162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * Driver for Cirrus Logic EP93xx SPI controller. 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Copyright (C) 2010-2011 Mika Westerberg 662306a36Sopenharmony_ci * 762306a36Sopenharmony_ci * Explicit FIFO handling code was inspired by amba-pl022 driver. 862306a36Sopenharmony_ci * 962306a36Sopenharmony_ci * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. 1062306a36Sopenharmony_ci * 1162306a36Sopenharmony_ci * For more information about the SPI controller see documentation on Cirrus 1262306a36Sopenharmony_ci * Logic web site: 1362306a36Sopenharmony_ci * https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf 1462306a36Sopenharmony_ci */ 1562306a36Sopenharmony_ci 1662306a36Sopenharmony_ci#include <linux/io.h> 1762306a36Sopenharmony_ci#include <linux/clk.h> 1862306a36Sopenharmony_ci#include <linux/err.h> 1962306a36Sopenharmony_ci#include <linux/delay.h> 2062306a36Sopenharmony_ci#include <linux/device.h> 2162306a36Sopenharmony_ci#include <linux/dmaengine.h> 2262306a36Sopenharmony_ci#include <linux/bitops.h> 2362306a36Sopenharmony_ci#include <linux/interrupt.h> 2462306a36Sopenharmony_ci#include <linux/module.h> 2562306a36Sopenharmony_ci#include <linux/platform_device.h> 2662306a36Sopenharmony_ci#include <linux/sched.h> 2762306a36Sopenharmony_ci#include <linux/scatterlist.h> 2862306a36Sopenharmony_ci#include <linux/spi/spi.h> 2962306a36Sopenharmony_ci 3062306a36Sopenharmony_ci#include <linux/platform_data/dma-ep93xx.h> 3162306a36Sopenharmony_ci#include <linux/platform_data/spi-ep93xx.h> 3262306a36Sopenharmony_ci 3362306a36Sopenharmony_ci#define SSPCR0 0x0000 3462306a36Sopenharmony_ci#define SSPCR0_SPO BIT(6) 3562306a36Sopenharmony_ci#define SSPCR0_SPH BIT(7) 3662306a36Sopenharmony_ci#define SSPCR0_SCR_SHIFT 8 3762306a36Sopenharmony_ci 3862306a36Sopenharmony_ci#define SSPCR1 0x0004 3962306a36Sopenharmony_ci#define SSPCR1_RIE BIT(0) 4062306a36Sopenharmony_ci#define SSPCR1_TIE BIT(1) 4162306a36Sopenharmony_ci#define SSPCR1_RORIE BIT(2) 4262306a36Sopenharmony_ci#define SSPCR1_LBM BIT(3) 4362306a36Sopenharmony_ci#define SSPCR1_SSE BIT(4) 4462306a36Sopenharmony_ci#define SSPCR1_MS BIT(5) 4562306a36Sopenharmony_ci#define SSPCR1_SOD BIT(6) 4662306a36Sopenharmony_ci 4762306a36Sopenharmony_ci#define SSPDR 0x0008 4862306a36Sopenharmony_ci 4962306a36Sopenharmony_ci#define SSPSR 0x000c 5062306a36Sopenharmony_ci#define SSPSR_TFE BIT(0) 5162306a36Sopenharmony_ci#define SSPSR_TNF BIT(1) 5262306a36Sopenharmony_ci#define SSPSR_RNE BIT(2) 5362306a36Sopenharmony_ci#define SSPSR_RFF BIT(3) 5462306a36Sopenharmony_ci#define SSPSR_BSY BIT(4) 5562306a36Sopenharmony_ci#define SSPCPSR 0x0010 5662306a36Sopenharmony_ci 5762306a36Sopenharmony_ci#define SSPIIR 0x0014 5862306a36Sopenharmony_ci#define SSPIIR_RIS BIT(0) 5962306a36Sopenharmony_ci#define SSPIIR_TIS BIT(1) 6062306a36Sopenharmony_ci#define SSPIIR_RORIS BIT(2) 6162306a36Sopenharmony_ci#define SSPICR SSPIIR 6262306a36Sopenharmony_ci 6362306a36Sopenharmony_ci/* timeout in milliseconds */ 6462306a36Sopenharmony_ci#define SPI_TIMEOUT 5 6562306a36Sopenharmony_ci/* maximum depth of RX/TX FIFO */ 6662306a36Sopenharmony_ci#define SPI_FIFO_SIZE 8 6762306a36Sopenharmony_ci 6862306a36Sopenharmony_ci/** 6962306a36Sopenharmony_ci * struct ep93xx_spi - EP93xx SPI controller structure 7062306a36Sopenharmony_ci * @clk: clock for the controller 7162306a36Sopenharmony_ci * @mmio: pointer to ioremap()'d registers 7262306a36Sopenharmony_ci * @sspdr_phys: physical address of the SSPDR register 7362306a36Sopenharmony_ci * @tx: current byte in transfer to transmit 7462306a36Sopenharmony_ci * @rx: current byte in transfer to receive 7562306a36Sopenharmony_ci * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one 7662306a36Sopenharmony_ci * frame decreases this level and sending one frame increases it. 7762306a36Sopenharmony_ci * @dma_rx: RX DMA channel 7862306a36Sopenharmony_ci * @dma_tx: TX DMA channel 7962306a36Sopenharmony_ci * @dma_rx_data: RX parameters passed to the DMA engine 8062306a36Sopenharmony_ci * @dma_tx_data: TX parameters passed to the DMA engine 8162306a36Sopenharmony_ci * @rx_sgt: sg table for RX transfers 8262306a36Sopenharmony_ci * @tx_sgt: sg table for TX transfers 8362306a36Sopenharmony_ci * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by 8462306a36Sopenharmony_ci * the client 8562306a36Sopenharmony_ci */ 8662306a36Sopenharmony_cistruct ep93xx_spi { 8762306a36Sopenharmony_ci struct clk *clk; 8862306a36Sopenharmony_ci void __iomem *mmio; 8962306a36Sopenharmony_ci unsigned long sspdr_phys; 9062306a36Sopenharmony_ci size_t tx; 9162306a36Sopenharmony_ci size_t rx; 9262306a36Sopenharmony_ci size_t fifo_level; 9362306a36Sopenharmony_ci struct dma_chan *dma_rx; 9462306a36Sopenharmony_ci struct dma_chan *dma_tx; 9562306a36Sopenharmony_ci struct ep93xx_dma_data dma_rx_data; 9662306a36Sopenharmony_ci struct ep93xx_dma_data dma_tx_data; 9762306a36Sopenharmony_ci struct sg_table rx_sgt; 9862306a36Sopenharmony_ci struct sg_table tx_sgt; 9962306a36Sopenharmony_ci void *zeropage; 10062306a36Sopenharmony_ci}; 10162306a36Sopenharmony_ci 10262306a36Sopenharmony_ci/* converts bits per word to CR0.DSS value */ 10362306a36Sopenharmony_ci#define bits_per_word_to_dss(bpw) ((bpw) - 1) 10462306a36Sopenharmony_ci 10562306a36Sopenharmony_ci/** 10662306a36Sopenharmony_ci * ep93xx_spi_calc_divisors() - calculates SPI clock divisors 10762306a36Sopenharmony_ci * @host: SPI host 10862306a36Sopenharmony_ci * @rate: desired SPI output clock rate 10962306a36Sopenharmony_ci * @div_cpsr: pointer to return the cpsr (pre-scaler) divider 11062306a36Sopenharmony_ci * @div_scr: pointer to return the scr divider 11162306a36Sopenharmony_ci */ 11262306a36Sopenharmony_cistatic int ep93xx_spi_calc_divisors(struct spi_controller *host, 11362306a36Sopenharmony_ci u32 rate, u8 *div_cpsr, u8 *div_scr) 11462306a36Sopenharmony_ci{ 11562306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 11662306a36Sopenharmony_ci unsigned long spi_clk_rate = clk_get_rate(espi->clk); 11762306a36Sopenharmony_ci int cpsr, scr; 11862306a36Sopenharmony_ci 11962306a36Sopenharmony_ci /* 12062306a36Sopenharmony_ci * Make sure that max value is between values supported by the 12162306a36Sopenharmony_ci * controller. 12262306a36Sopenharmony_ci */ 12362306a36Sopenharmony_ci rate = clamp(rate, host->min_speed_hz, host->max_speed_hz); 12462306a36Sopenharmony_ci 12562306a36Sopenharmony_ci /* 12662306a36Sopenharmony_ci * Calculate divisors so that we can get speed according the 12762306a36Sopenharmony_ci * following formula: 12862306a36Sopenharmony_ci * rate = spi_clock_rate / (cpsr * (1 + scr)) 12962306a36Sopenharmony_ci * 13062306a36Sopenharmony_ci * cpsr must be even number and starts from 2, scr can be any number 13162306a36Sopenharmony_ci * between 0 and 255. 13262306a36Sopenharmony_ci */ 13362306a36Sopenharmony_ci for (cpsr = 2; cpsr <= 254; cpsr += 2) { 13462306a36Sopenharmony_ci for (scr = 0; scr <= 255; scr++) { 13562306a36Sopenharmony_ci if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { 13662306a36Sopenharmony_ci *div_scr = (u8)scr; 13762306a36Sopenharmony_ci *div_cpsr = (u8)cpsr; 13862306a36Sopenharmony_ci return 0; 13962306a36Sopenharmony_ci } 14062306a36Sopenharmony_ci } 14162306a36Sopenharmony_ci } 14262306a36Sopenharmony_ci 14362306a36Sopenharmony_ci return -EINVAL; 14462306a36Sopenharmony_ci} 14562306a36Sopenharmony_ci 14662306a36Sopenharmony_cistatic int ep93xx_spi_chip_setup(struct spi_controller *host, 14762306a36Sopenharmony_ci struct spi_device *spi, 14862306a36Sopenharmony_ci struct spi_transfer *xfer) 14962306a36Sopenharmony_ci{ 15062306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 15162306a36Sopenharmony_ci u8 dss = bits_per_word_to_dss(xfer->bits_per_word); 15262306a36Sopenharmony_ci u8 div_cpsr = 0; 15362306a36Sopenharmony_ci u8 div_scr = 0; 15462306a36Sopenharmony_ci u16 cr0; 15562306a36Sopenharmony_ci int err; 15662306a36Sopenharmony_ci 15762306a36Sopenharmony_ci err = ep93xx_spi_calc_divisors(host, xfer->speed_hz, 15862306a36Sopenharmony_ci &div_cpsr, &div_scr); 15962306a36Sopenharmony_ci if (err) 16062306a36Sopenharmony_ci return err; 16162306a36Sopenharmony_ci 16262306a36Sopenharmony_ci cr0 = div_scr << SSPCR0_SCR_SHIFT; 16362306a36Sopenharmony_ci if (spi->mode & SPI_CPOL) 16462306a36Sopenharmony_ci cr0 |= SSPCR0_SPO; 16562306a36Sopenharmony_ci if (spi->mode & SPI_CPHA) 16662306a36Sopenharmony_ci cr0 |= SSPCR0_SPH; 16762306a36Sopenharmony_ci cr0 |= dss; 16862306a36Sopenharmony_ci 16962306a36Sopenharmony_ci dev_dbg(&host->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", 17062306a36Sopenharmony_ci spi->mode, div_cpsr, div_scr, dss); 17162306a36Sopenharmony_ci dev_dbg(&host->dev, "setup: cr0 %#x\n", cr0); 17262306a36Sopenharmony_ci 17362306a36Sopenharmony_ci writel(div_cpsr, espi->mmio + SSPCPSR); 17462306a36Sopenharmony_ci writel(cr0, espi->mmio + SSPCR0); 17562306a36Sopenharmony_ci 17662306a36Sopenharmony_ci return 0; 17762306a36Sopenharmony_ci} 17862306a36Sopenharmony_ci 17962306a36Sopenharmony_cistatic void ep93xx_do_write(struct spi_controller *host) 18062306a36Sopenharmony_ci{ 18162306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 18262306a36Sopenharmony_ci struct spi_transfer *xfer = host->cur_msg->state; 18362306a36Sopenharmony_ci u32 val = 0; 18462306a36Sopenharmony_ci 18562306a36Sopenharmony_ci if (xfer->bits_per_word > 8) { 18662306a36Sopenharmony_ci if (xfer->tx_buf) 18762306a36Sopenharmony_ci val = ((u16 *)xfer->tx_buf)[espi->tx]; 18862306a36Sopenharmony_ci espi->tx += 2; 18962306a36Sopenharmony_ci } else { 19062306a36Sopenharmony_ci if (xfer->tx_buf) 19162306a36Sopenharmony_ci val = ((u8 *)xfer->tx_buf)[espi->tx]; 19262306a36Sopenharmony_ci espi->tx += 1; 19362306a36Sopenharmony_ci } 19462306a36Sopenharmony_ci writel(val, espi->mmio + SSPDR); 19562306a36Sopenharmony_ci} 19662306a36Sopenharmony_ci 19762306a36Sopenharmony_cistatic void ep93xx_do_read(struct spi_controller *host) 19862306a36Sopenharmony_ci{ 19962306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 20062306a36Sopenharmony_ci struct spi_transfer *xfer = host->cur_msg->state; 20162306a36Sopenharmony_ci u32 val; 20262306a36Sopenharmony_ci 20362306a36Sopenharmony_ci val = readl(espi->mmio + SSPDR); 20462306a36Sopenharmony_ci if (xfer->bits_per_word > 8) { 20562306a36Sopenharmony_ci if (xfer->rx_buf) 20662306a36Sopenharmony_ci ((u16 *)xfer->rx_buf)[espi->rx] = val; 20762306a36Sopenharmony_ci espi->rx += 2; 20862306a36Sopenharmony_ci } else { 20962306a36Sopenharmony_ci if (xfer->rx_buf) 21062306a36Sopenharmony_ci ((u8 *)xfer->rx_buf)[espi->rx] = val; 21162306a36Sopenharmony_ci espi->rx += 1; 21262306a36Sopenharmony_ci } 21362306a36Sopenharmony_ci} 21462306a36Sopenharmony_ci 21562306a36Sopenharmony_ci/** 21662306a36Sopenharmony_ci * ep93xx_spi_read_write() - perform next RX/TX transfer 21762306a36Sopenharmony_ci * @host: SPI host 21862306a36Sopenharmony_ci * 21962306a36Sopenharmony_ci * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If 22062306a36Sopenharmony_ci * called several times, the whole transfer will be completed. Returns 22162306a36Sopenharmony_ci * %-EINPROGRESS when current transfer was not yet completed otherwise %0. 22262306a36Sopenharmony_ci * 22362306a36Sopenharmony_ci * When this function is finished, RX FIFO should be empty and TX FIFO should be 22462306a36Sopenharmony_ci * full. 22562306a36Sopenharmony_ci */ 22662306a36Sopenharmony_cistatic int ep93xx_spi_read_write(struct spi_controller *host) 22762306a36Sopenharmony_ci{ 22862306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 22962306a36Sopenharmony_ci struct spi_transfer *xfer = host->cur_msg->state; 23062306a36Sopenharmony_ci 23162306a36Sopenharmony_ci /* read as long as RX FIFO has frames in it */ 23262306a36Sopenharmony_ci while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) { 23362306a36Sopenharmony_ci ep93xx_do_read(host); 23462306a36Sopenharmony_ci espi->fifo_level--; 23562306a36Sopenharmony_ci } 23662306a36Sopenharmony_ci 23762306a36Sopenharmony_ci /* write as long as TX FIFO has room */ 23862306a36Sopenharmony_ci while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) { 23962306a36Sopenharmony_ci ep93xx_do_write(host); 24062306a36Sopenharmony_ci espi->fifo_level++; 24162306a36Sopenharmony_ci } 24262306a36Sopenharmony_ci 24362306a36Sopenharmony_ci if (espi->rx == xfer->len) 24462306a36Sopenharmony_ci return 0; 24562306a36Sopenharmony_ci 24662306a36Sopenharmony_ci return -EINPROGRESS; 24762306a36Sopenharmony_ci} 24862306a36Sopenharmony_ci 24962306a36Sopenharmony_cistatic enum dma_transfer_direction 25062306a36Sopenharmony_ciep93xx_dma_data_to_trans_dir(enum dma_data_direction dir) 25162306a36Sopenharmony_ci{ 25262306a36Sopenharmony_ci switch (dir) { 25362306a36Sopenharmony_ci case DMA_TO_DEVICE: 25462306a36Sopenharmony_ci return DMA_MEM_TO_DEV; 25562306a36Sopenharmony_ci case DMA_FROM_DEVICE: 25662306a36Sopenharmony_ci return DMA_DEV_TO_MEM; 25762306a36Sopenharmony_ci default: 25862306a36Sopenharmony_ci return DMA_TRANS_NONE; 25962306a36Sopenharmony_ci } 26062306a36Sopenharmony_ci} 26162306a36Sopenharmony_ci 26262306a36Sopenharmony_ci/** 26362306a36Sopenharmony_ci * ep93xx_spi_dma_prepare() - prepares a DMA transfer 26462306a36Sopenharmony_ci * @host: SPI host 26562306a36Sopenharmony_ci * @dir: DMA transfer direction 26662306a36Sopenharmony_ci * 26762306a36Sopenharmony_ci * Function configures the DMA, maps the buffer and prepares the DMA 26862306a36Sopenharmony_ci * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR 26962306a36Sopenharmony_ci * in case of failure. 27062306a36Sopenharmony_ci */ 27162306a36Sopenharmony_cistatic struct dma_async_tx_descriptor * 27262306a36Sopenharmony_ciep93xx_spi_dma_prepare(struct spi_controller *host, 27362306a36Sopenharmony_ci enum dma_data_direction dir) 27462306a36Sopenharmony_ci{ 27562306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 27662306a36Sopenharmony_ci struct spi_transfer *xfer = host->cur_msg->state; 27762306a36Sopenharmony_ci struct dma_async_tx_descriptor *txd; 27862306a36Sopenharmony_ci enum dma_slave_buswidth buswidth; 27962306a36Sopenharmony_ci struct dma_slave_config conf; 28062306a36Sopenharmony_ci struct scatterlist *sg; 28162306a36Sopenharmony_ci struct sg_table *sgt; 28262306a36Sopenharmony_ci struct dma_chan *chan; 28362306a36Sopenharmony_ci const void *buf, *pbuf; 28462306a36Sopenharmony_ci size_t len = xfer->len; 28562306a36Sopenharmony_ci int i, ret, nents; 28662306a36Sopenharmony_ci 28762306a36Sopenharmony_ci if (xfer->bits_per_word > 8) 28862306a36Sopenharmony_ci buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 28962306a36Sopenharmony_ci else 29062306a36Sopenharmony_ci buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 29162306a36Sopenharmony_ci 29262306a36Sopenharmony_ci memset(&conf, 0, sizeof(conf)); 29362306a36Sopenharmony_ci conf.direction = ep93xx_dma_data_to_trans_dir(dir); 29462306a36Sopenharmony_ci 29562306a36Sopenharmony_ci if (dir == DMA_FROM_DEVICE) { 29662306a36Sopenharmony_ci chan = espi->dma_rx; 29762306a36Sopenharmony_ci buf = xfer->rx_buf; 29862306a36Sopenharmony_ci sgt = &espi->rx_sgt; 29962306a36Sopenharmony_ci 30062306a36Sopenharmony_ci conf.src_addr = espi->sspdr_phys; 30162306a36Sopenharmony_ci conf.src_addr_width = buswidth; 30262306a36Sopenharmony_ci } else { 30362306a36Sopenharmony_ci chan = espi->dma_tx; 30462306a36Sopenharmony_ci buf = xfer->tx_buf; 30562306a36Sopenharmony_ci sgt = &espi->tx_sgt; 30662306a36Sopenharmony_ci 30762306a36Sopenharmony_ci conf.dst_addr = espi->sspdr_phys; 30862306a36Sopenharmony_ci conf.dst_addr_width = buswidth; 30962306a36Sopenharmony_ci } 31062306a36Sopenharmony_ci 31162306a36Sopenharmony_ci ret = dmaengine_slave_config(chan, &conf); 31262306a36Sopenharmony_ci if (ret) 31362306a36Sopenharmony_ci return ERR_PTR(ret); 31462306a36Sopenharmony_ci 31562306a36Sopenharmony_ci /* 31662306a36Sopenharmony_ci * We need to split the transfer into PAGE_SIZE'd chunks. This is 31762306a36Sopenharmony_ci * because we are using @espi->zeropage to provide a zero RX buffer 31862306a36Sopenharmony_ci * for the TX transfers and we have only allocated one page for that. 31962306a36Sopenharmony_ci * 32062306a36Sopenharmony_ci * For performance reasons we allocate a new sg_table only when 32162306a36Sopenharmony_ci * needed. Otherwise we will re-use the current one. Eventually the 32262306a36Sopenharmony_ci * last sg_table is released in ep93xx_spi_release_dma(). 32362306a36Sopenharmony_ci */ 32462306a36Sopenharmony_ci 32562306a36Sopenharmony_ci nents = DIV_ROUND_UP(len, PAGE_SIZE); 32662306a36Sopenharmony_ci if (nents != sgt->nents) { 32762306a36Sopenharmony_ci sg_free_table(sgt); 32862306a36Sopenharmony_ci 32962306a36Sopenharmony_ci ret = sg_alloc_table(sgt, nents, GFP_KERNEL); 33062306a36Sopenharmony_ci if (ret) 33162306a36Sopenharmony_ci return ERR_PTR(ret); 33262306a36Sopenharmony_ci } 33362306a36Sopenharmony_ci 33462306a36Sopenharmony_ci pbuf = buf; 33562306a36Sopenharmony_ci for_each_sg(sgt->sgl, sg, sgt->nents, i) { 33662306a36Sopenharmony_ci size_t bytes = min_t(size_t, len, PAGE_SIZE); 33762306a36Sopenharmony_ci 33862306a36Sopenharmony_ci if (buf) { 33962306a36Sopenharmony_ci sg_set_page(sg, virt_to_page(pbuf), bytes, 34062306a36Sopenharmony_ci offset_in_page(pbuf)); 34162306a36Sopenharmony_ci } else { 34262306a36Sopenharmony_ci sg_set_page(sg, virt_to_page(espi->zeropage), 34362306a36Sopenharmony_ci bytes, 0); 34462306a36Sopenharmony_ci } 34562306a36Sopenharmony_ci 34662306a36Sopenharmony_ci pbuf += bytes; 34762306a36Sopenharmony_ci len -= bytes; 34862306a36Sopenharmony_ci } 34962306a36Sopenharmony_ci 35062306a36Sopenharmony_ci if (WARN_ON(len)) { 35162306a36Sopenharmony_ci dev_warn(&host->dev, "len = %zu expected 0!\n", len); 35262306a36Sopenharmony_ci return ERR_PTR(-EINVAL); 35362306a36Sopenharmony_ci } 35462306a36Sopenharmony_ci 35562306a36Sopenharmony_ci nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 35662306a36Sopenharmony_ci if (!nents) 35762306a36Sopenharmony_ci return ERR_PTR(-ENOMEM); 35862306a36Sopenharmony_ci 35962306a36Sopenharmony_ci txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction, 36062306a36Sopenharmony_ci DMA_CTRL_ACK); 36162306a36Sopenharmony_ci if (!txd) { 36262306a36Sopenharmony_ci dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 36362306a36Sopenharmony_ci return ERR_PTR(-ENOMEM); 36462306a36Sopenharmony_ci } 36562306a36Sopenharmony_ci return txd; 36662306a36Sopenharmony_ci} 36762306a36Sopenharmony_ci 36862306a36Sopenharmony_ci/** 36962306a36Sopenharmony_ci * ep93xx_spi_dma_finish() - finishes with a DMA transfer 37062306a36Sopenharmony_ci * @host: SPI host 37162306a36Sopenharmony_ci * @dir: DMA transfer direction 37262306a36Sopenharmony_ci * 37362306a36Sopenharmony_ci * Function finishes with the DMA transfer. After this, the DMA buffer is 37462306a36Sopenharmony_ci * unmapped. 37562306a36Sopenharmony_ci */ 37662306a36Sopenharmony_cistatic void ep93xx_spi_dma_finish(struct spi_controller *host, 37762306a36Sopenharmony_ci enum dma_data_direction dir) 37862306a36Sopenharmony_ci{ 37962306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 38062306a36Sopenharmony_ci struct dma_chan *chan; 38162306a36Sopenharmony_ci struct sg_table *sgt; 38262306a36Sopenharmony_ci 38362306a36Sopenharmony_ci if (dir == DMA_FROM_DEVICE) { 38462306a36Sopenharmony_ci chan = espi->dma_rx; 38562306a36Sopenharmony_ci sgt = &espi->rx_sgt; 38662306a36Sopenharmony_ci } else { 38762306a36Sopenharmony_ci chan = espi->dma_tx; 38862306a36Sopenharmony_ci sgt = &espi->tx_sgt; 38962306a36Sopenharmony_ci } 39062306a36Sopenharmony_ci 39162306a36Sopenharmony_ci dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 39262306a36Sopenharmony_ci} 39362306a36Sopenharmony_ci 39462306a36Sopenharmony_cistatic void ep93xx_spi_dma_callback(void *callback_param) 39562306a36Sopenharmony_ci{ 39662306a36Sopenharmony_ci struct spi_controller *host = callback_param; 39762306a36Sopenharmony_ci 39862306a36Sopenharmony_ci ep93xx_spi_dma_finish(host, DMA_TO_DEVICE); 39962306a36Sopenharmony_ci ep93xx_spi_dma_finish(host, DMA_FROM_DEVICE); 40062306a36Sopenharmony_ci 40162306a36Sopenharmony_ci spi_finalize_current_transfer(host); 40262306a36Sopenharmony_ci} 40362306a36Sopenharmony_ci 40462306a36Sopenharmony_cistatic int ep93xx_spi_dma_transfer(struct spi_controller *host) 40562306a36Sopenharmony_ci{ 40662306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 40762306a36Sopenharmony_ci struct dma_async_tx_descriptor *rxd, *txd; 40862306a36Sopenharmony_ci 40962306a36Sopenharmony_ci rxd = ep93xx_spi_dma_prepare(host, DMA_FROM_DEVICE); 41062306a36Sopenharmony_ci if (IS_ERR(rxd)) { 41162306a36Sopenharmony_ci dev_err(&host->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); 41262306a36Sopenharmony_ci return PTR_ERR(rxd); 41362306a36Sopenharmony_ci } 41462306a36Sopenharmony_ci 41562306a36Sopenharmony_ci txd = ep93xx_spi_dma_prepare(host, DMA_TO_DEVICE); 41662306a36Sopenharmony_ci if (IS_ERR(txd)) { 41762306a36Sopenharmony_ci ep93xx_spi_dma_finish(host, DMA_FROM_DEVICE); 41862306a36Sopenharmony_ci dev_err(&host->dev, "DMA TX failed: %ld\n", PTR_ERR(txd)); 41962306a36Sopenharmony_ci return PTR_ERR(txd); 42062306a36Sopenharmony_ci } 42162306a36Sopenharmony_ci 42262306a36Sopenharmony_ci /* We are ready when RX is done */ 42362306a36Sopenharmony_ci rxd->callback = ep93xx_spi_dma_callback; 42462306a36Sopenharmony_ci rxd->callback_param = host; 42562306a36Sopenharmony_ci 42662306a36Sopenharmony_ci /* Now submit both descriptors and start DMA */ 42762306a36Sopenharmony_ci dmaengine_submit(rxd); 42862306a36Sopenharmony_ci dmaengine_submit(txd); 42962306a36Sopenharmony_ci 43062306a36Sopenharmony_ci dma_async_issue_pending(espi->dma_rx); 43162306a36Sopenharmony_ci dma_async_issue_pending(espi->dma_tx); 43262306a36Sopenharmony_ci 43362306a36Sopenharmony_ci /* signal that we need to wait for completion */ 43462306a36Sopenharmony_ci return 1; 43562306a36Sopenharmony_ci} 43662306a36Sopenharmony_ci 43762306a36Sopenharmony_cistatic irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) 43862306a36Sopenharmony_ci{ 43962306a36Sopenharmony_ci struct spi_controller *host = dev_id; 44062306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 44162306a36Sopenharmony_ci u32 val; 44262306a36Sopenharmony_ci 44362306a36Sopenharmony_ci /* 44462306a36Sopenharmony_ci * If we got ROR (receive overrun) interrupt we know that something is 44562306a36Sopenharmony_ci * wrong. Just abort the message. 44662306a36Sopenharmony_ci */ 44762306a36Sopenharmony_ci if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) { 44862306a36Sopenharmony_ci /* clear the overrun interrupt */ 44962306a36Sopenharmony_ci writel(0, espi->mmio + SSPICR); 45062306a36Sopenharmony_ci dev_warn(&host->dev, 45162306a36Sopenharmony_ci "receive overrun, aborting the message\n"); 45262306a36Sopenharmony_ci host->cur_msg->status = -EIO; 45362306a36Sopenharmony_ci } else { 45462306a36Sopenharmony_ci /* 45562306a36Sopenharmony_ci * Interrupt is either RX (RIS) or TX (TIS). For both cases we 45662306a36Sopenharmony_ci * simply execute next data transfer. 45762306a36Sopenharmony_ci */ 45862306a36Sopenharmony_ci if (ep93xx_spi_read_write(host)) { 45962306a36Sopenharmony_ci /* 46062306a36Sopenharmony_ci * In normal case, there still is some processing left 46162306a36Sopenharmony_ci * for current transfer. Let's wait for the next 46262306a36Sopenharmony_ci * interrupt then. 46362306a36Sopenharmony_ci */ 46462306a36Sopenharmony_ci return IRQ_HANDLED; 46562306a36Sopenharmony_ci } 46662306a36Sopenharmony_ci } 46762306a36Sopenharmony_ci 46862306a36Sopenharmony_ci /* 46962306a36Sopenharmony_ci * Current transfer is finished, either with error or with success. In 47062306a36Sopenharmony_ci * any case we disable interrupts and notify the worker to handle 47162306a36Sopenharmony_ci * any post-processing of the message. 47262306a36Sopenharmony_ci */ 47362306a36Sopenharmony_ci val = readl(espi->mmio + SSPCR1); 47462306a36Sopenharmony_ci val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); 47562306a36Sopenharmony_ci writel(val, espi->mmio + SSPCR1); 47662306a36Sopenharmony_ci 47762306a36Sopenharmony_ci spi_finalize_current_transfer(host); 47862306a36Sopenharmony_ci 47962306a36Sopenharmony_ci return IRQ_HANDLED; 48062306a36Sopenharmony_ci} 48162306a36Sopenharmony_ci 48262306a36Sopenharmony_cistatic int ep93xx_spi_transfer_one(struct spi_controller *host, 48362306a36Sopenharmony_ci struct spi_device *spi, 48462306a36Sopenharmony_ci struct spi_transfer *xfer) 48562306a36Sopenharmony_ci{ 48662306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 48762306a36Sopenharmony_ci u32 val; 48862306a36Sopenharmony_ci int ret; 48962306a36Sopenharmony_ci 49062306a36Sopenharmony_ci ret = ep93xx_spi_chip_setup(host, spi, xfer); 49162306a36Sopenharmony_ci if (ret) { 49262306a36Sopenharmony_ci dev_err(&host->dev, "failed to setup chip for transfer\n"); 49362306a36Sopenharmony_ci return ret; 49462306a36Sopenharmony_ci } 49562306a36Sopenharmony_ci 49662306a36Sopenharmony_ci host->cur_msg->state = xfer; 49762306a36Sopenharmony_ci espi->rx = 0; 49862306a36Sopenharmony_ci espi->tx = 0; 49962306a36Sopenharmony_ci 50062306a36Sopenharmony_ci /* 50162306a36Sopenharmony_ci * There is no point of setting up DMA for the transfers which will 50262306a36Sopenharmony_ci * fit into the FIFO and can be transferred with a single interrupt. 50362306a36Sopenharmony_ci * So in these cases we will be using PIO and don't bother for DMA. 50462306a36Sopenharmony_ci */ 50562306a36Sopenharmony_ci if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE) 50662306a36Sopenharmony_ci return ep93xx_spi_dma_transfer(host); 50762306a36Sopenharmony_ci 50862306a36Sopenharmony_ci /* Using PIO so prime the TX FIFO and enable interrupts */ 50962306a36Sopenharmony_ci ep93xx_spi_read_write(host); 51062306a36Sopenharmony_ci 51162306a36Sopenharmony_ci val = readl(espi->mmio + SSPCR1); 51262306a36Sopenharmony_ci val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); 51362306a36Sopenharmony_ci writel(val, espi->mmio + SSPCR1); 51462306a36Sopenharmony_ci 51562306a36Sopenharmony_ci /* signal that we need to wait for completion */ 51662306a36Sopenharmony_ci return 1; 51762306a36Sopenharmony_ci} 51862306a36Sopenharmony_ci 51962306a36Sopenharmony_cistatic int ep93xx_spi_prepare_message(struct spi_controller *host, 52062306a36Sopenharmony_ci struct spi_message *msg) 52162306a36Sopenharmony_ci{ 52262306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 52362306a36Sopenharmony_ci unsigned long timeout; 52462306a36Sopenharmony_ci 52562306a36Sopenharmony_ci /* 52662306a36Sopenharmony_ci * Just to be sure: flush any data from RX FIFO. 52762306a36Sopenharmony_ci */ 52862306a36Sopenharmony_ci timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); 52962306a36Sopenharmony_ci while (readl(espi->mmio + SSPSR) & SSPSR_RNE) { 53062306a36Sopenharmony_ci if (time_after(jiffies, timeout)) { 53162306a36Sopenharmony_ci dev_warn(&host->dev, 53262306a36Sopenharmony_ci "timeout while flushing RX FIFO\n"); 53362306a36Sopenharmony_ci return -ETIMEDOUT; 53462306a36Sopenharmony_ci } 53562306a36Sopenharmony_ci readl(espi->mmio + SSPDR); 53662306a36Sopenharmony_ci } 53762306a36Sopenharmony_ci 53862306a36Sopenharmony_ci /* 53962306a36Sopenharmony_ci * We explicitly handle FIFO level. This way we don't have to check TX 54062306a36Sopenharmony_ci * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. 54162306a36Sopenharmony_ci */ 54262306a36Sopenharmony_ci espi->fifo_level = 0; 54362306a36Sopenharmony_ci 54462306a36Sopenharmony_ci return 0; 54562306a36Sopenharmony_ci} 54662306a36Sopenharmony_ci 54762306a36Sopenharmony_cistatic int ep93xx_spi_prepare_hardware(struct spi_controller *host) 54862306a36Sopenharmony_ci{ 54962306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 55062306a36Sopenharmony_ci u32 val; 55162306a36Sopenharmony_ci int ret; 55262306a36Sopenharmony_ci 55362306a36Sopenharmony_ci ret = clk_prepare_enable(espi->clk); 55462306a36Sopenharmony_ci if (ret) 55562306a36Sopenharmony_ci return ret; 55662306a36Sopenharmony_ci 55762306a36Sopenharmony_ci val = readl(espi->mmio + SSPCR1); 55862306a36Sopenharmony_ci val |= SSPCR1_SSE; 55962306a36Sopenharmony_ci writel(val, espi->mmio + SSPCR1); 56062306a36Sopenharmony_ci 56162306a36Sopenharmony_ci return 0; 56262306a36Sopenharmony_ci} 56362306a36Sopenharmony_ci 56462306a36Sopenharmony_cistatic int ep93xx_spi_unprepare_hardware(struct spi_controller *host) 56562306a36Sopenharmony_ci{ 56662306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 56762306a36Sopenharmony_ci u32 val; 56862306a36Sopenharmony_ci 56962306a36Sopenharmony_ci val = readl(espi->mmio + SSPCR1); 57062306a36Sopenharmony_ci val &= ~SSPCR1_SSE; 57162306a36Sopenharmony_ci writel(val, espi->mmio + SSPCR1); 57262306a36Sopenharmony_ci 57362306a36Sopenharmony_ci clk_disable_unprepare(espi->clk); 57462306a36Sopenharmony_ci 57562306a36Sopenharmony_ci return 0; 57662306a36Sopenharmony_ci} 57762306a36Sopenharmony_ci 57862306a36Sopenharmony_cistatic bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) 57962306a36Sopenharmony_ci{ 58062306a36Sopenharmony_ci if (ep93xx_dma_chan_is_m2p(chan)) 58162306a36Sopenharmony_ci return false; 58262306a36Sopenharmony_ci 58362306a36Sopenharmony_ci chan->private = filter_param; 58462306a36Sopenharmony_ci return true; 58562306a36Sopenharmony_ci} 58662306a36Sopenharmony_ci 58762306a36Sopenharmony_cistatic int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) 58862306a36Sopenharmony_ci{ 58962306a36Sopenharmony_ci dma_cap_mask_t mask; 59062306a36Sopenharmony_ci int ret; 59162306a36Sopenharmony_ci 59262306a36Sopenharmony_ci espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); 59362306a36Sopenharmony_ci if (!espi->zeropage) 59462306a36Sopenharmony_ci return -ENOMEM; 59562306a36Sopenharmony_ci 59662306a36Sopenharmony_ci dma_cap_zero(mask); 59762306a36Sopenharmony_ci dma_cap_set(DMA_SLAVE, mask); 59862306a36Sopenharmony_ci 59962306a36Sopenharmony_ci espi->dma_rx_data.port = EP93XX_DMA_SSP; 60062306a36Sopenharmony_ci espi->dma_rx_data.direction = DMA_DEV_TO_MEM; 60162306a36Sopenharmony_ci espi->dma_rx_data.name = "ep93xx-spi-rx"; 60262306a36Sopenharmony_ci 60362306a36Sopenharmony_ci espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, 60462306a36Sopenharmony_ci &espi->dma_rx_data); 60562306a36Sopenharmony_ci if (!espi->dma_rx) { 60662306a36Sopenharmony_ci ret = -ENODEV; 60762306a36Sopenharmony_ci goto fail_free_page; 60862306a36Sopenharmony_ci } 60962306a36Sopenharmony_ci 61062306a36Sopenharmony_ci espi->dma_tx_data.port = EP93XX_DMA_SSP; 61162306a36Sopenharmony_ci espi->dma_tx_data.direction = DMA_MEM_TO_DEV; 61262306a36Sopenharmony_ci espi->dma_tx_data.name = "ep93xx-spi-tx"; 61362306a36Sopenharmony_ci 61462306a36Sopenharmony_ci espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, 61562306a36Sopenharmony_ci &espi->dma_tx_data); 61662306a36Sopenharmony_ci if (!espi->dma_tx) { 61762306a36Sopenharmony_ci ret = -ENODEV; 61862306a36Sopenharmony_ci goto fail_release_rx; 61962306a36Sopenharmony_ci } 62062306a36Sopenharmony_ci 62162306a36Sopenharmony_ci return 0; 62262306a36Sopenharmony_ci 62362306a36Sopenharmony_cifail_release_rx: 62462306a36Sopenharmony_ci dma_release_channel(espi->dma_rx); 62562306a36Sopenharmony_ci espi->dma_rx = NULL; 62662306a36Sopenharmony_cifail_free_page: 62762306a36Sopenharmony_ci free_page((unsigned long)espi->zeropage); 62862306a36Sopenharmony_ci 62962306a36Sopenharmony_ci return ret; 63062306a36Sopenharmony_ci} 63162306a36Sopenharmony_ci 63262306a36Sopenharmony_cistatic void ep93xx_spi_release_dma(struct ep93xx_spi *espi) 63362306a36Sopenharmony_ci{ 63462306a36Sopenharmony_ci if (espi->dma_rx) { 63562306a36Sopenharmony_ci dma_release_channel(espi->dma_rx); 63662306a36Sopenharmony_ci sg_free_table(&espi->rx_sgt); 63762306a36Sopenharmony_ci } 63862306a36Sopenharmony_ci if (espi->dma_tx) { 63962306a36Sopenharmony_ci dma_release_channel(espi->dma_tx); 64062306a36Sopenharmony_ci sg_free_table(&espi->tx_sgt); 64162306a36Sopenharmony_ci } 64262306a36Sopenharmony_ci 64362306a36Sopenharmony_ci if (espi->zeropage) 64462306a36Sopenharmony_ci free_page((unsigned long)espi->zeropage); 64562306a36Sopenharmony_ci} 64662306a36Sopenharmony_ci 64762306a36Sopenharmony_cistatic int ep93xx_spi_probe(struct platform_device *pdev) 64862306a36Sopenharmony_ci{ 64962306a36Sopenharmony_ci struct spi_controller *host; 65062306a36Sopenharmony_ci struct ep93xx_spi_info *info; 65162306a36Sopenharmony_ci struct ep93xx_spi *espi; 65262306a36Sopenharmony_ci struct resource *res; 65362306a36Sopenharmony_ci int irq; 65462306a36Sopenharmony_ci int error; 65562306a36Sopenharmony_ci 65662306a36Sopenharmony_ci info = dev_get_platdata(&pdev->dev); 65762306a36Sopenharmony_ci if (!info) { 65862306a36Sopenharmony_ci dev_err(&pdev->dev, "missing platform data\n"); 65962306a36Sopenharmony_ci return -EINVAL; 66062306a36Sopenharmony_ci } 66162306a36Sopenharmony_ci 66262306a36Sopenharmony_ci irq = platform_get_irq(pdev, 0); 66362306a36Sopenharmony_ci if (irq < 0) 66462306a36Sopenharmony_ci return irq; 66562306a36Sopenharmony_ci 66662306a36Sopenharmony_ci host = spi_alloc_host(&pdev->dev, sizeof(*espi)); 66762306a36Sopenharmony_ci if (!host) 66862306a36Sopenharmony_ci return -ENOMEM; 66962306a36Sopenharmony_ci 67062306a36Sopenharmony_ci host->use_gpio_descriptors = true; 67162306a36Sopenharmony_ci host->prepare_transfer_hardware = ep93xx_spi_prepare_hardware; 67262306a36Sopenharmony_ci host->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware; 67362306a36Sopenharmony_ci host->prepare_message = ep93xx_spi_prepare_message; 67462306a36Sopenharmony_ci host->transfer_one = ep93xx_spi_transfer_one; 67562306a36Sopenharmony_ci host->bus_num = pdev->id; 67662306a36Sopenharmony_ci host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 67762306a36Sopenharmony_ci host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 67862306a36Sopenharmony_ci /* 67962306a36Sopenharmony_ci * The SPI core will count the number of GPIO descriptors to figure 68062306a36Sopenharmony_ci * out the number of chip selects available on the platform. 68162306a36Sopenharmony_ci */ 68262306a36Sopenharmony_ci host->num_chipselect = 0; 68362306a36Sopenharmony_ci 68462306a36Sopenharmony_ci platform_set_drvdata(pdev, host); 68562306a36Sopenharmony_ci 68662306a36Sopenharmony_ci espi = spi_controller_get_devdata(host); 68762306a36Sopenharmony_ci 68862306a36Sopenharmony_ci espi->clk = devm_clk_get(&pdev->dev, NULL); 68962306a36Sopenharmony_ci if (IS_ERR(espi->clk)) { 69062306a36Sopenharmony_ci dev_err(&pdev->dev, "unable to get spi clock\n"); 69162306a36Sopenharmony_ci error = PTR_ERR(espi->clk); 69262306a36Sopenharmony_ci goto fail_release_host; 69362306a36Sopenharmony_ci } 69462306a36Sopenharmony_ci 69562306a36Sopenharmony_ci /* 69662306a36Sopenharmony_ci * Calculate maximum and minimum supported clock rates 69762306a36Sopenharmony_ci * for the controller. 69862306a36Sopenharmony_ci */ 69962306a36Sopenharmony_ci host->max_speed_hz = clk_get_rate(espi->clk) / 2; 70062306a36Sopenharmony_ci host->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256); 70162306a36Sopenharmony_ci 70262306a36Sopenharmony_ci espi->mmio = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 70362306a36Sopenharmony_ci if (IS_ERR(espi->mmio)) { 70462306a36Sopenharmony_ci error = PTR_ERR(espi->mmio); 70562306a36Sopenharmony_ci goto fail_release_host; 70662306a36Sopenharmony_ci } 70762306a36Sopenharmony_ci espi->sspdr_phys = res->start + SSPDR; 70862306a36Sopenharmony_ci 70962306a36Sopenharmony_ci error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt, 71062306a36Sopenharmony_ci 0, "ep93xx-spi", host); 71162306a36Sopenharmony_ci if (error) { 71262306a36Sopenharmony_ci dev_err(&pdev->dev, "failed to request irq\n"); 71362306a36Sopenharmony_ci goto fail_release_host; 71462306a36Sopenharmony_ci } 71562306a36Sopenharmony_ci 71662306a36Sopenharmony_ci if (info->use_dma && ep93xx_spi_setup_dma(espi)) 71762306a36Sopenharmony_ci dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); 71862306a36Sopenharmony_ci 71962306a36Sopenharmony_ci /* make sure that the hardware is disabled */ 72062306a36Sopenharmony_ci writel(0, espi->mmio + SSPCR1); 72162306a36Sopenharmony_ci 72262306a36Sopenharmony_ci error = devm_spi_register_controller(&pdev->dev, host); 72362306a36Sopenharmony_ci if (error) { 72462306a36Sopenharmony_ci dev_err(&pdev->dev, "failed to register SPI host\n"); 72562306a36Sopenharmony_ci goto fail_free_dma; 72662306a36Sopenharmony_ci } 72762306a36Sopenharmony_ci 72862306a36Sopenharmony_ci dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", 72962306a36Sopenharmony_ci (unsigned long)res->start, irq); 73062306a36Sopenharmony_ci 73162306a36Sopenharmony_ci return 0; 73262306a36Sopenharmony_ci 73362306a36Sopenharmony_cifail_free_dma: 73462306a36Sopenharmony_ci ep93xx_spi_release_dma(espi); 73562306a36Sopenharmony_cifail_release_host: 73662306a36Sopenharmony_ci spi_controller_put(host); 73762306a36Sopenharmony_ci 73862306a36Sopenharmony_ci return error; 73962306a36Sopenharmony_ci} 74062306a36Sopenharmony_ci 74162306a36Sopenharmony_cistatic void ep93xx_spi_remove(struct platform_device *pdev) 74262306a36Sopenharmony_ci{ 74362306a36Sopenharmony_ci struct spi_controller *host = platform_get_drvdata(pdev); 74462306a36Sopenharmony_ci struct ep93xx_spi *espi = spi_controller_get_devdata(host); 74562306a36Sopenharmony_ci 74662306a36Sopenharmony_ci ep93xx_spi_release_dma(espi); 74762306a36Sopenharmony_ci} 74862306a36Sopenharmony_ci 74962306a36Sopenharmony_cistatic struct platform_driver ep93xx_spi_driver = { 75062306a36Sopenharmony_ci .driver = { 75162306a36Sopenharmony_ci .name = "ep93xx-spi", 75262306a36Sopenharmony_ci }, 75362306a36Sopenharmony_ci .probe = ep93xx_spi_probe, 75462306a36Sopenharmony_ci .remove_new = ep93xx_spi_remove, 75562306a36Sopenharmony_ci}; 75662306a36Sopenharmony_cimodule_platform_driver(ep93xx_spi_driver); 75762306a36Sopenharmony_ci 75862306a36Sopenharmony_ciMODULE_DESCRIPTION("EP93xx SPI Controller driver"); 75962306a36Sopenharmony_ciMODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); 76062306a36Sopenharmony_ciMODULE_LICENSE("GPL"); 76162306a36Sopenharmony_ciMODULE_ALIAS("platform:ep93xx-spi"); 762