1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for Broadcom MPI3 Storage Controllers
4 *
5 * Copyright (C) 2017-2023 Broadcom Inc.
6 *  (mailto: mpi3mr-linuxdrv.pdl@broadcom.com)
7 *
8 */
9
10#include "mpi3mr.h"
11#include <linux/bsg-lib.h>
12#include <uapi/scsi/scsi_bsg_mpi3mr.h>
13
14/**
15 * mpi3mr_bsg_pel_abort - sends PEL abort request
16 * @mrioc: Adapter instance reference
17 *
18 * This function sends PEL abort request to the firmware through
19 * admin request queue.
20 *
21 * Return: 0 on success, -1 on failure
22 */
23static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
24{
25	struct mpi3_pel_req_action_abort pel_abort_req;
26	struct mpi3_pel_reply *pel_reply;
27	int retval = 0;
28	u16 pe_log_status;
29
30	if (mrioc->reset_in_progress) {
31		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
32		return -1;
33	}
34	if (mrioc->stop_bsgs) {
35		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
36		return -1;
37	}
38
39	memset(&pel_abort_req, 0, sizeof(pel_abort_req));
40	mutex_lock(&mrioc->pel_abort_cmd.mutex);
41	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
42		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
43		mutex_unlock(&mrioc->pel_abort_cmd.mutex);
44		return -1;
45	}
46	mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
47	mrioc->pel_abort_cmd.is_waiting = 1;
48	mrioc->pel_abort_cmd.callback = NULL;
49	pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
50	pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
51	pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
52	pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
53
54	mrioc->pel_abort_requested = 1;
55	init_completion(&mrioc->pel_abort_cmd.done);
56	retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
57	    sizeof(pel_abort_req), 0);
58	if (retval) {
59		retval = -1;
60		dprint_bsg_err(mrioc, "%s: admin request post failed\n",
61		    __func__);
62		mrioc->pel_abort_requested = 0;
63		goto out_unlock;
64	}
65
66	wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
67	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
68	if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
69		mrioc->pel_abort_cmd.is_waiting = 0;
70		dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
71		if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
72			mpi3mr_soft_reset_handler(mrioc,
73			    MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
74		retval = -1;
75		goto out_unlock;
76	}
77	if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
78	     != MPI3_IOCSTATUS_SUCCESS) {
79		dprint_bsg_err(mrioc,
80		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
81		    __func__, (mrioc->pel_abort_cmd.ioc_status &
82		    MPI3_IOCSTATUS_STATUS_MASK),
83		    mrioc->pel_abort_cmd.ioc_loginfo);
84		retval = -1;
85		goto out_unlock;
86	}
87	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
88		pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
89		pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
90		if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
91			dprint_bsg_err(mrioc,
92			    "%s: command failed, pel_status(0x%04x)\n",
93			    __func__, pe_log_status);
94			retval = -1;
95		}
96	}
97
98out_unlock:
99	mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
100	mutex_unlock(&mrioc->pel_abort_cmd.mutex);
101	return retval;
102}
103/**
104 * mpi3mr_bsg_verify_adapter - verify adapter number is valid
105 * @ioc_number: Adapter number
106 *
107 * This function returns the adapter instance pointer of given
108 * adapter number. If adapter number does not match with the
109 * driver's adapter list, driver returns NULL.
110 *
111 * Return: adapter instance reference
112 */
113static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
114{
115	struct mpi3mr_ioc *mrioc = NULL;
116
117	spin_lock(&mrioc_list_lock);
118	list_for_each_entry(mrioc, &mrioc_list, list) {
119		if (mrioc->id == ioc_number) {
120			spin_unlock(&mrioc_list_lock);
121			return mrioc;
122		}
123	}
124	spin_unlock(&mrioc_list_lock);
125	return NULL;
126}
127
128/**
129 * mpi3mr_enable_logdata - Handler for log data enable
130 * @mrioc: Adapter instance reference
131 * @job: BSG job reference
132 *
133 * This function enables log data caching in the driver if not
134 * already enabled and return the maximum number of log data
135 * entries that can be cached in the driver.
136 *
137 * Return: 0 on success and proper error codes on failure
138 */
139static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
140	struct bsg_job *job)
141{
142	struct mpi3mr_logdata_enable logdata_enable;
143
144	if (!mrioc->logdata_buf) {
145		mrioc->logdata_entry_sz =
146		    (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
147		    + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
148		mrioc->logdata_buf_idx = 0;
149		mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
150		    mrioc->logdata_entry_sz, GFP_KERNEL);
151
152		if (!mrioc->logdata_buf)
153			return -ENOMEM;
154	}
155
156	memset(&logdata_enable, 0, sizeof(logdata_enable));
157	logdata_enable.max_entries =
158	    MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
159	if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
160		sg_copy_from_buffer(job->request_payload.sg_list,
161				    job->request_payload.sg_cnt,
162				    &logdata_enable, sizeof(logdata_enable));
163		return 0;
164	}
165
166	return -EINVAL;
167}
168/**
169 * mpi3mr_get_logdata - Handler for get log data
170 * @mrioc: Adapter instance reference
171 * @job: BSG job pointer
172 * This function copies the log data entries to the user buffer
173 * when log caching is enabled in the driver.
174 *
175 * Return: 0 on success and proper error codes on failure
176 */
177static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
178	struct bsg_job *job)
179{
180	u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
181
182	if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
183		return -EINVAL;
184
185	num_entries = job->request_payload.payload_len / entry_sz;
186	if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
187		num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
188	sz = num_entries * entry_sz;
189
190	if (job->request_payload.payload_len >= sz) {
191		sg_copy_from_buffer(job->request_payload.sg_list,
192				    job->request_payload.sg_cnt,
193				    mrioc->logdata_buf, sz);
194		return 0;
195	}
196	return -EINVAL;
197}
198
199/**
200 * mpi3mr_bsg_pel_enable - Handler for PEL enable driver
201 * @mrioc: Adapter instance reference
202 * @job: BSG job pointer
203 *
204 * This function is the handler for PEL enable driver.
205 * Validates the application given class and locale and if
206 * requires aborts the existing PEL wait request and/or issues
207 * new PEL wait request to the firmware and returns.
208 *
209 * Return: 0 on success and proper error codes on failure.
210 */
211static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
212				  struct bsg_job *job)
213{
214	long rval = -EINVAL;
215	struct mpi3mr_bsg_out_pel_enable pel_enable;
216	u8 issue_pel_wait;
217	u8 tmp_class;
218	u16 tmp_locale;
219
220	if (job->request_payload.payload_len != sizeof(pel_enable)) {
221		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
222		    __func__);
223		return rval;
224	}
225
226	if (mrioc->unrecoverable) {
227		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
228			       __func__);
229		return -EFAULT;
230	}
231
232	if (mrioc->reset_in_progress) {
233		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
234		return -EAGAIN;
235	}
236
237	if (mrioc->stop_bsgs) {
238		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
239		return -EAGAIN;
240	}
241
242	sg_copy_to_buffer(job->request_payload.sg_list,
243			  job->request_payload.sg_cnt,
244			  &pel_enable, sizeof(pel_enable));
245
246	if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
247		dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
248			__func__, pel_enable.pel_class);
249		rval = 0;
250		goto out;
251	}
252	if (!mrioc->pel_enabled)
253		issue_pel_wait = 1;
254	else {
255		if ((mrioc->pel_class <= pel_enable.pel_class) &&
256		    !((mrioc->pel_locale & pel_enable.pel_locale) ^
257		      pel_enable.pel_locale)) {
258			issue_pel_wait = 0;
259			rval = 0;
260		} else {
261			pel_enable.pel_locale |= mrioc->pel_locale;
262
263			if (mrioc->pel_class < pel_enable.pel_class)
264				pel_enable.pel_class = mrioc->pel_class;
265
266			rval = mpi3mr_bsg_pel_abort(mrioc);
267			if (rval) {
268				dprint_bsg_err(mrioc,
269				    "%s: pel_abort failed, status(%ld)\n",
270				    __func__, rval);
271				goto out;
272			}
273			issue_pel_wait = 1;
274		}
275	}
276	if (issue_pel_wait) {
277		tmp_class = mrioc->pel_class;
278		tmp_locale = mrioc->pel_locale;
279		mrioc->pel_class = pel_enable.pel_class;
280		mrioc->pel_locale = pel_enable.pel_locale;
281		mrioc->pel_enabled = 1;
282		rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
283		if (rval) {
284			mrioc->pel_class = tmp_class;
285			mrioc->pel_locale = tmp_locale;
286			mrioc->pel_enabled = 0;
287			dprint_bsg_err(mrioc,
288			    "%s: pel get sequence number failed, status(%ld)\n",
289			    __func__, rval);
290		}
291	}
292
293out:
294	return rval;
295}
296/**
297 * mpi3mr_get_all_tgt_info - Get all target information
298 * @mrioc: Adapter instance reference
299 * @job: BSG job reference
300 *
301 * This function copies the driver managed target devices device
302 * handle, persistent ID, bus ID and taret ID to the user
303 * provided buffer for the specific controller. This function
304 * also provides the number of devices managed by the driver for
305 * the specific controller.
306 *
307 * Return: 0 on success and proper error codes on failure
308 */
309static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
310	struct bsg_job *job)
311{
312	u16 num_devices = 0, i = 0, size;
313	unsigned long flags;
314	struct mpi3mr_tgt_dev *tgtdev;
315	struct mpi3mr_device_map_info *devmap_info = NULL;
316	struct mpi3mr_all_tgt_info *alltgt_info = NULL;
317	uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
318
319	if (job->request_payload.payload_len < sizeof(u32)) {
320		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
321		    __func__);
322		return -EINVAL;
323	}
324
325	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
326	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
327		num_devices++;
328	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
329
330	if ((job->request_payload.payload_len <= sizeof(u64)) ||
331		list_empty(&mrioc->tgtdev_list)) {
332		sg_copy_from_buffer(job->request_payload.sg_list,
333				    job->request_payload.sg_cnt,
334				    &num_devices, sizeof(num_devices));
335		return 0;
336	}
337
338	kern_entrylen = num_devices * sizeof(*devmap_info);
339	size = sizeof(u64) + kern_entrylen;
340	alltgt_info = kzalloc(size, GFP_KERNEL);
341	if (!alltgt_info)
342		return -ENOMEM;
343
344	devmap_info = alltgt_info->dmi;
345	memset((u8 *)devmap_info, 0xFF, kern_entrylen);
346	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
347	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
348		if (i < num_devices) {
349			devmap_info[i].handle = tgtdev->dev_handle;
350			devmap_info[i].perst_id = tgtdev->perst_id;
351			if (tgtdev->host_exposed && tgtdev->starget) {
352				devmap_info[i].target_id = tgtdev->starget->id;
353				devmap_info[i].bus_id =
354				    tgtdev->starget->channel;
355			}
356			i++;
357		}
358	}
359	num_devices = i;
360	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
361
362	alltgt_info->num_devices = num_devices;
363
364	usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) /
365		sizeof(*devmap_info);
366	usr_entrylen *= sizeof(*devmap_info);
367	min_entrylen = min(usr_entrylen, kern_entrylen);
368
369	sg_copy_from_buffer(job->request_payload.sg_list,
370			    job->request_payload.sg_cnt,
371			    alltgt_info, (min_entrylen + sizeof(u64)));
372	kfree(alltgt_info);
373	return 0;
374}
375/**
376 * mpi3mr_get_change_count - Get topology change count
377 * @mrioc: Adapter instance reference
378 * @job: BSG job reference
379 *
380 * This function copies the toplogy change count provided by the
381 * driver in events and cached in the driver to the user
382 * provided buffer for the specific controller.
383 *
384 * Return: 0 on success and proper error codes on failure
385 */
386static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
387	struct bsg_job *job)
388{
389	struct mpi3mr_change_count chgcnt;
390
391	memset(&chgcnt, 0, sizeof(chgcnt));
392	chgcnt.change_count = mrioc->change_count;
393	if (job->request_payload.payload_len >= sizeof(chgcnt)) {
394		sg_copy_from_buffer(job->request_payload.sg_list,
395				    job->request_payload.sg_cnt,
396				    &chgcnt, sizeof(chgcnt));
397		return 0;
398	}
399	return -EINVAL;
400}
401
402/**
403 * mpi3mr_bsg_adp_reset - Issue controller reset
404 * @mrioc: Adapter instance reference
405 * @job: BSG job reference
406 *
407 * This function identifies the user provided reset type and
408 * issues approporiate reset to the controller and wait for that
409 * to complete and reinitialize the controller and then returns
410 *
411 * Return: 0 on success and proper error codes on failure
412 */
413static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
414	struct bsg_job *job)
415{
416	long rval = -EINVAL;
417	u8 save_snapdump;
418	struct mpi3mr_bsg_adp_reset adpreset;
419
420	if (job->request_payload.payload_len !=
421			sizeof(adpreset)) {
422		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
423		    __func__);
424		goto out;
425	}
426
427	sg_copy_to_buffer(job->request_payload.sg_list,
428			  job->request_payload.sg_cnt,
429			  &adpreset, sizeof(adpreset));
430
431	switch (adpreset.reset_type) {
432	case MPI3MR_BSG_ADPRESET_SOFT:
433		save_snapdump = 0;
434		break;
435	case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
436		save_snapdump = 1;
437		break;
438	default:
439		dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
440		    __func__, adpreset.reset_type);
441		goto out;
442	}
443
444	rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
445	    save_snapdump);
446
447	if (rval)
448		dprint_bsg_err(mrioc,
449		    "%s: reset handler returned error(%ld) for reset type %d\n",
450		    __func__, rval, adpreset.reset_type);
451out:
452	return rval;
453}
454
455/**
456 * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
457 * @mrioc: Adapter instance reference
458 * @job: BSG job reference
459 *
460 * This function provides adapter information for the given
461 * controller
462 *
463 * Return: 0 on success and proper error codes on failure
464 */
465static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
466	struct bsg_job *job)
467{
468	enum mpi3mr_iocstate ioc_state;
469	struct mpi3mr_bsg_in_adpinfo adpinfo;
470
471	memset(&adpinfo, 0, sizeof(adpinfo));
472	adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
473	adpinfo.pci_dev_id = mrioc->pdev->device;
474	adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
475	adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
476	adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
477	adpinfo.pci_bus = mrioc->pdev->bus->number;
478	adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
479	adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
480	adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
481	adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
482
483	ioc_state = mpi3mr_get_iocstate(mrioc);
484	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
485		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
486	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
487		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
488	else if (ioc_state == MRIOC_STATE_FAULT)
489		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
490	else
491		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
492
493	memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
494	    sizeof(adpinfo.driver_info));
495
496	if (job->request_payload.payload_len >= sizeof(adpinfo)) {
497		sg_copy_from_buffer(job->request_payload.sg_list,
498				    job->request_payload.sg_cnt,
499				    &adpinfo, sizeof(adpinfo));
500		return 0;
501	}
502	return -EINVAL;
503}
504
505/**
506 * mpi3mr_bsg_process_drv_cmds - Driver Command handler
507 * @job: BSG job reference
508 *
509 * This function is the top level handler for driver commands,
510 * this does basic validation of the buffer and identifies the
511 * opcode and switches to correct sub handler.
512 *
513 * Return: 0 on success and proper error codes on failure
514 */
515static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
516{
517	long rval = -EINVAL;
518	struct mpi3mr_ioc *mrioc = NULL;
519	struct mpi3mr_bsg_packet *bsg_req = NULL;
520	struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
521
522	bsg_req = job->request;
523	drvrcmd = &bsg_req->cmd.drvrcmd;
524
525	mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
526	if (!mrioc)
527		return -ENODEV;
528
529	if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
530		rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
531		return rval;
532	}
533
534	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
535		return -ERESTARTSYS;
536
537	switch (drvrcmd->opcode) {
538	case MPI3MR_DRVBSG_OPCODE_ADPRESET:
539		rval = mpi3mr_bsg_adp_reset(mrioc, job);
540		break;
541	case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
542		rval = mpi3mr_get_all_tgt_info(mrioc, job);
543		break;
544	case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
545		rval = mpi3mr_get_change_count(mrioc, job);
546		break;
547	case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
548		rval = mpi3mr_enable_logdata(mrioc, job);
549		break;
550	case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
551		rval = mpi3mr_get_logdata(mrioc, job);
552		break;
553	case MPI3MR_DRVBSG_OPCODE_PELENABLE:
554		rval = mpi3mr_bsg_pel_enable(mrioc, job);
555		break;
556	case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
557	default:
558		pr_err("%s: unsupported driver command opcode %d\n",
559		    MPI3MR_DRIVER_NAME, drvrcmd->opcode);
560		break;
561	}
562	mutex_unlock(&mrioc->bsg_cmds.mutex);
563	return rval;
564}
565
566/**
567 * mpi3mr_bsg_build_sgl - SGL construction for MPI commands
568 * @mpi_req: MPI request
569 * @sgl_offset: offset to start sgl in the MPI request
570 * @drv_bufs: DMA address of the buffers to be placed in sgl
571 * @bufcnt: Number of DMA buffers
572 * @is_rmc: Does the buffer list has management command buffer
573 * @is_rmr: Does the buffer list has management response buffer
574 * @num_datasges: Number of data buffers in the list
575 *
576 * This function places the DMA address of the given buffers in
577 * proper format as SGEs in the given MPI request.
578 *
579 * Return: Nothing
580 */
581static void mpi3mr_bsg_build_sgl(u8 *mpi_req, uint32_t sgl_offset,
582	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt, u8 is_rmc,
583	u8 is_rmr, u8 num_datasges)
584{
585	u8 *sgl = (mpi_req + sgl_offset), count = 0;
586	struct mpi3_mgmt_passthrough_request *rmgmt_req =
587	    (struct mpi3_mgmt_passthrough_request *)mpi_req;
588	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
589	u8 sgl_flags, sgl_flags_last;
590
591	sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
592		MPI3_SGE_FLAGS_DLAS_SYSTEM | MPI3_SGE_FLAGS_END_OF_BUFFER;
593	sgl_flags_last = sgl_flags | MPI3_SGE_FLAGS_END_OF_LIST;
594
595	if (is_rmc) {
596		mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
597		    sgl_flags_last, drv_buf_iter->kern_buf_len,
598		    drv_buf_iter->kern_buf_dma);
599		sgl = (u8 *)drv_buf_iter->kern_buf + drv_buf_iter->bsg_buf_len;
600		drv_buf_iter++;
601		count++;
602		if (is_rmr) {
603			mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
604			    sgl_flags_last, drv_buf_iter->kern_buf_len,
605			    drv_buf_iter->kern_buf_dma);
606			drv_buf_iter++;
607			count++;
608		} else
609			mpi3mr_build_zero_len_sge(
610			    &rmgmt_req->response_sgl);
611	}
612	if (!num_datasges) {
613		mpi3mr_build_zero_len_sge(sgl);
614		return;
615	}
616	for (; count < bufcnt; count++, drv_buf_iter++) {
617		if (drv_buf_iter->data_dir == DMA_NONE)
618			continue;
619		if (num_datasges == 1 || !is_rmc)
620			mpi3mr_add_sg_single(sgl, sgl_flags_last,
621			    drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma);
622		else
623			mpi3mr_add_sg_single(sgl, sgl_flags,
624			    drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma);
625		sgl += sizeof(struct mpi3_sge_common);
626		num_datasges--;
627	}
628}
629
630/**
631 * mpi3mr_get_nvme_data_fmt - returns the NVMe data format
632 * @nvme_encap_request: NVMe encapsulated MPI request
633 *
634 * This function returns the type of the data format specified
635 * in user provided NVMe command in NVMe encapsulated request.
636 *
637 * Return: Data format of the NVMe command (PRP/SGL etc)
638 */
639static unsigned int mpi3mr_get_nvme_data_fmt(
640	struct mpi3_nvme_encapsulated_request *nvme_encap_request)
641{
642	u8 format = 0;
643
644	format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
645	return format;
646
647}
648
649/**
650 * mpi3mr_build_nvme_sgl - SGL constructor for NVME
651 *				   encapsulated request
652 * @mrioc: Adapter instance reference
653 * @nvme_encap_request: NVMe encapsulated MPI request
654 * @drv_bufs: DMA address of the buffers to be placed in sgl
655 * @bufcnt: Number of DMA buffers
656 *
657 * This function places the DMA address of the given buffers in
658 * proper format as SGEs in the given NVMe encapsulated request.
659 *
660 * Return: 0 on success, -1 on failure
661 */
662static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
663	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
664	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
665{
666	struct mpi3mr_nvme_pt_sge *nvme_sgl;
667	u64 sgl_ptr;
668	u8 count;
669	size_t length = 0;
670	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
671	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
672			    mrioc->facts.sge_mod_shift) << 32);
673	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
674			  mrioc->facts.sge_mod_shift) << 32;
675
676	/*
677	 * Not all commands require a data transfer. If no data, just return
678	 * without constructing any sgl.
679	 */
680	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
681		if (drv_buf_iter->data_dir == DMA_NONE)
682			continue;
683		sgl_ptr = (u64)drv_buf_iter->kern_buf_dma;
684		length = drv_buf_iter->kern_buf_len;
685		break;
686	}
687	if (!length)
688		return 0;
689
690	if (sgl_ptr & sgemod_mask) {
691		dprint_bsg_err(mrioc,
692		    "%s: SGL address collides with SGE modifier\n",
693		    __func__);
694		return -1;
695	}
696
697	sgl_ptr &= ~sgemod_mask;
698	sgl_ptr |= sgemod_val;
699	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
700	    ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
701	memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
702	nvme_sgl->base_addr = sgl_ptr;
703	nvme_sgl->length = length;
704	return 0;
705}
706
707/**
708 * mpi3mr_build_nvme_prp - PRP constructor for NVME
709 *			       encapsulated request
710 * @mrioc: Adapter instance reference
711 * @nvme_encap_request: NVMe encapsulated MPI request
712 * @drv_bufs: DMA address of the buffers to be placed in SGL
713 * @bufcnt: Number of DMA buffers
714 *
715 * This function places the DMA address of the given buffers in
716 * proper format as PRP entries in the given NVMe encapsulated
717 * request.
718 *
719 * Return: 0 on success, -1 on failure
720 */
721static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
722	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
723	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
724{
725	int prp_size = MPI3MR_NVME_PRP_SIZE;
726	__le64 *prp_entry, *prp1_entry, *prp2_entry;
727	__le64 *prp_page;
728	dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
729	u32 offset, entry_len, dev_pgsz;
730	u32 page_mask_result, page_mask;
731	size_t length = 0;
732	u8 count;
733	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
734	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
735			    mrioc->facts.sge_mod_shift) << 32);
736	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
737			  mrioc->facts.sge_mod_shift) << 32;
738	u16 dev_handle = nvme_encap_request->dev_handle;
739	struct mpi3mr_tgt_dev *tgtdev;
740
741	tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
742	if (!tgtdev) {
743		dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
744			__func__, dev_handle);
745		return -1;
746	}
747
748	if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
749		dprint_bsg_err(mrioc,
750		    "%s: NVMe device page size is zero for handle 0x%04x\n",
751		    __func__, dev_handle);
752		mpi3mr_tgtdev_put(tgtdev);
753		return -1;
754	}
755
756	dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
757	mpi3mr_tgtdev_put(tgtdev);
758
759	/*
760	 * Not all commands require a data transfer. If no data, just return
761	 * without constructing any PRP.
762	 */
763	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
764		if (drv_buf_iter->data_dir == DMA_NONE)
765			continue;
766		dma_addr = drv_buf_iter->kern_buf_dma;
767		length = drv_buf_iter->kern_buf_len;
768		break;
769	}
770
771	if (!length)
772		return 0;
773
774	mrioc->prp_sz = 0;
775	mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
776	    dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
777
778	if (!mrioc->prp_list_virt)
779		return -1;
780	mrioc->prp_sz = dev_pgsz;
781
782	/*
783	 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
784	 * PRP1 is located at a 24 byte offset from the start of the NVMe
785	 * command.  Then set the current PRP entry pointer to PRP1.
786	 */
787	prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
788	    MPI3MR_NVME_CMD_PRP1_OFFSET);
789	prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
790	    MPI3MR_NVME_CMD_PRP2_OFFSET);
791	prp_entry = prp1_entry;
792	/*
793	 * For the PRP entries, use the specially allocated buffer of
794	 * contiguous memory.
795	 */
796	prp_page = (__le64 *)mrioc->prp_list_virt;
797	prp_page_dma = mrioc->prp_list_dma;
798
799	/*
800	 * Check if we are within 1 entry of a page boundary we don't
801	 * want our first entry to be a PRP List entry.
802	 */
803	page_mask = dev_pgsz - 1;
804	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
805	if (!page_mask_result) {
806		dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
807		    __func__);
808		goto err_out;
809	}
810
811	/*
812	 * Set PRP physical pointer, which initially points to the current PRP
813	 * DMA memory page.
814	 */
815	prp_entry_dma = prp_page_dma;
816
817
818	/* Loop while the length is not zero. */
819	while (length) {
820		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
821		if (!page_mask_result && (length >  dev_pgsz)) {
822			dprint_bsg_err(mrioc,
823			    "%s: single PRP page is not sufficient\n",
824			    __func__);
825			goto err_out;
826		}
827
828		/* Need to handle if entry will be part of a page. */
829		offset = dma_addr & page_mask;
830		entry_len = dev_pgsz - offset;
831
832		if (prp_entry == prp1_entry) {
833			/*
834			 * Must fill in the first PRP pointer (PRP1) before
835			 * moving on.
836			 */
837			*prp1_entry = cpu_to_le64(dma_addr);
838			if (*prp1_entry & sgemod_mask) {
839				dprint_bsg_err(mrioc,
840				    "%s: PRP1 address collides with SGE modifier\n",
841				    __func__);
842				goto err_out;
843			}
844			*prp1_entry &= ~sgemod_mask;
845			*prp1_entry |= sgemod_val;
846
847			/*
848			 * Now point to the second PRP entry within the
849			 * command (PRP2).
850			 */
851			prp_entry = prp2_entry;
852		} else if (prp_entry == prp2_entry) {
853			/*
854			 * Should the PRP2 entry be a PRP List pointer or just
855			 * a regular PRP pointer?  If there is more than one
856			 * more page of data, must use a PRP List pointer.
857			 */
858			if (length > dev_pgsz) {
859				/*
860				 * PRP2 will contain a PRP List pointer because
861				 * more PRP's are needed with this command. The
862				 * list will start at the beginning of the
863				 * contiguous buffer.
864				 */
865				*prp2_entry = cpu_to_le64(prp_entry_dma);
866				if (*prp2_entry & sgemod_mask) {
867					dprint_bsg_err(mrioc,
868					    "%s: PRP list address collides with SGE modifier\n",
869					    __func__);
870					goto err_out;
871				}
872				*prp2_entry &= ~sgemod_mask;
873				*prp2_entry |= sgemod_val;
874
875				/*
876				 * The next PRP Entry will be the start of the
877				 * first PRP List.
878				 */
879				prp_entry = prp_page;
880				continue;
881			} else {
882				/*
883				 * After this, the PRP Entries are complete.
884				 * This command uses 2 PRP's and no PRP list.
885				 */
886				*prp2_entry = cpu_to_le64(dma_addr);
887				if (*prp2_entry & sgemod_mask) {
888					dprint_bsg_err(mrioc,
889					    "%s: PRP2 collides with SGE modifier\n",
890					    __func__);
891					goto err_out;
892				}
893				*prp2_entry &= ~sgemod_mask;
894				*prp2_entry |= sgemod_val;
895			}
896		} else {
897			/*
898			 * Put entry in list and bump the addresses.
899			 *
900			 * After PRP1 and PRP2 are filled in, this will fill in
901			 * all remaining PRP entries in a PRP List, one per
902			 * each time through the loop.
903			 */
904			*prp_entry = cpu_to_le64(dma_addr);
905			if (*prp_entry & sgemod_mask) {
906				dprint_bsg_err(mrioc,
907				    "%s: PRP address collides with SGE modifier\n",
908				    __func__);
909				goto err_out;
910			}
911			*prp_entry &= ~sgemod_mask;
912			*prp_entry |= sgemod_val;
913			prp_entry++;
914			prp_entry_dma += prp_size;
915		}
916
917		/*
918		 * Bump the phys address of the command's data buffer by the
919		 * entry_len.
920		 */
921		dma_addr += entry_len;
922
923		/* decrement length accounting for last partial page. */
924		if (entry_len > length)
925			length = 0;
926		else
927			length -= entry_len;
928	}
929	return 0;
930err_out:
931	if (mrioc->prp_list_virt) {
932		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
933		    mrioc->prp_list_virt, mrioc->prp_list_dma);
934		mrioc->prp_list_virt = NULL;
935	}
936	return -1;
937}
938/**
939 * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
940 * @job: BSG job reference
941 * @reply_payload_rcv_len: length of payload recvd
942 *
943 * This function is the top level handler for MPI Pass through
944 * command, this does basic validation of the input data buffers,
945 * identifies the given buffer types and MPI command, allocates
946 * DMAable memory for user given buffers, construstcs SGL
947 * properly and passes the command to the firmware.
948 *
949 * Once the MPI command is completed the driver copies the data
950 * if any and reply, sense information to user provided buffers.
951 * If the command is timed out then issues controller reset
952 * prior to returning.
953 *
954 * Return: 0 on success and proper error codes on failure
955 */
956
957static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job, unsigned int *reply_payload_rcv_len)
958{
959	long rval = -EINVAL;
960
961	struct mpi3mr_ioc *mrioc = NULL;
962	u8 *mpi_req = NULL, *sense_buff_k = NULL;
963	u8 mpi_msg_size = 0;
964	struct mpi3mr_bsg_packet *bsg_req = NULL;
965	struct mpi3mr_bsg_mptcmd *karg;
966	struct mpi3mr_buf_entry *buf_entries = NULL;
967	struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
968	u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0, din_cnt = 0, dout_cnt = 0;
969	u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF, sg_entries = 0;
970	u8 block_io = 0, resp_code = 0, nvme_fmt = 0;
971	struct mpi3_request_header *mpi_header = NULL;
972	struct mpi3_status_reply_descriptor *status_desc;
973	struct mpi3_scsi_task_mgmt_request *tm_req;
974	u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
975	u16 dev_handle;
976	struct mpi3mr_tgt_dev *tgtdev;
977	struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
978	struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
979	u32 din_size = 0, dout_size = 0;
980	u8 *din_buf = NULL, *dout_buf = NULL;
981	u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
982
983	bsg_req = job->request;
984	karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
985
986	mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
987	if (!mrioc)
988		return -ENODEV;
989
990	if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
991		karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
992
993	mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
994	if (!mpi_req)
995		return -ENOMEM;
996	mpi_header = (struct mpi3_request_header *)mpi_req;
997
998	bufcnt = karg->buf_entry_list.num_of_entries;
999	drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
1000	if (!drv_bufs) {
1001		rval = -ENOMEM;
1002		goto out;
1003	}
1004
1005	dout_buf = kzalloc(job->request_payload.payload_len,
1006				      GFP_KERNEL);
1007	if (!dout_buf) {
1008		rval = -ENOMEM;
1009		goto out;
1010	}
1011
1012	din_buf = kzalloc(job->reply_payload.payload_len,
1013				     GFP_KERNEL);
1014	if (!din_buf) {
1015		rval = -ENOMEM;
1016		goto out;
1017	}
1018
1019	sg_copy_to_buffer(job->request_payload.sg_list,
1020			  job->request_payload.sg_cnt,
1021			  dout_buf, job->request_payload.payload_len);
1022
1023	buf_entries = karg->buf_entry_list.buf_entry;
1024	sgl_din_iter = din_buf;
1025	sgl_dout_iter = dout_buf;
1026	drv_buf_iter = drv_bufs;
1027
1028	for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
1029
1030		if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
1031			dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
1032				__func__);
1033			rval = -EINVAL;
1034			goto out;
1035		}
1036		if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
1037			dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
1038				__func__);
1039			rval = -EINVAL;
1040			goto out;
1041		}
1042
1043		switch (buf_entries->buf_type) {
1044		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
1045			sgl_iter = sgl_dout_iter;
1046			sgl_dout_iter += buf_entries->buf_len;
1047			drv_buf_iter->data_dir = DMA_TO_DEVICE;
1048			is_rmcb = 1;
1049			if (count != 0)
1050				invalid_be = 1;
1051			break;
1052		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
1053			sgl_iter = sgl_din_iter;
1054			sgl_din_iter += buf_entries->buf_len;
1055			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1056			is_rmrb = 1;
1057			if (count != 1 || !is_rmcb)
1058				invalid_be = 1;
1059			break;
1060		case MPI3MR_BSG_BUFTYPE_DATA_IN:
1061			sgl_iter = sgl_din_iter;
1062			sgl_din_iter += buf_entries->buf_len;
1063			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1064			din_cnt++;
1065			din_size += drv_buf_iter->bsg_buf_len;
1066			if ((din_cnt > 1) && !is_rmcb)
1067				invalid_be = 1;
1068			break;
1069		case MPI3MR_BSG_BUFTYPE_DATA_OUT:
1070			sgl_iter = sgl_dout_iter;
1071			sgl_dout_iter += buf_entries->buf_len;
1072			drv_buf_iter->data_dir = DMA_TO_DEVICE;
1073			dout_cnt++;
1074			dout_size += drv_buf_iter->bsg_buf_len;
1075			if ((dout_cnt > 1) && !is_rmcb)
1076				invalid_be = 1;
1077			break;
1078		case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
1079			sgl_iter = sgl_din_iter;
1080			sgl_din_iter += buf_entries->buf_len;
1081			drv_buf_iter->data_dir = DMA_NONE;
1082			mpirep_offset = count;
1083			break;
1084		case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
1085			sgl_iter = sgl_din_iter;
1086			sgl_din_iter += buf_entries->buf_len;
1087			drv_buf_iter->data_dir = DMA_NONE;
1088			erb_offset = count;
1089			break;
1090		case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
1091			sgl_iter = sgl_dout_iter;
1092			sgl_dout_iter += buf_entries->buf_len;
1093			drv_buf_iter->data_dir = DMA_NONE;
1094			mpi_msg_size = buf_entries->buf_len;
1095			if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
1096					(mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
1097				dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
1098					__func__);
1099				rval = -EINVAL;
1100				goto out;
1101			}
1102			memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
1103			break;
1104		default:
1105			invalid_be = 1;
1106			break;
1107		}
1108		if (invalid_be) {
1109			dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
1110				__func__);
1111			rval = -EINVAL;
1112			goto out;
1113		}
1114
1115		drv_buf_iter->bsg_buf = sgl_iter;
1116		drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
1117
1118	}
1119	if (!is_rmcb && (dout_cnt || din_cnt)) {
1120		sg_entries = dout_cnt + din_cnt;
1121		if (((mpi_msg_size) + (sg_entries *
1122		      sizeof(struct mpi3_sge_common))) > MPI3MR_ADMIN_REQ_FRAME_SZ) {
1123			dprint_bsg_err(mrioc,
1124			    "%s:%d: invalid message size passed\n",
1125			    __func__, __LINE__);
1126			rval = -EINVAL;
1127			goto out;
1128		}
1129	}
1130	if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
1131		dprint_bsg_err(mrioc,
1132		    "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
1133		    __func__, __LINE__, mpi_header->function, din_size);
1134		rval = -EINVAL;
1135		goto out;
1136	}
1137	if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
1138		dprint_bsg_err(mrioc,
1139		    "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
1140		    __func__, __LINE__, mpi_header->function, dout_size);
1141		rval = -EINVAL;
1142		goto out;
1143	}
1144
1145	drv_buf_iter = drv_bufs;
1146	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1147		if (drv_buf_iter->data_dir == DMA_NONE)
1148			continue;
1149
1150		drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
1151		if (is_rmcb && !count)
1152			drv_buf_iter->kern_buf_len += ((dout_cnt + din_cnt) *
1153			    sizeof(struct mpi3_sge_common));
1154
1155		if (!drv_buf_iter->kern_buf_len)
1156			continue;
1157
1158		drv_buf_iter->kern_buf = dma_alloc_coherent(&mrioc->pdev->dev,
1159		    drv_buf_iter->kern_buf_len, &drv_buf_iter->kern_buf_dma,
1160		    GFP_KERNEL);
1161		if (!drv_buf_iter->kern_buf) {
1162			rval = -ENOMEM;
1163			goto out;
1164		}
1165		if (drv_buf_iter->data_dir == DMA_TO_DEVICE) {
1166			tmplen = min(drv_buf_iter->kern_buf_len,
1167			    drv_buf_iter->bsg_buf_len);
1168			memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
1169		}
1170	}
1171
1172	if (erb_offset != 0xFF) {
1173		sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
1174		if (!sense_buff_k) {
1175			rval = -ENOMEM;
1176			goto out;
1177		}
1178	}
1179
1180	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) {
1181		rval = -ERESTARTSYS;
1182		goto out;
1183	}
1184	if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
1185		rval = -EAGAIN;
1186		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
1187		mutex_unlock(&mrioc->bsg_cmds.mutex);
1188		goto out;
1189	}
1190	if (mrioc->unrecoverable) {
1191		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1192		    __func__);
1193		rval = -EFAULT;
1194		mutex_unlock(&mrioc->bsg_cmds.mutex);
1195		goto out;
1196	}
1197	if (mrioc->reset_in_progress) {
1198		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1199		rval = -EAGAIN;
1200		mutex_unlock(&mrioc->bsg_cmds.mutex);
1201		goto out;
1202	}
1203	if (mrioc->stop_bsgs) {
1204		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
1205		rval = -EAGAIN;
1206		mutex_unlock(&mrioc->bsg_cmds.mutex);
1207		goto out;
1208	}
1209
1210	if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
1211		nvme_fmt = mpi3mr_get_nvme_data_fmt(
1212			(struct mpi3_nvme_encapsulated_request *)mpi_req);
1213		if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
1214			if (mpi3mr_build_nvme_prp(mrioc,
1215			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
1216			    drv_bufs, bufcnt)) {
1217				rval = -ENOMEM;
1218				mutex_unlock(&mrioc->bsg_cmds.mutex);
1219				goto out;
1220			}
1221		} else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
1222			nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
1223			if (mpi3mr_build_nvme_sgl(mrioc,
1224			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
1225			    drv_bufs, bufcnt)) {
1226				rval = -EINVAL;
1227				mutex_unlock(&mrioc->bsg_cmds.mutex);
1228				goto out;
1229			}
1230		} else {
1231			dprint_bsg_err(mrioc,
1232			    "%s:invalid NVMe command format\n", __func__);
1233			rval = -EINVAL;
1234			mutex_unlock(&mrioc->bsg_cmds.mutex);
1235			goto out;
1236		}
1237	} else {
1238		mpi3mr_bsg_build_sgl(mpi_req, (mpi_msg_size),
1239		    drv_bufs, bufcnt, is_rmcb, is_rmrb,
1240		    (dout_cnt + din_cnt));
1241	}
1242
1243	if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
1244		tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
1245		if (tm_req->task_type !=
1246		    MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
1247			dev_handle = tm_req->dev_handle;
1248			block_io = 1;
1249		}
1250	}
1251	if (block_io) {
1252		tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
1253		if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
1254			stgt_priv = (struct mpi3mr_stgt_priv_data *)
1255			    tgtdev->starget->hostdata;
1256			atomic_inc(&stgt_priv->block_io);
1257			mpi3mr_tgtdev_put(tgtdev);
1258		}
1259	}
1260
1261	mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
1262	mrioc->bsg_cmds.is_waiting = 1;
1263	mrioc->bsg_cmds.callback = NULL;
1264	mrioc->bsg_cmds.is_sense = 0;
1265	mrioc->bsg_cmds.sensebuf = sense_buff_k;
1266	memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
1267	mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
1268	if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
1269		dprint_bsg_info(mrioc,
1270		    "%s: posting bsg request to the controller\n", __func__);
1271		dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1272		    "bsg_mpi3_req");
1273		if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1274			drv_buf_iter = &drv_bufs[0];
1275			dprint_dump(drv_buf_iter->kern_buf,
1276			    drv_buf_iter->kern_buf_len, "mpi3_mgmt_req");
1277		}
1278	}
1279
1280	init_completion(&mrioc->bsg_cmds.done);
1281	rval = mpi3mr_admin_request_post(mrioc, mpi_req,
1282	    MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
1283
1284
1285	if (rval) {
1286		mrioc->bsg_cmds.is_waiting = 0;
1287		dprint_bsg_err(mrioc,
1288		    "%s: posting bsg request is failed\n", __func__);
1289		rval = -EAGAIN;
1290		goto out_unlock;
1291	}
1292	wait_for_completion_timeout(&mrioc->bsg_cmds.done,
1293	    (karg->timeout * HZ));
1294	if (block_io && stgt_priv)
1295		atomic_dec(&stgt_priv->block_io);
1296	if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
1297		mrioc->bsg_cmds.is_waiting = 0;
1298		rval = -EAGAIN;
1299		if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
1300			goto out_unlock;
1301		dprint_bsg_err(mrioc,
1302		    "%s: bsg request timedout after %d seconds\n", __func__,
1303		    karg->timeout);
1304		if (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR) {
1305			dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1306			    "bsg_mpi3_req");
1307			if (mpi_header->function ==
1308			    MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1309				drv_buf_iter = &drv_bufs[0];
1310				dprint_dump(drv_buf_iter->kern_buf,
1311				    drv_buf_iter->kern_buf_len, "mpi3_mgmt_req");
1312			}
1313		}
1314
1315		if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
1316		    (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO))
1317			mpi3mr_issue_tm(mrioc,
1318			    MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
1319			    mpi_header->function_dependent, 0,
1320			    MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
1321			    &mrioc->host_tm_cmds, &resp_code, NULL);
1322		if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
1323		    !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
1324			mpi3mr_soft_reset_handler(mrioc,
1325			    MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
1326		goto out_unlock;
1327	}
1328	dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
1329
1330	if (mrioc->prp_list_virt) {
1331		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
1332		    mrioc->prp_list_virt, mrioc->prp_list_dma);
1333		mrioc->prp_list_virt = NULL;
1334	}
1335
1336	if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
1337	     != MPI3_IOCSTATUS_SUCCESS) {
1338		dprint_bsg_info(mrioc,
1339		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
1340		    __func__,
1341		    (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
1342		    mrioc->bsg_cmds.ioc_loginfo);
1343	}
1344
1345	if ((mpirep_offset != 0xFF) &&
1346	    drv_bufs[mpirep_offset].bsg_buf_len) {
1347		drv_buf_iter = &drv_bufs[mpirep_offset];
1348		drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) - 1 +
1349					   mrioc->reply_sz);
1350		bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
1351
1352		if (!bsg_reply_buf) {
1353			rval = -ENOMEM;
1354			goto out_unlock;
1355		}
1356		if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
1357			bsg_reply_buf->mpi_reply_type =
1358				MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
1359			memcpy(bsg_reply_buf->reply_buf,
1360			    mrioc->bsg_cmds.reply, mrioc->reply_sz);
1361		} else {
1362			bsg_reply_buf->mpi_reply_type =
1363				MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
1364			status_desc = (struct mpi3_status_reply_descriptor *)
1365			    bsg_reply_buf->reply_buf;
1366			status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
1367			status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
1368		}
1369		tmplen = min(drv_buf_iter->kern_buf_len,
1370			drv_buf_iter->bsg_buf_len);
1371		memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
1372	}
1373
1374	if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
1375	    mrioc->bsg_cmds.is_sense) {
1376		drv_buf_iter = &drv_bufs[erb_offset];
1377		tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
1378		memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
1379	}
1380
1381	drv_buf_iter = drv_bufs;
1382	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1383		if (drv_buf_iter->data_dir == DMA_NONE)
1384			continue;
1385		if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
1386			tmplen = min(drv_buf_iter->kern_buf_len,
1387				     drv_buf_iter->bsg_buf_len);
1388			memcpy(drv_buf_iter->bsg_buf,
1389			       drv_buf_iter->kern_buf, tmplen);
1390		}
1391	}
1392
1393out_unlock:
1394	if (din_buf) {
1395		*reply_payload_rcv_len =
1396			sg_copy_from_buffer(job->reply_payload.sg_list,
1397					    job->reply_payload.sg_cnt,
1398					    din_buf, job->reply_payload.payload_len);
1399	}
1400	mrioc->bsg_cmds.is_sense = 0;
1401	mrioc->bsg_cmds.sensebuf = NULL;
1402	mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
1403	mutex_unlock(&mrioc->bsg_cmds.mutex);
1404out:
1405	kfree(sense_buff_k);
1406	kfree(dout_buf);
1407	kfree(din_buf);
1408	kfree(mpi_req);
1409	if (drv_bufs) {
1410		drv_buf_iter = drv_bufs;
1411		for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1412			if (drv_buf_iter->kern_buf && drv_buf_iter->kern_buf_dma)
1413				dma_free_coherent(&mrioc->pdev->dev,
1414				    drv_buf_iter->kern_buf_len,
1415				    drv_buf_iter->kern_buf,
1416				    drv_buf_iter->kern_buf_dma);
1417		}
1418		kfree(drv_bufs);
1419	}
1420	kfree(bsg_reply_buf);
1421	return rval;
1422}
1423
1424/**
1425 * mpi3mr_app_save_logdata - Save Log Data events
1426 * @mrioc: Adapter instance reference
1427 * @event_data: event data associated with log data event
1428 * @event_data_size: event data size to copy
1429 *
1430 * If log data event caching is enabled by the applicatiobns,
1431 * then this function saves the log data in the circular queue
1432 * and Sends async signal SIGIO to indicate there is an async
1433 * event from the firmware to the event monitoring applications.
1434 *
1435 * Return:Nothing
1436 */
1437void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
1438	u16 event_data_size)
1439{
1440	u32 index = mrioc->logdata_buf_idx, sz;
1441	struct mpi3mr_logdata_entry *entry;
1442
1443	if (!(mrioc->logdata_buf))
1444		return;
1445
1446	entry = (struct mpi3mr_logdata_entry *)
1447		(mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
1448	entry->valid_entry = 1;
1449	sz = min(mrioc->logdata_entry_sz, event_data_size);
1450	memcpy(entry->data, event_data, sz);
1451	mrioc->logdata_buf_idx =
1452		((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
1453	atomic64_inc(&event_counter);
1454}
1455
1456/**
1457 * mpi3mr_bsg_request - bsg request entry point
1458 * @job: BSG job reference
1459 *
1460 * This is driver's entry point for bsg requests
1461 *
1462 * Return: 0 on success and proper error codes on failure
1463 */
1464static int mpi3mr_bsg_request(struct bsg_job *job)
1465{
1466	long rval = -EINVAL;
1467	unsigned int reply_payload_rcv_len = 0;
1468
1469	struct mpi3mr_bsg_packet *bsg_req = job->request;
1470
1471	switch (bsg_req->cmd_type) {
1472	case MPI3MR_DRV_CMD:
1473		rval = mpi3mr_bsg_process_drv_cmds(job);
1474		break;
1475	case MPI3MR_MPT_CMD:
1476		rval = mpi3mr_bsg_process_mpt_cmds(job, &reply_payload_rcv_len);
1477		break;
1478	default:
1479		pr_err("%s: unsupported BSG command(0x%08x)\n",
1480		    MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
1481		break;
1482	}
1483
1484	bsg_job_done(job, rval, reply_payload_rcv_len);
1485
1486	return 0;
1487}
1488
1489/**
1490 * mpi3mr_bsg_exit - de-registration from bsg layer
1491 * @mrioc: Adapter instance reference
1492 *
1493 * This will be called during driver unload and all
1494 * bsg resources allocated during load will be freed.
1495 *
1496 * Return:Nothing
1497 */
1498void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
1499{
1500	struct device *bsg_dev = &mrioc->bsg_dev;
1501	if (!mrioc->bsg_queue)
1502		return;
1503
1504	bsg_remove_queue(mrioc->bsg_queue);
1505	mrioc->bsg_queue = NULL;
1506
1507	device_del(bsg_dev);
1508	put_device(bsg_dev);
1509}
1510
1511/**
1512 * mpi3mr_bsg_node_release -release bsg device node
1513 * @dev: bsg device node
1514 *
1515 * decrements bsg dev parent reference count
1516 *
1517 * Return:Nothing
1518 */
1519static void mpi3mr_bsg_node_release(struct device *dev)
1520{
1521	put_device(dev->parent);
1522}
1523
1524/**
1525 * mpi3mr_bsg_init -  registration with bsg layer
1526 * @mrioc: Adapter instance reference
1527 *
1528 * This will be called during driver load and it will
1529 * register driver with bsg layer
1530 *
1531 * Return:Nothing
1532 */
1533void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
1534{
1535	struct device *bsg_dev = &mrioc->bsg_dev;
1536	struct device *parent = &mrioc->shost->shost_gendev;
1537
1538	device_initialize(bsg_dev);
1539
1540	bsg_dev->parent = get_device(parent);
1541	bsg_dev->release = mpi3mr_bsg_node_release;
1542
1543	dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
1544
1545	if (device_add(bsg_dev)) {
1546		ioc_err(mrioc, "%s: bsg device add failed\n",
1547		    dev_name(bsg_dev));
1548		put_device(bsg_dev);
1549		return;
1550	}
1551
1552	mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev),
1553			mpi3mr_bsg_request, NULL, 0);
1554	if (IS_ERR(mrioc->bsg_queue)) {
1555		ioc_err(mrioc, "%s: bsg registration failed\n",
1556		    dev_name(bsg_dev));
1557		device_del(bsg_dev);
1558		put_device(bsg_dev);
1559		return;
1560	}
1561
1562	blk_queue_max_segments(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SEGMENTS);
1563	blk_queue_max_hw_sectors(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SECTORS);
1564
1565	return;
1566}
1567
1568/**
1569 * version_fw_show - SysFS callback for firmware version read
1570 * @dev: class device
1571 * @attr: Device attributes
1572 * @buf: Buffer to copy
1573 *
1574 * Return: sysfs_emit() return after copying firmware version
1575 */
1576static ssize_t
1577version_fw_show(struct device *dev, struct device_attribute *attr,
1578	char *buf)
1579{
1580	struct Scsi_Host *shost = class_to_shost(dev);
1581	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1582	struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
1583
1584	return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
1585	    fwver->gen_major, fwver->gen_minor, fwver->ph_major,
1586	    fwver->ph_minor, fwver->cust_id, fwver->build_num);
1587}
1588static DEVICE_ATTR_RO(version_fw);
1589
1590/**
1591 * fw_queue_depth_show - SysFS callback for firmware max cmds
1592 * @dev: class device
1593 * @attr: Device attributes
1594 * @buf: Buffer to copy
1595 *
1596 * Return: sysfs_emit() return after copying firmware max commands
1597 */
1598static ssize_t
1599fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
1600			char *buf)
1601{
1602	struct Scsi_Host *shost = class_to_shost(dev);
1603	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1604
1605	return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
1606}
1607static DEVICE_ATTR_RO(fw_queue_depth);
1608
1609/**
1610 * op_req_q_count_show - SysFS callback for request queue count
1611 * @dev: class device
1612 * @attr: Device attributes
1613 * @buf: Buffer to copy
1614 *
1615 * Return: sysfs_emit() return after copying request queue count
1616 */
1617static ssize_t
1618op_req_q_count_show(struct device *dev, struct device_attribute *attr,
1619			char *buf)
1620{
1621	struct Scsi_Host *shost = class_to_shost(dev);
1622	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1623
1624	return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
1625}
1626static DEVICE_ATTR_RO(op_req_q_count);
1627
1628/**
1629 * reply_queue_count_show - SysFS callback for reply queue count
1630 * @dev: class device
1631 * @attr: Device attributes
1632 * @buf: Buffer to copy
1633 *
1634 * Return: sysfs_emit() return after copying reply queue count
1635 */
1636static ssize_t
1637reply_queue_count_show(struct device *dev, struct device_attribute *attr,
1638			char *buf)
1639{
1640	struct Scsi_Host *shost = class_to_shost(dev);
1641	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1642
1643	return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
1644}
1645
1646static DEVICE_ATTR_RO(reply_queue_count);
1647
1648/**
1649 * logging_level_show - Show controller debug level
1650 * @dev: class device
1651 * @attr: Device attributes
1652 * @buf: Buffer to copy
1653 *
1654 * A sysfs 'read/write' shost attribute, to show the current
1655 * debug log level used by the driver for the specific
1656 * controller.
1657 *
1658 * Return: sysfs_emit() return
1659 */
1660static ssize_t
1661logging_level_show(struct device *dev,
1662	struct device_attribute *attr, char *buf)
1663
1664{
1665	struct Scsi_Host *shost = class_to_shost(dev);
1666	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1667
1668	return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
1669}
1670
1671/**
1672 * logging_level_store- Change controller debug level
1673 * @dev: class device
1674 * @attr: Device attributes
1675 * @buf: Buffer to copy
1676 * @count: size of the buffer
1677 *
1678 * A sysfs 'read/write' shost attribute, to change the current
1679 * debug log level used by the driver for the specific
1680 * controller.
1681 *
1682 * Return: strlen() return
1683 */
1684static ssize_t
1685logging_level_store(struct device *dev,
1686	struct device_attribute *attr,
1687	const char *buf, size_t count)
1688{
1689	struct Scsi_Host *shost = class_to_shost(dev);
1690	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1691	int val = 0;
1692
1693	if (kstrtoint(buf, 0, &val) != 0)
1694		return -EINVAL;
1695
1696	mrioc->logging_level = val;
1697	ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
1698	return strlen(buf);
1699}
1700static DEVICE_ATTR_RW(logging_level);
1701
1702/**
1703 * adp_state_show() - SysFS callback for adapter state show
1704 * @dev: class device
1705 * @attr: Device attributes
1706 * @buf: Buffer to copy
1707 *
1708 * Return: sysfs_emit() return after copying adapter state
1709 */
1710static ssize_t
1711adp_state_show(struct device *dev, struct device_attribute *attr,
1712	char *buf)
1713{
1714	struct Scsi_Host *shost = class_to_shost(dev);
1715	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1716	enum mpi3mr_iocstate ioc_state;
1717	uint8_t adp_state;
1718
1719	ioc_state = mpi3mr_get_iocstate(mrioc);
1720	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
1721		adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
1722	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
1723		adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
1724	else if (ioc_state == MRIOC_STATE_FAULT)
1725		adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
1726	else
1727		adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
1728
1729	return sysfs_emit(buf, "%u\n", adp_state);
1730}
1731
1732static DEVICE_ATTR_RO(adp_state);
1733
1734static struct attribute *mpi3mr_host_attrs[] = {
1735	&dev_attr_version_fw.attr,
1736	&dev_attr_fw_queue_depth.attr,
1737	&dev_attr_op_req_q_count.attr,
1738	&dev_attr_reply_queue_count.attr,
1739	&dev_attr_logging_level.attr,
1740	&dev_attr_adp_state.attr,
1741	NULL,
1742};
1743
1744static const struct attribute_group mpi3mr_host_attr_group = {
1745	.attrs = mpi3mr_host_attrs
1746};
1747
1748const struct attribute_group *mpi3mr_host_groups[] = {
1749	&mpi3mr_host_attr_group,
1750	NULL,
1751};
1752
1753
1754/*
1755 * SCSI Device attributes under sysfs
1756 */
1757
1758/**
1759 * sas_address_show - SysFS callback for dev SASaddress display
1760 * @dev: class device
1761 * @attr: Device attributes
1762 * @buf: Buffer to copy
1763 *
1764 * Return: sysfs_emit() return after copying SAS address of the
1765 * specific SAS/SATA end device.
1766 */
1767static ssize_t
1768sas_address_show(struct device *dev, struct device_attribute *attr,
1769			char *buf)
1770{
1771	struct scsi_device *sdev = to_scsi_device(dev);
1772	struct mpi3mr_sdev_priv_data *sdev_priv_data;
1773	struct mpi3mr_stgt_priv_data *tgt_priv_data;
1774	struct mpi3mr_tgt_dev *tgtdev;
1775
1776	sdev_priv_data = sdev->hostdata;
1777	if (!sdev_priv_data)
1778		return 0;
1779
1780	tgt_priv_data = sdev_priv_data->tgt_priv_data;
1781	if (!tgt_priv_data)
1782		return 0;
1783	tgtdev = tgt_priv_data->tgt_dev;
1784	if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
1785		return 0;
1786	return sysfs_emit(buf, "0x%016llx\n",
1787	    (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
1788}
1789
1790static DEVICE_ATTR_RO(sas_address);
1791
1792/**
1793 * device_handle_show - SysFS callback for device handle display
1794 * @dev: class device
1795 * @attr: Device attributes
1796 * @buf: Buffer to copy
1797 *
1798 * Return: sysfs_emit() return after copying firmware internal
1799 * device handle of the specific device.
1800 */
1801static ssize_t
1802device_handle_show(struct device *dev, struct device_attribute *attr,
1803			char *buf)
1804{
1805	struct scsi_device *sdev = to_scsi_device(dev);
1806	struct mpi3mr_sdev_priv_data *sdev_priv_data;
1807	struct mpi3mr_stgt_priv_data *tgt_priv_data;
1808	struct mpi3mr_tgt_dev *tgtdev;
1809
1810	sdev_priv_data = sdev->hostdata;
1811	if (!sdev_priv_data)
1812		return 0;
1813
1814	tgt_priv_data = sdev_priv_data->tgt_priv_data;
1815	if (!tgt_priv_data)
1816		return 0;
1817	tgtdev = tgt_priv_data->tgt_dev;
1818	if (!tgtdev)
1819		return 0;
1820	return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
1821}
1822
1823static DEVICE_ATTR_RO(device_handle);
1824
1825/**
1826 * persistent_id_show - SysFS callback for persisten ID display
1827 * @dev: class device
1828 * @attr: Device attributes
1829 * @buf: Buffer to copy
1830 *
1831 * Return: sysfs_emit() return after copying persistent ID of the
1832 * of the specific device.
1833 */
1834static ssize_t
1835persistent_id_show(struct device *dev, struct device_attribute *attr,
1836			char *buf)
1837{
1838	struct scsi_device *sdev = to_scsi_device(dev);
1839	struct mpi3mr_sdev_priv_data *sdev_priv_data;
1840	struct mpi3mr_stgt_priv_data *tgt_priv_data;
1841	struct mpi3mr_tgt_dev *tgtdev;
1842
1843	sdev_priv_data = sdev->hostdata;
1844	if (!sdev_priv_data)
1845		return 0;
1846
1847	tgt_priv_data = sdev_priv_data->tgt_priv_data;
1848	if (!tgt_priv_data)
1849		return 0;
1850	tgtdev = tgt_priv_data->tgt_dev;
1851	if (!tgtdev)
1852		return 0;
1853	return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
1854}
1855static DEVICE_ATTR_RO(persistent_id);
1856
1857static struct attribute *mpi3mr_dev_attrs[] = {
1858	&dev_attr_sas_address.attr,
1859	&dev_attr_device_handle.attr,
1860	&dev_attr_persistent_id.attr,
1861	NULL,
1862};
1863
1864static const struct attribute_group mpi3mr_dev_attr_group = {
1865	.attrs = mpi3mr_dev_attrs
1866};
1867
1868const struct attribute_group *mpi3mr_dev_groups[] = {
1869	&mpi3mr_dev_attr_group,
1870	NULL,
1871};
1872