1// SPDX-License-Identifier: GPL-2.0-only
2//
3// Driver for Cadence QSPI Controller
4//
5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9#include <linux/clk.h>
10#include <linux/completion.h>
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/err.h>
15#include <linux/errno.h>
16#include <linux/firmware/xlnx-zynqmp.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/iopoll.h>
20#include <linux/jiffies.h>
21#include <linux/kernel.h>
22#include <linux/log2.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/reset.h>
28#include <linux/sched.h>
29#include <linux/spi/spi.h>
30#include <linux/spi/spi-mem.h>
31#include <linux/timer.h>
32
33#define CQSPI_NAME			"cadence-qspi"
34#define CQSPI_MAX_CHIPSELECT		16
35
36/* Quirks */
37#define CQSPI_NEEDS_WR_DELAY		BIT(0)
38#define CQSPI_DISABLE_DAC_MODE		BIT(1)
39#define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
40#define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
41#define CQSPI_SLOW_SRAM		BIT(4)
42#define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
43
44/* Capabilities */
45#define CQSPI_SUPPORTS_OCTAL		BIT(0)
46
47#define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
48
49enum {
50	CLK_QSPI_APB = 0,
51	CLK_QSPI_AHB,
52	CLK_QSPI_NUM,
53};
54
55struct cqspi_st;
56
57struct cqspi_flash_pdata {
58	struct cqspi_st	*cqspi;
59	u32		clk_rate;
60	u32		read_delay;
61	u32		tshsl_ns;
62	u32		tsd2d_ns;
63	u32		tchsh_ns;
64	u32		tslch_ns;
65	u8		cs;
66};
67
68struct cqspi_st {
69	struct platform_device	*pdev;
70	struct spi_controller	*host;
71	struct clk		*clk;
72	struct clk		*clks[CLK_QSPI_NUM];
73	unsigned int		sclk;
74
75	void __iomem		*iobase;
76	void __iomem		*ahb_base;
77	resource_size_t		ahb_size;
78	struct completion	transfer_complete;
79
80	struct dma_chan		*rx_chan;
81	struct completion	rx_dma_complete;
82	dma_addr_t		mmap_phys_base;
83
84	int			current_cs;
85	unsigned long		master_ref_clk_hz;
86	bool			is_decoded_cs;
87	u32			fifo_depth;
88	u32			fifo_width;
89	u32			num_chipselect;
90	bool			rclk_en;
91	u32			trigger_address;
92	u32			wr_delay;
93	bool			use_direct_mode;
94	bool			use_direct_mode_wr;
95	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
96	bool			use_dma_read;
97	u32			pd_dev_id;
98	bool			wr_completion;
99	bool			slow_sram;
100	bool			apb_ahb_hazard;
101
102	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
103};
104
105struct cqspi_driver_platdata {
106	u32 hwcaps_mask;
107	u8 quirks;
108	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
109				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
110	u32 (*get_dma_status)(struct cqspi_st *cqspi);
111	int (*jh7110_clk_init)(struct platform_device *pdev,
112			       struct cqspi_st *cqspi);
113};
114
115/* Operation timeout value */
116#define CQSPI_TIMEOUT_MS			500
117#define CQSPI_READ_TIMEOUT_MS			10
118
119#define CQSPI_DUMMY_CLKS_PER_BYTE		8
120#define CQSPI_DUMMY_BYTES_MAX			4
121#define CQSPI_DUMMY_CLKS_MAX			31
122
123#define CQSPI_STIG_DATA_LEN_MAX			8
124
125/* Register map */
126#define CQSPI_REG_CONFIG			0x00
127#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
128#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
129#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
130#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
131#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
132#define CQSPI_REG_CONFIG_BAUD_LSB		19
133#define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
134#define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
135#define CQSPI_REG_CONFIG_IDLE_LSB		31
136#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
137#define CQSPI_REG_CONFIG_BAUD_MASK		0xF
138
139#define CQSPI_REG_RD_INSTR			0x04
140#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
141#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
142#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
143#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
144#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
145#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
146#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
147#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
148#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
149#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
150
151#define CQSPI_REG_WR_INSTR			0x08
152#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
153#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
154#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
155
156#define CQSPI_REG_DELAY				0x0C
157#define CQSPI_REG_DELAY_TSLCH_LSB		0
158#define CQSPI_REG_DELAY_TCHSH_LSB		8
159#define CQSPI_REG_DELAY_TSD2D_LSB		16
160#define CQSPI_REG_DELAY_TSHSL_LSB		24
161#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
162#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
163#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
164#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
165
166#define CQSPI_REG_READCAPTURE			0x10
167#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
168#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
169#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
170
171#define CQSPI_REG_SIZE				0x14
172#define CQSPI_REG_SIZE_ADDRESS_LSB		0
173#define CQSPI_REG_SIZE_PAGE_LSB			4
174#define CQSPI_REG_SIZE_BLOCK_LSB		16
175#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
176#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
177#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
178
179#define CQSPI_REG_SRAMPARTITION			0x18
180#define CQSPI_REG_INDIRECTTRIGGER		0x1C
181
182#define CQSPI_REG_DMA				0x20
183#define CQSPI_REG_DMA_SINGLE_LSB		0
184#define CQSPI_REG_DMA_BURST_LSB			8
185#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
186#define CQSPI_REG_DMA_BURST_MASK		0xFF
187
188#define CQSPI_REG_REMAP				0x24
189#define CQSPI_REG_MODE_BIT			0x28
190
191#define CQSPI_REG_SDRAMLEVEL			0x2C
192#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
193#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
194#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
195#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
196
197#define CQSPI_REG_WR_COMPLETION_CTRL		0x38
198#define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
199
200#define CQSPI_REG_IRQSTATUS			0x40
201#define CQSPI_REG_IRQMASK			0x44
202
203#define CQSPI_REG_INDIRECTRD			0x60
204#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
205#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
206#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
207
208#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
209#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
210#define CQSPI_REG_INDIRECTRDBYTES		0x6C
211
212#define CQSPI_REG_CMDCTRL			0x90
213#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
214#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
215#define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
216#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
217#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
218#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
219#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
220#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
221#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
222#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
223#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
224#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
225#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
226#define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
227
228#define CQSPI_REG_INDIRECTWR			0x70
229#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
230#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
231#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
232
233#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
234#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
235#define CQSPI_REG_INDIRECTWRBYTES		0x7C
236
237#define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
238
239#define CQSPI_REG_CMDADDRESS			0x94
240#define CQSPI_REG_CMDREADDATALOWER		0xA0
241#define CQSPI_REG_CMDREADDATAUPPER		0xA4
242#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
243#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
244
245#define CQSPI_REG_POLLING_STATUS		0xB0
246#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
247
248#define CQSPI_REG_OP_EXT_LOWER			0xE0
249#define CQSPI_REG_OP_EXT_READ_LSB		24
250#define CQSPI_REG_OP_EXT_WRITE_LSB		16
251#define CQSPI_REG_OP_EXT_STIG_LSB		0
252
253#define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
254
255#define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
256#define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
257
258#define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
259
260#define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
261#define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
262#define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
263#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
264
265#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
266
267#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
268#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
269
270/* Interrupt status bits */
271#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
272#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
273#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
274#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
275#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
276#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
277#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
278#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
279
280#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
281					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
282					 CQSPI_REG_IRQ_IND_COMP)
283
284#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
285					 CQSPI_REG_IRQ_WATERMARK	| \
286					 CQSPI_REG_IRQ_UNDERFLOW)
287
288#define CQSPI_IRQ_STATUS_MASK		0x1FFFF
289#define CQSPI_DMA_UNALIGN		0x3
290
291#define CQSPI_REG_VERSAL_DMA_VAL		0x602
292
293static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
294{
295	u32 val;
296
297	return readl_relaxed_poll_timeout(reg, val,
298					  (((clr ? ~val : val) & mask) == mask),
299					  10, CQSPI_TIMEOUT_MS * 1000);
300}
301
302static bool cqspi_is_idle(struct cqspi_st *cqspi)
303{
304	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
305
306	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
307}
308
309static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
310{
311	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
312
313	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
314	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
315}
316
317static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
318{
319	u32 dma_status;
320
321	dma_status = readl(cqspi->iobase +
322					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
323	writel(dma_status, cqspi->iobase +
324		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
325
326	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
327}
328
329static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
330{
331	struct cqspi_st *cqspi = dev;
332	unsigned int irq_status;
333	struct device *device = &cqspi->pdev->dev;
334	const struct cqspi_driver_platdata *ddata;
335
336	ddata = of_device_get_match_data(device);
337
338	/* Read interrupt status */
339	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
340
341	/* Clear interrupt */
342	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
343
344	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
345		if (ddata->get_dma_status(cqspi)) {
346			complete(&cqspi->transfer_complete);
347			return IRQ_HANDLED;
348		}
349	}
350
351	else if (!cqspi->slow_sram)
352		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
353	else
354		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
355
356	if (irq_status)
357		complete(&cqspi->transfer_complete);
358
359	return IRQ_HANDLED;
360}
361
362static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
363{
364	u32 rdreg = 0;
365
366	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
367	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
368	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
369
370	return rdreg;
371}
372
373static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
374{
375	unsigned int dummy_clk;
376
377	if (!op->dummy.nbytes)
378		return 0;
379
380	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
381	if (op->cmd.dtr)
382		dummy_clk /= 2;
383
384	return dummy_clk;
385}
386
387static int cqspi_wait_idle(struct cqspi_st *cqspi)
388{
389	const unsigned int poll_idle_retry = 3;
390	unsigned int count = 0;
391	unsigned long timeout;
392
393	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
394	while (1) {
395		/*
396		 * Read few times in succession to ensure the controller
397		 * is indeed idle, that is, the bit does not transition
398		 * low again.
399		 */
400		if (cqspi_is_idle(cqspi))
401			count++;
402		else
403			count = 0;
404
405		if (count >= poll_idle_retry)
406			return 0;
407
408		if (time_after(jiffies, timeout)) {
409			/* Timeout, in busy mode. */
410			dev_err(&cqspi->pdev->dev,
411				"QSPI is still busy after %dms timeout.\n",
412				CQSPI_TIMEOUT_MS);
413			return -ETIMEDOUT;
414		}
415
416		cpu_relax();
417	}
418}
419
420static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
421{
422	void __iomem *reg_base = cqspi->iobase;
423	int ret;
424
425	/* Write the CMDCTRL without start execution. */
426	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
427	/* Start execute */
428	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
429	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
430
431	/* Polling for completion. */
432	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
433				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
434	if (ret) {
435		dev_err(&cqspi->pdev->dev,
436			"Flash command execution timed out.\n");
437		return ret;
438	}
439
440	/* Polling QSPI idle status. */
441	return cqspi_wait_idle(cqspi);
442}
443
444static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
445				  const struct spi_mem_op *op,
446				  unsigned int shift)
447{
448	struct cqspi_st *cqspi = f_pdata->cqspi;
449	void __iomem *reg_base = cqspi->iobase;
450	unsigned int reg;
451	u8 ext;
452
453	if (op->cmd.nbytes != 2)
454		return -EINVAL;
455
456	/* Opcode extension is the LSB. */
457	ext = op->cmd.opcode & 0xff;
458
459	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
460	reg &= ~(0xff << shift);
461	reg |= ext << shift;
462	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
463
464	return 0;
465}
466
467static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
468			    const struct spi_mem_op *op, unsigned int shift)
469{
470	struct cqspi_st *cqspi = f_pdata->cqspi;
471	void __iomem *reg_base = cqspi->iobase;
472	unsigned int reg;
473	int ret;
474
475	reg = readl(reg_base + CQSPI_REG_CONFIG);
476
477	/*
478	 * We enable dual byte opcode here. The callers have to set up the
479	 * extension opcode based on which type of operation it is.
480	 */
481	if (op->cmd.dtr) {
482		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
483		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
484
485		/* Set up command opcode extension. */
486		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
487		if (ret)
488			return ret;
489	} else {
490		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
491		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
492	}
493
494	writel(reg, reg_base + CQSPI_REG_CONFIG);
495
496	return cqspi_wait_idle(cqspi);
497}
498
499static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
500			      const struct spi_mem_op *op)
501{
502	struct cqspi_st *cqspi = f_pdata->cqspi;
503	void __iomem *reg_base = cqspi->iobase;
504	u8 *rxbuf = op->data.buf.in;
505	u8 opcode;
506	size_t n_rx = op->data.nbytes;
507	unsigned int rdreg;
508	unsigned int reg;
509	unsigned int dummy_clk;
510	size_t read_len;
511	int status;
512
513	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
514	if (status)
515		return status;
516
517	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
518		dev_err(&cqspi->pdev->dev,
519			"Invalid input argument, len %zu rxbuf 0x%p\n",
520			n_rx, rxbuf);
521		return -EINVAL;
522	}
523
524	if (op->cmd.dtr)
525		opcode = op->cmd.opcode >> 8;
526	else
527		opcode = op->cmd.opcode;
528
529	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
530
531	rdreg = cqspi_calc_rdreg(op);
532	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
533
534	dummy_clk = cqspi_calc_dummy(op);
535	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
536		return -EOPNOTSUPP;
537
538	if (dummy_clk)
539		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
540		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
541
542	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
543
544	/* 0 means 1 byte. */
545	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
546		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
547
548	/* setup ADDR BIT field */
549	if (op->addr.nbytes) {
550		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
551		reg |= ((op->addr.nbytes - 1) &
552			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
553			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
554
555		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
556	}
557
558	status = cqspi_exec_flash_cmd(cqspi, reg);
559	if (status)
560		return status;
561
562	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
563
564	/* Put the read value into rx_buf */
565	read_len = (n_rx > 4) ? 4 : n_rx;
566	memcpy(rxbuf, &reg, read_len);
567	rxbuf += read_len;
568
569	if (n_rx > 4) {
570		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
571
572		read_len = n_rx - read_len;
573		memcpy(rxbuf, &reg, read_len);
574	}
575
576	/* Reset CMD_CTRL Reg once command read completes */
577	writel(0, reg_base + CQSPI_REG_CMDCTRL);
578
579	return 0;
580}
581
582static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
583			       const struct spi_mem_op *op)
584{
585	struct cqspi_st *cqspi = f_pdata->cqspi;
586	void __iomem *reg_base = cqspi->iobase;
587	u8 opcode;
588	const u8 *txbuf = op->data.buf.out;
589	size_t n_tx = op->data.nbytes;
590	unsigned int reg;
591	unsigned int data;
592	size_t write_len;
593	int ret;
594
595	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
596	if (ret)
597		return ret;
598
599	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
600		dev_err(&cqspi->pdev->dev,
601			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
602			n_tx, txbuf);
603		return -EINVAL;
604	}
605
606	reg = cqspi_calc_rdreg(op);
607	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
608
609	if (op->cmd.dtr)
610		opcode = op->cmd.opcode >> 8;
611	else
612		opcode = op->cmd.opcode;
613
614	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
615
616	if (op->addr.nbytes) {
617		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
618		reg |= ((op->addr.nbytes - 1) &
619			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
620			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
621
622		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
623	}
624
625	if (n_tx) {
626		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
627		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
628			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
629		data = 0;
630		write_len = (n_tx > 4) ? 4 : n_tx;
631		memcpy(&data, txbuf, write_len);
632		txbuf += write_len;
633		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
634
635		if (n_tx > 4) {
636			data = 0;
637			write_len = n_tx - 4;
638			memcpy(&data, txbuf, write_len);
639			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
640		}
641	}
642
643	ret = cqspi_exec_flash_cmd(cqspi, reg);
644
645	/* Reset CMD_CTRL Reg once command write completes */
646	writel(0, reg_base + CQSPI_REG_CMDCTRL);
647
648	return ret;
649}
650
651static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
652			    const struct spi_mem_op *op)
653{
654	struct cqspi_st *cqspi = f_pdata->cqspi;
655	void __iomem *reg_base = cqspi->iobase;
656	unsigned int dummy_clk = 0;
657	unsigned int reg;
658	int ret;
659	u8 opcode;
660
661	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
662	if (ret)
663		return ret;
664
665	if (op->cmd.dtr)
666		opcode = op->cmd.opcode >> 8;
667	else
668		opcode = op->cmd.opcode;
669
670	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
671	reg |= cqspi_calc_rdreg(op);
672
673	/* Setup dummy clock cycles */
674	dummy_clk = cqspi_calc_dummy(op);
675
676	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
677		return -EOPNOTSUPP;
678
679	if (dummy_clk)
680		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
681		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
682
683	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
684
685	/* Set address width */
686	reg = readl(reg_base + CQSPI_REG_SIZE);
687	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
688	reg |= (op->addr.nbytes - 1);
689	writel(reg, reg_base + CQSPI_REG_SIZE);
690	return 0;
691}
692
693static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
694				       u8 *rxbuf, loff_t from_addr,
695				       const size_t n_rx)
696{
697	struct cqspi_st *cqspi = f_pdata->cqspi;
698	struct device *dev = &cqspi->pdev->dev;
699	void __iomem *reg_base = cqspi->iobase;
700	void __iomem *ahb_base = cqspi->ahb_base;
701	unsigned int remaining = n_rx;
702	unsigned int mod_bytes = n_rx % 4;
703	unsigned int bytes_to_read = 0;
704	u8 *rxbuf_end = rxbuf + n_rx;
705	int ret = 0;
706
707	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
708	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
709
710	/* Clear all interrupts. */
711	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
712
713	/*
714	 * On SoCFPGA platform reading the SRAM is slow due to
715	 * hardware limitation and causing read interrupt storm to CPU,
716	 * so enabling only watermark interrupt to disable all read
717	 * interrupts later as we want to run "bytes to read" loop with
718	 * all the read interrupts disabled for max performance.
719	 */
720
721	if (!cqspi->slow_sram)
722		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
723	else
724		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
725
726	reinit_completion(&cqspi->transfer_complete);
727	writel(CQSPI_REG_INDIRECTRD_START_MASK,
728	       reg_base + CQSPI_REG_INDIRECTRD);
729
730	while (remaining > 0) {
731		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
732						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
733			ret = -ETIMEDOUT;
734
735		/*
736		 * Disable all read interrupts until
737		 * we are out of "bytes to read"
738		 */
739		if (cqspi->slow_sram)
740			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
741
742		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
743
744		if (ret && bytes_to_read == 0) {
745			dev_err(dev, "Indirect read timeout, no bytes\n");
746			goto failrd;
747		}
748
749		while (bytes_to_read != 0) {
750			unsigned int word_remain = round_down(remaining, 4);
751
752			bytes_to_read *= cqspi->fifo_width;
753			bytes_to_read = bytes_to_read > remaining ?
754					remaining : bytes_to_read;
755			bytes_to_read = round_down(bytes_to_read, 4);
756			/* Read 4 byte word chunks then single bytes */
757			if (bytes_to_read) {
758				ioread32_rep(ahb_base, rxbuf,
759					     (bytes_to_read / 4));
760			} else if (!word_remain && mod_bytes) {
761				unsigned int temp = ioread32(ahb_base);
762
763				bytes_to_read = mod_bytes;
764				memcpy(rxbuf, &temp, min((unsigned int)
765							 (rxbuf_end - rxbuf),
766							 bytes_to_read));
767			}
768			rxbuf += bytes_to_read;
769			remaining -= bytes_to_read;
770			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
771		}
772
773		if (remaining > 0) {
774			reinit_completion(&cqspi->transfer_complete);
775			if (cqspi->slow_sram)
776				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
777		}
778	}
779
780	/* Check indirect done status */
781	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
782				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
783	if (ret) {
784		dev_err(dev, "Indirect read completion error (%i)\n", ret);
785		goto failrd;
786	}
787
788	/* Disable interrupt */
789	writel(0, reg_base + CQSPI_REG_IRQMASK);
790
791	/* Clear indirect completion status */
792	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
793
794	return 0;
795
796failrd:
797	/* Disable interrupt */
798	writel(0, reg_base + CQSPI_REG_IRQMASK);
799
800	/* Cancel the indirect read */
801	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
802	       reg_base + CQSPI_REG_INDIRECTRD);
803	return ret;
804}
805
806static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
807{
808	void __iomem *reg_base = cqspi->iobase;
809	unsigned int reg;
810
811	reg = readl(reg_base + CQSPI_REG_CONFIG);
812
813	if (enable)
814		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
815	else
816		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
817
818	writel(reg, reg_base + CQSPI_REG_CONFIG);
819}
820
821static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
822					  u_char *rxbuf, loff_t from_addr,
823					  size_t n_rx)
824{
825	struct cqspi_st *cqspi = f_pdata->cqspi;
826	struct device *dev = &cqspi->pdev->dev;
827	void __iomem *reg_base = cqspi->iobase;
828	u32 reg, bytes_to_dma;
829	loff_t addr = from_addr;
830	void *buf = rxbuf;
831	dma_addr_t dma_addr;
832	u8 bytes_rem;
833	int ret = 0;
834
835	bytes_rem = n_rx % 4;
836	bytes_to_dma = (n_rx - bytes_rem);
837
838	if (!bytes_to_dma)
839		goto nondmard;
840
841	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
842	if (ret)
843		return ret;
844
845	cqspi_controller_enable(cqspi, 0);
846
847	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
848	reg |= CQSPI_REG_CONFIG_DMA_MASK;
849	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
850
851	cqspi_controller_enable(cqspi, 1);
852
853	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
854	if (dma_mapping_error(dev, dma_addr)) {
855		dev_err(dev, "dma mapping failed\n");
856		return -ENOMEM;
857	}
858
859	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
860	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
861	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
862	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
863
864	/* Clear all interrupts. */
865	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
866
867	/* Enable DMA done interrupt */
868	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
869	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
870
871	/* Default DMA periph configuration */
872	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
873
874	/* Configure DMA Dst address */
875	writel(lower_32_bits(dma_addr),
876	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
877	writel(upper_32_bits(dma_addr),
878	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
879
880	/* Configure DMA Src address */
881	writel(cqspi->trigger_address, reg_base +
882	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
883
884	/* Set DMA destination size */
885	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
886
887	/* Set DMA destination control */
888	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
889	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
890
891	writel(CQSPI_REG_INDIRECTRD_START_MASK,
892	       reg_base + CQSPI_REG_INDIRECTRD);
893
894	reinit_completion(&cqspi->transfer_complete);
895
896	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
897					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
898		ret = -ETIMEDOUT;
899		goto failrd;
900	}
901
902	/* Disable DMA interrupt */
903	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
904
905	/* Clear indirect completion status */
906	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
907	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
908	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
909
910	cqspi_controller_enable(cqspi, 0);
911
912	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
913	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
914	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
915
916	cqspi_controller_enable(cqspi, 1);
917
918	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
919					PM_OSPI_MUX_SEL_LINEAR);
920	if (ret)
921		return ret;
922
923nondmard:
924	if (bytes_rem) {
925		addr += bytes_to_dma;
926		buf += bytes_to_dma;
927		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
928						  bytes_rem);
929		if (ret)
930			return ret;
931	}
932
933	return 0;
934
935failrd:
936	/* Disable DMA interrupt */
937	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
938
939	/* Cancel the indirect read */
940	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
941	       reg_base + CQSPI_REG_INDIRECTRD);
942
943	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
944
945	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
946	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
947	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
948
949	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
950
951	return ret;
952}
953
954static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
955			     const struct spi_mem_op *op)
956{
957	unsigned int reg;
958	int ret;
959	struct cqspi_st *cqspi = f_pdata->cqspi;
960	void __iomem *reg_base = cqspi->iobase;
961	u8 opcode;
962
963	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
964	if (ret)
965		return ret;
966
967	if (op->cmd.dtr)
968		opcode = op->cmd.opcode >> 8;
969	else
970		opcode = op->cmd.opcode;
971
972	/* Set opcode. */
973	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
974	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
975	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
976	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
977	reg = cqspi_calc_rdreg(op);
978	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
979
980	/*
981	 * SPI NAND flashes require the address of the status register to be
982	 * passed in the Read SR command. Also, some SPI NOR flashes like the
983	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
984	 * command in DTR mode.
985	 *
986	 * But this controller does not support address phase in the Read SR
987	 * command when doing auto-HW polling. So, disable write completion
988	 * polling on the controller's side. spinand and spi-nor will take
989	 * care of polling the status register.
990	 */
991	if (cqspi->wr_completion) {
992		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
993		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
994		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
995		/*
996		 * DAC mode require auto polling as flash needs to be polled
997		 * for write completion in case of bubble in SPI transaction
998		 * due to slow CPU/DMA master.
999		 */
1000		cqspi->use_direct_mode_wr = false;
1001	}
1002
1003	reg = readl(reg_base + CQSPI_REG_SIZE);
1004	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1005	reg |= (op->addr.nbytes - 1);
1006	writel(reg, reg_base + CQSPI_REG_SIZE);
1007	return 0;
1008}
1009
1010static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1011					loff_t to_addr, const u8 *txbuf,
1012					const size_t n_tx)
1013{
1014	struct cqspi_st *cqspi = f_pdata->cqspi;
1015	struct device *dev = &cqspi->pdev->dev;
1016	void __iomem *reg_base = cqspi->iobase;
1017	unsigned int remaining = n_tx;
1018	unsigned int write_bytes;
1019	int ret;
1020
1021	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1022	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1023
1024	/* Clear all interrupts. */
1025	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1026
1027	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1028
1029	reinit_completion(&cqspi->transfer_complete);
1030	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1031	       reg_base + CQSPI_REG_INDIRECTWR);
1032	/*
1033	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1034	 * Controller programming sequence, couple of cycles of
1035	 * QSPI_REF_CLK delay is required for the above bit to
1036	 * be internally synchronized by the QSPI module. Provide 5
1037	 * cycles of delay.
1038	 */
1039	if (cqspi->wr_delay)
1040		ndelay(cqspi->wr_delay);
1041
1042	/*
1043	 * If a hazard exists between the APB and AHB interfaces, perform a
1044	 * dummy readback from the controller to ensure synchronization.
1045	 */
1046	if (cqspi->apb_ahb_hazard)
1047		readl(reg_base + CQSPI_REG_INDIRECTWR);
1048
1049	while (remaining > 0) {
1050		size_t write_words, mod_bytes;
1051
1052		write_bytes = remaining;
1053		write_words = write_bytes / 4;
1054		mod_bytes = write_bytes % 4;
1055		/* Write 4 bytes at a time then single bytes. */
1056		if (write_words) {
1057			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1058			txbuf += (write_words * 4);
1059		}
1060		if (mod_bytes) {
1061			unsigned int temp = 0xFFFFFFFF;
1062
1063			memcpy(&temp, txbuf, mod_bytes);
1064			iowrite32(temp, cqspi->ahb_base);
1065			txbuf += mod_bytes;
1066		}
1067
1068		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1069						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1070			dev_err(dev, "Indirect write timeout\n");
1071			ret = -ETIMEDOUT;
1072			goto failwr;
1073		}
1074
1075		remaining -= write_bytes;
1076
1077		if (remaining > 0)
1078			reinit_completion(&cqspi->transfer_complete);
1079	}
1080
1081	/* Check indirect done status */
1082	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1083				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1084	if (ret) {
1085		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1086		goto failwr;
1087	}
1088
1089	/* Disable interrupt. */
1090	writel(0, reg_base + CQSPI_REG_IRQMASK);
1091
1092	/* Clear indirect completion status */
1093	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1094
1095	cqspi_wait_idle(cqspi);
1096
1097	return 0;
1098
1099failwr:
1100	/* Disable interrupt. */
1101	writel(0, reg_base + CQSPI_REG_IRQMASK);
1102
1103	/* Cancel the indirect write */
1104	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1105	       reg_base + CQSPI_REG_INDIRECTWR);
1106	return ret;
1107}
1108
1109static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1110{
1111	struct cqspi_st *cqspi = f_pdata->cqspi;
1112	void __iomem *reg_base = cqspi->iobase;
1113	unsigned int chip_select = f_pdata->cs;
1114	unsigned int reg;
1115
1116	reg = readl(reg_base + CQSPI_REG_CONFIG);
1117	if (cqspi->is_decoded_cs) {
1118		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1119	} else {
1120		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1121
1122		/* Convert CS if without decoder.
1123		 * CS0 to 4b'1110
1124		 * CS1 to 4b'1101
1125		 * CS2 to 4b'1011
1126		 * CS3 to 4b'0111
1127		 */
1128		chip_select = 0xF & ~(1 << chip_select);
1129	}
1130
1131	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1132		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1133	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1134	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1135	writel(reg, reg_base + CQSPI_REG_CONFIG);
1136}
1137
1138static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1139					   const unsigned int ns_val)
1140{
1141	unsigned int ticks;
1142
1143	ticks = ref_clk_hz / 1000;	/* kHz */
1144	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1145
1146	return ticks;
1147}
1148
1149static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1150{
1151	struct cqspi_st *cqspi = f_pdata->cqspi;
1152	void __iomem *iobase = cqspi->iobase;
1153	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1154	unsigned int tshsl, tchsh, tslch, tsd2d;
1155	unsigned int reg;
1156	unsigned int tsclk;
1157
1158	/* calculate the number of ref ticks for one sclk tick */
1159	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1160
1161	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1162	/* this particular value must be at least one sclk */
1163	if (tshsl < tsclk)
1164		tshsl = tsclk;
1165
1166	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1167	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1168	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1169
1170	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1171	       << CQSPI_REG_DELAY_TSHSL_LSB;
1172	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1173		<< CQSPI_REG_DELAY_TCHSH_LSB;
1174	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1175		<< CQSPI_REG_DELAY_TSLCH_LSB;
1176	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1177		<< CQSPI_REG_DELAY_TSD2D_LSB;
1178	writel(reg, iobase + CQSPI_REG_DELAY);
1179}
1180
1181static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1182{
1183	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1184	void __iomem *reg_base = cqspi->iobase;
1185	u32 reg, div;
1186
1187	/* Recalculate the baudrate divisor based on QSPI specification. */
1188	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1189
1190	/* Maximum baud divisor */
1191	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1192		div = CQSPI_REG_CONFIG_BAUD_MASK;
1193		dev_warn(&cqspi->pdev->dev,
1194			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1195			cqspi->sclk, ref_clk_hz/((div+1)*2));
1196	}
1197
1198	reg = readl(reg_base + CQSPI_REG_CONFIG);
1199	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1200	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1201	writel(reg, reg_base + CQSPI_REG_CONFIG);
1202}
1203
1204static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1205				   const bool bypass,
1206				   const unsigned int delay)
1207{
1208	void __iomem *reg_base = cqspi->iobase;
1209	unsigned int reg;
1210
1211	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1212
1213	if (bypass)
1214		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1215	else
1216		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1217
1218	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1219		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1220
1221	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1222		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1223
1224	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1225}
1226
1227static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1228			    unsigned long sclk)
1229{
1230	struct cqspi_st *cqspi = f_pdata->cqspi;
1231	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1232	int switch_ck = (cqspi->sclk != sclk);
1233
1234	if (switch_cs || switch_ck)
1235		cqspi_controller_enable(cqspi, 0);
1236
1237	/* Switch chip select. */
1238	if (switch_cs) {
1239		cqspi->current_cs = f_pdata->cs;
1240		cqspi_chipselect(f_pdata);
1241	}
1242
1243	/* Setup baudrate divisor and delays */
1244	if (switch_ck) {
1245		cqspi->sclk = sclk;
1246		cqspi_config_baudrate_div(cqspi);
1247		cqspi_delay(f_pdata);
1248		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1249				       f_pdata->read_delay);
1250	}
1251
1252	if (switch_cs || switch_ck)
1253		cqspi_controller_enable(cqspi, 1);
1254}
1255
1256static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1257			   const struct spi_mem_op *op)
1258{
1259	struct cqspi_st *cqspi = f_pdata->cqspi;
1260	loff_t to = op->addr.val;
1261	size_t len = op->data.nbytes;
1262	const u_char *buf = op->data.buf.out;
1263	int ret;
1264
1265	ret = cqspi_write_setup(f_pdata, op);
1266	if (ret)
1267		return ret;
1268
1269	/*
1270	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1271	 * address (all 0s) with the read status register command in DTR mode.
1272	 * But this controller does not support sending dummy address bytes to
1273	 * the flash when it is polling the write completion register in DTR
1274	 * mode. So, we can not use direct mode when in DTR mode for writing
1275	 * data.
1276	 */
1277	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1278	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1279		memcpy_toio(cqspi->ahb_base + to, buf, len);
1280		return cqspi_wait_idle(cqspi);
1281	}
1282
1283	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1284}
1285
1286static void cqspi_rx_dma_callback(void *param)
1287{
1288	struct cqspi_st *cqspi = param;
1289
1290	complete(&cqspi->rx_dma_complete);
1291}
1292
1293static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1294				     u_char *buf, loff_t from, size_t len)
1295{
1296	struct cqspi_st *cqspi = f_pdata->cqspi;
1297	struct device *dev = &cqspi->pdev->dev;
1298	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1299	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1300	int ret = 0;
1301	struct dma_async_tx_descriptor *tx;
1302	dma_cookie_t cookie;
1303	dma_addr_t dma_dst;
1304	struct device *ddev;
1305
1306	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1307		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1308		return 0;
1309	}
1310
1311	ddev = cqspi->rx_chan->device->dev;
1312	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1313	if (dma_mapping_error(ddev, dma_dst)) {
1314		dev_err(dev, "dma mapping failed\n");
1315		return -ENOMEM;
1316	}
1317	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1318				       len, flags);
1319	if (!tx) {
1320		dev_err(dev, "device_prep_dma_memcpy error\n");
1321		ret = -EIO;
1322		goto err_unmap;
1323	}
1324
1325	tx->callback = cqspi_rx_dma_callback;
1326	tx->callback_param = cqspi;
1327	cookie = tx->tx_submit(tx);
1328	reinit_completion(&cqspi->rx_dma_complete);
1329
1330	ret = dma_submit_error(cookie);
1331	if (ret) {
1332		dev_err(dev, "dma_submit_error %d\n", cookie);
1333		ret = -EIO;
1334		goto err_unmap;
1335	}
1336
1337	dma_async_issue_pending(cqspi->rx_chan);
1338	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1339					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1340		dmaengine_terminate_sync(cqspi->rx_chan);
1341		dev_err(dev, "DMA wait_for_completion_timeout\n");
1342		ret = -ETIMEDOUT;
1343		goto err_unmap;
1344	}
1345
1346err_unmap:
1347	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1348
1349	return ret;
1350}
1351
1352static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1353			  const struct spi_mem_op *op)
1354{
1355	struct cqspi_st *cqspi = f_pdata->cqspi;
1356	struct device *dev = &cqspi->pdev->dev;
1357	const struct cqspi_driver_platdata *ddata;
1358	loff_t from = op->addr.val;
1359	size_t len = op->data.nbytes;
1360	u_char *buf = op->data.buf.in;
1361	u64 dma_align = (u64)(uintptr_t)buf;
1362	int ret;
1363
1364	ddata = of_device_get_match_data(dev);
1365
1366	ret = cqspi_read_setup(f_pdata, op);
1367	if (ret)
1368		return ret;
1369
1370	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1371		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1372
1373	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1374	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1375		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1376
1377	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1378}
1379
1380static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1381{
1382	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1383	struct cqspi_flash_pdata *f_pdata;
1384
1385	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1386	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1387
1388	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1389	/*
1390	 * Performing reads in DAC mode forces to read minimum 4 bytes
1391	 * which is unsupported on some flash devices during register
1392	 * reads, prefer STIG mode for such small reads.
1393	 */
1394		if (!op->addr.nbytes ||
1395		    op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1396			return cqspi_command_read(f_pdata, op);
1397
1398		return cqspi_read(f_pdata, op);
1399	}
1400
1401	if (!op->addr.nbytes || !op->data.buf.out)
1402		return cqspi_command_write(f_pdata, op);
1403
1404	return cqspi_write(f_pdata, op);
1405}
1406
1407static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1408{
1409	int ret;
1410
1411	ret = cqspi_mem_process(mem, op);
1412	if (ret)
1413		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1414
1415	return ret;
1416}
1417
1418static bool cqspi_supports_mem_op(struct spi_mem *mem,
1419				  const struct spi_mem_op *op)
1420{
1421	bool all_true, all_false;
1422
1423	/*
1424	 * op->dummy.dtr is required for converting nbytes into ncycles.
1425	 * Also, don't check the dtr field of the op phase having zero nbytes.
1426	 */
1427	all_true = op->cmd.dtr &&
1428		   (!op->addr.nbytes || op->addr.dtr) &&
1429		   (!op->dummy.nbytes || op->dummy.dtr) &&
1430		   (!op->data.nbytes || op->data.dtr);
1431
1432	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1433		    !op->data.dtr;
1434
1435	if (all_true) {
1436		/* Right now we only support 8-8-8 DTR mode. */
1437		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1438			return false;
1439		if (op->addr.nbytes && op->addr.buswidth != 8)
1440			return false;
1441		if (op->data.nbytes && op->data.buswidth != 8)
1442			return false;
1443	} else if (!all_false) {
1444		/* Mixed DTR modes are not supported. */
1445		return false;
1446	}
1447
1448	return spi_mem_default_supports_op(mem, op);
1449}
1450
1451static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1452				    struct cqspi_flash_pdata *f_pdata,
1453				    struct device_node *np)
1454{
1455	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1456		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1457		return -ENXIO;
1458	}
1459
1460	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1461		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1462		return -ENXIO;
1463	}
1464
1465	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1466		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1467		return -ENXIO;
1468	}
1469
1470	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1471		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1472		return -ENXIO;
1473	}
1474
1475	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1476		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1477		return -ENXIO;
1478	}
1479
1480	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1481		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1482		return -ENXIO;
1483	}
1484
1485	return 0;
1486}
1487
1488static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1489{
1490	struct device *dev = &cqspi->pdev->dev;
1491	struct device_node *np = dev->of_node;
1492	u32 id[2];
1493
1494	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1495
1496	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1497		dev_err(dev, "couldn't determine fifo-depth\n");
1498		return -ENXIO;
1499	}
1500
1501	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1502		dev_err(dev, "couldn't determine fifo-width\n");
1503		return -ENXIO;
1504	}
1505
1506	if (of_property_read_u32(np, "cdns,trigger-address",
1507				 &cqspi->trigger_address)) {
1508		dev_err(dev, "couldn't determine trigger-address\n");
1509		return -ENXIO;
1510	}
1511
1512	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1513		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1514
1515	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1516
1517	if (!of_property_read_u32_array(np, "power-domains", id,
1518					ARRAY_SIZE(id)))
1519		cqspi->pd_dev_id = id[1];
1520
1521	return 0;
1522}
1523
1524static void cqspi_controller_init(struct cqspi_st *cqspi)
1525{
1526	u32 reg;
1527
1528	cqspi_controller_enable(cqspi, 0);
1529
1530	/* Configure the remap address register, no remap */
1531	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1532
1533	/* Disable all interrupts. */
1534	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1535
1536	/* Configure the SRAM split to 1:1 . */
1537	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1538
1539	/* Load indirect trigger address. */
1540	writel(cqspi->trigger_address,
1541	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1542
1543	/* Program read watermark -- 1/2 of the FIFO. */
1544	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1545	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1546	/* Program write watermark -- 1/8 of the FIFO. */
1547	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1548	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1549
1550	/* Disable direct access controller */
1551	if (!cqspi->use_direct_mode) {
1552		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1553		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1554		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1555	}
1556
1557	/* Enable DMA interface */
1558	if (cqspi->use_dma_read) {
1559		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1560		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1561		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1562	}
1563
1564	cqspi_controller_enable(cqspi, 1);
1565}
1566
1567static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1568{
1569	dma_cap_mask_t mask;
1570
1571	dma_cap_zero(mask);
1572	dma_cap_set(DMA_MEMCPY, mask);
1573
1574	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1575	if (IS_ERR(cqspi->rx_chan)) {
1576		int ret = PTR_ERR(cqspi->rx_chan);
1577
1578		cqspi->rx_chan = NULL;
1579		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1580	}
1581	init_completion(&cqspi->rx_dma_complete);
1582
1583	return 0;
1584}
1585
1586static const char *cqspi_get_name(struct spi_mem *mem)
1587{
1588	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1589	struct device *dev = &cqspi->pdev->dev;
1590
1591	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1592			      spi_get_chipselect(mem->spi, 0));
1593}
1594
1595static const struct spi_controller_mem_ops cqspi_mem_ops = {
1596	.exec_op = cqspi_exec_mem_op,
1597	.get_name = cqspi_get_name,
1598	.supports_op = cqspi_supports_mem_op,
1599};
1600
1601static const struct spi_controller_mem_caps cqspi_mem_caps = {
1602	.dtr = true,
1603};
1604
1605static int cqspi_setup_flash(struct cqspi_st *cqspi)
1606{
1607	struct platform_device *pdev = cqspi->pdev;
1608	struct device *dev = &pdev->dev;
1609	struct device_node *np = dev->of_node;
1610	struct cqspi_flash_pdata *f_pdata;
1611	unsigned int cs;
1612	int ret;
1613
1614	/* Get flash device data */
1615	for_each_available_child_of_node(dev->of_node, np) {
1616		ret = of_property_read_u32(np, "reg", &cs);
1617		if (ret) {
1618			dev_err(dev, "Couldn't determine chip select.\n");
1619			of_node_put(np);
1620			return ret;
1621		}
1622
1623		if (cs >= CQSPI_MAX_CHIPSELECT) {
1624			dev_err(dev, "Chip select %d out of range.\n", cs);
1625			of_node_put(np);
1626			return -EINVAL;
1627		}
1628
1629		f_pdata = &cqspi->f_pdata[cs];
1630		f_pdata->cqspi = cqspi;
1631		f_pdata->cs = cs;
1632
1633		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1634		if (ret) {
1635			of_node_put(np);
1636			return ret;
1637		}
1638	}
1639
1640	return 0;
1641}
1642
1643static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1644{
1645	static struct clk_bulk_data qspiclk[] = {
1646		{ .id = "apb" },
1647		{ .id = "ahb" },
1648	};
1649
1650	int ret = 0;
1651
1652	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1653	if (ret) {
1654		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1655		return ret;
1656	}
1657
1658	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1659	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1660
1661	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1662	if (ret) {
1663		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1664		return ret;
1665	}
1666
1667	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1668	if (ret) {
1669		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1670		goto disable_apb_clk;
1671	}
1672
1673	cqspi->is_jh7110 = true;
1674
1675	return 0;
1676
1677disable_apb_clk:
1678	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1679
1680	return ret;
1681}
1682
1683static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1684{
1685	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1686	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1687}
1688static int cqspi_probe(struct platform_device *pdev)
1689{
1690	const struct cqspi_driver_platdata *ddata;
1691	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1692	struct device *dev = &pdev->dev;
1693	struct spi_controller *host;
1694	struct resource *res_ahb;
1695	struct cqspi_st *cqspi;
1696	int ret;
1697	int irq;
1698
1699	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1700	if (!host) {
1701		dev_err(&pdev->dev, "devm_spi_alloc_host failed\n");
1702		return -ENOMEM;
1703	}
1704	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1705	host->mem_ops = &cqspi_mem_ops;
1706	host->mem_caps = &cqspi_mem_caps;
1707	host->dev.of_node = pdev->dev.of_node;
1708
1709	cqspi = spi_controller_get_devdata(host);
1710
1711	cqspi->pdev = pdev;
1712	cqspi->host = host;
1713	cqspi->is_jh7110 = false;
1714	platform_set_drvdata(pdev, cqspi);
1715
1716	/* Obtain configuration from OF. */
1717	ret = cqspi_of_get_pdata(cqspi);
1718	if (ret) {
1719		dev_err(dev, "Cannot get mandatory OF data.\n");
1720		return -ENODEV;
1721	}
1722
1723	/* Obtain QSPI clock. */
1724	cqspi->clk = devm_clk_get(dev, NULL);
1725	if (IS_ERR(cqspi->clk)) {
1726		dev_err(dev, "Cannot claim QSPI clock.\n");
1727		ret = PTR_ERR(cqspi->clk);
1728		return ret;
1729	}
1730
1731	/* Obtain and remap controller address. */
1732	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1733	if (IS_ERR(cqspi->iobase)) {
1734		dev_err(dev, "Cannot remap controller address.\n");
1735		ret = PTR_ERR(cqspi->iobase);
1736		return ret;
1737	}
1738
1739	/* Obtain and remap AHB address. */
1740	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1741	if (IS_ERR(cqspi->ahb_base)) {
1742		dev_err(dev, "Cannot remap AHB address.\n");
1743		ret = PTR_ERR(cqspi->ahb_base);
1744		return ret;
1745	}
1746	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1747	cqspi->ahb_size = resource_size(res_ahb);
1748
1749	init_completion(&cqspi->transfer_complete);
1750
1751	/* Obtain IRQ line. */
1752	irq = platform_get_irq(pdev, 0);
1753	if (irq < 0)
1754		return -ENXIO;
1755
1756	pm_runtime_enable(dev);
1757	ret = pm_runtime_resume_and_get(dev);
1758	if (ret < 0)
1759		goto probe_pm_failed;
1760
1761	ret = clk_prepare_enable(cqspi->clk);
1762	if (ret) {
1763		dev_err(dev, "Cannot enable QSPI clock.\n");
1764		goto probe_clk_failed;
1765	}
1766
1767	/* Obtain QSPI reset control */
1768	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1769	if (IS_ERR(rstc)) {
1770		ret = PTR_ERR(rstc);
1771		dev_err(dev, "Cannot get QSPI reset.\n");
1772		goto probe_reset_failed;
1773	}
1774
1775	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1776	if (IS_ERR(rstc_ocp)) {
1777		ret = PTR_ERR(rstc_ocp);
1778		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1779		goto probe_reset_failed;
1780	}
1781
1782	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1783		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1784		if (IS_ERR(rstc_ref)) {
1785			ret = PTR_ERR(rstc_ref);
1786			dev_err(dev, "Cannot get QSPI REF reset.\n");
1787			goto probe_reset_failed;
1788		}
1789		reset_control_assert(rstc_ref);
1790		reset_control_deassert(rstc_ref);
1791	}
1792
1793	reset_control_assert(rstc);
1794	reset_control_deassert(rstc);
1795
1796	reset_control_assert(rstc_ocp);
1797	reset_control_deassert(rstc_ocp);
1798
1799	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1800	host->max_speed_hz = cqspi->master_ref_clk_hz;
1801
1802	/* write completion is supported by default */
1803	cqspi->wr_completion = true;
1804
1805	ddata  = of_device_get_match_data(dev);
1806	if (ddata) {
1807		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1808			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1809						cqspi->master_ref_clk_hz);
1810		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1811			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1812		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1813			cqspi->use_direct_mode = true;
1814			cqspi->use_direct_mode_wr = true;
1815		}
1816		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1817			cqspi->use_dma_read = true;
1818		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1819			cqspi->wr_completion = false;
1820		if (ddata->quirks & CQSPI_SLOW_SRAM)
1821			cqspi->slow_sram = true;
1822		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1823			cqspi->apb_ahb_hazard = true;
1824
1825		if (ddata->jh7110_clk_init) {
1826			ret = cqspi_jh7110_clk_init(pdev, cqspi);
1827			if (ret)
1828				goto probe_reset_failed;
1829		}
1830
1831		if (of_device_is_compatible(pdev->dev.of_node,
1832					    "xlnx,versal-ospi-1.0")) {
1833			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1834			if (ret)
1835				goto probe_reset_failed;
1836		}
1837	}
1838
1839	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1840			       pdev->name, cqspi);
1841	if (ret) {
1842		dev_err(dev, "Cannot request IRQ.\n");
1843		goto probe_reset_failed;
1844	}
1845
1846	cqspi_wait_idle(cqspi);
1847	cqspi_controller_init(cqspi);
1848	cqspi->current_cs = -1;
1849	cqspi->sclk = 0;
1850
1851	host->num_chipselect = cqspi->num_chipselect;
1852
1853	ret = cqspi_setup_flash(cqspi);
1854	if (ret) {
1855		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1856		goto probe_setup_failed;
1857	}
1858
1859	if (cqspi->use_direct_mode) {
1860		ret = cqspi_request_mmap_dma(cqspi);
1861		if (ret == -EPROBE_DEFER)
1862			goto probe_setup_failed;
1863	}
1864
1865	ret = spi_register_controller(host);
1866	if (ret) {
1867		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1868		goto probe_setup_failed;
1869	}
1870
1871	return 0;
1872probe_setup_failed:
1873	cqspi_controller_enable(cqspi, 0);
1874probe_reset_failed:
1875	if (cqspi->is_jh7110)
1876		cqspi_jh7110_disable_clk(pdev, cqspi);
1877	clk_disable_unprepare(cqspi->clk);
1878probe_clk_failed:
1879	pm_runtime_put_sync(dev);
1880probe_pm_failed:
1881	pm_runtime_disable(dev);
1882	return ret;
1883}
1884
1885static void cqspi_remove(struct platform_device *pdev)
1886{
1887	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1888
1889	spi_unregister_controller(cqspi->host);
1890	cqspi_controller_enable(cqspi, 0);
1891
1892	if (cqspi->rx_chan)
1893		dma_release_channel(cqspi->rx_chan);
1894
1895	clk_disable_unprepare(cqspi->clk);
1896
1897	if (cqspi->is_jh7110)
1898		cqspi_jh7110_disable_clk(pdev, cqspi);
1899
1900	pm_runtime_put_sync(&pdev->dev);
1901	pm_runtime_disable(&pdev->dev);
1902}
1903
1904static int cqspi_suspend(struct device *dev)
1905{
1906	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1907	int ret;
1908
1909	ret = spi_controller_suspend(cqspi->host);
1910	cqspi_controller_enable(cqspi, 0);
1911
1912	clk_disable_unprepare(cqspi->clk);
1913
1914	return ret;
1915}
1916
1917static int cqspi_resume(struct device *dev)
1918{
1919	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1920
1921	clk_prepare_enable(cqspi->clk);
1922	cqspi_wait_idle(cqspi);
1923	cqspi_controller_init(cqspi);
1924
1925	cqspi->current_cs = -1;
1926	cqspi->sclk = 0;
1927
1928	return spi_controller_resume(cqspi->host);
1929}
1930
1931static DEFINE_SIMPLE_DEV_PM_OPS(cqspi_dev_pm_ops, cqspi_suspend, cqspi_resume);
1932
1933static const struct cqspi_driver_platdata cdns_qspi = {
1934	.quirks = CQSPI_DISABLE_DAC_MODE,
1935};
1936
1937static const struct cqspi_driver_platdata k2g_qspi = {
1938	.quirks = CQSPI_NEEDS_WR_DELAY,
1939};
1940
1941static const struct cqspi_driver_platdata am654_ospi = {
1942	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1943	.quirks = CQSPI_NEEDS_WR_DELAY,
1944};
1945
1946static const struct cqspi_driver_platdata intel_lgm_qspi = {
1947	.quirks = CQSPI_DISABLE_DAC_MODE,
1948};
1949
1950static const struct cqspi_driver_platdata socfpga_qspi = {
1951	.quirks = CQSPI_DISABLE_DAC_MODE
1952			| CQSPI_NO_SUPPORT_WR_COMPLETION
1953			| CQSPI_SLOW_SRAM,
1954};
1955
1956static const struct cqspi_driver_platdata versal_ospi = {
1957	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1958	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1959	.indirect_read_dma = cqspi_versal_indirect_read_dma,
1960	.get_dma_status = cqspi_get_versal_dma_status,
1961};
1962
1963static const struct cqspi_driver_platdata jh7110_qspi = {
1964	.quirks = CQSPI_DISABLE_DAC_MODE,
1965	.jh7110_clk_init = cqspi_jh7110_clk_init,
1966};
1967
1968static const struct cqspi_driver_platdata pensando_cdns_qspi = {
1969	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
1970};
1971
1972static const struct of_device_id cqspi_dt_ids[] = {
1973	{
1974		.compatible = "cdns,qspi-nor",
1975		.data = &cdns_qspi,
1976	},
1977	{
1978		.compatible = "ti,k2g-qspi",
1979		.data = &k2g_qspi,
1980	},
1981	{
1982		.compatible = "ti,am654-ospi",
1983		.data = &am654_ospi,
1984	},
1985	{
1986		.compatible = "intel,lgm-qspi",
1987		.data = &intel_lgm_qspi,
1988	},
1989	{
1990		.compatible = "xlnx,versal-ospi-1.0",
1991		.data = &versal_ospi,
1992	},
1993	{
1994		.compatible = "intel,socfpga-qspi",
1995		.data = &socfpga_qspi,
1996	},
1997	{
1998		.compatible = "starfive,jh7110-qspi",
1999		.data = &jh7110_qspi,
2000	},
2001	{
2002		.compatible = "amd,pensando-elba-qspi",
2003		.data = &pensando_cdns_qspi,
2004	},
2005	{ /* end of table */ }
2006};
2007
2008MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2009
2010static struct platform_driver cqspi_platform_driver = {
2011	.probe = cqspi_probe,
2012	.remove_new = cqspi_remove,
2013	.driver = {
2014		.name = CQSPI_NAME,
2015		.pm = &cqspi_dev_pm_ops,
2016		.of_match_table = cqspi_dt_ids,
2017	},
2018};
2019
2020module_platform_driver(cqspi_platform_driver);
2021
2022MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2023MODULE_LICENSE("GPL v2");
2024MODULE_ALIAS("platform:" CQSPI_NAME);
2025MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2026MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2027MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2028MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2029MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2030