1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015 MediaTek Inc.
4 * Author: Leilk Liu <leilk.liu@mediatek.com>
5 */
6
7#include <linux/clk.h>
8#include <linux/device.h>
9#include <linux/err.h>
10#include <linux/interrupt.h>
11#include <linux/io.h>
12#include <linux/ioport.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/gpio/consumer.h>
16#include <linux/platform_device.h>
17#include <linux/platform_data/spi-mt65xx.h>
18#include <linux/pm_runtime.h>
19#include <linux/spi/spi.h>
20#include <linux/spi/spi-mem.h>
21#include <linux/dma-mapping.h>
22
23#define SPI_CFG0_REG			0x0000
24#define SPI_CFG1_REG			0x0004
25#define SPI_TX_SRC_REG			0x0008
26#define SPI_RX_DST_REG			0x000c
27#define SPI_TX_DATA_REG			0x0010
28#define SPI_RX_DATA_REG			0x0014
29#define SPI_CMD_REG			0x0018
30#define SPI_STATUS0_REG			0x001c
31#define SPI_PAD_SEL_REG			0x0024
32#define SPI_CFG2_REG			0x0028
33#define SPI_TX_SRC_REG_64		0x002c
34#define SPI_RX_DST_REG_64		0x0030
35#define SPI_CFG3_IPM_REG		0x0040
36
37#define SPI_CFG0_SCK_HIGH_OFFSET	0
38#define SPI_CFG0_SCK_LOW_OFFSET		8
39#define SPI_CFG0_CS_HOLD_OFFSET		16
40#define SPI_CFG0_CS_SETUP_OFFSET	24
41#define SPI_ADJUST_CFG0_CS_HOLD_OFFSET	0
42#define SPI_ADJUST_CFG0_CS_SETUP_OFFSET	16
43
44#define SPI_CFG1_CS_IDLE_OFFSET		0
45#define SPI_CFG1_PACKET_LOOP_OFFSET	8
46#define SPI_CFG1_PACKET_LENGTH_OFFSET	16
47#define SPI_CFG1_GET_TICK_DLY_OFFSET	29
48#define SPI_CFG1_GET_TICK_DLY_OFFSET_V1	30
49
50#define SPI_CFG1_GET_TICK_DLY_MASK	0xe0000000
51#define SPI_CFG1_GET_TICK_DLY_MASK_V1	0xc0000000
52
53#define SPI_CFG1_CS_IDLE_MASK		0xff
54#define SPI_CFG1_PACKET_LOOP_MASK	0xff00
55#define SPI_CFG1_PACKET_LENGTH_MASK	0x3ff0000
56#define SPI_CFG1_IPM_PACKET_LENGTH_MASK	GENMASK(31, 16)
57#define SPI_CFG2_SCK_HIGH_OFFSET	0
58#define SPI_CFG2_SCK_LOW_OFFSET		16
59
60#define SPI_CMD_ACT			BIT(0)
61#define SPI_CMD_RESUME			BIT(1)
62#define SPI_CMD_RST			BIT(2)
63#define SPI_CMD_PAUSE_EN		BIT(4)
64#define SPI_CMD_DEASSERT		BIT(5)
65#define SPI_CMD_SAMPLE_SEL		BIT(6)
66#define SPI_CMD_CS_POL			BIT(7)
67#define SPI_CMD_CPHA			BIT(8)
68#define SPI_CMD_CPOL			BIT(9)
69#define SPI_CMD_RX_DMA			BIT(10)
70#define SPI_CMD_TX_DMA			BIT(11)
71#define SPI_CMD_TXMSBF			BIT(12)
72#define SPI_CMD_RXMSBF			BIT(13)
73#define SPI_CMD_RX_ENDIAN		BIT(14)
74#define SPI_CMD_TX_ENDIAN		BIT(15)
75#define SPI_CMD_FINISH_IE		BIT(16)
76#define SPI_CMD_PAUSE_IE		BIT(17)
77#define SPI_CMD_IPM_NONIDLE_MODE	BIT(19)
78#define SPI_CMD_IPM_SPIM_LOOP		BIT(21)
79#define SPI_CMD_IPM_GET_TICKDLY_OFFSET	22
80
81#define SPI_CMD_IPM_GET_TICKDLY_MASK	GENMASK(24, 22)
82
83#define PIN_MODE_CFG(x)	((x) / 2)
84
85#define SPI_CFG3_IPM_HALF_DUPLEX_DIR	BIT(2)
86#define SPI_CFG3_IPM_HALF_DUPLEX_EN	BIT(3)
87#define SPI_CFG3_IPM_XMODE_EN		BIT(4)
88#define SPI_CFG3_IPM_NODATA_FLAG	BIT(5)
89#define SPI_CFG3_IPM_CMD_BYTELEN_OFFSET	8
90#define SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET 12
91
92#define SPI_CFG3_IPM_CMD_PIN_MODE_MASK	GENMASK(1, 0)
93#define SPI_CFG3_IPM_CMD_BYTELEN_MASK	GENMASK(11, 8)
94#define SPI_CFG3_IPM_ADDR_BYTELEN_MASK	GENMASK(15, 12)
95
96#define MT8173_SPI_MAX_PAD_SEL		3
97
98#define MTK_SPI_PAUSE_INT_STATUS	0x2
99
100#define MTK_SPI_MAX_FIFO_SIZE		32U
101#define MTK_SPI_PACKET_SIZE		1024
102#define MTK_SPI_IPM_PACKET_SIZE		SZ_64K
103#define MTK_SPI_IPM_PACKET_LOOP		SZ_256
104
105#define MTK_SPI_IDLE			0
106#define MTK_SPI_PAUSED			1
107
108#define MTK_SPI_32BITS_MASK		(0xffffffff)
109
110#define DMA_ADDR_EXT_BITS		(36)
111#define DMA_ADDR_DEF_BITS		(32)
112
113/**
114 * struct mtk_spi_compatible - device data structure
115 * @need_pad_sel:	Enable pad (pins) selection in SPI controller
116 * @must_tx:		Must explicitly send dummy TX bytes to do RX only transfer
117 * @enhance_timing:	Enable adjusting cfg register to enhance time accuracy
118 * @dma_ext:		DMA address extension supported
119 * @no_need_unprepare:	Don't unprepare the SPI clk during runtime
120 * @ipm_design:		Adjust/extend registers to support IPM design IP features
121 */
122struct mtk_spi_compatible {
123	bool need_pad_sel;
124	bool must_tx;
125	bool enhance_timing;
126	bool dma_ext;
127	bool no_need_unprepare;
128	bool ipm_design;
129};
130
131/**
132 * struct mtk_spi - SPI driver instance
133 * @base:		Start address of the SPI controller registers
134 * @state:		SPI controller state
135 * @pad_num:		Number of pad_sel entries
136 * @pad_sel:		Groups of pins to select
137 * @parent_clk:		Parent of sel_clk
138 * @sel_clk:		SPI master mux clock
139 * @spi_clk:		Peripheral clock
140 * @spi_hclk:		AHB bus clock
141 * @cur_transfer:	Currently processed SPI transfer
142 * @xfer_len:		Number of bytes to transfer
143 * @num_xfered:		Number of transferred bytes
144 * @tx_sgl:		TX transfer scatterlist
145 * @rx_sgl:		RX transfer scatterlist
146 * @tx_sgl_len:		Size of TX DMA transfer
147 * @rx_sgl_len:		Size of RX DMA transfer
148 * @dev_comp:		Device data structure
149 * @spi_clk_hz:		Current SPI clock in Hz
150 * @spimem_done:	SPI-MEM operation completion
151 * @use_spimem:		Enables SPI-MEM
152 * @dev:		Device pointer
153 * @tx_dma:		DMA start for SPI-MEM TX
154 * @rx_dma:		DMA start for SPI-MEM RX
155 */
156struct mtk_spi {
157	void __iomem *base;
158	u32 state;
159	int pad_num;
160	u32 *pad_sel;
161	struct clk *parent_clk, *sel_clk, *spi_clk, *spi_hclk;
162	struct spi_transfer *cur_transfer;
163	u32 xfer_len;
164	u32 num_xfered;
165	struct scatterlist *tx_sgl, *rx_sgl;
166	u32 tx_sgl_len, rx_sgl_len;
167	const struct mtk_spi_compatible *dev_comp;
168	u32 spi_clk_hz;
169	struct completion spimem_done;
170	bool use_spimem;
171	struct device *dev;
172	dma_addr_t tx_dma;
173	dma_addr_t rx_dma;
174};
175
176static const struct mtk_spi_compatible mtk_common_compat;
177
178static const struct mtk_spi_compatible mt2712_compat = {
179	.must_tx = true,
180};
181
182static const struct mtk_spi_compatible mtk_ipm_compat = {
183	.enhance_timing = true,
184	.dma_ext = true,
185	.ipm_design = true,
186};
187
188static const struct mtk_spi_compatible mt6765_compat = {
189	.need_pad_sel = true,
190	.must_tx = true,
191	.enhance_timing = true,
192	.dma_ext = true,
193};
194
195static const struct mtk_spi_compatible mt7622_compat = {
196	.must_tx = true,
197	.enhance_timing = true,
198};
199
200static const struct mtk_spi_compatible mt8173_compat = {
201	.need_pad_sel = true,
202	.must_tx = true,
203};
204
205static const struct mtk_spi_compatible mt8183_compat = {
206	.need_pad_sel = true,
207	.must_tx = true,
208	.enhance_timing = true,
209};
210
211static const struct mtk_spi_compatible mt6893_compat = {
212	.need_pad_sel = true,
213	.must_tx = true,
214	.enhance_timing = true,
215	.dma_ext = true,
216	.no_need_unprepare = true,
217};
218
219/*
220 * A piece of default chip info unless the platform
221 * supplies it.
222 */
223static const struct mtk_chip_config mtk_default_chip_info = {
224	.sample_sel = 0,
225	.tick_delay = 0,
226};
227
228static const struct of_device_id mtk_spi_of_match[] = {
229	{ .compatible = "mediatek,spi-ipm",
230		.data = (void *)&mtk_ipm_compat,
231	},
232	{ .compatible = "mediatek,mt2701-spi",
233		.data = (void *)&mtk_common_compat,
234	},
235	{ .compatible = "mediatek,mt2712-spi",
236		.data = (void *)&mt2712_compat,
237	},
238	{ .compatible = "mediatek,mt6589-spi",
239		.data = (void *)&mtk_common_compat,
240	},
241	{ .compatible = "mediatek,mt6765-spi",
242		.data = (void *)&mt6765_compat,
243	},
244	{ .compatible = "mediatek,mt7622-spi",
245		.data = (void *)&mt7622_compat,
246	},
247	{ .compatible = "mediatek,mt7629-spi",
248		.data = (void *)&mt7622_compat,
249	},
250	{ .compatible = "mediatek,mt8135-spi",
251		.data = (void *)&mtk_common_compat,
252	},
253	{ .compatible = "mediatek,mt8173-spi",
254		.data = (void *)&mt8173_compat,
255	},
256	{ .compatible = "mediatek,mt8183-spi",
257		.data = (void *)&mt8183_compat,
258	},
259	{ .compatible = "mediatek,mt8192-spi",
260		.data = (void *)&mt6765_compat,
261	},
262	{ .compatible = "mediatek,mt6893-spi",
263		.data = (void *)&mt6893_compat,
264	},
265	{}
266};
267MODULE_DEVICE_TABLE(of, mtk_spi_of_match);
268
269static void mtk_spi_reset(struct mtk_spi *mdata)
270{
271	u32 reg_val;
272
273	/* set the software reset bit in SPI_CMD_REG. */
274	reg_val = readl(mdata->base + SPI_CMD_REG);
275	reg_val |= SPI_CMD_RST;
276	writel(reg_val, mdata->base + SPI_CMD_REG);
277
278	reg_val = readl(mdata->base + SPI_CMD_REG);
279	reg_val &= ~SPI_CMD_RST;
280	writel(reg_val, mdata->base + SPI_CMD_REG);
281}
282
283static int mtk_spi_set_hw_cs_timing(struct spi_device *spi)
284{
285	struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
286	struct spi_delay *cs_setup = &spi->cs_setup;
287	struct spi_delay *cs_hold = &spi->cs_hold;
288	struct spi_delay *cs_inactive = &spi->cs_inactive;
289	u32 setup, hold, inactive;
290	u32 reg_val;
291	int delay;
292
293	delay = spi_delay_to_ns(cs_setup, NULL);
294	if (delay < 0)
295		return delay;
296	setup = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
297
298	delay = spi_delay_to_ns(cs_hold, NULL);
299	if (delay < 0)
300		return delay;
301	hold = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
302
303	delay = spi_delay_to_ns(cs_inactive, NULL);
304	if (delay < 0)
305		return delay;
306	inactive = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
307
308	if (hold || setup) {
309		reg_val = readl(mdata->base + SPI_CFG0_REG);
310		if (mdata->dev_comp->enhance_timing) {
311			if (hold) {
312				hold = min_t(u32, hold, 0x10000);
313				reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
314				reg_val |= (((hold - 1) & 0xffff)
315					<< SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
316			}
317			if (setup) {
318				setup = min_t(u32, setup, 0x10000);
319				reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
320				reg_val |= (((setup - 1) & 0xffff)
321					<< SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
322			}
323		} else {
324			if (hold) {
325				hold = min_t(u32, hold, 0x100);
326				reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET);
327				reg_val |= (((hold - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET);
328			}
329			if (setup) {
330				setup = min_t(u32, setup, 0x100);
331				reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET);
332				reg_val |= (((setup - 1) & 0xff)
333					<< SPI_CFG0_CS_SETUP_OFFSET);
334			}
335		}
336		writel(reg_val, mdata->base + SPI_CFG0_REG);
337	}
338
339	if (inactive) {
340		inactive = min_t(u32, inactive, 0x100);
341		reg_val = readl(mdata->base + SPI_CFG1_REG);
342		reg_val &= ~SPI_CFG1_CS_IDLE_MASK;
343		reg_val |= (((inactive - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET);
344		writel(reg_val, mdata->base + SPI_CFG1_REG);
345	}
346
347	return 0;
348}
349
350static int mtk_spi_hw_init(struct spi_master *master,
351			   struct spi_device *spi)
352{
353	u16 cpha, cpol;
354	u32 reg_val;
355	struct mtk_chip_config *chip_config = spi->controller_data;
356	struct mtk_spi *mdata = spi_master_get_devdata(master);
357
358	cpha = spi->mode & SPI_CPHA ? 1 : 0;
359	cpol = spi->mode & SPI_CPOL ? 1 : 0;
360
361	reg_val = readl(mdata->base + SPI_CMD_REG);
362	if (mdata->dev_comp->ipm_design) {
363		/* SPI transfer without idle time until packet length done */
364		reg_val |= SPI_CMD_IPM_NONIDLE_MODE;
365		if (spi->mode & SPI_LOOP)
366			reg_val |= SPI_CMD_IPM_SPIM_LOOP;
367		else
368			reg_val &= ~SPI_CMD_IPM_SPIM_LOOP;
369	}
370
371	if (cpha)
372		reg_val |= SPI_CMD_CPHA;
373	else
374		reg_val &= ~SPI_CMD_CPHA;
375	if (cpol)
376		reg_val |= SPI_CMD_CPOL;
377	else
378		reg_val &= ~SPI_CMD_CPOL;
379
380	/* set the mlsbx and mlsbtx */
381	if (spi->mode & SPI_LSB_FIRST) {
382		reg_val &= ~SPI_CMD_TXMSBF;
383		reg_val &= ~SPI_CMD_RXMSBF;
384	} else {
385		reg_val |= SPI_CMD_TXMSBF;
386		reg_val |= SPI_CMD_RXMSBF;
387	}
388
389	/* set the tx/rx endian */
390#ifdef __LITTLE_ENDIAN
391	reg_val &= ~SPI_CMD_TX_ENDIAN;
392	reg_val &= ~SPI_CMD_RX_ENDIAN;
393#else
394	reg_val |= SPI_CMD_TX_ENDIAN;
395	reg_val |= SPI_CMD_RX_ENDIAN;
396#endif
397
398	if (mdata->dev_comp->enhance_timing) {
399		/* set CS polarity */
400		if (spi->mode & SPI_CS_HIGH)
401			reg_val |= SPI_CMD_CS_POL;
402		else
403			reg_val &= ~SPI_CMD_CS_POL;
404
405		if (chip_config->sample_sel)
406			reg_val |= SPI_CMD_SAMPLE_SEL;
407		else
408			reg_val &= ~SPI_CMD_SAMPLE_SEL;
409	}
410
411	/* set finish and pause interrupt always enable */
412	reg_val |= SPI_CMD_FINISH_IE | SPI_CMD_PAUSE_IE;
413
414	/* disable dma mode */
415	reg_val &= ~(SPI_CMD_TX_DMA | SPI_CMD_RX_DMA);
416
417	/* disable deassert mode */
418	reg_val &= ~SPI_CMD_DEASSERT;
419
420	writel(reg_val, mdata->base + SPI_CMD_REG);
421
422	/* pad select */
423	if (mdata->dev_comp->need_pad_sel)
424		writel(mdata->pad_sel[spi_get_chipselect(spi, 0)],
425		       mdata->base + SPI_PAD_SEL_REG);
426
427	/* tick delay */
428	if (mdata->dev_comp->enhance_timing) {
429		if (mdata->dev_comp->ipm_design) {
430			reg_val = readl(mdata->base + SPI_CMD_REG);
431			reg_val &= ~SPI_CMD_IPM_GET_TICKDLY_MASK;
432			reg_val |= ((chip_config->tick_delay & 0x7)
433				    << SPI_CMD_IPM_GET_TICKDLY_OFFSET);
434			writel(reg_val, mdata->base + SPI_CMD_REG);
435		} else {
436			reg_val = readl(mdata->base + SPI_CFG1_REG);
437			reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK;
438			reg_val |= ((chip_config->tick_delay & 0x7)
439				    << SPI_CFG1_GET_TICK_DLY_OFFSET);
440			writel(reg_val, mdata->base + SPI_CFG1_REG);
441		}
442	} else {
443		reg_val = readl(mdata->base + SPI_CFG1_REG);
444		reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK_V1;
445		reg_val |= ((chip_config->tick_delay & 0x3)
446			    << SPI_CFG1_GET_TICK_DLY_OFFSET_V1);
447		writel(reg_val, mdata->base + SPI_CFG1_REG);
448	}
449
450	/* set hw cs timing */
451	mtk_spi_set_hw_cs_timing(spi);
452	return 0;
453}
454
455static int mtk_spi_prepare_message(struct spi_master *master,
456				   struct spi_message *msg)
457{
458	return mtk_spi_hw_init(master, msg->spi);
459}
460
461static void mtk_spi_set_cs(struct spi_device *spi, bool enable)
462{
463	u32 reg_val;
464	struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
465
466	if (spi->mode & SPI_CS_HIGH)
467		enable = !enable;
468
469	reg_val = readl(mdata->base + SPI_CMD_REG);
470	if (!enable) {
471		reg_val |= SPI_CMD_PAUSE_EN;
472		writel(reg_val, mdata->base + SPI_CMD_REG);
473	} else {
474		reg_val &= ~SPI_CMD_PAUSE_EN;
475		writel(reg_val, mdata->base + SPI_CMD_REG);
476		mdata->state = MTK_SPI_IDLE;
477		mtk_spi_reset(mdata);
478	}
479}
480
481static void mtk_spi_prepare_transfer(struct spi_master *master,
482				     u32 speed_hz)
483{
484	u32 div, sck_time, reg_val;
485	struct mtk_spi *mdata = spi_master_get_devdata(master);
486
487	if (speed_hz < mdata->spi_clk_hz / 2)
488		div = DIV_ROUND_UP(mdata->spi_clk_hz, speed_hz);
489	else
490		div = 1;
491
492	sck_time = (div + 1) / 2;
493
494	if (mdata->dev_comp->enhance_timing) {
495		reg_val = readl(mdata->base + SPI_CFG2_REG);
496		reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET);
497		reg_val |= (((sck_time - 1) & 0xffff)
498			   << SPI_CFG2_SCK_HIGH_OFFSET);
499		reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET);
500		reg_val |= (((sck_time - 1) & 0xffff)
501			   << SPI_CFG2_SCK_LOW_OFFSET);
502		writel(reg_val, mdata->base + SPI_CFG2_REG);
503	} else {
504		reg_val = readl(mdata->base + SPI_CFG0_REG);
505		reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET);
506		reg_val |= (((sck_time - 1) & 0xff)
507			   << SPI_CFG0_SCK_HIGH_OFFSET);
508		reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET);
509		reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET);
510		writel(reg_val, mdata->base + SPI_CFG0_REG);
511	}
512}
513
514static void mtk_spi_setup_packet(struct spi_master *master)
515{
516	u32 packet_size, packet_loop, reg_val;
517	struct mtk_spi *mdata = spi_master_get_devdata(master);
518
519	if (mdata->dev_comp->ipm_design)
520		packet_size = min_t(u32,
521				    mdata->xfer_len,
522				    MTK_SPI_IPM_PACKET_SIZE);
523	else
524		packet_size = min_t(u32,
525				    mdata->xfer_len,
526				    MTK_SPI_PACKET_SIZE);
527
528	packet_loop = mdata->xfer_len / packet_size;
529
530	reg_val = readl(mdata->base + SPI_CFG1_REG);
531	if (mdata->dev_comp->ipm_design)
532		reg_val &= ~SPI_CFG1_IPM_PACKET_LENGTH_MASK;
533	else
534		reg_val &= ~SPI_CFG1_PACKET_LENGTH_MASK;
535	reg_val |= (packet_size - 1) << SPI_CFG1_PACKET_LENGTH_OFFSET;
536	reg_val &= ~SPI_CFG1_PACKET_LOOP_MASK;
537	reg_val |= (packet_loop - 1) << SPI_CFG1_PACKET_LOOP_OFFSET;
538	writel(reg_val, mdata->base + SPI_CFG1_REG);
539}
540
541static void mtk_spi_enable_transfer(struct spi_master *master)
542{
543	u32 cmd;
544	struct mtk_spi *mdata = spi_master_get_devdata(master);
545
546	cmd = readl(mdata->base + SPI_CMD_REG);
547	if (mdata->state == MTK_SPI_IDLE)
548		cmd |= SPI_CMD_ACT;
549	else
550		cmd |= SPI_CMD_RESUME;
551	writel(cmd, mdata->base + SPI_CMD_REG);
552}
553
554static int mtk_spi_get_mult_delta(struct mtk_spi *mdata, u32 xfer_len)
555{
556	u32 mult_delta = 0;
557
558	if (mdata->dev_comp->ipm_design) {
559		if (xfer_len > MTK_SPI_IPM_PACKET_SIZE)
560			mult_delta = xfer_len % MTK_SPI_IPM_PACKET_SIZE;
561	} else {
562		if (xfer_len > MTK_SPI_PACKET_SIZE)
563			mult_delta = xfer_len % MTK_SPI_PACKET_SIZE;
564	}
565
566	return mult_delta;
567}
568
569static void mtk_spi_update_mdata_len(struct spi_master *master)
570{
571	int mult_delta;
572	struct mtk_spi *mdata = spi_master_get_devdata(master);
573
574	if (mdata->tx_sgl_len && mdata->rx_sgl_len) {
575		if (mdata->tx_sgl_len > mdata->rx_sgl_len) {
576			mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len);
577			mdata->xfer_len = mdata->rx_sgl_len - mult_delta;
578			mdata->rx_sgl_len = mult_delta;
579			mdata->tx_sgl_len -= mdata->xfer_len;
580		} else {
581			mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len);
582			mdata->xfer_len = mdata->tx_sgl_len - mult_delta;
583			mdata->tx_sgl_len = mult_delta;
584			mdata->rx_sgl_len -= mdata->xfer_len;
585		}
586	} else if (mdata->tx_sgl_len) {
587		mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len);
588		mdata->xfer_len = mdata->tx_sgl_len - mult_delta;
589		mdata->tx_sgl_len = mult_delta;
590	} else if (mdata->rx_sgl_len) {
591		mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len);
592		mdata->xfer_len = mdata->rx_sgl_len - mult_delta;
593		mdata->rx_sgl_len = mult_delta;
594	}
595}
596
597static void mtk_spi_setup_dma_addr(struct spi_master *master,
598				   struct spi_transfer *xfer)
599{
600	struct mtk_spi *mdata = spi_master_get_devdata(master);
601
602	if (mdata->tx_sgl) {
603		writel((u32)(xfer->tx_dma & MTK_SPI_32BITS_MASK),
604		       mdata->base + SPI_TX_SRC_REG);
605#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
606		if (mdata->dev_comp->dma_ext)
607			writel((u32)(xfer->tx_dma >> 32),
608			       mdata->base + SPI_TX_SRC_REG_64);
609#endif
610	}
611
612	if (mdata->rx_sgl) {
613		writel((u32)(xfer->rx_dma & MTK_SPI_32BITS_MASK),
614		       mdata->base + SPI_RX_DST_REG);
615#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
616		if (mdata->dev_comp->dma_ext)
617			writel((u32)(xfer->rx_dma >> 32),
618			       mdata->base + SPI_RX_DST_REG_64);
619#endif
620	}
621}
622
623static int mtk_spi_fifo_transfer(struct spi_master *master,
624				 struct spi_device *spi,
625				 struct spi_transfer *xfer)
626{
627	int cnt, remainder;
628	u32 reg_val;
629	struct mtk_spi *mdata = spi_master_get_devdata(master);
630
631	mdata->cur_transfer = xfer;
632	mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, xfer->len);
633	mdata->num_xfered = 0;
634	mtk_spi_prepare_transfer(master, xfer->speed_hz);
635	mtk_spi_setup_packet(master);
636
637	if (xfer->tx_buf) {
638		cnt = xfer->len / 4;
639		iowrite32_rep(mdata->base + SPI_TX_DATA_REG, xfer->tx_buf, cnt);
640		remainder = xfer->len % 4;
641		if (remainder > 0) {
642			reg_val = 0;
643			memcpy(&reg_val, xfer->tx_buf + (cnt * 4), remainder);
644			writel(reg_val, mdata->base + SPI_TX_DATA_REG);
645		}
646	}
647
648	mtk_spi_enable_transfer(master);
649
650	return 1;
651}
652
653static int mtk_spi_dma_transfer(struct spi_master *master,
654				struct spi_device *spi,
655				struct spi_transfer *xfer)
656{
657	int cmd;
658	struct mtk_spi *mdata = spi_master_get_devdata(master);
659
660	mdata->tx_sgl = NULL;
661	mdata->rx_sgl = NULL;
662	mdata->tx_sgl_len = 0;
663	mdata->rx_sgl_len = 0;
664	mdata->cur_transfer = xfer;
665	mdata->num_xfered = 0;
666
667	mtk_spi_prepare_transfer(master, xfer->speed_hz);
668
669	cmd = readl(mdata->base + SPI_CMD_REG);
670	if (xfer->tx_buf)
671		cmd |= SPI_CMD_TX_DMA;
672	if (xfer->rx_buf)
673		cmd |= SPI_CMD_RX_DMA;
674	writel(cmd, mdata->base + SPI_CMD_REG);
675
676	if (xfer->tx_buf)
677		mdata->tx_sgl = xfer->tx_sg.sgl;
678	if (xfer->rx_buf)
679		mdata->rx_sgl = xfer->rx_sg.sgl;
680
681	if (mdata->tx_sgl) {
682		xfer->tx_dma = sg_dma_address(mdata->tx_sgl);
683		mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl);
684	}
685	if (mdata->rx_sgl) {
686		xfer->rx_dma = sg_dma_address(mdata->rx_sgl);
687		mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl);
688	}
689
690	mtk_spi_update_mdata_len(master);
691	mtk_spi_setup_packet(master);
692	mtk_spi_setup_dma_addr(master, xfer);
693	mtk_spi_enable_transfer(master);
694
695	return 1;
696}
697
698static int mtk_spi_transfer_one(struct spi_master *master,
699				struct spi_device *spi,
700				struct spi_transfer *xfer)
701{
702	struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
703	u32 reg_val = 0;
704
705	/* prepare xfer direction and duplex mode */
706	if (mdata->dev_comp->ipm_design) {
707		if (!xfer->tx_buf || !xfer->rx_buf) {
708			reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
709			if (xfer->rx_buf)
710				reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
711		}
712		writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
713	}
714
715	if (master->can_dma(master, spi, xfer))
716		return mtk_spi_dma_transfer(master, spi, xfer);
717	else
718		return mtk_spi_fifo_transfer(master, spi, xfer);
719}
720
721static bool mtk_spi_can_dma(struct spi_master *master,
722			    struct spi_device *spi,
723			    struct spi_transfer *xfer)
724{
725	/* Buffers for DMA transactions must be 4-byte aligned */
726	return (xfer->len > MTK_SPI_MAX_FIFO_SIZE &&
727		(unsigned long)xfer->tx_buf % 4 == 0 &&
728		(unsigned long)xfer->rx_buf % 4 == 0);
729}
730
731static int mtk_spi_setup(struct spi_device *spi)
732{
733	struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
734
735	if (!spi->controller_data)
736		spi->controller_data = (void *)&mtk_default_chip_info;
737
738	if (mdata->dev_comp->need_pad_sel && spi_get_csgpiod(spi, 0))
739		/* CS de-asserted, gpiolib will handle inversion */
740		gpiod_direction_output(spi_get_csgpiod(spi, 0), 0);
741
742	return 0;
743}
744
745static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id)
746{
747	u32 cmd, reg_val, cnt, remainder, len;
748	struct spi_master *master = dev_id;
749	struct mtk_spi *mdata = spi_master_get_devdata(master);
750	struct spi_transfer *trans = mdata->cur_transfer;
751
752	reg_val = readl(mdata->base + SPI_STATUS0_REG);
753	if (reg_val & MTK_SPI_PAUSE_INT_STATUS)
754		mdata->state = MTK_SPI_PAUSED;
755	else
756		mdata->state = MTK_SPI_IDLE;
757
758	/* SPI-MEM ops */
759	if (mdata->use_spimem) {
760		complete(&mdata->spimem_done);
761		return IRQ_HANDLED;
762	}
763
764	if (!master->can_dma(master, NULL, trans)) {
765		if (trans->rx_buf) {
766			cnt = mdata->xfer_len / 4;
767			ioread32_rep(mdata->base + SPI_RX_DATA_REG,
768				     trans->rx_buf + mdata->num_xfered, cnt);
769			remainder = mdata->xfer_len % 4;
770			if (remainder > 0) {
771				reg_val = readl(mdata->base + SPI_RX_DATA_REG);
772				memcpy(trans->rx_buf +
773					mdata->num_xfered +
774					(cnt * 4),
775					&reg_val,
776					remainder);
777			}
778		}
779
780		mdata->num_xfered += mdata->xfer_len;
781		if (mdata->num_xfered == trans->len) {
782			spi_finalize_current_transfer(master);
783			return IRQ_HANDLED;
784		}
785
786		len = trans->len - mdata->num_xfered;
787		mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, len);
788		mtk_spi_setup_packet(master);
789
790		if (trans->tx_buf) {
791			cnt = mdata->xfer_len / 4;
792			iowrite32_rep(mdata->base + SPI_TX_DATA_REG,
793					trans->tx_buf + mdata->num_xfered, cnt);
794
795			remainder = mdata->xfer_len % 4;
796			if (remainder > 0) {
797				reg_val = 0;
798				memcpy(&reg_val,
799					trans->tx_buf + (cnt * 4) + mdata->num_xfered,
800					remainder);
801				writel(reg_val, mdata->base + SPI_TX_DATA_REG);
802			}
803		}
804
805		mtk_spi_enable_transfer(master);
806
807		return IRQ_HANDLED;
808	}
809
810	if (mdata->tx_sgl)
811		trans->tx_dma += mdata->xfer_len;
812	if (mdata->rx_sgl)
813		trans->rx_dma += mdata->xfer_len;
814
815	if (mdata->tx_sgl && (mdata->tx_sgl_len == 0)) {
816		mdata->tx_sgl = sg_next(mdata->tx_sgl);
817		if (mdata->tx_sgl) {
818			trans->tx_dma = sg_dma_address(mdata->tx_sgl);
819			mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl);
820		}
821	}
822	if (mdata->rx_sgl && (mdata->rx_sgl_len == 0)) {
823		mdata->rx_sgl = sg_next(mdata->rx_sgl);
824		if (mdata->rx_sgl) {
825			trans->rx_dma = sg_dma_address(mdata->rx_sgl);
826			mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl);
827		}
828	}
829
830	if (!mdata->tx_sgl && !mdata->rx_sgl) {
831		/* spi disable dma */
832		cmd = readl(mdata->base + SPI_CMD_REG);
833		cmd &= ~SPI_CMD_TX_DMA;
834		cmd &= ~SPI_CMD_RX_DMA;
835		writel(cmd, mdata->base + SPI_CMD_REG);
836
837		spi_finalize_current_transfer(master);
838		return IRQ_HANDLED;
839	}
840
841	mtk_spi_update_mdata_len(master);
842	mtk_spi_setup_packet(master);
843	mtk_spi_setup_dma_addr(master, trans);
844	mtk_spi_enable_transfer(master);
845
846	return IRQ_HANDLED;
847}
848
849static int mtk_spi_mem_adjust_op_size(struct spi_mem *mem,
850				      struct spi_mem_op *op)
851{
852	int opcode_len;
853
854	if (op->data.dir != SPI_MEM_NO_DATA) {
855		opcode_len = 1 + op->addr.nbytes + op->dummy.nbytes;
856		if (opcode_len + op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
857			op->data.nbytes = MTK_SPI_IPM_PACKET_SIZE - opcode_len;
858			/* force data buffer dma-aligned. */
859			op->data.nbytes -= op->data.nbytes % 4;
860		}
861	}
862
863	return 0;
864}
865
866static bool mtk_spi_mem_supports_op(struct spi_mem *mem,
867				    const struct spi_mem_op *op)
868{
869	if (!spi_mem_default_supports_op(mem, op))
870		return false;
871
872	if (op->addr.nbytes && op->dummy.nbytes &&
873	    op->addr.buswidth != op->dummy.buswidth)
874		return false;
875
876	if (op->addr.nbytes + op->dummy.nbytes > 16)
877		return false;
878
879	if (op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
880		if (op->data.nbytes / MTK_SPI_IPM_PACKET_SIZE >
881		    MTK_SPI_IPM_PACKET_LOOP ||
882		    op->data.nbytes % MTK_SPI_IPM_PACKET_SIZE != 0)
883			return false;
884	}
885
886	return true;
887}
888
889static void mtk_spi_mem_setup_dma_xfer(struct spi_master *master,
890				       const struct spi_mem_op *op)
891{
892	struct mtk_spi *mdata = spi_master_get_devdata(master);
893
894	writel((u32)(mdata->tx_dma & MTK_SPI_32BITS_MASK),
895	       mdata->base + SPI_TX_SRC_REG);
896#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
897	if (mdata->dev_comp->dma_ext)
898		writel((u32)(mdata->tx_dma >> 32),
899		       mdata->base + SPI_TX_SRC_REG_64);
900#endif
901
902	if (op->data.dir == SPI_MEM_DATA_IN) {
903		writel((u32)(mdata->rx_dma & MTK_SPI_32BITS_MASK),
904		       mdata->base + SPI_RX_DST_REG);
905#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
906		if (mdata->dev_comp->dma_ext)
907			writel((u32)(mdata->rx_dma >> 32),
908			       mdata->base + SPI_RX_DST_REG_64);
909#endif
910	}
911}
912
913static int mtk_spi_transfer_wait(struct spi_mem *mem,
914				 const struct spi_mem_op *op)
915{
916	struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master);
917	/*
918	 * For each byte we wait for 8 cycles of the SPI clock.
919	 * Since speed is defined in Hz and we want milliseconds,
920	 * so it should be 8 * 1000.
921	 */
922	u64 ms = 8000LL;
923
924	if (op->data.dir == SPI_MEM_NO_DATA)
925		ms *= 32; /* prevent we may get 0 for short transfers. */
926	else
927		ms *= op->data.nbytes;
928	ms = div_u64(ms, mem->spi->max_speed_hz);
929	ms += ms + 1000; /* 1s tolerance */
930
931	if (ms > UINT_MAX)
932		ms = UINT_MAX;
933
934	if (!wait_for_completion_timeout(&mdata->spimem_done,
935					 msecs_to_jiffies(ms))) {
936		dev_err(mdata->dev, "spi-mem transfer timeout\n");
937		return -ETIMEDOUT;
938	}
939
940	return 0;
941}
942
943static int mtk_spi_mem_exec_op(struct spi_mem *mem,
944			       const struct spi_mem_op *op)
945{
946	struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master);
947	u32 reg_val, nio, tx_size;
948	char *tx_tmp_buf, *rx_tmp_buf;
949	int ret = 0;
950
951	mdata->use_spimem = true;
952	reinit_completion(&mdata->spimem_done);
953
954	mtk_spi_reset(mdata);
955	mtk_spi_hw_init(mem->spi->master, mem->spi);
956	mtk_spi_prepare_transfer(mem->spi->master, mem->spi->max_speed_hz);
957
958	reg_val = readl(mdata->base + SPI_CFG3_IPM_REG);
959	/* opcode byte len */
960	reg_val &= ~SPI_CFG3_IPM_CMD_BYTELEN_MASK;
961	reg_val |= 1 << SPI_CFG3_IPM_CMD_BYTELEN_OFFSET;
962
963	/* addr & dummy byte len */
964	reg_val &= ~SPI_CFG3_IPM_ADDR_BYTELEN_MASK;
965	if (op->addr.nbytes || op->dummy.nbytes)
966		reg_val |= (op->addr.nbytes + op->dummy.nbytes) <<
967			    SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET;
968
969	/* data byte len */
970	if (op->data.dir == SPI_MEM_NO_DATA) {
971		reg_val |= SPI_CFG3_IPM_NODATA_FLAG;
972		writel(0, mdata->base + SPI_CFG1_REG);
973	} else {
974		reg_val &= ~SPI_CFG3_IPM_NODATA_FLAG;
975		mdata->xfer_len = op->data.nbytes;
976		mtk_spi_setup_packet(mem->spi->master);
977	}
978
979	if (op->addr.nbytes || op->dummy.nbytes) {
980		if (op->addr.buswidth == 1 || op->dummy.buswidth == 1)
981			reg_val |= SPI_CFG3_IPM_XMODE_EN;
982		else
983			reg_val &= ~SPI_CFG3_IPM_XMODE_EN;
984	}
985
986	if (op->addr.buswidth == 2 ||
987	    op->dummy.buswidth == 2 ||
988	    op->data.buswidth == 2)
989		nio = 2;
990	else if (op->addr.buswidth == 4 ||
991		 op->dummy.buswidth == 4 ||
992		 op->data.buswidth == 4)
993		nio = 4;
994	else
995		nio = 1;
996
997	reg_val &= ~SPI_CFG3_IPM_CMD_PIN_MODE_MASK;
998	reg_val |= PIN_MODE_CFG(nio);
999
1000	reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
1001	if (op->data.dir == SPI_MEM_DATA_IN)
1002		reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
1003	else
1004		reg_val &= ~SPI_CFG3_IPM_HALF_DUPLEX_DIR;
1005	writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
1006
1007	tx_size = 1 + op->addr.nbytes + op->dummy.nbytes;
1008	if (op->data.dir == SPI_MEM_DATA_OUT)
1009		tx_size += op->data.nbytes;
1010
1011	tx_size = max_t(u32, tx_size, 32);
1012
1013	tx_tmp_buf = kzalloc(tx_size, GFP_KERNEL | GFP_DMA);
1014	if (!tx_tmp_buf) {
1015		mdata->use_spimem = false;
1016		return -ENOMEM;
1017	}
1018
1019	tx_tmp_buf[0] = op->cmd.opcode;
1020
1021	if (op->addr.nbytes) {
1022		int i;
1023
1024		for (i = 0; i < op->addr.nbytes; i++)
1025			tx_tmp_buf[i + 1] = op->addr.val >>
1026					(8 * (op->addr.nbytes - i - 1));
1027	}
1028
1029	if (op->dummy.nbytes)
1030		memset(tx_tmp_buf + op->addr.nbytes + 1,
1031		       0xff,
1032		       op->dummy.nbytes);
1033
1034	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
1035		memcpy(tx_tmp_buf + op->dummy.nbytes + op->addr.nbytes + 1,
1036		       op->data.buf.out,
1037		       op->data.nbytes);
1038
1039	mdata->tx_dma = dma_map_single(mdata->dev, tx_tmp_buf,
1040				       tx_size, DMA_TO_DEVICE);
1041	if (dma_mapping_error(mdata->dev, mdata->tx_dma)) {
1042		ret = -ENOMEM;
1043		goto err_exit;
1044	}
1045
1046	if (op->data.dir == SPI_MEM_DATA_IN) {
1047		if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) {
1048			rx_tmp_buf = kzalloc(op->data.nbytes,
1049					     GFP_KERNEL | GFP_DMA);
1050			if (!rx_tmp_buf) {
1051				ret = -ENOMEM;
1052				goto unmap_tx_dma;
1053			}
1054		} else {
1055			rx_tmp_buf = op->data.buf.in;
1056		}
1057
1058		mdata->rx_dma = dma_map_single(mdata->dev,
1059					       rx_tmp_buf,
1060					       op->data.nbytes,
1061					       DMA_FROM_DEVICE);
1062		if (dma_mapping_error(mdata->dev, mdata->rx_dma)) {
1063			ret = -ENOMEM;
1064			goto kfree_rx_tmp_buf;
1065		}
1066	}
1067
1068	reg_val = readl(mdata->base + SPI_CMD_REG);
1069	reg_val |= SPI_CMD_TX_DMA;
1070	if (op->data.dir == SPI_MEM_DATA_IN)
1071		reg_val |= SPI_CMD_RX_DMA;
1072	writel(reg_val, mdata->base + SPI_CMD_REG);
1073
1074	mtk_spi_mem_setup_dma_xfer(mem->spi->master, op);
1075
1076	mtk_spi_enable_transfer(mem->spi->master);
1077
1078	/* Wait for the interrupt. */
1079	ret = mtk_spi_transfer_wait(mem, op);
1080	if (ret)
1081		goto unmap_rx_dma;
1082
1083	/* spi disable dma */
1084	reg_val = readl(mdata->base + SPI_CMD_REG);
1085	reg_val &= ~SPI_CMD_TX_DMA;
1086	if (op->data.dir == SPI_MEM_DATA_IN)
1087		reg_val &= ~SPI_CMD_RX_DMA;
1088	writel(reg_val, mdata->base + SPI_CMD_REG);
1089
1090unmap_rx_dma:
1091	if (op->data.dir == SPI_MEM_DATA_IN) {
1092		dma_unmap_single(mdata->dev, mdata->rx_dma,
1093				 op->data.nbytes, DMA_FROM_DEVICE);
1094		if (!IS_ALIGNED((size_t)op->data.buf.in, 4))
1095			memcpy(op->data.buf.in, rx_tmp_buf, op->data.nbytes);
1096	}
1097kfree_rx_tmp_buf:
1098	if (op->data.dir == SPI_MEM_DATA_IN &&
1099	    !IS_ALIGNED((size_t)op->data.buf.in, 4))
1100		kfree(rx_tmp_buf);
1101unmap_tx_dma:
1102	dma_unmap_single(mdata->dev, mdata->tx_dma,
1103			 tx_size, DMA_TO_DEVICE);
1104err_exit:
1105	kfree(tx_tmp_buf);
1106	mdata->use_spimem = false;
1107
1108	return ret;
1109}
1110
1111static const struct spi_controller_mem_ops mtk_spi_mem_ops = {
1112	.adjust_op_size = mtk_spi_mem_adjust_op_size,
1113	.supports_op = mtk_spi_mem_supports_op,
1114	.exec_op = mtk_spi_mem_exec_op,
1115};
1116
1117static int mtk_spi_probe(struct platform_device *pdev)
1118{
1119	struct device *dev = &pdev->dev;
1120	struct spi_master *master;
1121	struct mtk_spi *mdata;
1122	int i, irq, ret, addr_bits;
1123
1124	master = devm_spi_alloc_master(dev, sizeof(*mdata));
1125	if (!master)
1126		return dev_err_probe(dev, -ENOMEM, "failed to alloc spi master\n");
1127
1128	master->auto_runtime_pm = true;
1129	master->dev.of_node = dev->of_node;
1130	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1131
1132	master->set_cs = mtk_spi_set_cs;
1133	master->prepare_message = mtk_spi_prepare_message;
1134	master->transfer_one = mtk_spi_transfer_one;
1135	master->can_dma = mtk_spi_can_dma;
1136	master->setup = mtk_spi_setup;
1137	master->set_cs_timing = mtk_spi_set_hw_cs_timing;
1138	master->use_gpio_descriptors = true;
1139
1140	mdata = spi_master_get_devdata(master);
1141	mdata->dev_comp = device_get_match_data(dev);
1142
1143	if (mdata->dev_comp->enhance_timing)
1144		master->mode_bits |= SPI_CS_HIGH;
1145
1146	if (mdata->dev_comp->must_tx)
1147		master->flags = SPI_CONTROLLER_MUST_TX;
1148	if (mdata->dev_comp->ipm_design)
1149		master->mode_bits |= SPI_LOOP | SPI_RX_DUAL | SPI_TX_DUAL |
1150				     SPI_RX_QUAD | SPI_TX_QUAD;
1151
1152	if (mdata->dev_comp->ipm_design) {
1153		mdata->dev = dev;
1154		master->mem_ops = &mtk_spi_mem_ops;
1155		init_completion(&mdata->spimem_done);
1156	}
1157
1158	if (mdata->dev_comp->need_pad_sel) {
1159		mdata->pad_num = of_property_count_u32_elems(dev->of_node,
1160			"mediatek,pad-select");
1161		if (mdata->pad_num < 0)
1162			return dev_err_probe(dev, -EINVAL,
1163				"No 'mediatek,pad-select' property\n");
1164
1165		mdata->pad_sel = devm_kmalloc_array(dev, mdata->pad_num,
1166						    sizeof(u32), GFP_KERNEL);
1167		if (!mdata->pad_sel)
1168			return -ENOMEM;
1169
1170		for (i = 0; i < mdata->pad_num; i++) {
1171			of_property_read_u32_index(dev->of_node,
1172						   "mediatek,pad-select",
1173						   i, &mdata->pad_sel[i]);
1174			if (mdata->pad_sel[i] > MT8173_SPI_MAX_PAD_SEL)
1175				return dev_err_probe(dev, -EINVAL,
1176						     "wrong pad-sel[%d]: %u\n",
1177						     i, mdata->pad_sel[i]);
1178		}
1179	}
1180
1181	platform_set_drvdata(pdev, master);
1182	mdata->base = devm_platform_ioremap_resource(pdev, 0);
1183	if (IS_ERR(mdata->base))
1184		return PTR_ERR(mdata->base);
1185
1186	irq = platform_get_irq(pdev, 0);
1187	if (irq < 0)
1188		return irq;
1189
1190	if (!dev->dma_mask)
1191		dev->dma_mask = &dev->coherent_dma_mask;
1192
1193	if (mdata->dev_comp->ipm_design)
1194		dma_set_max_seg_size(dev, SZ_16M);
1195	else
1196		dma_set_max_seg_size(dev, SZ_256K);
1197
1198	mdata->parent_clk = devm_clk_get(dev, "parent-clk");
1199	if (IS_ERR(mdata->parent_clk))
1200		return dev_err_probe(dev, PTR_ERR(mdata->parent_clk),
1201				     "failed to get parent-clk\n");
1202
1203	mdata->sel_clk = devm_clk_get(dev, "sel-clk");
1204	if (IS_ERR(mdata->sel_clk))
1205		return dev_err_probe(dev, PTR_ERR(mdata->sel_clk), "failed to get sel-clk\n");
1206
1207	mdata->spi_clk = devm_clk_get(dev, "spi-clk");
1208	if (IS_ERR(mdata->spi_clk))
1209		return dev_err_probe(dev, PTR_ERR(mdata->spi_clk), "failed to get spi-clk\n");
1210
1211	mdata->spi_hclk = devm_clk_get_optional(dev, "hclk");
1212	if (IS_ERR(mdata->spi_hclk))
1213		return dev_err_probe(dev, PTR_ERR(mdata->spi_hclk), "failed to get hclk\n");
1214
1215	ret = clk_set_parent(mdata->sel_clk, mdata->parent_clk);
1216	if (ret < 0)
1217		return dev_err_probe(dev, ret, "failed to clk_set_parent\n");
1218
1219	ret = clk_prepare_enable(mdata->spi_hclk);
1220	if (ret < 0)
1221		return dev_err_probe(dev, ret, "failed to enable hclk\n");
1222
1223	ret = clk_prepare_enable(mdata->spi_clk);
1224	if (ret < 0) {
1225		clk_disable_unprepare(mdata->spi_hclk);
1226		return dev_err_probe(dev, ret, "failed to enable spi_clk\n");
1227	}
1228
1229	mdata->spi_clk_hz = clk_get_rate(mdata->spi_clk);
1230
1231	if (mdata->dev_comp->no_need_unprepare) {
1232		clk_disable(mdata->spi_clk);
1233		clk_disable(mdata->spi_hclk);
1234	} else {
1235		clk_disable_unprepare(mdata->spi_clk);
1236		clk_disable_unprepare(mdata->spi_hclk);
1237	}
1238
1239	if (mdata->dev_comp->need_pad_sel) {
1240		if (mdata->pad_num != master->num_chipselect)
1241			return dev_err_probe(dev, -EINVAL,
1242				"pad_num does not match num_chipselect(%d != %d)\n",
1243				mdata->pad_num, master->num_chipselect);
1244
1245		if (!master->cs_gpiods && master->num_chipselect > 1)
1246			return dev_err_probe(dev, -EINVAL,
1247				"cs_gpios not specified and num_chipselect > 1\n");
1248	}
1249
1250	if (mdata->dev_comp->dma_ext)
1251		addr_bits = DMA_ADDR_EXT_BITS;
1252	else
1253		addr_bits = DMA_ADDR_DEF_BITS;
1254	ret = dma_set_mask(dev, DMA_BIT_MASK(addr_bits));
1255	if (ret)
1256		dev_notice(dev, "SPI dma_set_mask(%d) failed, ret:%d\n",
1257			   addr_bits, ret);
1258
1259	ret = devm_request_irq(dev, irq, mtk_spi_interrupt,
1260			       IRQF_TRIGGER_NONE, dev_name(dev), master);
1261	if (ret)
1262		return dev_err_probe(dev, ret, "failed to register irq\n");
1263
1264	pm_runtime_enable(dev);
1265
1266	ret = devm_spi_register_master(dev, master);
1267	if (ret) {
1268		pm_runtime_disable(dev);
1269		return dev_err_probe(dev, ret, "failed to register master\n");
1270	}
1271
1272	return 0;
1273}
1274
1275static void mtk_spi_remove(struct platform_device *pdev)
1276{
1277	struct spi_master *master = platform_get_drvdata(pdev);
1278	struct mtk_spi *mdata = spi_master_get_devdata(master);
1279	int ret;
1280
1281	if (mdata->use_spimem && !completion_done(&mdata->spimem_done))
1282		complete(&mdata->spimem_done);
1283
1284	ret = pm_runtime_get_sync(&pdev->dev);
1285	if (ret < 0) {
1286		dev_warn(&pdev->dev, "Failed to resume hardware (%pe)\n", ERR_PTR(ret));
1287	} else {
1288		/*
1289		 * If pm runtime resume failed, clks are disabled and
1290		 * unprepared. So don't access the hardware and skip clk
1291		 * unpreparing.
1292		 */
1293		mtk_spi_reset(mdata);
1294
1295		if (mdata->dev_comp->no_need_unprepare) {
1296			clk_unprepare(mdata->spi_clk);
1297			clk_unprepare(mdata->spi_hclk);
1298		}
1299	}
1300
1301	pm_runtime_put_noidle(&pdev->dev);
1302	pm_runtime_disable(&pdev->dev);
1303}
1304
1305#ifdef CONFIG_PM_SLEEP
1306static int mtk_spi_suspend(struct device *dev)
1307{
1308	int ret;
1309	struct spi_master *master = dev_get_drvdata(dev);
1310	struct mtk_spi *mdata = spi_master_get_devdata(master);
1311
1312	ret = spi_master_suspend(master);
1313	if (ret)
1314		return ret;
1315
1316	if (!pm_runtime_suspended(dev)) {
1317		clk_disable_unprepare(mdata->spi_clk);
1318		clk_disable_unprepare(mdata->spi_hclk);
1319	}
1320
1321	return 0;
1322}
1323
1324static int mtk_spi_resume(struct device *dev)
1325{
1326	int ret;
1327	struct spi_master *master = dev_get_drvdata(dev);
1328	struct mtk_spi *mdata = spi_master_get_devdata(master);
1329
1330	if (!pm_runtime_suspended(dev)) {
1331		ret = clk_prepare_enable(mdata->spi_clk);
1332		if (ret < 0) {
1333			dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
1334			return ret;
1335		}
1336
1337		ret = clk_prepare_enable(mdata->spi_hclk);
1338		if (ret < 0) {
1339			dev_err(dev, "failed to enable spi_hclk (%d)\n", ret);
1340			clk_disable_unprepare(mdata->spi_clk);
1341			return ret;
1342		}
1343	}
1344
1345	ret = spi_master_resume(master);
1346	if (ret < 0) {
1347		clk_disable_unprepare(mdata->spi_clk);
1348		clk_disable_unprepare(mdata->spi_hclk);
1349	}
1350
1351	return ret;
1352}
1353#endif /* CONFIG_PM_SLEEP */
1354
1355#ifdef CONFIG_PM
1356static int mtk_spi_runtime_suspend(struct device *dev)
1357{
1358	struct spi_master *master = dev_get_drvdata(dev);
1359	struct mtk_spi *mdata = spi_master_get_devdata(master);
1360
1361	if (mdata->dev_comp->no_need_unprepare) {
1362		clk_disable(mdata->spi_clk);
1363		clk_disable(mdata->spi_hclk);
1364	} else {
1365		clk_disable_unprepare(mdata->spi_clk);
1366		clk_disable_unprepare(mdata->spi_hclk);
1367	}
1368
1369	return 0;
1370}
1371
1372static int mtk_spi_runtime_resume(struct device *dev)
1373{
1374	struct spi_master *master = dev_get_drvdata(dev);
1375	struct mtk_spi *mdata = spi_master_get_devdata(master);
1376	int ret;
1377
1378	if (mdata->dev_comp->no_need_unprepare) {
1379		ret = clk_enable(mdata->spi_clk);
1380		if (ret < 0) {
1381			dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
1382			return ret;
1383		}
1384		ret = clk_enable(mdata->spi_hclk);
1385		if (ret < 0) {
1386			dev_err(dev, "failed to enable spi_hclk (%d)\n", ret);
1387			clk_disable(mdata->spi_clk);
1388			return ret;
1389		}
1390	} else {
1391		ret = clk_prepare_enable(mdata->spi_clk);
1392		if (ret < 0) {
1393			dev_err(dev, "failed to prepare_enable spi_clk (%d)\n", ret);
1394			return ret;
1395		}
1396
1397		ret = clk_prepare_enable(mdata->spi_hclk);
1398		if (ret < 0) {
1399			dev_err(dev, "failed to prepare_enable spi_hclk (%d)\n", ret);
1400			clk_disable_unprepare(mdata->spi_clk);
1401			return ret;
1402		}
1403	}
1404
1405	return 0;
1406}
1407#endif /* CONFIG_PM */
1408
1409static const struct dev_pm_ops mtk_spi_pm = {
1410	SET_SYSTEM_SLEEP_PM_OPS(mtk_spi_suspend, mtk_spi_resume)
1411	SET_RUNTIME_PM_OPS(mtk_spi_runtime_suspend,
1412			   mtk_spi_runtime_resume, NULL)
1413};
1414
1415static struct platform_driver mtk_spi_driver = {
1416	.driver = {
1417		.name = "mtk-spi",
1418		.pm	= &mtk_spi_pm,
1419		.of_match_table = mtk_spi_of_match,
1420	},
1421	.probe = mtk_spi_probe,
1422	.remove_new = mtk_spi_remove,
1423};
1424
1425module_platform_driver(mtk_spi_driver);
1426
1427MODULE_DESCRIPTION("MTK SPI Controller driver");
1428MODULE_AUTHOR("Leilk Liu <leilk.liu@mediatek.com>");
1429MODULE_LICENSE("GPL v2");
1430MODULE_ALIAS("platform:mtk-spi");
1431