1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
4 */
5
6#define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
7
8#include <linux/atomic.h>
9#include <linux/cpu_pm.h>
10#include <linux/delay.h>
11#include <linux/interrupt.h>
12#include <linux/io.h>
13#include <linux/iopoll.h>
14#include <linux/kernel.h>
15#include <linux/ktime.h>
16#include <linux/list.h>
17#include <linux/module.h>
18#include <linux/notifier.h>
19#include <linux/of.h>
20#include <linux/of_irq.h>
21#include <linux/of_platform.h>
22#include <linux/platform_device.h>
23#include <linux/pm_domain.h>
24#include <linux/pm_runtime.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
27#include <linux/wait.h>
28
29#include <clocksource/arm_arch_timer.h>
30#include <soc/qcom/cmd-db.h>
31#include <soc/qcom/tcs.h>
32#include <dt-bindings/soc/qcom,rpmh-rsc.h>
33
34#include "rpmh-internal.h"
35
36#define CREATE_TRACE_POINTS
37#include "trace-rpmh.h"
38
39
40#define RSC_DRV_ID			0
41
42#define MAJOR_VER_MASK			0xFF
43#define MAJOR_VER_SHIFT			16
44#define MINOR_VER_MASK			0xFF
45#define MINOR_VER_SHIFT			8
46
47enum {
48	RSC_DRV_TCS_OFFSET,
49	RSC_DRV_CMD_OFFSET,
50	DRV_SOLVER_CONFIG,
51	DRV_PRNT_CHLD_CONFIG,
52	RSC_DRV_IRQ_ENABLE,
53	RSC_DRV_IRQ_STATUS,
54	RSC_DRV_IRQ_CLEAR,
55	RSC_DRV_CMD_WAIT_FOR_CMPL,
56	RSC_DRV_CONTROL,
57	RSC_DRV_STATUS,
58	RSC_DRV_CMD_ENABLE,
59	RSC_DRV_CMD_MSGID,
60	RSC_DRV_CMD_ADDR,
61	RSC_DRV_CMD_DATA,
62	RSC_DRV_CMD_STATUS,
63	RSC_DRV_CMD_RESP_DATA,
64};
65
66/* DRV HW Solver Configuration Information Register */
67#define DRV_HW_SOLVER_MASK		1
68#define DRV_HW_SOLVER_SHIFT		24
69
70/* DRV TCS Configuration Information Register */
71#define DRV_NUM_TCS_MASK		0x3F
72#define DRV_NUM_TCS_SHIFT		6
73#define DRV_NCPT_MASK			0x1F
74#define DRV_NCPT_SHIFT			27
75
76/* Offsets for CONTROL TCS Registers */
77#define RSC_DRV_CTL_TCS_DATA_HI		0x38
78#define RSC_DRV_CTL_TCS_DATA_HI_MASK	0xFFFFFF
79#define RSC_DRV_CTL_TCS_DATA_HI_VALID	BIT(31)
80#define RSC_DRV_CTL_TCS_DATA_LO		0x40
81#define RSC_DRV_CTL_TCS_DATA_LO_MASK	0xFFFFFFFF
82#define RSC_DRV_CTL_TCS_DATA_SIZE	32
83
84#define TCS_AMC_MODE_ENABLE		BIT(16)
85#define TCS_AMC_MODE_TRIGGER		BIT(24)
86
87/* TCS CMD register bit mask */
88#define CMD_MSGID_LEN			8
89#define CMD_MSGID_RESP_REQ		BIT(8)
90#define CMD_MSGID_WRITE			BIT(16)
91#define CMD_STATUS_ISSUED		BIT(8)
92#define CMD_STATUS_COMPL		BIT(16)
93
94/*
95 * Here's a high level overview of how all the registers in RPMH work
96 * together:
97 *
98 * - The main rpmh-rsc address is the base of a register space that can
99 *   be used to find overall configuration of the hardware
100 *   (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
101 *   space are all the TCS blocks. The offset of the TCS blocks is
102 *   specified in the device tree by "qcom,tcs-offset" and used to
103 *   compute tcs_base.
104 * - TCS blocks come one after another. Type, count, and order are
105 *   specified by the device tree as "qcom,tcs-config".
106 * - Each TCS block has some registers, then space for up to 16 commands.
107 *   Note that though address space is reserved for 16 commands, fewer
108 *   might be present. See ncpt (num cmds per TCS).
109 *
110 * Here's a picture:
111 *
112 *  +---------------------------------------------------+
113 *  |RSC                                                |
114 *  | ctrl                                              |
115 *  |                                                   |
116 *  | Drvs:                                             |
117 *  | +-----------------------------------------------+ |
118 *  | |DRV0                                           | |
119 *  | | ctrl/config                                   | |
120 *  | | IRQ                                           | |
121 *  | |                                               | |
122 *  | | TCSes:                                        | |
123 *  | | +------------------------------------------+  | |
124 *  | | |TCS0  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
125 *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
126 *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
127 *  | | +------------------------------------------+  | |
128 *  | | +------------------------------------------+  | |
129 *  | | |TCS1  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
130 *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
131 *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
132 *  | | +------------------------------------------+  | |
133 *  | | +------------------------------------------+  | |
134 *  | | |TCS2  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
135 *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
136 *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
137 *  | | +------------------------------------------+  | |
138 *  | |                    ......                     | |
139 *  | +-----------------------------------------------+ |
140 *  | +-----------------------------------------------+ |
141 *  | |DRV1                                           | |
142 *  | | (same as DRV0)                                | |
143 *  | +-----------------------------------------------+ |
144 *  |                      ......                       |
145 *  +---------------------------------------------------+
146 */
147
148#define USECS_TO_CYCLES(time_usecs)			\
149	xloops_to_cycles((time_usecs) * 0x10C7UL)
150
151static inline unsigned long xloops_to_cycles(u64 xloops)
152{
153	return (xloops * loops_per_jiffy * HZ) >> 32;
154}
155
156static u32 rpmh_rsc_reg_offset_ver_2_7[] = {
157	[RSC_DRV_TCS_OFFSET]		= 672,
158	[RSC_DRV_CMD_OFFSET]		= 20,
159	[DRV_SOLVER_CONFIG]		= 0x04,
160	[DRV_PRNT_CHLD_CONFIG]		= 0x0C,
161	[RSC_DRV_IRQ_ENABLE]		= 0x00,
162	[RSC_DRV_IRQ_STATUS]		= 0x04,
163	[RSC_DRV_IRQ_CLEAR]		= 0x08,
164	[RSC_DRV_CMD_WAIT_FOR_CMPL]	= 0x10,
165	[RSC_DRV_CONTROL]		= 0x14,
166	[RSC_DRV_STATUS]		= 0x18,
167	[RSC_DRV_CMD_ENABLE]		= 0x1C,
168	[RSC_DRV_CMD_MSGID]		= 0x30,
169	[RSC_DRV_CMD_ADDR]		= 0x34,
170	[RSC_DRV_CMD_DATA]		= 0x38,
171	[RSC_DRV_CMD_STATUS]		= 0x3C,
172	[RSC_DRV_CMD_RESP_DATA]		= 0x40,
173};
174
175static u32 rpmh_rsc_reg_offset_ver_3_0[] = {
176	[RSC_DRV_TCS_OFFSET]		= 672,
177	[RSC_DRV_CMD_OFFSET]		= 24,
178	[DRV_SOLVER_CONFIG]		= 0x04,
179	[DRV_PRNT_CHLD_CONFIG]		= 0x0C,
180	[RSC_DRV_IRQ_ENABLE]		= 0x00,
181	[RSC_DRV_IRQ_STATUS]		= 0x04,
182	[RSC_DRV_IRQ_CLEAR]		= 0x08,
183	[RSC_DRV_CMD_WAIT_FOR_CMPL]	= 0x20,
184	[RSC_DRV_CONTROL]		= 0x24,
185	[RSC_DRV_STATUS]		= 0x28,
186	[RSC_DRV_CMD_ENABLE]		= 0x2C,
187	[RSC_DRV_CMD_MSGID]		= 0x34,
188	[RSC_DRV_CMD_ADDR]		= 0x38,
189	[RSC_DRV_CMD_DATA]		= 0x3C,
190	[RSC_DRV_CMD_STATUS]		= 0x40,
191	[RSC_DRV_CMD_RESP_DATA]		= 0x44,
192};
193
194static inline void __iomem *
195tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
196{
197	return drv->tcs_base + drv->regs[RSC_DRV_TCS_OFFSET] * tcs_id + reg;
198}
199
200static inline void __iomem *
201tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
202{
203	return tcs_reg_addr(drv, reg, tcs_id) + drv->regs[RSC_DRV_CMD_OFFSET] * cmd_id;
204}
205
206static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
207			int cmd_id)
208{
209	return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
210}
211
212static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
213{
214	return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
215}
216
217static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
218			  int cmd_id, u32 data)
219{
220	writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
221}
222
223static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
224			  u32 data)
225{
226	writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
227}
228
229static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
230			       u32 data)
231{
232	int i;
233
234	writel(data, tcs_reg_addr(drv, reg, tcs_id));
235
236	/*
237	 * Wait until we read back the same value.  Use a counter rather than
238	 * ktime for timeout since this may be called after timekeeping stops.
239	 */
240	for (i = 0; i < USEC_PER_SEC; i++) {
241		if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
242			return;
243		udelay(1);
244	}
245	pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
246	       data, tcs_id, reg);
247}
248
249/**
250 * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
251 * @drv:  The RSC controller.
252 * @type: SLEEP_TCS or WAKE_TCS
253 *
254 * This will clear the "slots" variable of the given tcs_group and also
255 * tell the hardware to forget about all entries.
256 *
257 * The caller must ensure that no other RPMH actions are happening when this
258 * function is called, since otherwise the device may immediately become
259 * used again even before this function exits.
260 */
261static void tcs_invalidate(struct rsc_drv *drv, int type)
262{
263	int m;
264	struct tcs_group *tcs = &drv->tcs[type];
265
266	/* Caller ensures nobody else is running so no lock */
267	if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
268		return;
269
270	for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++)
271		write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], m, 0);
272
273	bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
274}
275
276/**
277 * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
278 * @drv: The RSC controller.
279 *
280 * The caller must ensure that no other RPMH actions are happening when this
281 * function is called, since otherwise the device may immediately become
282 * used again even before this function exits.
283 */
284void rpmh_rsc_invalidate(struct rsc_drv *drv)
285{
286	tcs_invalidate(drv, SLEEP_TCS);
287	tcs_invalidate(drv, WAKE_TCS);
288}
289
290/**
291 * get_tcs_for_msg() - Get the tcs_group used to send the given message.
292 * @drv: The RSC controller.
293 * @msg: The message we want to send.
294 *
295 * This is normally pretty straightforward except if we are trying to send
296 * an ACTIVE_ONLY message but don't have any active_only TCSes.
297 *
298 * Return: A pointer to a tcs_group or an ERR_PTR.
299 */
300static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
301					 const struct tcs_request *msg)
302{
303	int type;
304	struct tcs_group *tcs;
305
306	switch (msg->state) {
307	case RPMH_ACTIVE_ONLY_STATE:
308		type = ACTIVE_TCS;
309		break;
310	case RPMH_WAKE_ONLY_STATE:
311		type = WAKE_TCS;
312		break;
313	case RPMH_SLEEP_STATE:
314		type = SLEEP_TCS;
315		break;
316	default:
317		return ERR_PTR(-EINVAL);
318	}
319
320	/*
321	 * If we are making an active request on a RSC that does not have a
322	 * dedicated TCS for active state use, then re-purpose a wake TCS to
323	 * send active votes. This is safe because we ensure any active-only
324	 * transfers have finished before we use it (maybe by running from
325	 * the last CPU in PM code).
326	 */
327	tcs = &drv->tcs[type];
328	if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
329		tcs = &drv->tcs[WAKE_TCS];
330
331	return tcs;
332}
333
334/**
335 * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
336 * @drv:    The RSC controller.
337 * @tcs_id: The global ID of this TCS.
338 *
339 * For ACTIVE_ONLY transfers we want to call back into the client when the
340 * transfer finishes. To do this we need the "request" that the client
341 * originally provided us. This function grabs the request that we stashed
342 * when we started the transfer.
343 *
344 * This only makes sense for ACTIVE_ONLY transfers since those are the only
345 * ones we track sending (the only ones we enable interrupts for and the only
346 * ones we call back to the client for).
347 *
348 * Return: The stashed request.
349 */
350static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
351						  int tcs_id)
352{
353	struct tcs_group *tcs;
354	int i;
355
356	for (i = 0; i < TCS_TYPE_NR; i++) {
357		tcs = &drv->tcs[i];
358		if (tcs->mask & BIT(tcs_id))
359			return tcs->req[tcs_id - tcs->offset];
360	}
361
362	return NULL;
363}
364
365/**
366 * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
367 * @drv:     The controller.
368 * @tcs_id:  The global ID of this TCS.
369 * @trigger: If true then untrigger/retrigger. If false then just untrigger.
370 *
371 * In the normal case we only ever call with "trigger=true" to start a
372 * transfer. That will un-trigger/disable the TCS from the last transfer
373 * then trigger/enable for this transfer.
374 *
375 * If we borrowed a wake TCS for an active-only transfer we'll also call
376 * this function with "trigger=false" to just do the un-trigger/disable
377 * before using the TCS for wake purposes again.
378 *
379 * Note that the AP is only in charge of triggering active-only transfers.
380 * The AP never triggers sleep/wake values using this function.
381 */
382static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
383{
384	u32 enable;
385	u32 reg = drv->regs[RSC_DRV_CONTROL];
386
387	/*
388	 * HW req: Clear the DRV_CONTROL and enable TCS again
389	 * While clearing ensure that the AMC mode trigger is cleared
390	 * and then the mode enable is cleared.
391	 */
392	enable = read_tcs_reg(drv, reg, tcs_id);
393	enable &= ~TCS_AMC_MODE_TRIGGER;
394	write_tcs_reg_sync(drv, reg, tcs_id, enable);
395	enable &= ~TCS_AMC_MODE_ENABLE;
396	write_tcs_reg_sync(drv, reg, tcs_id, enable);
397
398	if (trigger) {
399		/* Enable the AMC mode on the TCS and then trigger the TCS */
400		enable = TCS_AMC_MODE_ENABLE;
401		write_tcs_reg_sync(drv, reg, tcs_id, enable);
402		enable |= TCS_AMC_MODE_TRIGGER;
403		write_tcs_reg(drv, reg, tcs_id, enable);
404	}
405}
406
407/**
408 * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
409 * @drv:     The controller.
410 * @tcs_id:  The global ID of this TCS.
411 * @enable:  If true then enable; if false then disable
412 *
413 * We only ever call this when we borrow a wake TCS for an active-only
414 * transfer. For active-only TCSes interrupts are always left enabled.
415 */
416static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
417{
418	u32 data;
419	u32 reg = drv->regs[RSC_DRV_IRQ_ENABLE];
420
421	data = readl_relaxed(drv->tcs_base + reg);
422	if (enable)
423		data |= BIT(tcs_id);
424	else
425		data &= ~BIT(tcs_id);
426	writel_relaxed(data, drv->tcs_base + reg);
427}
428
429/**
430 * tcs_tx_done() - TX Done interrupt handler.
431 * @irq: The IRQ number (ignored).
432 * @p:   Pointer to "struct rsc_drv".
433 *
434 * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
435 * IRQ for) when a transfer is done.
436 *
437 * Return: IRQ_HANDLED
438 */
439static irqreturn_t tcs_tx_done(int irq, void *p)
440{
441	struct rsc_drv *drv = p;
442	int i;
443	unsigned long irq_status;
444	const struct tcs_request *req;
445
446	irq_status = readl_relaxed(drv->tcs_base + drv->regs[RSC_DRV_IRQ_STATUS]);
447
448	for_each_set_bit(i, &irq_status, BITS_PER_TYPE(u32)) {
449		req = get_req_from_tcs(drv, i);
450		if (WARN_ON(!req))
451			goto skip;
452
453		trace_rpmh_tx_done(drv, i, req);
454
455		/*
456		 * If wake tcs was re-purposed for sending active
457		 * votes, clear AMC trigger & enable modes and
458		 * disable interrupt for this TCS
459		 */
460		if (!drv->tcs[ACTIVE_TCS].num_tcs)
461			__tcs_set_trigger(drv, i, false);
462skip:
463		/* Reclaim the TCS */
464		write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], i, 0);
465		writel_relaxed(BIT(i), drv->tcs_base + drv->regs[RSC_DRV_IRQ_CLEAR]);
466		spin_lock(&drv->lock);
467		clear_bit(i, drv->tcs_in_use);
468		/*
469		 * Disable interrupt for WAKE TCS to avoid being
470		 * spammed with interrupts coming when the solver
471		 * sends its wake votes.
472		 */
473		if (!drv->tcs[ACTIVE_TCS].num_tcs)
474			enable_tcs_irq(drv, i, false);
475		spin_unlock(&drv->lock);
476		wake_up(&drv->tcs_wait);
477		if (req)
478			rpmh_tx_done(req);
479	}
480
481	return IRQ_HANDLED;
482}
483
484/**
485 * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
486 * @drv:    The controller.
487 * @tcs_id: The global ID of this TCS.
488 * @cmd_id: The index within the TCS to start writing.
489 * @msg:    The message we want to send, which will contain several addr/data
490 *          pairs to program (but few enough that they all fit in one TCS).
491 *
492 * This is used for all types of transfers (active, sleep, and wake).
493 */
494static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
495			       const struct tcs_request *msg)
496{
497	u32 msgid;
498	u32 cmd_msgid = CMD_MSGID_LEN | CMD_MSGID_WRITE;
499	u32 cmd_enable = 0;
500	struct tcs_cmd *cmd;
501	int i, j;
502
503	/* Convert all commands to RR when the request has wait_for_compl set */
504	cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
505
506	for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
507		cmd = &msg->cmds[i];
508		cmd_enable |= BIT(j);
509		msgid = cmd_msgid;
510		/*
511		 * Additionally, if the cmd->wait is set, make the command
512		 * response reqd even if the overall request was fire-n-forget.
513		 */
514		msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
515
516		write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_MSGID], tcs_id, j, msgid);
517		write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], tcs_id, j, cmd->addr);
518		write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_DATA], tcs_id, j, cmd->data);
519		trace_rpmh_send_msg(drv, tcs_id, msg->state, j, msgid, cmd);
520	}
521
522	cmd_enable |= read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id);
523	write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, cmd_enable);
524}
525
526/**
527 * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
528 * @drv: The controller.
529 * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
530 * @msg: The message we want to send, which will contain several addr/data
531 *       pairs to program (but few enough that they all fit in one TCS).
532 *
533 * This will walk through the TCSes in the group and check if any of them
534 * appear to be sending to addresses referenced in the message. If it finds
535 * one it'll return -EBUSY.
536 *
537 * Only for use for active-only transfers.
538 *
539 * Must be called with the drv->lock held since that protects tcs_in_use.
540 *
541 * Return: 0 if nothing in flight or -EBUSY if we should try again later.
542 *         The caller must re-enable interrupts between tries since that's
543 *         the only way tcs_in_use will ever be updated and the only way
544 *         RSC_DRV_CMD_ENABLE will ever be cleared.
545 */
546static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
547				  const struct tcs_request *msg)
548{
549	unsigned long curr_enabled;
550	u32 addr;
551	int j, k;
552	int i = tcs->offset;
553
554	for_each_set_bit_from(i, drv->tcs_in_use, tcs->offset + tcs->num_tcs) {
555		curr_enabled = read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], i);
556
557		for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
558			addr = read_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], i, j);
559			for (k = 0; k < msg->num_cmds; k++) {
560				if (addr == msg->cmds[k].addr)
561					return -EBUSY;
562			}
563		}
564	}
565
566	return 0;
567}
568
569/**
570 * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
571 * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
572 *       we borrowed it because there are zero active-only ones).
573 *
574 * Must be called with the drv->lock held since that protects tcs_in_use.
575 *
576 * Return: The first tcs that's free or -EBUSY if all in use.
577 */
578static int find_free_tcs(struct tcs_group *tcs)
579{
580	const struct rsc_drv *drv = tcs->drv;
581	unsigned long i;
582	unsigned long max = tcs->offset + tcs->num_tcs;
583
584	i = find_next_zero_bit(drv->tcs_in_use, max, tcs->offset);
585	if (i >= max)
586		return -EBUSY;
587
588	return i;
589}
590
591/**
592 * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active.
593 * @drv: The controller.
594 * @tcs: The tcs_group used for ACTIVE_ONLY transfers.
595 * @msg: The data to be sent.
596 *
597 * Claims a tcs in the given tcs_group while making sure that no existing cmd
598 * is in flight that would conflict with the one in @msg.
599 *
600 * Context: Must be called with the drv->lock held since that protects
601 * tcs_in_use.
602 *
603 * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight
604 * or the tcs_group is full.
605 */
606static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs,
607			     const struct tcs_request *msg)
608{
609	int ret;
610
611	/*
612	 * The h/w does not like if we send a request to the same address,
613	 * when one is already in-flight or being processed.
614	 */
615	ret = check_for_req_inflight(drv, tcs, msg);
616	if (ret)
617		return ret;
618
619	return find_free_tcs(tcs);
620}
621
622/**
623 * rpmh_rsc_send_data() - Write / trigger active-only message.
624 * @drv: The controller.
625 * @msg: The data to be sent.
626 *
627 * NOTES:
628 * - This is only used for "ACTIVE_ONLY" since the limitations of this
629 *   function don't make sense for sleep/wake cases.
630 * - To do the transfer, we will grab a whole TCS for ourselves--we don't
631 *   try to share. If there are none available we'll wait indefinitely
632 *   for a free one.
633 * - This function will not wait for the commands to be finished, only for
634 *   data to be programmed into the RPMh. See rpmh_tx_done() which will
635 *   be called when the transfer is fully complete.
636 * - This function must be called with interrupts enabled. If the hardware
637 *   is busy doing someone else's transfer we need that transfer to fully
638 *   finish so that we can have the hardware, and to fully finish it needs
639 *   the interrupt handler to run. If the interrupts is set to run on the
640 *   active CPU this can never happen if interrupts are disabled.
641 *
642 * Return: 0 on success, -EINVAL on error.
643 */
644int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
645{
646	struct tcs_group *tcs;
647	int tcs_id;
648	unsigned long flags;
649
650	tcs = get_tcs_for_msg(drv, msg);
651	if (IS_ERR(tcs))
652		return PTR_ERR(tcs);
653
654	spin_lock_irqsave(&drv->lock, flags);
655
656	/* Wait forever for a free tcs. It better be there eventually! */
657	wait_event_lock_irq(drv->tcs_wait,
658			    (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0,
659			    drv->lock);
660
661	tcs->req[tcs_id - tcs->offset] = msg;
662	set_bit(tcs_id, drv->tcs_in_use);
663	if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
664		/*
665		 * Clear previously programmed WAKE commands in selected
666		 * repurposed TCS to avoid triggering them. tcs->slots will be
667		 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
668		 */
669		write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, 0);
670		enable_tcs_irq(drv, tcs_id, true);
671	}
672	spin_unlock_irqrestore(&drv->lock, flags);
673
674	/*
675	 * These two can be done after the lock is released because:
676	 * - We marked "tcs_in_use" under lock.
677	 * - Once "tcs_in_use" has been marked nobody else could be writing
678	 *   to these registers until the interrupt goes off.
679	 * - The interrupt can't go off until we trigger w/ the last line
680	 *   of __tcs_set_trigger() below.
681	 */
682	__tcs_buffer_write(drv, tcs_id, 0, msg);
683	__tcs_set_trigger(drv, tcs_id, true);
684
685	return 0;
686}
687
688/**
689 * find_slots() - Find a place to write the given message.
690 * @tcs:    The tcs group to search.
691 * @msg:    The message we want to find room for.
692 * @tcs_id: If we return 0 from the function, we return the global ID of the
693 *          TCS to write to here.
694 * @cmd_id: If we return 0 from the function, we return the index of
695 *          the command array of the returned TCS where the client should
696 *          start writing the message.
697 *
698 * Only for use on sleep/wake TCSes since those are the only ones we maintain
699 * tcs->slots for.
700 *
701 * Return: -ENOMEM if there was no room, else 0.
702 */
703static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
704		      int *tcs_id, int *cmd_id)
705{
706	int slot, offset;
707	int i = 0;
708
709	/* Do over, until we can fit the full payload in a single TCS */
710	do {
711		slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
712						  i, msg->num_cmds, 0);
713		if (slot >= tcs->num_tcs * tcs->ncpt)
714			return -ENOMEM;
715		i += tcs->ncpt;
716	} while (slot + msg->num_cmds - 1 >= i);
717
718	bitmap_set(tcs->slots, slot, msg->num_cmds);
719
720	offset = slot / tcs->ncpt;
721	*tcs_id = offset + tcs->offset;
722	*cmd_id = slot % tcs->ncpt;
723
724	return 0;
725}
726
727/**
728 * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
729 * @drv: The controller.
730 * @msg: The data to be written to the controller.
731 *
732 * This should only be called for sleep/wake state, never active-only
733 * state.
734 *
735 * The caller must ensure that no other RPMH actions are happening and the
736 * controller is idle when this function is called since it runs lockless.
737 *
738 * Return: 0 if no error; else -error.
739 */
740int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
741{
742	struct tcs_group *tcs;
743	int tcs_id = 0, cmd_id = 0;
744	int ret;
745
746	tcs = get_tcs_for_msg(drv, msg);
747	if (IS_ERR(tcs))
748		return PTR_ERR(tcs);
749
750	/* find the TCS id and the command in the TCS to write to */
751	ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
752	if (!ret)
753		__tcs_buffer_write(drv, tcs_id, cmd_id, msg);
754
755	return ret;
756}
757
758/**
759 * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
760 * @drv: The controller
761 *
762 * Checks if any of the AMCs are busy in handling ACTIVE sets.
763 * This is called from the last cpu powering down before flushing
764 * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
765 * power collapse, so deny from the last cpu's pm notification.
766 *
767 * Context: Must be called with the drv->lock held.
768 *
769 * Return:
770 * * False		- AMCs are idle
771 * * True		- AMCs are busy
772 */
773static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
774{
775	unsigned long set;
776	const struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
777	unsigned long max;
778
779	/*
780	 * If we made an active request on a RSC that does not have a
781	 * dedicated TCS for active state use, then re-purposed wake TCSes
782	 * should be checked for not busy, because we used wake TCSes for
783	 * active requests in this case.
784	 */
785	if (!tcs->num_tcs)
786		tcs = &drv->tcs[WAKE_TCS];
787
788	max = tcs->offset + tcs->num_tcs;
789	set = find_next_bit(drv->tcs_in_use, max, tcs->offset);
790
791	return set < max;
792}
793
794/**
795 * rpmh_rsc_write_next_wakeup() - Write next wakeup in CONTROL_TCS.
796 * @drv: The controller
797 *
798 * Writes maximum wakeup cycles when called from suspend.
799 * Writes earliest hrtimer wakeup when called from idle.
800 */
801void rpmh_rsc_write_next_wakeup(struct rsc_drv *drv)
802{
803	ktime_t now, wakeup;
804	u64 wakeup_us, wakeup_cycles = ~0;
805	u32 lo, hi;
806
807	if (!drv->tcs[CONTROL_TCS].num_tcs || !drv->genpd_nb.notifier_call)
808		return;
809
810	/* Set highest time when system (timekeeping) is suspended */
811	if (system_state == SYSTEM_SUSPEND)
812		goto exit;
813
814	/* Find the earliest hrtimer wakeup from online cpus */
815	wakeup = dev_pm_genpd_get_next_hrtimer(drv->dev);
816
817	/* Find the relative wakeup in kernel time scale */
818	now = ktime_get();
819	wakeup = ktime_sub(wakeup, now);
820	wakeup_us = ktime_to_us(wakeup);
821
822	/* Convert the wakeup to arch timer scale */
823	wakeup_cycles = USECS_TO_CYCLES(wakeup_us);
824	wakeup_cycles += arch_timer_read_counter();
825
826exit:
827	lo = wakeup_cycles & RSC_DRV_CTL_TCS_DATA_LO_MASK;
828	hi = wakeup_cycles >> RSC_DRV_CTL_TCS_DATA_SIZE;
829	hi &= RSC_DRV_CTL_TCS_DATA_HI_MASK;
830	hi |= RSC_DRV_CTL_TCS_DATA_HI_VALID;
831
832	writel_relaxed(lo, drv->base + RSC_DRV_CTL_TCS_DATA_LO);
833	writel_relaxed(hi, drv->base + RSC_DRV_CTL_TCS_DATA_HI);
834}
835
836/**
837 * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
838 * @nfb:    Pointer to the notifier block in struct rsc_drv.
839 * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
840 * @v:      Unused
841 *
842 * This function is given to cpu_pm_register_notifier so we can be informed
843 * about when CPUs go down. When all CPUs go down we know no more active
844 * transfers will be started so we write sleep/wake sets. This function gets
845 * called from cpuidle code paths and also at system suspend time.
846 *
847 * If its last CPU going down and AMCs are not busy then writes cached sleep
848 * and wake messages to TCSes. The firmware then takes care of triggering
849 * them when entering deepest low power modes.
850 *
851 * Return: See cpu_pm_register_notifier()
852 */
853static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
854				    unsigned long action, void *v)
855{
856	struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
857	int ret = NOTIFY_OK;
858	int cpus_in_pm;
859
860	switch (action) {
861	case CPU_PM_ENTER:
862		cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
863		/*
864		 * NOTE: comments for num_online_cpus() point out that it's
865		 * only a snapshot so we need to be careful. It should be OK
866		 * for us to use, though.  It's important for us not to miss
867		 * if we're the last CPU going down so it would only be a
868		 * problem if a CPU went offline right after we did the check
869		 * AND that CPU was not idle AND that CPU was the last non-idle
870		 * CPU. That can't happen. CPUs would have to come out of idle
871		 * before the CPU could go offline.
872		 */
873		if (cpus_in_pm < num_online_cpus())
874			return NOTIFY_OK;
875		break;
876	case CPU_PM_ENTER_FAILED:
877	case CPU_PM_EXIT:
878		atomic_dec(&drv->cpus_in_pm);
879		return NOTIFY_OK;
880	default:
881		return NOTIFY_DONE;
882	}
883
884	/*
885	 * It's likely we're on the last CPU. Grab the drv->lock and write
886	 * out the sleep/wake commands to RPMH hardware. Grabbing the lock
887	 * means that if we race with another CPU coming up we are still
888	 * guaranteed to be safe. If another CPU came up just after we checked
889	 * and has grabbed the lock or started an active transfer then we'll
890	 * notice we're busy and abort. If another CPU comes up after we start
891	 * flushing it will be blocked from starting an active transfer until
892	 * we're done flushing. If another CPU starts an active transfer after
893	 * we release the lock we're still OK because we're no longer the last
894	 * CPU.
895	 */
896	if (spin_trylock(&drv->lock)) {
897		if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
898			ret = NOTIFY_BAD;
899		spin_unlock(&drv->lock);
900	} else {
901		/* Another CPU must be up */
902		return NOTIFY_OK;
903	}
904
905	if (ret == NOTIFY_BAD) {
906		/* Double-check if we're here because someone else is up */
907		if (cpus_in_pm < num_online_cpus())
908			ret = NOTIFY_OK;
909		else
910			/* We won't be called w/ CPU_PM_ENTER_FAILED */
911			atomic_dec(&drv->cpus_in_pm);
912	}
913
914	return ret;
915}
916
917/**
918 * rpmh_rsc_pd_callback() - Check if any of the AMCs are busy.
919 * @nfb:    Pointer to the genpd notifier block in struct rsc_drv.
920 * @action: GENPD_NOTIFY_PRE_OFF, GENPD_NOTIFY_OFF, GENPD_NOTIFY_PRE_ON or GENPD_NOTIFY_ON.
921 * @v:      Unused
922 *
923 * This function is given to dev_pm_genpd_add_notifier() so we can be informed
924 * about when cluster-pd is going down. When cluster go down we know no more active
925 * transfers will be started so we write sleep/wake sets. This function gets
926 * called from cpuidle code paths and also at system suspend time.
927 *
928 * If AMCs are not busy then writes cached sleep and wake messages to TCSes.
929 * The firmware then takes care of triggering them when entering deepest low power modes.
930 *
931 * Return:
932 * * NOTIFY_OK          - success
933 * * NOTIFY_BAD         - failure
934 */
935static int rpmh_rsc_pd_callback(struct notifier_block *nfb,
936				unsigned long action, void *v)
937{
938	struct rsc_drv *drv = container_of(nfb, struct rsc_drv, genpd_nb);
939
940	/* We don't need to lock as genpd on/off are serialized */
941	if ((action == GENPD_NOTIFY_PRE_OFF) &&
942	    (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client)))
943		return NOTIFY_BAD;
944
945	return NOTIFY_OK;
946}
947
948static int rpmh_rsc_pd_attach(struct rsc_drv *drv, struct device *dev)
949{
950	int ret;
951
952	pm_runtime_enable(dev);
953	drv->genpd_nb.notifier_call = rpmh_rsc_pd_callback;
954	ret = dev_pm_genpd_add_notifier(dev, &drv->genpd_nb);
955	if (ret)
956		pm_runtime_disable(dev);
957
958	return ret;
959}
960
961static int rpmh_probe_tcs_config(struct platform_device *pdev, struct rsc_drv *drv)
962{
963	struct tcs_type_config {
964		u32 type;
965		u32 n;
966	} tcs_cfg[TCS_TYPE_NR] = { { 0 } };
967	struct device_node *dn = pdev->dev.of_node;
968	u32 config, max_tcs, ncpt, offset;
969	int i, ret, n, st = 0;
970	struct tcs_group *tcs;
971
972	ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
973	if (ret)
974		return ret;
975	drv->tcs_base = drv->base + offset;
976
977	config = readl_relaxed(drv->base + drv->regs[DRV_PRNT_CHLD_CONFIG]);
978
979	max_tcs = config;
980	max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
981	max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
982
983	ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
984	ncpt = ncpt >> DRV_NCPT_SHIFT;
985
986	n = of_property_count_u32_elems(dn, "qcom,tcs-config");
987	if (n != 2 * TCS_TYPE_NR)
988		return -EINVAL;
989
990	for (i = 0; i < TCS_TYPE_NR; i++) {
991		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
992						 i * 2, &tcs_cfg[i].type);
993		if (ret)
994			return ret;
995		if (tcs_cfg[i].type >= TCS_TYPE_NR)
996			return -EINVAL;
997
998		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
999						 i * 2 + 1, &tcs_cfg[i].n);
1000		if (ret)
1001			return ret;
1002		if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
1003			return -EINVAL;
1004	}
1005
1006	for (i = 0; i < TCS_TYPE_NR; i++) {
1007		tcs = &drv->tcs[tcs_cfg[i].type];
1008		if (tcs->drv)
1009			return -EINVAL;
1010		tcs->drv = drv;
1011		tcs->type = tcs_cfg[i].type;
1012		tcs->num_tcs = tcs_cfg[i].n;
1013		tcs->ncpt = ncpt;
1014
1015		if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
1016			continue;
1017
1018		if (st + tcs->num_tcs > max_tcs ||
1019		    st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
1020			return -EINVAL;
1021
1022		tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
1023		tcs->offset = st;
1024		st += tcs->num_tcs;
1025	}
1026
1027	drv->num_tcs = st;
1028
1029	return 0;
1030}
1031
1032static int rpmh_rsc_probe(struct platform_device *pdev)
1033{
1034	struct device_node *dn = pdev->dev.of_node;
1035	struct rsc_drv *drv;
1036	char drv_id[10] = {0};
1037	int ret, irq;
1038	u32 solver_config;
1039	u32 rsc_id;
1040
1041	/*
1042	 * Even though RPMh doesn't directly use cmd-db, all of its children
1043	 * do. To avoid adding this check to our children we'll do it now.
1044	 */
1045	ret = cmd_db_ready();
1046	if (ret) {
1047		if (ret != -EPROBE_DEFER)
1048			dev_err(&pdev->dev, "Command DB not available (%d)\n",
1049									ret);
1050		return ret;
1051	}
1052
1053	drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
1054	if (!drv)
1055		return -ENOMEM;
1056
1057	ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
1058	if (ret)
1059		return ret;
1060
1061	drv->name = of_get_property(dn, "label", NULL);
1062	if (!drv->name)
1063		drv->name = dev_name(&pdev->dev);
1064
1065	snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
1066	drv->base = devm_platform_ioremap_resource_byname(pdev, drv_id);
1067	if (IS_ERR(drv->base))
1068		return PTR_ERR(drv->base);
1069
1070	rsc_id = readl_relaxed(drv->base + RSC_DRV_ID);
1071	drv->ver.major = rsc_id & (MAJOR_VER_MASK << MAJOR_VER_SHIFT);
1072	drv->ver.major >>= MAJOR_VER_SHIFT;
1073	drv->ver.minor = rsc_id & (MINOR_VER_MASK << MINOR_VER_SHIFT);
1074	drv->ver.minor >>= MINOR_VER_SHIFT;
1075
1076	if (drv->ver.major == 3)
1077		drv->regs = rpmh_rsc_reg_offset_ver_3_0;
1078	else
1079		drv->regs = rpmh_rsc_reg_offset_ver_2_7;
1080
1081	ret = rpmh_probe_tcs_config(pdev, drv);
1082	if (ret)
1083		return ret;
1084
1085	spin_lock_init(&drv->lock);
1086	init_waitqueue_head(&drv->tcs_wait);
1087	bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
1088
1089	irq = platform_get_irq(pdev, drv->id);
1090	if (irq < 0)
1091		return irq;
1092
1093	ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
1094			       IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
1095			       drv->name, drv);
1096	if (ret)
1097		return ret;
1098
1099	/*
1100	 * CPU PM/genpd notification are not required for controllers that support
1101	 * 'HW solver' mode where they can be in autonomous mode executing low
1102	 * power mode to power down.
1103	 */
1104	solver_config = readl_relaxed(drv->base + drv->regs[DRV_SOLVER_CONFIG]);
1105	solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
1106	solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
1107	if (!solver_config) {
1108		if (pdev->dev.pm_domain) {
1109			ret = rpmh_rsc_pd_attach(drv, &pdev->dev);
1110			if (ret)
1111				return ret;
1112		} else {
1113			drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
1114			cpu_pm_register_notifier(&drv->rsc_pm);
1115		}
1116	}
1117
1118	/* Enable the active TCS to send requests immediately */
1119	writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
1120		       drv->tcs_base + drv->regs[RSC_DRV_IRQ_ENABLE]);
1121
1122	spin_lock_init(&drv->client.cache_lock);
1123	INIT_LIST_HEAD(&drv->client.cache);
1124	INIT_LIST_HEAD(&drv->client.batch_cache);
1125
1126	dev_set_drvdata(&pdev->dev, drv);
1127	drv->dev = &pdev->dev;
1128
1129	ret = devm_of_platform_populate(&pdev->dev);
1130	if (ret && pdev->dev.pm_domain) {
1131		dev_pm_genpd_remove_notifier(&pdev->dev);
1132		pm_runtime_disable(&pdev->dev);
1133	}
1134
1135	return ret;
1136}
1137
1138static const struct of_device_id rpmh_drv_match[] = {
1139	{ .compatible = "qcom,rpmh-rsc", },
1140	{ }
1141};
1142MODULE_DEVICE_TABLE(of, rpmh_drv_match);
1143
1144static struct platform_driver rpmh_driver = {
1145	.probe = rpmh_rsc_probe,
1146	.driver = {
1147		  .name = "rpmh",
1148		  .of_match_table = rpmh_drv_match,
1149		  .suppress_bind_attrs = true,
1150	},
1151};
1152
1153static int __init rpmh_driver_init(void)
1154{
1155	return platform_driver_register(&rpmh_driver);
1156}
1157arch_initcall(rpmh_driver_init);
1158
1159MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPMh Driver");
1160MODULE_LICENSE("GPL v2");
1161