		best_scr = 0, tmp, found = 0;
1743
1744	rate = clk_get_rate(pl022->clk);
1745	/* cpsdvscr = 2 & scr 0 */
1746	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1747	/* cpsdvsr = 254 & scr = 255 */
1748	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1749
1750	if (freq > max_tclk)
1751		dev_warn(&pl022->adev->dev,
1752			"Max speed that can be programmed is %d Hz, you requested %d\n",
1753			max_tclk, freq);
1754
1755	if (freq < min_tclk) {
1756		dev_err(&pl022->adev->dev,
1757			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1758			freq, min_tclk);
1759		return -EINVAL;
1760	}
1761
1762	/*
1763	 * best_freq will give closest possible available rate (<= requested
1764	 * freq) for all values of scr & cpsdvsr.
1765	 */
1766	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1767		while (scr <= SCR_MAX) {
1768			tmp = spi_rate(rate, cpsdvsr, scr);
1769
1770			if (tmp > freq) {
1771				/* we need lower freq */
1772				scr++;
1773				continue;
1774			}
1775
1776			/*
1777			 * If found exact value, mark found and break.
1778			 * If found more closer value, update and break.
1779			 */
1780			if (tmp > best_freq) {
1781				best_freq = tmp;
1782				best_cpsdvsr = cpsdvsr;
1783				best_scr = scr;
1784
1785				if (tmp == freq)
1786					found = 1;
1787			}
1788			/*
1789			 * increased scr will give lower rates, which are not
1790			 * required
1791			 */
1792			break;
1793		}
1794		cpsdvsr += 2;
1795		scr = SCR_MIN;
1796	}
1797
1798	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1799			freq);
1800
1801	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1802	clk_freq->scr = (u8) (best_scr & 0xFF);
1803	dev_dbg(&pl022->adev->dev,
1804		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1805		freq, best_freq);
1806	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1807		clk_freq->cpsdvsr, clk_freq->scr);
1808
1809	return 0;
1810}
1811
1812/*
1813 * A piece of default chip info unless the platform
1814 * supplies it.
1815 */
1816static const struct pl022_config_chip pl022_default_chip_info = {
1817	.com_mode = INTERRUPT_TRANSFER,
1818	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1819	.hierarchy = SSP_MASTER,
1820	.slave_tx_disable = DO_NOT_DRIVE_TX,
1821	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1822	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1823	.ctrl_len = SSP_BITS_8,
1824	.wait_state = SSP_MWIRE_WAIT_ZERO,
1825	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1826};
1827
1828/**
1829 * pl022_setup - setup function registered to SPI host framework
1830 * @spi: spi device which is requesting setup
1831 *
1832 * This function is registered to the SPI framework for this SPI host
1833 * controller. If it is the first time when setup is called by this device,
1834 * this function will initialize the runtime state for this chip and save
1835 * the same in the device structure. Else it will update the runtime info
1836 * with the updated chip info. Nothing is really being written to the
1837 * controller hardware here, that is not done until the actual transfer
1838 * commence.
1839 */
1840static int pl022_setup(struct spi_device *spi)
1841{
1842	struct pl022_config_chip const *chip_info;
1843	struct pl022_config_chip chip_info_dt;
1844	struct chip_data *chip;
1845	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1846	int status = 0;
1847	struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
1848	unsigned int bits = spi->bits_per_word;
1849	u32 tmp;
1850	struct device_node *np = spi->dev.of_node;
1851
1852	if (!spi->max_speed_hz)
1853		return -EINVAL;
1854
1855	/* Get controller_state if one is supplied */
1856	chip = spi_get_ctldata(spi);
1857
1858	if (chip == NULL) {
1859		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1860		if (!chip)
1861			return -ENOMEM;
1862		dev_dbg(&spi->dev,
1863			"allocated memory for controller's runtime state\n");
1864	}
1865
1866	/* Get controller data if one is supplied */
1867	chip_info = spi->controller_data;
1868
1869	if (chip_info == NULL) {
1870		if (np) {
1871			chip_info_dt = pl022_default_chip_info;
1872
1873			chip_info_dt.hierarchy = SSP_MASTER;
1874			of_property_read_u32(np, "pl022,interface",
1875				&chip_info_dt.iface);
1876			of_property_read_u32(np, "pl022,com-mode",
1877				&chip_info_dt.com_mode);
1878			of_property_read_u32(np, "pl022,rx-level-trig",
1879				&chip_info_dt.rx_lev_trig);
1880			of_property_read_u32(np, "pl022,tx-level-trig",
1881				&chip_info_dt.tx_lev_trig);
1882			of_property_read_u32(np, "pl022,ctrl-len",
1883				&chip_info_dt.ctrl_len);
1884			of_property_read_u32(np, "pl022,wait-state",
1885				&chip_info_dt.wait_state);
1886			of_property_read_u32(np, "pl022,duplex",
1887				&chip_info_dt.duplex);
1888
1889			chip_info = &chip_info_dt;
1890		} else {
1891			chip_info = &pl022_default_chip_info;
1892			/* spi_board_info.controller_data not is supplied */
1893			dev_dbg(&spi->dev,
1894				"using default controller_data settings\n");
1895		}
1896	} else
1897		dev_dbg(&spi->dev,
1898			"using user supplied controller_data settings\n");
1899
1900	/*
1901	 * We can override with custom divisors, else we use the board
1902	 * frequency setting
1903	 */
1904	if ((0 == chip_info->clk_freq.cpsdvsr)
1905	    && (0 == chip_info->clk_freq.scr)) {
1906		status = calculate_effective_freq(pl022,
1907						  spi->max_speed_hz,
1908						  &clk_freq);
1909		if (status < 0)
1910			goto err_config_params;
1911	} else {
1912		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1913		if ((clk_freq.cpsdvsr % 2) != 0)
1914			clk_freq.cpsdvsr =
1915				clk_freq.cpsdvsr - 1;
1916	}
1917	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1918	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1919		status = -EINVAL;
1920		dev_err(&spi->dev,
1921			"cpsdvsr is configured incorrectly\n");
1922		goto err_config_params;
1923	}
1924
1925	status = verify_controller_parameters(pl022, chip_info);
1926	if (status) {
1927		dev_err(&spi->dev, "controller data is incorrect");
1928		goto err_config_params;
1929	}
1930
1931	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1932	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1933
1934	/* Now set controller state based on controller data */
1935	chip->xfer_type = chip_info->com_mode;
1936
1937	/* Check bits per word with vendor specific range */
1938	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1939		status = -ENOTSUPP;
1940		dev_err(&spi->dev, "illegal data size for this controller!\n");
1941		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1942				pl022->vendor->max_bpw);
1943		goto err_config_params;
1944	} else if (bits <= 8) {
1945		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1946		chip->n_bytes = 1;
1947		chip->read = READING_U8;
1948		chip->write = WRITING_U8;
1949	} else if (bits <= 16) {
1950		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1951		chip->n_bytes = 2;
1952		chip->read = READING_U16;
1953		chip->write = WRITING_U16;
1954	} else {
1955		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1956		chip->n_bytes = 4;
1957		chip->read = READING_U32;
1958		chip->write = WRITING_U32;
1959	}
1960
1961	/* Now Initialize all register settings required for this chip */
1962	chip->cr0 = 0;
1963	chip->cr1 = 0;
1964	chip->dmacr = 0;
1965	chip->cpsr = 0;
1966	if ((chip_info->com_mode == DMA_TRANSFER)
1967	    && ((pl022->host_info)->enable_dma)) {
1968		chip->enable_dma = true;
1969		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1970		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1971			       SSP_DMACR_MASK_RXDMAE, 0);
1972		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1973			       SSP_DMACR_MASK_TXDMAE, 1);
1974	} else {
1975		chip->enable_dma = false;
1976		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1977		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1978			       SSP_DMACR_MASK_RXDMAE, 0);
1979		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1980			       SSP_DMACR_MASK_TXDMAE, 1);
1981	}
1982
1983	chip->cpsr = clk_freq.cpsdvsr;
1984
1985	/* Special setup for the ST micro extended control registers */
1986	if (pl022->vendor->extended_cr) {
1987		u32 etx;
1988
1989		if (pl022->vendor->pl023) {
1990			/* These bits are only in the PL023 */
1991			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1992				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1993		} else {
1994			/* These bits are in the PL022 but not PL023 */
1995			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1996				       SSP_CR0_MASK_HALFDUP_ST, 5);
1997			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1998				       SSP_CR0_MASK_CSS_ST, 16);
1999			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2000				       SSP_CR0_MASK_FRF_ST, 21);
2001			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2002				       SSP_CR1_MASK_MWAIT_ST, 6);
2003		}
2004		SSP_WRITE_BITS(chip->cr0, bits - 1,
2005			       SSP_CR0_MASK_DSS_ST, 0);
2006
2007		if (spi->mode & SPI_LSB_FIRST) {
2008			tmp = SSP_RX_LSB;
2009			etx = SSP_TX_LSB;
2010		} else {
2011			tmp = SSP_RX_MSB;
2012			etx = SSP_TX_MSB;
2013		}
2014		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2015		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2016		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2017			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2018		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2019			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2020	} else {
2021		SSP_WRITE_BITS(chip->cr0, bits - 1,
2022			       SSP_CR0_MASK_DSS, 0);
2023		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2024			       SSP_CR0_MASK_FRF, 4);
2025	}
2026
2027	/* Stuff that is common for all versions */
2028	if (spi->mode & SPI_CPOL)
2029		tmp = SSP_CLK_POL_IDLE_HIGH;
2030	else
2031		tmp = SSP_CLK_POL_IDLE_LOW;
2032	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2033
2034	if (spi->mode & SPI_CPHA)
2035		tmp = SSP_CLK_SECOND_EDGE;
2036	else
2037		tmp = SSP_CLK_FIRST_EDGE;
2038	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2039
2040	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2041	/* Loopback is available on all versions except PL023 */
2042	if (pl022->vendor->loopback) {
2043		if (spi->mode & SPI_LOOP)
2044			tmp = LOOPBACK_ENABLED;
2045		else
2046			tmp = LOOPBACK_DISABLED;
2047		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2048	}
2049	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2050	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2051	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2052		3);
2053
2054	/* Save controller_state */
2055	spi_set_ctldata(spi, chip);
2056	return status;
2057 err_config_params:
2058	spi_set_ctldata(spi, NULL);
2059	kfree(chip);
2060	return status;
2061}
2062
2063/**
2064 * pl022_cleanup - cleanup function registered to SPI host framework
2065 * @spi: spi device which is requesting cleanup
2066 *
2067 * This function is registered to the SPI framework for this SPI host
2068 * controller. It will free the runtime state of chip.
2069 */
2070static void pl022_cleanup(struct spi_device *spi)
2071{
2072	struct chip_data *chip = spi_get_ctldata(spi);
2073
2074	spi_set_ctldata(spi, NULL);
2075	kfree(chip);
2076}
2077
2078static struct pl022_ssp_controller *
2079pl022_platform_data_dt_get(struct device *dev)
2080{
2081	struct device_node *np = dev->of_node;
2082	struct pl022_ssp_controller *pd;
2083
2084	if (!np) {
2085		dev_err(dev, "no dt node defined\n");
2086		return NULL;
2087	}
2088
2089	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2090	if (!pd)
2091		return NULL;
2092
2093	pd->bus_id = -1;
2094	of_property_read_u32(np, "pl022,autosuspend-delay",
2095			     &pd->autosuspend_delay);
2096	pd->rt = of_property_read_bool(np, "pl022,rt");
2097
2098	return pd;
2099}
2100
2101static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2102{
2103	struct device *dev = &adev->dev;
2104	struct pl022_ssp_controller *platform_info =
2105			dev_get_platdata(&adev->dev);
2106	struct spi_controller *host;
2107	struct pl022 *pl022 = NULL;	/*Data for this driver */
2108	int status = 0;
2109
2110	dev_info(&adev->dev,
2111		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2112	if (!platform_info && IS_ENABLED(CONFIG_OF))
2113		platform_info = pl022_platform_data_dt_get(dev);
2114
2115	if (!platform_info) {
2116		dev_err(dev, "probe: no platform data defined\n");
2117		return -ENODEV;
2118	}
2119
2120	/* Allocate host with space for data */
2121	host = spi_alloc_host(dev, sizeof(struct pl022));
2122	if (host == NULL) {
2123		dev_err(&adev->dev, "probe - cannot alloc SPI host\n");
2124		return -ENOMEM;
2125	}
2126
2127	pl022 = spi_controller_get_devdata(host);
2128	pl022->host = host;
2129	pl022->host_info = platform_info;
2130	pl022->adev = adev;
2131	pl022->vendor = id->data;
2132
2133	/*
2134	 * Bus Number Which has been Assigned to this SSP controller
2135	 * on this board
2136	 */
2137	host->bus_num = platform_info->bus_id;
2138	host->cleanup = pl022_cleanup;
2139	host->setup = pl022_setup;
2140	host->auto_runtime_pm = true;
2141	host->transfer_one_message = pl022_transfer_one_message;
2142	host->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2143	host->rt = platform_info->rt;
2144	host->dev.of_node = dev->of_node;
2145	host->use_gpio_descriptors = true;
2146
2147	/*
2148	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2149	 * always MS bit first on the original pl022.
2150	 */
2151	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2152	if (pl022->vendor->extended_cr)
2153		host->mode_bits |= SPI_LSB_FIRST;
2154
2155	dev_dbg(&adev->dev, "BUSNO: %d\n", host->bus_num);
2156
2157	status = amba_request_regions(adev, NULL);
2158	if (status)
2159		goto err_no_ioregion;
2160
2161	pl022->phybase = adev->res.start;
2162	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2163				       resource_size(&adev->res));
2164	if (pl022->virtbase == NULL) {
2165		status = -ENOMEM;
2166		goto err_no_ioremap;
2167	}
2168	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2169		&adev->res.start, pl022->virtbase);
2170
2171	pl022->clk = devm_clk_get(&adev->dev, NULL);
2172	if (IS_ERR(pl022->clk)) {
2173		status = PTR_ERR(pl022->clk);
2174		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2175		goto err_no_clk;
2176	}
2177
2178	status = clk_prepare_enable(pl022->clk);
2179	if (status) {
2180		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2181		goto err_no_clk_en;
2182	}
2183
2184	/* Initialize transfer pump */
2185	tasklet_init(&pl022->pump_transfers, pump_transfers,
2186		     (unsigned long)pl022);
2187
2188	/* Disable SSP */
2189	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2190	       SSP_CR1(pl022->virtbase));
2191	load_ssp_default_config(pl022);
2192
2193	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2194				  0, "pl022", pl022);
2195	if (status < 0) {
2196		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2197		goto err_no_irq;
2198	}
2199
2200	/* Get DMA channels, try autoconfiguration first */
2201	status = pl022_dma_autoprobe(pl022);
2202	if (status == -EPROBE_DEFER) {
2203		dev_dbg(dev, "deferring probe to get DMA channel\n");
2204		goto err_no_irq;
2205	}
2206
2207	/* If that failed, use channels from platform_info */
2208	if (status == 0)
2209		platform_info->enable_dma = 1;
2210	else if (platform_info->enable_dma) {
2211		status = pl022_dma_probe(pl022);
2212		if (status != 0)
2213			platform_info->enable_dma = 0;
2214	}
2215
2216	/* Register with the SPI framework */
2217	amba_set_drvdata(adev, pl022);
2218	status = devm_spi_register_controller(&adev->dev, host);
2219	if (status != 0) {
2220		dev_err_probe(&adev->dev, status,
2221			      "problem registering spi host\n");
2222		goto err_spi_register;
2223	}
2224	dev_dbg(dev, "probe succeeded\n");
2225
2226	/* let runtime pm put suspend */
2227	if (platform_info->autosuspend_delay > 0) {
2228		dev_info(&adev->dev,
2229			"will use autosuspend for runtime pm, delay %dms\n",
2230			platform_info->autosuspend_delay);
2231		pm_runtime_set_autosuspend_delay(dev,
2232			platform_info->autosuspend_delay);
2233		pm_runtime_use_autosuspend(dev);
2234	}
2235	pm_runtime_put(dev);
2236
2237	return 0;
2238
2239 err_spi_register:
2240	if (platform_info->enable_dma)
2241		pl022_dma_remove(pl022);
2242 err_no_irq:
2243	clk_disable_unprepare(pl022->clk);
2244 err_no_clk_en:
2245 err_no_clk:
2246 err_no_ioremap:
2247	amba_release_regions(adev);
2248 err_no_ioregion:
2249	spi_controller_put(host);
2250	return status;
2251}
2252
2253static void
2254pl022_remove(struct amba_device *adev)
2255{
2256	struct pl022 *pl022 = amba_get_drvdata(adev);
2257
2258	if (!pl022)
2259		return;
2260
2261	/*
2262	 * undo pm_runtime_put() in probe.  I assume that we're not
2263	 * accessing the primecell here.
2264	 */
2265	pm_runtime_get_noresume(&adev->dev);
2266
2267	load_ssp_default_config(pl022);
2268	if (pl022->host_info->enable_dma)
2269		pl022_dma_remove(pl022);
2270
2271	clk_disable_unprepare(pl022->clk);
2272	amba_release_regions(adev);
2273	tasklet_disable(&pl022->pump_transfers);
2274}
2275
2276#ifdef CONFIG_PM_SLEEP
2277static int pl022_suspend(struct device *dev)
2278{
2279	struct pl022 *pl022 = dev_get_drvdata(dev);
2280	int ret;
2281
2282	ret = spi_controller_suspend(pl022->host);
2283	if (ret)
2284		return ret;
2285
2286	ret = pm_runtime_force_suspend(dev);
2287	if (ret) {
2288		spi_controller_resume(pl022->host);
2289		return ret;
2290	}
2291
2292	pinctrl_pm_select_sleep_state(dev);
2293
2294	dev_dbg(dev, "suspended\n");
2295	return 0;
2296}
2297
2298static int pl022_resume(struct device *dev)
2299{
2300	struct pl022 *pl022 = dev_get_drvdata(dev);
2301	int ret;
2302
2303	ret = pm_runtime_force_resume(dev);
2304	if (ret)
2305		dev_err(dev, "problem resuming\n");
2306
2307	/* Start the queue running */
2308	ret = spi_controller_resume(pl022->host);
2309	if (!ret)
2310		dev_dbg(dev, "resumed\n");
2311
2312	return ret;
2313}
2314#endif
2315
2316#ifdef CONFIG_PM
2317static int pl022_runtime_suspend(struct device *dev)
2318{
2319	struct pl022 *pl022 = dev_get_drvdata(dev);
2320
2321	clk_disable_unprepare(pl022->clk);
2322	pinctrl_pm_select_idle_state(dev);
2323
2324	return 0;
2325}
2326
2327static int pl022_runtime_resume(struct device *dev)
2328{
2329	struct pl022 *pl022 = dev_get_drvdata(dev);
2330
2331	pinctrl_pm_select_default_state(dev);
2332	clk_prepare_enable(pl022->clk);
2333
2334	return 0;
2335}
2336#endif
2337
2338static const struct dev_pm_ops pl022_dev_pm_ops = {
2339	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2340	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2341};
2342
2343static struct vendor_data vendor_arm = {
2344	.fifodepth = 8,
2345	.max_bpw = 16,
2346	.unidir = false,
2347	.extended_cr = false,
2348	.pl023 = false,
2349	.loopback = true,
2350	.internal_cs_ctrl = false,
2351};
2352
2353static struct vendor_data vendor_st = {
2354	.fifodepth = 32,
2355	.max_bpw = 32,
2356	.unidir = false,
2357	.extended_cr = true,
2358	.pl023 = false,
2359	.loopback = true,
2360	.internal_cs_ctrl = false,
2361};
2362
2363static struct vendor_data vendor_st_pl023 = {
2364	.fifodepth = 32,
2365	.max_bpw = 32,
2366	.unidir = false,
2367	.extended_cr = true,
2368	.pl023 = true,
2369	.loopback = false,
2370	.internal_cs_ctrl = false,
2371};
2372
2373static struct vendor_data vendor_lsi = {
2374	.fifodepth = 8,
2375	.max_bpw = 16,
2376	.unidir = false,
2377	.extended_cr = false,
2378	.pl023 = false,
2379	.loopback = true,
2380	.internal_cs_ctrl = true,
2381};
2382
2383static const struct amba_id pl022_ids[] = {
2384	{
2385		/*
2386		 * ARM PL022 variant, this has a 16bit wide
2387		 * and 8 locations deep TX/RX FIFO
2388		 */
2389		.id	= 0x00041022,
2390		.mask	= 0x000fffff,
2391		.data	= &vendor_arm,
2392	},
2393	{
2394		/*
2395		 * ST Micro derivative, this has 32bit wide
2396		 * and 32 locations deep TX/RX FIFO
2397		 */
2398		.id	= 0x01080022,
2399		.mask	= 0xffffffff,
2400		.data	= &vendor_st,
2401	},
2402	{
2403		/*
2404		 * ST-Ericsson derivative "PL023" (this is not
2405		 * an official ARM number), this is a PL022 SSP block
2406		 * stripped to SPI mode only, it has 32bit wide
2407		 * and 32 locations deep TX/RX FIFO but no extended
2408		 * CR0/CR1 register
2409		 */
2410		.id	= 0x00080023,
2411		.mask	= 0xffffffff,
2412		.data	= &vendor_st_pl023,
2413	},
2414	{
2415		/*
2416		 * PL022 variant that has a chip select control register whih
2417		 * allows control of 5 output signals nCS[0:4].
2418		 */
2419		.id	= 0x000b6022,
2420		.mask	= 0x000fffff,
2421		.data	= &vendor_lsi,
2422	},
2423	{ 0, 0 },
2424};
2425
2426MODULE_DEVICE_TABLE(amba, pl022_ids);
2427
2428static struct amba_driver pl022_driver = {
2429	.drv = {
2430		.name	= "ssp-pl022",
2431		.pm	= &pl022_dev_pm_ops,
2432	},
2433	.id_table	= pl022_ids,
2434	.probe		= pl022_probe,
2435	.remove		= pl022_remove,
2436};
2437
2438static int __init pl022_init(void)
2439{
2440	return amba_driver_register(&pl022_driver);
2441}
2442subsys_initcall(pl022_init);
2443
2444static void __exit pl022_exit(void)
2445{
2446	amba_driver_unregister(&pl022_driver);
2447}
2448module_exit(pl022_exit);
2449
2450MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2451MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2452MODULE_LICENSE("GPL");
2453