1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for Broadcom BCM2835 SPI Controllers
4 *
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
7 * Copyright (C) 2015 Martin Sperl
8 *
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12 */
13
14#include <linux/clk.h>
15#include <linux/completion.h>
16#include <linux/debugfs.h>
17#include <linux/delay.h>
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
20#include <linux/err.h>
21#include <linux/interrupt.h>
22#include <linux/io.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/of_address.h>
27#include <linux/platform_device.h>
28#include <linux/gpio/consumer.h>
29#include <linux/gpio/machine.h> /* FIXME: using chip internals */
30#include <linux/gpio/driver.h> /* FIXME: using chip internals */
31#include <linux/of_irq.h>
32#include <linux/spi/spi.h>
33
34/* SPI register offsets */
35#define BCM2835_SPI_CS			0x00
36#define BCM2835_SPI_FIFO		0x04
37#define BCM2835_SPI_CLK			0x08
38#define BCM2835_SPI_DLEN		0x0c
39#define BCM2835_SPI_LTOH		0x10
40#define BCM2835_SPI_DC			0x14
41
42/* Bitfields in CS */
43#define BCM2835_SPI_CS_LEN_LONG		0x02000000
44#define BCM2835_SPI_CS_DMA_LEN		0x01000000
45#define BCM2835_SPI_CS_CSPOL2		0x00800000
46#define BCM2835_SPI_CS_CSPOL1		0x00400000
47#define BCM2835_SPI_CS_CSPOL0		0x00200000
48#define BCM2835_SPI_CS_RXF		0x00100000
49#define BCM2835_SPI_CS_RXR		0x00080000
50#define BCM2835_SPI_CS_TXD		0x00040000
51#define BCM2835_SPI_CS_RXD		0x00020000
52#define BCM2835_SPI_CS_DONE		0x00010000
53#define BCM2835_SPI_CS_LEN		0x00002000
54#define BCM2835_SPI_CS_REN		0x00001000
55#define BCM2835_SPI_CS_ADCS		0x00000800
56#define BCM2835_SPI_CS_INTR		0x00000400
57#define BCM2835_SPI_CS_INTD		0x00000200
58#define BCM2835_SPI_CS_DMAEN		0x00000100
59#define BCM2835_SPI_CS_TA		0x00000080
60#define BCM2835_SPI_CS_CSPOL		0x00000040
61#define BCM2835_SPI_CS_CLEAR_RX		0x00000020
62#define BCM2835_SPI_CS_CLEAR_TX		0x00000010
63#define BCM2835_SPI_CS_CPOL		0x00000008
64#define BCM2835_SPI_CS_CPHA		0x00000004
65#define BCM2835_SPI_CS_CS_10		0x00000002
66#define BCM2835_SPI_CS_CS_01		0x00000001
67
68#define BCM2835_SPI_FIFO_SIZE		64
69#define BCM2835_SPI_FIFO_SIZE_3_4	48
70#define BCM2835_SPI_DMA_MIN_LENGTH	96
71#define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
72				| SPI_NO_CS | SPI_3WIRE)
73
74#define DRV_NAME	"spi-bcm2835"
75
76/* define polling limits */
77static unsigned int polling_limit_us = 30;
78module_param(polling_limit_us, uint, 0664);
79MODULE_PARM_DESC(polling_limit_us,
80		 "time in us to run a transfer in polling mode\n");
81
82/**
83 * struct bcm2835_spi - BCM2835 SPI controller
84 * @regs: base address of register map
85 * @clk: core clock, divided to calculate serial clock
86 * @clk_hz: core clock cached speed
87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
88 * @tfr: SPI transfer currently processed
89 * @ctlr: SPI controller reverse lookup
90 * @tx_buf: pointer whence next transmitted byte is read
91 * @rx_buf: pointer where next received byte is written
92 * @tx_len: remaining bytes to transmit
93 * @rx_len: remaining bytes to receive
94 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
95 *	length is not a multiple of 4 (to overcome hardware limitation)
96 * @rx_prologue: bytes received without DMA if first RX sglist entry's
97 *	length is not a multiple of 4 (to overcome hardware limitation)
98 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
99 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
100 *      unloading the module
101 * @count_transfer_polling: count of how often polling mode is used
102 * @count_transfer_irq: count of how often interrupt mode is used
103 * @count_transfer_irq_after_polling: count of how often we fall back to
104 *      interrupt mode after starting in polling mode.
105 *      These are counted as well in @count_transfer_polling and
106 *      @count_transfer_irq
107 * @count_transfer_dma: count how often dma mode is used
108 * @target: SPI target currently selected
109 *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
110 * @tx_dma_active: whether a TX DMA descriptor is in progress
111 * @rx_dma_active: whether a RX DMA descriptor is in progress
112 *	(used by bcm2835_spi_dma_tx_done() to handle a race)
113 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
114 *	(cyclically copies from zero page to TX FIFO)
115 * @fill_tx_addr: bus address of zero page
116 */
117struct bcm2835_spi {
118	void __iomem *regs;
119	struct clk *clk;
120	unsigned long clk_hz;
121	int irq;
122	struct spi_transfer *tfr;
123	struct spi_controller *ctlr;
124	const u8 *tx_buf;
125	u8 *rx_buf;
126	int tx_len;
127	int rx_len;
128	int tx_prologue;
129	int rx_prologue;
130	unsigned int tx_spillover;
131
132	struct dentry *debugfs_dir;
133	u64 count_transfer_polling;
134	u64 count_transfer_irq;
135	u64 count_transfer_irq_after_polling;
136	u64 count_transfer_dma;
137
138	struct bcm2835_spidev *target;
139	unsigned int tx_dma_active;
140	unsigned int rx_dma_active;
141	struct dma_async_tx_descriptor *fill_tx_desc;
142	dma_addr_t fill_tx_addr;
143};
144
145/**
146 * struct bcm2835_spidev - BCM2835 SPI target
147 * @prepare_cs: precalculated CS register value for ->prepare_message()
148 *	(uses target-specific clock polarity and phase settings)
149 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
150 *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
151 * @clear_rx_addr: bus address of @clear_rx_cs
152 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
153 *	(uses target-specific clock polarity and phase settings)
154 */
155struct bcm2835_spidev {
156	u32 prepare_cs;
157	struct dma_async_tx_descriptor *clear_rx_desc;
158	dma_addr_t clear_rx_addr;
159	u32 clear_rx_cs ____cacheline_aligned;
160};
161
162#if defined(CONFIG_DEBUG_FS)
163static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
164				   const char *dname)
165{
166	char name[64];
167	struct dentry *dir;
168
169	/* get full name */
170	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
171
172	/* the base directory */
173	dir = debugfs_create_dir(name, NULL);
174	bs->debugfs_dir = dir;
175
176	/* the counters */
177	debugfs_create_u64("count_transfer_polling", 0444, dir,
178			   &bs->count_transfer_polling);
179	debugfs_create_u64("count_transfer_irq", 0444, dir,
180			   &bs->count_transfer_irq);
181	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
182			   &bs->count_transfer_irq_after_polling);
183	debugfs_create_u64("count_transfer_dma", 0444, dir,
184			   &bs->count_transfer_dma);
185}
186
187static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
188{
189	debugfs_remove_recursive(bs->debugfs_dir);
190	bs->debugfs_dir = NULL;
191}
192#else
193static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
194				   const char *dname)
195{
196}
197
198static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
199{
200}
201#endif /* CONFIG_DEBUG_FS */
202
203static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
204{
205	return readl(bs->regs + reg);
206}
207
208static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
209{
210	writel(val, bs->regs + reg);
211}
212
213static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
214{
215	u8 byte;
216
217	while ((bs->rx_len) &&
218	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
219		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
220		if (bs->rx_buf)
221			*bs->rx_buf++ = byte;
222		bs->rx_len--;
223	}
224}
225
226static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
227{
228	u8 byte;
229
230	while ((bs->tx_len) &&
231	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
232		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
233		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
234		bs->tx_len--;
235	}
236}
237
238/**
239 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
240 * @bs: BCM2835 SPI controller
241 * @count: bytes to read from RX FIFO
242 *
243 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
244 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
245 * in the CS register is set (such that a read from the FIFO register receives
246 * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
247 */
248static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
249{
250	u32 val;
251	int len;
252
253	bs->rx_len -= count;
254
255	do {
256		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
257		len = min(count, 4);
258		memcpy(bs->rx_buf, &val, len);
259		bs->rx_buf += len;
260		count -= 4;
261	} while (count > 0);
262}
263
264/**
265 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
266 * @bs: BCM2835 SPI controller
267 * @count: bytes to write to TX FIFO
268 *
269 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
270 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
271 * in the CS register is set (such that a write to the FIFO register transmits
272 * 32-bit instead of just 8-bit).
273 */
274static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
275{
276	u32 val;
277	int len;
278
279	bs->tx_len -= count;
280
281	do {
282		if (bs->tx_buf) {
283			len = min(count, 4);
284			memcpy(&val, bs->tx_buf, len);
285			bs->tx_buf += len;
286		} else {
287			val = 0;
288		}
289		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
290		count -= 4;
291	} while (count > 0);
292}
293
294/**
295 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
296 * @bs: BCM2835 SPI controller
297 *
298 * The caller must ensure that the RX FIFO can accommodate as many bytes
299 * as have been written to the TX FIFO:  Transmission is halted once the
300 * RX FIFO is full, causing this function to spin forever.
301 */
302static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
303{
304	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
305		cpu_relax();
306}
307
308/**
309 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
310 * @bs: BCM2835 SPI controller
311 * @count: bytes available for reading in RX FIFO
312 */
313static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
314{
315	u8 val;
316
317	count = min(count, bs->rx_len);
318	bs->rx_len -= count;
319
320	do {
321		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
322		if (bs->rx_buf)
323			*bs->rx_buf++ = val;
324	} while (--count);
325}
326
327/**
328 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
329 * @bs: BCM2835 SPI controller
330 * @count: bytes available for writing in TX FIFO
331 */
332static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
333{
334	u8 val;
335
336	count = min(count, bs->tx_len);
337	bs->tx_len -= count;
338
339	do {
340		val = bs->tx_buf ? *bs->tx_buf++ : 0;
341		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
342	} while (--count);
343}
344
345static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
346{
347	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
348
349	/* Disable SPI interrupts and transfer */
350	cs &= ~(BCM2835_SPI_CS_INTR |
351		BCM2835_SPI_CS_INTD |
352		BCM2835_SPI_CS_DMAEN |
353		BCM2835_SPI_CS_TA);
354	/*
355	 * Transmission sometimes breaks unless the DONE bit is written at the
356	 * end of every transfer.  The spec says it's a RO bit.  Either the
357	 * spec is wrong and the bit is actually of type RW1C, or it's a
358	 * hardware erratum.
359	 */
360	cs |= BCM2835_SPI_CS_DONE;
361	/* and reset RX/TX FIFOS */
362	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
363
364	/* and reset the SPI_HW */
365	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
366	/* as well as DLEN */
367	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
368}
369
370static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
371{
372	struct bcm2835_spi *bs = dev_id;
373	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
374
375	/* Bail out early if interrupts are not enabled */
376	if (!(cs & BCM2835_SPI_CS_INTR))
377		return IRQ_NONE;
378
379	/*
380	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
381	 * or if RXR is set (RX FIFO >= ¾ full).
382	 */
383	if (cs & BCM2835_SPI_CS_RXF)
384		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
385	else if (cs & BCM2835_SPI_CS_RXR)
386		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
387
388	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
389		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
390
391	/* Read as many bytes as possible from FIFO */
392	bcm2835_rd_fifo(bs);
393	/* Write as many bytes as possible to FIFO */
394	bcm2835_wr_fifo(bs);
395
396	if (!bs->rx_len) {
397		/* Transfer complete - reset SPI HW */
398		bcm2835_spi_reset_hw(bs);
399		/* wake up the framework */
400		spi_finalize_current_transfer(bs->ctlr);
401	}
402
403	return IRQ_HANDLED;
404}
405
406static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
407					struct spi_device *spi,
408					struct spi_transfer *tfr,
409					u32 cs, bool fifo_empty)
410{
411	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
412
413	/* update usage statistics */
414	bs->count_transfer_irq++;
415
416	/*
417	 * Enable HW block, but with interrupts still disabled.
418	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
419	 */
420	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
421
422	/* fill TX FIFO as much as possible */
423	if (fifo_empty)
424		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
425	bcm2835_wr_fifo(bs);
426
427	/* enable interrupts */
428	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
429	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
430
431	/* signal that we need to wait for completion */
432	return 1;
433}
434
435/**
436 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
437 * @ctlr: SPI host controller
438 * @tfr: SPI transfer
439 * @bs: BCM2835 SPI controller
440 * @cs: CS register
441 *
442 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
443 * Only the final write access is permitted to transmit less than 4 bytes, the
444 * SPI controller deduces its intended size from the DLEN register.
445 *
446 * If a TX or RX sglist contains multiple entries, one per page, and the first
447 * entry starts in the middle of a page, that first entry's length may not be
448 * a multiple of 4.  Subsequent entries are fine because they span an entire
449 * page, hence do have a length that's a multiple of 4.
450 *
451 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
452 * because they are contiguous in physical memory and therefore not split on
453 * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
454 * buffers.
455 *
456 * The DMA engine is incapable of combining sglist entries into a continuous
457 * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
458 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
459 * entry is rounded up by throwing away received bytes.
460 *
461 * Overcome this limitation by transferring the first few bytes without DMA:
462 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
463 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
464 * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
465 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
466 *
467 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
468 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
469 * Caution, the additional 4 bytes spill over to the second TX sglist entry
470 * if the length of the first is *exactly* 1.
471 *
472 * At most 6 bytes are written and at most 3 bytes read.  Do we know the
473 * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
474 *
475 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
476 * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
477 * the width but also garbles the FIFO's contents.  The prologue must therefore
478 * be transmitted in 32-bit width to ensure that the following DMA transfer can
479 * pick up the residue in the RX FIFO in ungarbled form.
480 */
481static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
482					  struct spi_transfer *tfr,
483					  struct bcm2835_spi *bs,
484					  u32 cs)
485{
486	int tx_remaining;
487
488	bs->tfr		 = tfr;
489	bs->tx_prologue  = 0;
490	bs->rx_prologue  = 0;
491	bs->tx_spillover = false;
492
493	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
494		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
495
496	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
497		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
498
499		if (bs->rx_prologue > bs->tx_prologue) {
500			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
501				bs->tx_prologue  = bs->rx_prologue;
502			} else {
503				bs->tx_prologue += 4;
504				bs->tx_spillover =
505					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
506			}
507		}
508	}
509
510	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
511	if (!bs->tx_prologue)
512		return;
513
514	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
515	if (bs->rx_prologue) {
516		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
517		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
518						  | BCM2835_SPI_CS_DMAEN);
519		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
520		bcm2835_wait_tx_fifo_empty(bs);
521		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
522		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
523						  | BCM2835_SPI_CS_CLEAR_TX
524						  | BCM2835_SPI_CS_DONE);
525
526		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
527					   sg_dma_address(&tfr->rx_sg.sgl[0]),
528					   bs->rx_prologue, DMA_FROM_DEVICE);
529
530		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
531		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
532	}
533
534	if (!bs->tx_buf)
535		return;
536
537	/*
538	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
539	 * Also adjust second entry if prologue spills over to it.
540	 */
541	tx_remaining = bs->tx_prologue - bs->rx_prologue;
542	if (tx_remaining) {
543		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
544		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
545						  | BCM2835_SPI_CS_DMAEN);
546		bcm2835_wr_fifo_count(bs, tx_remaining);
547		bcm2835_wait_tx_fifo_empty(bs);
548		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
549						  | BCM2835_SPI_CS_DONE);
550	}
551
552	if (likely(!bs->tx_spillover)) {
553		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
554		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
555	} else {
556		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
557		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
558		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
559	}
560}
561
562/**
563 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
564 * @bs: BCM2835 SPI controller
565 *
566 * Undo changes which were made to an SPI transfer's sglist when transmitting
567 * the prologue.  This is necessary to ensure the same memory ranges are
568 * unmapped that were originally mapped.
569 */
570static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
571{
572	struct spi_transfer *tfr = bs->tfr;
573
574	if (!bs->tx_prologue)
575		return;
576
577	if (bs->rx_prologue) {
578		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
579		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
580	}
581
582	if (!bs->tx_buf)
583		goto out;
584
585	if (likely(!bs->tx_spillover)) {
586		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
587		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
588	} else {
589		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
590		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
591		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
592	}
593out:
594	bs->tx_prologue = 0;
595}
596
597/**
598 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
599 * @data: SPI host controller
600 *
601 * Used for bidirectional and RX-only transfers.
602 */
603static void bcm2835_spi_dma_rx_done(void *data)
604{
605	struct spi_controller *ctlr = data;
606	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
607
608	/* terminate tx-dma as we do not have an irq for it
609	 * because when the rx dma will terminate and this callback
610	 * is called the tx-dma must have finished - can't get to this
611	 * situation otherwise...
612	 */
613	dmaengine_terminate_async(ctlr->dma_tx);
614	bs->tx_dma_active = false;
615	bs->rx_dma_active = false;
616	bcm2835_spi_undo_prologue(bs);
617
618	/* reset fifo and HW */
619	bcm2835_spi_reset_hw(bs);
620
621	/* and mark as completed */;
622	spi_finalize_current_transfer(ctlr);
623}
624
625/**
626 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
627 * @data: SPI host controller
628 *
629 * Used for TX-only transfers.
630 */
631static void bcm2835_spi_dma_tx_done(void *data)
632{
633	struct spi_controller *ctlr = data;
634	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
635
636	/* busy-wait for TX FIFO to empty */
637	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
638		bcm2835_wr(bs, BCM2835_SPI_CS, bs->target->clear_rx_cs);
639
640	bs->tx_dma_active = false;
641	smp_wmb();
642
643	/*
644	 * In case of a very short transfer, RX DMA may not have been
645	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
646	 * to terminate it immediately after issuing.
647	 */
648	if (cmpxchg(&bs->rx_dma_active, true, false))
649		dmaengine_terminate_async(ctlr->dma_rx);
650
651	bcm2835_spi_undo_prologue(bs);
652	bcm2835_spi_reset_hw(bs);
653	spi_finalize_current_transfer(ctlr);
654}
655
656/**
657 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
658 * @ctlr: SPI host controller
659 * @tfr: SPI transfer
660 * @bs: BCM2835 SPI controller
661 * @target: BCM2835 SPI target
662 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
663 *
664 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
665 * Return 0 on success or a negative error number.
666 */
667static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
668				  struct spi_transfer *tfr,
669				  struct bcm2835_spi *bs,
670				  struct bcm2835_spidev *target,
671				  bool is_tx)
672{
673	struct dma_chan *chan;
674	struct scatterlist *sgl;
675	unsigned int nents;
676	enum dma_transfer_direction dir;
677	unsigned long flags;
678
679	struct dma_async_tx_descriptor *desc;
680	dma_cookie_t cookie;
681
682	if (is_tx) {
683		dir   = DMA_MEM_TO_DEV;
684		chan  = ctlr->dma_tx;
685		nents = tfr->tx_sg.nents;
686		sgl   = tfr->tx_sg.sgl;
687		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
688	} else {
689		dir   = DMA_DEV_TO_MEM;
690		chan  = ctlr->dma_rx;
691		nents = tfr->rx_sg.nents;
692		sgl   = tfr->rx_sg.sgl;
693		flags = DMA_PREP_INTERRUPT;
694	}
695	/* prepare the channel */
696	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
697	if (!desc)
698		return -EINVAL;
699
700	/*
701	 * Completion is signaled by the RX channel for bidirectional and
702	 * RX-only transfers; else by the TX channel for TX-only transfers.
703	 */
704	if (!is_tx) {
705		desc->callback = bcm2835_spi_dma_rx_done;
706		desc->callback_param = ctlr;
707	} else if (!tfr->rx_buf) {
708		desc->callback = bcm2835_spi_dma_tx_done;
709		desc->callback_param = ctlr;
710		bs->target = target;
711	}
712
713	/* submit it to DMA-engine */
714	cookie = dmaengine_submit(desc);
715
716	return dma_submit_error(cookie);
717}
718
719/**
720 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
721 * @ctlr: SPI host controller
722 * @tfr: SPI transfer
723 * @target: BCM2835 SPI target
724 * @cs: CS register
725 *
726 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
727 * the TX and RX DMA channel to copy between memory and FIFO register.
728 *
729 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
730 * memory is pointless.  However not reading the RX FIFO isn't an option either
731 * because transmission is halted once it's full.  As a workaround, cyclically
732 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
733 *
734 * The CS register value is precalculated in bcm2835_spi_setup().  Normally
735 * this is called only once, on target registration.  A DMA descriptor to write
736 * this value is preallocated in bcm2835_dma_init().  All that's left to do
737 * when performing a TX-only transfer is to submit this descriptor to the RX
738 * DMA channel.  Latency is thereby minimized.  The descriptor does not
739 * generate any interrupts while running.  It must be terminated once the
740 * TX DMA channel is done.
741 *
742 * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
743 * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
744 * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
745 * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
746 * reduction in bus traffic and thus energy consumption is achieved.
747 *
748 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
749 * copying from the zero page.  The DMA descriptor to do this is preallocated
750 * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
751 * done and can then be reused.
752 *
753 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
754 * page and utilizes the DMA controller's ability to synthesize zeroes instead
755 * of copying them from memory.  This reduces traffic on the memory bus.  The
756 * feature is not available on so-called "lite" channels, but normally TX DMA
757 * is backed by a full-featured channel.
758 *
759 * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
760 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
761 * has been counted down to zero (hardware erratum).  Thus, when the transfer
762 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
763 * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
764 * performed at the end of an RX-only transfer.
765 */
766static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
767					struct spi_transfer *tfr,
768					struct bcm2835_spidev *target,
769					u32 cs)
770{
771	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
772	dma_cookie_t cookie;
773	int ret;
774
775	/* update usage statistics */
776	bs->count_transfer_dma++;
777
778	/*
779	 * Transfer first few bytes without DMA if length of first TX or RX
780	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
781	 */
782	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
783
784	/* setup tx-DMA */
785	if (bs->tx_buf) {
786		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, true);
787	} else {
788		cookie = dmaengine_submit(bs->fill_tx_desc);
789		ret = dma_submit_error(cookie);
790	}
791	if (ret)
792		goto err_reset_hw;
793
794	/* set the DMA length */
795	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
796
797	/* start the HW */
798	bcm2835_wr(bs, BCM2835_SPI_CS,
799		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
800
801	bs->tx_dma_active = true;
802	smp_wmb();
803
804	/* start TX early */
805	dma_async_issue_pending(ctlr->dma_tx);
806
807	/* setup rx-DMA late - to run transfers while
808	 * mapping of the rx buffers still takes place
809	 * this saves 10us or more.
810	 */
811	if (bs->rx_buf) {
812		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, false);
813	} else {
814		cookie = dmaengine_submit(target->clear_rx_desc);
815		ret = dma_submit_error(cookie);
816	}
817	if (ret) {
818		/* need to reset on errors */
819		dmaengine_terminate_sync(ctlr->dma_tx);
820		bs->tx_dma_active = false;
821		goto err_reset_hw;
822	}
823
824	/* start rx dma late */
825	dma_async_issue_pending(ctlr->dma_rx);
826	bs->rx_dma_active = true;
827	smp_mb();
828
829	/*
830	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
831	 * may run before RX DMA is issued.  Terminate RX DMA if so.
832	 */
833	if (!bs->rx_buf && !bs->tx_dma_active &&
834	    cmpxchg(&bs->rx_dma_active, true, false)) {
835		dmaengine_terminate_async(ctlr->dma_rx);
836		bcm2835_spi_reset_hw(bs);
837	}
838
839	/* wait for wakeup in framework */
840	return 1;
841
842err_reset_hw:
843	bcm2835_spi_reset_hw(bs);
844	bcm2835_spi_undo_prologue(bs);
845	return ret;
846}
847
848static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
849				struct spi_device *spi,
850				struct spi_transfer *tfr)
851{
852	/* we start DMA efforts only on bigger transfers */
853	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
854		return false;
855
856	/* return OK */
857	return true;
858}
859
860static void bcm2835_dma_release(struct spi_controller *ctlr,
861				struct bcm2835_spi *bs)
862{
863	if (ctlr->dma_tx) {
864		dmaengine_terminate_sync(ctlr->dma_tx);
865
866		if (bs->fill_tx_desc)
867			dmaengine_desc_free(bs->fill_tx_desc);
868
869		if (bs->fill_tx_addr)
870			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
871					     bs->fill_tx_addr, sizeof(u32),
872					     DMA_TO_DEVICE,
873					     DMA_ATTR_SKIP_CPU_SYNC);
874
875		dma_release_channel(ctlr->dma_tx);
876		ctlr->dma_tx = NULL;
877	}
878
879	if (ctlr->dma_rx) {
880		dmaengine_terminate_sync(ctlr->dma_rx);
881		dma_release_channel(ctlr->dma_rx);
882		ctlr->dma_rx = NULL;
883	}
884}
885
886static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
887			    struct bcm2835_spi *bs)
888{
889	struct dma_slave_config slave_config;
890	const __be32 *addr;
891	dma_addr_t dma_reg_base;
892	int ret;
893
894	/* base address in dma-space */
895	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
896	if (!addr) {
897		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
898		/* Fall back to interrupt mode */
899		return 0;
900	}
901	dma_reg_base = be32_to_cpup(addr);
902
903	/* get tx/rx dma */
904	ctlr->dma_tx = dma_request_chan(dev, "tx");
905	if (IS_ERR(ctlr->dma_tx)) {
906		ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_tx),
907			"no tx-dma configuration found - not using dma mode\n");
908		ctlr->dma_tx = NULL;
909		goto err;
910	}
911	ctlr->dma_rx = dma_request_chan(dev, "rx");
912	if (IS_ERR(ctlr->dma_rx)) {
913		ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_rx),
914			"no rx-dma configuration found - not using dma mode\n");
915		ctlr->dma_rx = NULL;
916		goto err_release;
917	}
918
919	/*
920	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
921	 * or, in case of an RX-only transfer, cyclically copies from the zero
922	 * page to the FIFO using a preallocated, reusable descriptor.
923	 */
924	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
925	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
926
927	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
928	if (ret)
929		goto err_config;
930
931	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
932					      ZERO_PAGE(0), 0, sizeof(u32),
933					      DMA_TO_DEVICE,
934					      DMA_ATTR_SKIP_CPU_SYNC);
935	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
936		dev_err(dev, "cannot map zero page - not using DMA mode\n");
937		bs->fill_tx_addr = 0;
938		ret = -ENOMEM;
939		goto err_release;
940	}
941
942	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
943						     bs->fill_tx_addr,
944						     sizeof(u32), 0,
945						     DMA_MEM_TO_DEV, 0);
946	if (!bs->fill_tx_desc) {
947		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
948		ret = -ENOMEM;
949		goto err_release;
950	}
951
952	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
953	if (ret) {
954		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
955		goto err_release;
956	}
957
958	/*
959	 * The RX DMA channel is used bidirectionally:  It either reads the
960	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
961	 * precalculated value to the CS register to clear the RX FIFO.
962	 */
963	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
964	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
965	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
966	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
967
968	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
969	if (ret)
970		goto err_config;
971
972	/* all went well, so set can_dma */
973	ctlr->can_dma = bcm2835_spi_can_dma;
974
975	return 0;
976
977err_config:
978	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
979		ret);
980err_release:
981	bcm2835_dma_release(ctlr, bs);
982err:
983	/*
984	 * Only report error for deferred probing, otherwise fall back to
985	 * interrupt mode
986	 */
987	if (ret != -EPROBE_DEFER)
988		ret = 0;
989
990	return ret;
991}
992
993static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
994					 struct spi_device *spi,
995					 struct spi_transfer *tfr,
996					 u32 cs)
997{
998	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
999	unsigned long timeout;
1000
1001	/* update usage statistics */
1002	bs->count_transfer_polling++;
1003
1004	/* enable HW block without interrupts */
1005	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1006
1007	/* fill in the fifo before timeout calculations
1008	 * if we are interrupted here, then the data is
1009	 * getting transferred by the HW while we are interrupted
1010	 */
1011	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1012
1013	/* set the timeout to at least 2 jiffies */
1014	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1015
1016	/* loop until finished the transfer */
1017	while (bs->rx_len) {
1018		/* fill in tx fifo with remaining data */
1019		bcm2835_wr_fifo(bs);
1020
1021		/* read from fifo as much as possible */
1022		bcm2835_rd_fifo(bs);
1023
1024		/* if there is still data pending to read
1025		 * then check the timeout
1026		 */
1027		if (bs->rx_len && time_after(jiffies, timeout)) {
1028			dev_dbg_ratelimited(&spi->dev,
1029					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1030					    jiffies - timeout,
1031					    bs->tx_len, bs->rx_len);
1032			/* fall back to interrupt mode */
1033
1034			/* update usage statistics */
1035			bs->count_transfer_irq_after_polling++;
1036
1037			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1038							    tfr, cs, false);
1039		}
1040	}
1041
1042	/* Transfer complete - reset SPI HW */
1043	bcm2835_spi_reset_hw(bs);
1044	/* and return without waiting for completion */
1045	return 0;
1046}
1047
1048static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1049				    struct spi_device *spi,
1050				    struct spi_transfer *tfr)
1051{
1052	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1053	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1054	unsigned long spi_hz, cdiv;
1055	unsigned long hz_per_byte, byte_limit;
1056	u32 cs = target->prepare_cs;
1057
1058	/* set clock */
1059	spi_hz = tfr->speed_hz;
1060
1061	if (spi_hz >= bs->clk_hz / 2) {
1062		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1063	} else if (spi_hz) {
1064		/* CDIV must be a multiple of two */
1065		cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
1066		cdiv += (cdiv % 2);
1067
1068		if (cdiv >= 65536)
1069			cdiv = 0; /* 0 is the slowest we can go */
1070	} else {
1071		cdiv = 0; /* 0 is the slowest we can go */
1072	}
1073	tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
1074	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1075
1076	/* handle all the 3-wire mode */
1077	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1078		cs |= BCM2835_SPI_CS_REN;
1079
1080	/* set transmit buffers and length */
1081	bs->tx_buf = tfr->tx_buf;
1082	bs->rx_buf = tfr->rx_buf;
1083	bs->tx_len = tfr->len;
1084	bs->rx_len = tfr->len;
1085
1086	/* Calculate the estimated time in us the transfer runs.  Note that
1087	 * there is 1 idle clocks cycles after each byte getting transferred
1088	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1089	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1090	 * per 300,000 Hz of bus clock.
1091	 */
1092	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1093	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1094
1095	/* run in polling mode for short transfers */
1096	if (tfr->len < byte_limit)
1097		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1098
1099	/* run in dma mode if conditions are right
1100	 * Note that unlike poll or interrupt mode DMA mode does not have
1101	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1102	 */
1103	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1104		return bcm2835_spi_transfer_one_dma(ctlr, tfr, target, cs);
1105
1106	/* run in interrupt-mode */
1107	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1108}
1109
1110static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1111				       struct spi_message *msg)
1112{
1113	struct spi_device *spi = msg->spi;
1114	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1115	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1116	int ret;
1117
1118	if (ctlr->can_dma) {
1119		/*
1120		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1121		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1122		 * aligned) if the limit is exceeded.
1123		 */
1124		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1125						  GFP_KERNEL | GFP_DMA);
1126		if (ret)
1127			return ret;
1128	}
1129
1130	/*
1131	 * Set up clock polarity before spi_transfer_one_message() asserts
1132	 * chip select to avoid a gratuitous clock signal edge.
1133	 */
1134	bcm2835_wr(bs, BCM2835_SPI_CS, target->prepare_cs);
1135
1136	return 0;
1137}
1138
1139static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1140				   struct spi_message *msg)
1141{
1142	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1143
1144	/* if an error occurred and we have an active dma, then terminate */
1145	if (ctlr->dma_tx) {
1146		dmaengine_terminate_sync(ctlr->dma_tx);
1147		bs->tx_dma_active = false;
1148	}
1149	if (ctlr->dma_rx) {
1150		dmaengine_terminate_sync(ctlr->dma_rx);
1151		bs->rx_dma_active = false;
1152	}
1153	bcm2835_spi_undo_prologue(bs);
1154
1155	/* and reset */
1156	bcm2835_spi_reset_hw(bs);
1157}
1158
1159static int chip_match_name(struct gpio_chip *chip, void *data)
1160{
1161	return !strcmp(chip->label, data);
1162}
1163
1164static void bcm2835_spi_cleanup(struct spi_device *spi)
1165{
1166	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1167	struct spi_controller *ctlr = spi->controller;
1168
1169	if (target->clear_rx_desc)
1170		dmaengine_desc_free(target->clear_rx_desc);
1171
1172	if (target->clear_rx_addr)
1173		dma_unmap_single(ctlr->dma_rx->device->dev,
1174				 target->clear_rx_addr,
1175				 sizeof(u32),
1176				 DMA_TO_DEVICE);
1177
1178	kfree(target);
1179}
1180
1181static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1182				 struct spi_device *spi,
1183				 struct bcm2835_spi *bs,
1184				 struct bcm2835_spidev *target)
1185{
1186	int ret;
1187
1188	if (!ctlr->dma_rx)
1189		return 0;
1190
1191	target->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1192					       &target->clear_rx_cs,
1193					       sizeof(u32),
1194					       DMA_TO_DEVICE);
1195	if (dma_mapping_error(ctlr->dma_rx->device->dev, target->clear_rx_addr)) {
1196		dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1197		target->clear_rx_addr = 0;
1198		return -ENOMEM;
1199	}
1200
1201	target->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1202						          target->clear_rx_addr,
1203						          sizeof(u32), 0,
1204						          DMA_MEM_TO_DEV, 0);
1205	if (!target->clear_rx_desc) {
1206		dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1207		return -ENOMEM;
1208	}
1209
1210	ret = dmaengine_desc_set_reuse(target->clear_rx_desc);
1211	if (ret) {
1212		dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1213		return ret;
1214	}
1215
1216	return 0;
1217}
1218
1219static int bcm2835_spi_setup(struct spi_device *spi)
1220{
1221	struct spi_controller *ctlr = spi->controller;
1222	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1223	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1224	struct gpio_chip *chip;
1225	int ret;
1226	u32 cs;
1227
1228	if (!target) {
1229		target = kzalloc(ALIGN(sizeof(*target), dma_get_cache_alignment()),
1230			      GFP_KERNEL);
1231		if (!target)
1232			return -ENOMEM;
1233
1234		spi_set_ctldata(spi, target);
1235
1236		ret = bcm2835_spi_setup_dma(ctlr, spi, bs, target);
1237		if (ret)
1238			goto err_cleanup;
1239	}
1240
1241	/*
1242	 * Precalculate SPI target's CS register value for ->prepare_message():
1243	 * The driver always uses software-controlled GPIO chip select, hence
1244	 * set the hardware-controlled native chip select to an invalid value
1245	 * to prevent it from interfering.
1246	 */
1247	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1248	if (spi->mode & SPI_CPOL)
1249		cs |= BCM2835_SPI_CS_CPOL;
1250	if (spi->mode & SPI_CPHA)
1251		cs |= BCM2835_SPI_CS_CPHA;
1252	target->prepare_cs = cs;
1253
1254	/*
1255	 * Precalculate SPI target's CS register value to clear RX FIFO
1256	 * in case of a TX-only DMA transfer.
1257	 */
1258	if (ctlr->dma_rx) {
1259		target->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1260					BCM2835_SPI_CS_DMAEN |
1261					BCM2835_SPI_CS_CLEAR_RX;
1262		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1263					   target->clear_rx_addr,
1264					   sizeof(u32),
1265					   DMA_TO_DEVICE);
1266	}
1267
1268	/*
1269	 * sanity checking the native-chipselects
1270	 */
1271	if (spi->mode & SPI_NO_CS)
1272		return 0;
1273	/*
1274	 * The SPI core has successfully requested the CS GPIO line from the
1275	 * device tree, so we are done.
1276	 */
1277	if (spi_get_csgpiod(spi, 0))
1278		return 0;
1279	if (spi_get_chipselect(spi, 0) > 1) {
1280		/* error in the case of native CS requested with CS > 1
1281		 * officially there is a CS2, but it is not documented
1282		 * which GPIO is connected with that...
1283		 */
1284		dev_err(&spi->dev,
1285			"setup: only two native chip-selects are supported\n");
1286		ret = -EINVAL;
1287		goto err_cleanup;
1288	}
1289
1290	/*
1291	 * Translate native CS to GPIO
1292	 *
1293	 * FIXME: poking around in the gpiolib internals like this is
1294	 * not very good practice. Find a way to locate the real problem
1295	 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1296	 * sometimes not assigned correctly? Erroneous device trees?
1297	 */
1298
1299	/* get the gpio chip for the base */
1300	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1301	if (!chip)
1302		return 0;
1303
1304	spi_set_csgpiod(spi, 0, gpiochip_request_own_desc(chip,
1305							  8 - (spi_get_chipselect(spi, 0)),
1306							  DRV_NAME,
1307							  GPIO_LOOKUP_FLAGS_DEFAULT,
1308							  GPIOD_OUT_LOW));
1309	if (IS_ERR(spi_get_csgpiod(spi, 0))) {
1310		ret = PTR_ERR(spi_get_csgpiod(spi, 0));
1311		goto err_cleanup;
1312	}
1313
1314	/* and set up the "mode" and level */
1315	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1316		 spi_get_chipselect(spi, 0));
1317
1318	return 0;
1319
1320err_cleanup:
1321	bcm2835_spi_cleanup(spi);
1322	return ret;
1323}
1324
1325static int bcm2835_spi_probe(struct platform_device *pdev)
1326{
1327	struct spi_controller *ctlr;
1328	struct bcm2835_spi *bs;
1329	int err;
1330
1331	ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*bs));
1332	if (!ctlr)
1333		return -ENOMEM;
1334
1335	platform_set_drvdata(pdev, ctlr);
1336
1337	ctlr->use_gpio_descriptors = true;
1338	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1339	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1340	ctlr->num_chipselect = 3;
1341	ctlr->setup = bcm2835_spi_setup;
1342	ctlr->cleanup = bcm2835_spi_cleanup;
1343	ctlr->transfer_one = bcm2835_spi_transfer_one;
1344	ctlr->handle_err = bcm2835_spi_handle_err;
1345	ctlr->prepare_message = bcm2835_spi_prepare_message;
1346	ctlr->dev.of_node = pdev->dev.of_node;
1347
1348	bs = spi_controller_get_devdata(ctlr);
1349	bs->ctlr = ctlr;
1350
1351	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1352	if (IS_ERR(bs->regs))
1353		return PTR_ERR(bs->regs);
1354
1355	bs->clk = devm_clk_get(&pdev->dev, NULL);
1356	if (IS_ERR(bs->clk))
1357		return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1358				     "could not get clk\n");
1359
1360	ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
1361
1362	bs->irq = platform_get_irq(pdev, 0);
1363	if (bs->irq < 0)
1364		return bs->irq;
1365
1366	err = clk_prepare_enable(bs->clk);
1367	if (err)
1368		return err;
1369	bs->clk_hz = clk_get_rate(bs->clk);
1370
1371	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1372	if (err)
1373		goto out_clk_disable;
1374
1375	/* initialise the hardware with the default polarities */
1376	bcm2835_wr(bs, BCM2835_SPI_CS,
1377		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1378
1379	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt,
1380			       IRQF_SHARED, dev_name(&pdev->dev), bs);
1381	if (err) {
1382		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1383		goto out_dma_release;
1384	}
1385
1386	err = spi_register_controller(ctlr);
1387	if (err) {
1388		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1389			err);
1390		goto out_dma_release;
1391	}
1392
1393	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1394
1395	return 0;
1396
1397out_dma_release:
1398	bcm2835_dma_release(ctlr, bs);
1399out_clk_disable:
1400	clk_disable_unprepare(bs->clk);
1401	return err;
1402}
1403
1404static void bcm2835_spi_remove(struct platform_device *pdev)
1405{
1406	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1407	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1408
1409	bcm2835_debugfs_remove(bs);
1410
1411	spi_unregister_controller(ctlr);
1412
1413	bcm2835_dma_release(ctlr, bs);
1414
1415	/* Clear FIFOs, and disable the HW block */
1416	bcm2835_wr(bs, BCM2835_SPI_CS,
1417		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1418
1419	clk_disable_unprepare(bs->clk);
1420}
1421
1422static const struct of_device_id bcm2835_spi_match[] = {
1423	{ .compatible = "brcm,bcm2835-spi", },
1424	{}
1425};
1426MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1427
1428static struct platform_driver bcm2835_spi_driver = {
1429	.driver		= {
1430		.name		= DRV_NAME,
1431		.of_match_table	= bcm2835_spi_match,
1432	},
1433	.probe		= bcm2835_spi_probe,
1434	.remove_new	= bcm2835_spi_remove,
1435	.shutdown	= bcm2835_spi_remove,
1436};
1437module_platform_driver(bcm2835_spi_driver);
1438
1439MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1440MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1441MODULE_LICENSE("GPL");
1442