1/*
2 *  linux/drivers/scsi/esas2r/esas2r_ioctl.c
3 *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
4 *
5 *  Copyright (c) 2001-2013 ATTO Technology, Inc.
6 *  (mailto:linuxdrivers@attotech.com)
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * NO WARRANTY
19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23 * solely responsible for determining the appropriateness of using and
24 * distributing the Program and assumes all risks associated with its
25 * exercise of rights under this Agreement, including but not limited to
26 * the risks and costs of program errors, damage to or loss of data,
27 * programs or equipment, and unavailability or interruption of operations.
28 *
29 * DISCLAIMER OF LIABILITY
30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
37 *
38 * You should have received a copy of the GNU General Public License
39 * along with this program; if not, write to the Free Software
40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
41 * USA.
42 */
43
44#include "esas2r.h"
45
46/*
47 * Buffered ioctl handlers.  A buffered ioctl is one which requires that we
48 * allocate a DMA-able memory area to communicate with the firmware.  In
49 * order to prevent continually allocating and freeing consistent memory,
50 * we will allocate a global buffer the first time we need it and re-use
51 * it for subsequent ioctl calls that require it.
52 */
53
54u8 *esas2r_buffered_ioctl;
55dma_addr_t esas2r_buffered_ioctl_addr;
56u32 esas2r_buffered_ioctl_size;
57struct pci_dev *esas2r_buffered_ioctl_pcid;
58
59static DEFINE_SEMAPHORE(buffered_ioctl_semaphore, 1);
60typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
61				       struct esas2r_request *,
62				       struct esas2r_sg_context *,
63				       void *);
64typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
65					     struct esas2r_request *, void *);
66
67struct esas2r_buffered_ioctl {
68	struct esas2r_adapter *a;
69	void *ioctl;
70	u32 length;
71	u32 control_code;
72	u32 offset;
73	BUFFERED_IOCTL_CALLBACK
74		callback;
75	void *context;
76	BUFFERED_IOCTL_DONE_CALLBACK
77		done_callback;
78	void *done_context;
79
80};
81
82static void complete_fm_api_req(struct esas2r_adapter *a,
83				struct esas2r_request *rq)
84{
85	a->fm_api_command_done = 1;
86	wake_up_interruptible(&a->fm_api_waiter);
87}
88
89/* Callbacks for building scatter/gather lists for FM API requests */
90static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
91{
92	struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
93	int offset = sgc->cur_offset - a->save_offset;
94
95	(*addr) = a->firmware.phys + offset;
96	return a->firmware.orig_len - offset;
97}
98
99static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
100{
101	struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
102	int offset = sgc->cur_offset - a->save_offset;
103
104	(*addr) = a->firmware.header_buff_phys + offset;
105	return sizeof(struct esas2r_flash_img) - offset;
106}
107
108/* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
109static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
110{
111	struct esas2r_request *rq;
112
113	if (mutex_lock_interruptible(&a->fm_api_mutex)) {
114		fi->status = FI_STAT_BUSY;
115		return;
116	}
117
118	rq = esas2r_alloc_request(a);
119	if (rq == NULL) {
120		fi->status = FI_STAT_BUSY;
121		goto free_sem;
122	}
123
124	if (fi == &a->firmware.header) {
125		a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
126							     (size_t)sizeof(
127								     struct
128								     esas2r_flash_img),
129							     (dma_addr_t *)&a->
130							     firmware.
131							     header_buff_phys,
132							     GFP_KERNEL);
133
134		if (a->firmware.header_buff == NULL) {
135			esas2r_debug("failed to allocate header buffer!");
136			fi->status = FI_STAT_BUSY;
137			goto free_req;
138		}
139
140		memcpy(a->firmware.header_buff, fi,
141		       sizeof(struct esas2r_flash_img));
142		a->save_offset = a->firmware.header_buff;
143		a->fm_api_sgc.get_phys_addr =
144			(PGETPHYSADDR)get_physaddr_fm_api_header;
145	} else {
146		a->save_offset = (u8 *)fi;
147		a->fm_api_sgc.get_phys_addr =
148			(PGETPHYSADDR)get_physaddr_fm_api;
149	}
150
151	rq->comp_cb = complete_fm_api_req;
152	a->fm_api_command_done = 0;
153	a->fm_api_sgc.cur_offset = a->save_offset;
154
155	if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
156			   &a->fm_api_sgc))
157		goto all_done;
158
159	/* Now wait around for it to complete. */
160	while (!a->fm_api_command_done)
161		wait_event_interruptible(a->fm_api_waiter,
162					 a->fm_api_command_done);
163all_done:
164	if (fi == &a->firmware.header) {
165		memcpy(fi, a->firmware.header_buff,
166		       sizeof(struct esas2r_flash_img));
167
168		dma_free_coherent(&a->pcid->dev,
169				  (size_t)sizeof(struct esas2r_flash_img),
170				  a->firmware.header_buff,
171				  (dma_addr_t)a->firmware.header_buff_phys);
172	}
173free_req:
174	esas2r_free_request(a, (struct esas2r_request *)rq);
175free_sem:
176	mutex_unlock(&a->fm_api_mutex);
177	return;
178
179}
180
181static void complete_nvr_req(struct esas2r_adapter *a,
182			     struct esas2r_request *rq)
183{
184	a->nvram_command_done = 1;
185	wake_up_interruptible(&a->nvram_waiter);
186}
187
188/* Callback for building scatter/gather lists for buffered ioctls */
189static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
190				       u64 *addr)
191{
192	int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
193
194	(*addr) = esas2r_buffered_ioctl_addr + offset;
195	return esas2r_buffered_ioctl_size - offset;
196}
197
198static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
199					struct esas2r_request *rq)
200{
201	a->buffered_ioctl_done = 1;
202	wake_up_interruptible(&a->buffered_ioctl_waiter);
203}
204
205static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
206{
207	struct esas2r_adapter *a = bi->a;
208	struct esas2r_request *rq;
209	struct esas2r_sg_context sgc;
210	u8 result = IOCTL_SUCCESS;
211
212	if (down_interruptible(&buffered_ioctl_semaphore))
213		return IOCTL_OUT_OF_RESOURCES;
214
215	/* allocate a buffer or use the existing buffer. */
216	if (esas2r_buffered_ioctl) {
217		if (esas2r_buffered_ioctl_size < bi->length) {
218			/* free the too-small buffer and get a new one */
219			dma_free_coherent(&a->pcid->dev,
220					  (size_t)esas2r_buffered_ioctl_size,
221					  esas2r_buffered_ioctl,
222					  esas2r_buffered_ioctl_addr);
223
224			goto allocate_buffer;
225		}
226	} else {
227allocate_buffer:
228		esas2r_buffered_ioctl_size = bi->length;
229		esas2r_buffered_ioctl_pcid = a->pcid;
230		esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
231							   (size_t)
232							   esas2r_buffered_ioctl_size,
233							   &
234							   esas2r_buffered_ioctl_addr,
235							   GFP_KERNEL);
236	}
237
238	if (!esas2r_buffered_ioctl) {
239		esas2r_log(ESAS2R_LOG_CRIT,
240			   "could not allocate %d bytes of consistent memory "
241			   "for a buffered ioctl!",
242			   bi->length);
243
244		esas2r_debug("buffered ioctl alloc failure");
245		result = IOCTL_OUT_OF_RESOURCES;
246		goto exit_cleanly;
247	}
248
249	memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
250
251	rq = esas2r_alloc_request(a);
252	if (rq == NULL) {
253		esas2r_log(ESAS2R_LOG_CRIT,
254			   "could not allocate an internal request");
255
256		result = IOCTL_OUT_OF_RESOURCES;
257		esas2r_debug("buffered ioctl - no requests");
258		goto exit_cleanly;
259	}
260
261	a->buffered_ioctl_done = 0;
262	rq->comp_cb = complete_buffered_ioctl_req;
263	sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
264	sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
265	sgc.length = esas2r_buffered_ioctl_size;
266
267	if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
268		/* completed immediately, no need to wait */
269		a->buffered_ioctl_done = 0;
270		goto free_andexit_cleanly;
271	}
272
273	/* now wait around for it to complete. */
274	while (!a->buffered_ioctl_done)
275		wait_event_interruptible(a->buffered_ioctl_waiter,
276					 a->buffered_ioctl_done);
277
278free_andexit_cleanly:
279	if (result == IOCTL_SUCCESS && bi->done_callback)
280		(*bi->done_callback)(a, rq, bi->done_context);
281
282	esas2r_free_request(a, rq);
283
284exit_cleanly:
285	if (result == IOCTL_SUCCESS)
286		memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
287
288	up(&buffered_ioctl_semaphore);
289	return result;
290}
291
292/* SMP ioctl support */
293static int smp_ioctl_callback(struct esas2r_adapter *a,
294			      struct esas2r_request *rq,
295			      struct esas2r_sg_context *sgc, void *context)
296{
297	struct atto_ioctl_smp *si =
298		(struct atto_ioctl_smp *)esas2r_buffered_ioctl;
299
300	esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
301	esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
302
303	if (!esas2r_build_sg_list(a, rq, sgc)) {
304		si->status = ATTO_STS_OUT_OF_RSRC;
305		return false;
306	}
307
308	esas2r_start_request(a, rq);
309	return true;
310}
311
312static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
313{
314	struct esas2r_buffered_ioctl bi;
315
316	memset(&bi, 0, sizeof(bi));
317
318	bi.a = a;
319	bi.ioctl = si;
320	bi.length = sizeof(struct atto_ioctl_smp)
321		    + le32_to_cpu(si->req_length)
322		    + le32_to_cpu(si->rsp_length);
323	bi.offset = 0;
324	bi.callback = smp_ioctl_callback;
325	return handle_buffered_ioctl(&bi);
326}
327
328
329/* CSMI ioctl support */
330static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
331					     struct esas2r_request *rq)
332{
333	rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
334	rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
335
336	/* Now call the original completion callback. */
337	(*rq->aux_req_cb)(a, rq);
338}
339
340/* Tunnel a CSMI IOCTL to the back end driver for processing. */
341static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
342			      union atto_ioctl_csmi *ci,
343			      struct esas2r_request *rq,
344			      struct esas2r_sg_context *sgc,
345			      u32 ctrl_code,
346			      u16 target_id)
347{
348	struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
349
350	if (test_bit(AF_DEGRADED_MODE, &a->flags))
351		return false;
352
353	esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
354	esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
355	ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
356	ioctl->csmi.target_id = cpu_to_le16(target_id);
357	ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
358
359	/*
360	 * Always usurp the completion callback since the interrupt callback
361	 * mechanism may be used.
362	 */
363	rq->aux_req_cx = ci;
364	rq->aux_req_cb = rq->comp_cb;
365	rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
366
367	if (!esas2r_build_sg_list(a, rq, sgc))
368		return false;
369
370	esas2r_start_request(a, rq);
371	return true;
372}
373
374static bool check_lun(struct scsi_lun lun)
375{
376	bool result;
377
378	result = ((lun.scsi_lun[7] == 0) &&
379		  (lun.scsi_lun[6] == 0) &&
380		  (lun.scsi_lun[5] == 0) &&
381		  (lun.scsi_lun[4] == 0) &&
382		  (lun.scsi_lun[3] == 0) &&
383		  (lun.scsi_lun[2] == 0) &&
384/* Byte 1 is intentionally skipped */
385		  (lun.scsi_lun[0] == 0));
386
387	return result;
388}
389
390static int csmi_ioctl_callback(struct esas2r_adapter *a,
391			       struct esas2r_request *rq,
392			       struct esas2r_sg_context *sgc, void *context)
393{
394	struct atto_csmi *ci = (struct atto_csmi *)context;
395	union atto_ioctl_csmi *ioctl_csmi =
396		(union atto_ioctl_csmi *)esas2r_buffered_ioctl;
397	u8 path = 0;
398	u8 tid = 0;
399	u8 lun = 0;
400	u32 sts = CSMI_STS_SUCCESS;
401	struct esas2r_target *t;
402	unsigned long flags;
403
404	if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
405		struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
406
407		path = gda->path_id;
408		tid = gda->target_id;
409		lun = gda->lun;
410	} else if (ci->control_code == CSMI_CC_TASK_MGT) {
411		struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
412
413		path = tm->path_id;
414		tid = tm->target_id;
415		lun = tm->lun;
416	}
417
418	if (path > 0) {
419		rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
420			CSMI_STS_INV_PARAM);
421		return false;
422	}
423
424	rq->target_id = tid;
425	rq->vrq->scsi.flags |= cpu_to_le32(lun);
426
427	switch (ci->control_code) {
428	case CSMI_CC_GET_DRVR_INFO:
429	{
430		struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
431
432		strcpy(gdi->description, esas2r_get_model_name(a));
433		gdi->csmi_major_rev = CSMI_MAJOR_REV;
434		gdi->csmi_minor_rev = CSMI_MINOR_REV;
435		break;
436	}
437
438	case CSMI_CC_GET_CNTLR_CFG:
439	{
440		struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
441
442		gcc->base_io_addr = 0;
443		pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
444				      &gcc->base_memaddr_lo);
445		pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
446				      &gcc->base_memaddr_hi);
447		gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
448					  a->pcid->subsystem_vendor);
449		gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
450		gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
451		gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
452		gcc->pci_addr.bus_num = a->pcid->bus->number;
453		gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
454		gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
455
456		memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
457
458		gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
459		gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
460		gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
461		gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
462		gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
463		gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
464		gcc->bios_build_rev = LOWORD(a->flash_ver);
465
466		if (test_bit(AF2_THUNDERLINK, &a->flags2))
467			gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
468					   | CSMI_CNTLRF_SATA_HBA;
469		else
470			gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
471					   | CSMI_CNTLRF_SATA_RAID;
472
473		gcc->rrom_major_rev = 0;
474		gcc->rrom_minor_rev = 0;
475		gcc->rrom_build_rev = 0;
476		gcc->rrom_release_rev = 0;
477		gcc->rrom_biosmajor_rev = 0;
478		gcc->rrom_biosminor_rev = 0;
479		gcc->rrom_biosbuild_rev = 0;
480		gcc->rrom_biosrelease_rev = 0;
481		break;
482	}
483
484	case CSMI_CC_GET_CNTLR_STS:
485	{
486		struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
487
488		if (test_bit(AF_DEGRADED_MODE, &a->flags))
489			gcs->status = CSMI_CNTLR_STS_FAILED;
490		else
491			gcs->status = CSMI_CNTLR_STS_GOOD;
492
493		gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
494		break;
495	}
496
497	case CSMI_CC_FW_DOWNLOAD:
498	case CSMI_CC_GET_RAID_INFO:
499	case CSMI_CC_GET_RAID_CFG:
500
501		sts = CSMI_STS_BAD_CTRL_CODE;
502		break;
503
504	case CSMI_CC_SMP_PASSTHRU:
505	case CSMI_CC_SSP_PASSTHRU:
506	case CSMI_CC_STP_PASSTHRU:
507	case CSMI_CC_GET_PHY_INFO:
508	case CSMI_CC_SET_PHY_INFO:
509	case CSMI_CC_GET_LINK_ERRORS:
510	case CSMI_CC_GET_SATA_SIG:
511	case CSMI_CC_GET_CONN_INFO:
512	case CSMI_CC_PHY_CTRL:
513
514		if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
515				       ci->control_code,
516				       ESAS2R_TARG_ID_INV)) {
517			sts = CSMI_STS_FAILED;
518			break;
519		}
520
521		return true;
522
523	case CSMI_CC_GET_SCSI_ADDR:
524	{
525		struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
526
527		struct scsi_lun lun;
528
529		memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
530
531		if (!check_lun(lun)) {
532			sts = CSMI_STS_NO_SCSI_ADDR;
533			break;
534		}
535
536		/* make sure the device is present */
537		spin_lock_irqsave(&a->mem_lock, flags);
538		t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
539		spin_unlock_irqrestore(&a->mem_lock, flags);
540
541		if (t == NULL) {
542			sts = CSMI_STS_NO_SCSI_ADDR;
543			break;
544		}
545
546		gsa->host_index = 0xFF;
547		gsa->lun = gsa->sas_lun[1];
548		rq->target_id = esas2r_targ_get_id(t, a);
549		break;
550	}
551
552	case CSMI_CC_GET_DEV_ADDR:
553	{
554		struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
555
556		/* make sure the target is present */
557		t = a->targetdb + rq->target_id;
558
559		if (t >= a->targetdb_end
560		    || t->target_state != TS_PRESENT
561		    || t->sas_addr == 0) {
562			sts = CSMI_STS_NO_DEV_ADDR;
563			break;
564		}
565
566		/* fill in the result */
567		*(u64 *)gda->sas_addr = t->sas_addr;
568		memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
569		gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
570		break;
571	}
572
573	case CSMI_CC_TASK_MGT:
574
575		/* make sure the target is present */
576		t = a->targetdb + rq->target_id;
577
578		if (t >= a->targetdb_end
579		    || t->target_state != TS_PRESENT
580		    || !(t->flags & TF_PASS_THRU)) {
581			sts = CSMI_STS_NO_DEV_ADDR;
582			break;
583		}
584
585		if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
586				       ci->control_code,
587				       t->phys_targ_id)) {
588			sts = CSMI_STS_FAILED;
589			break;
590		}
591
592		return true;
593
594	default:
595
596		sts = CSMI_STS_BAD_CTRL_CODE;
597		break;
598	}
599
600	rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
601
602	return false;
603}
604
605
606static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
607				     struct esas2r_request *rq, void *context)
608{
609	struct atto_csmi *ci = (struct atto_csmi *)context;
610	union atto_ioctl_csmi *ioctl_csmi =
611		(union atto_ioctl_csmi *)esas2r_buffered_ioctl;
612
613	switch (ci->control_code) {
614	case CSMI_CC_GET_DRVR_INFO:
615	{
616		struct atto_csmi_get_driver_info *gdi =
617			&ioctl_csmi->drvr_info;
618
619		strcpy(gdi->name, ESAS2R_VERSION_STR);
620
621		gdi->major_rev = ESAS2R_MAJOR_REV;
622		gdi->minor_rev = ESAS2R_MINOR_REV;
623		gdi->build_rev = 0;
624		gdi->release_rev = 0;
625		break;
626	}
627
628	case CSMI_CC_GET_SCSI_ADDR:
629	{
630		struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
631
632		if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
633		    CSMI_STS_SUCCESS) {
634			gsa->target_id = rq->target_id;
635			gsa->path_id = 0;
636		}
637
638		break;
639	}
640	}
641
642	ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
643}
644
645
646static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
647{
648	struct esas2r_buffered_ioctl bi;
649
650	memset(&bi, 0, sizeof(bi));
651
652	bi.a = a;
653	bi.ioctl = &ci->data;
654	bi.length = sizeof(union atto_ioctl_csmi);
655	bi.offset = 0;
656	bi.callback = csmi_ioctl_callback;
657	bi.context = ci;
658	bi.done_callback = csmi_ioctl_done_callback;
659	bi.done_context = ci;
660
661	return handle_buffered_ioctl(&bi);
662}
663
664/* ATTO HBA ioctl support */
665
666/* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
667static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
668			     struct atto_ioctl *hi,
669			     struct esas2r_request *rq,
670			     struct esas2r_sg_context *sgc)
671{
672	esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
673
674	esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
675
676	if (!esas2r_build_sg_list(a, rq, sgc)) {
677		hi->status = ATTO_STS_OUT_OF_RSRC;
678
679		return false;
680	}
681
682	esas2r_start_request(a, rq);
683
684	return true;
685}
686
687static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
688				  struct esas2r_request *rq)
689{
690	struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
691	struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
692	u8 sts = ATTO_SPT_RS_FAILED;
693
694	spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
695	spt->sense_length = rq->sense_len;
696	spt->residual_length =
697		le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
698
699	switch (rq->req_stat) {
700	case RS_SUCCESS:
701	case RS_SCSI_ERROR:
702		sts = ATTO_SPT_RS_SUCCESS;
703		break;
704	case RS_UNDERRUN:
705		sts = ATTO_SPT_RS_UNDERRUN;
706		break;
707	case RS_OVERRUN:
708		sts = ATTO_SPT_RS_OVERRUN;
709		break;
710	case RS_SEL:
711	case RS_SEL2:
712		sts = ATTO_SPT_RS_NO_DEVICE;
713		break;
714	case RS_NO_LUN:
715		sts = ATTO_SPT_RS_NO_LUN;
716		break;
717	case RS_TIMEOUT:
718		sts = ATTO_SPT_RS_TIMEOUT;
719		break;
720	case RS_DEGRADED:
721		sts = ATTO_SPT_RS_DEGRADED;
722		break;
723	case RS_BUSY:
724		sts = ATTO_SPT_RS_BUSY;
725		break;
726	case RS_ABORTED:
727		sts = ATTO_SPT_RS_ABORTED;
728		break;
729	case RS_RESET:
730		sts = ATTO_SPT_RS_BUS_RESET;
731		break;
732	}
733
734	spt->req_status = sts;
735
736	/* Update the target ID to the next one present. */
737	spt->target_id =
738		esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
739
740	/* Done, call the completion callback. */
741	(*rq->aux_req_cb)(a, rq);
742}
743
744static int hba_ioctl_callback(struct esas2r_adapter *a,
745			      struct esas2r_request *rq,
746			      struct esas2r_sg_context *sgc,
747			      void *context)
748{
749	struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
750
751	hi->status = ATTO_STS_SUCCESS;
752
753	switch (hi->function) {
754	case ATTO_FUNC_GET_ADAP_INFO:
755	{
756		u8 *class_code = (u8 *)&a->pcid->class;
757
758		struct atto_hba_get_adapter_info *gai =
759			&hi->data.get_adap_info;
760
761		if (hi->flags & HBAF_TUNNEL) {
762			hi->status = ATTO_STS_UNSUPPORTED;
763			break;
764		}
765
766		if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
767			hi->status = ATTO_STS_INV_VERSION;
768			hi->version = ATTO_VER_GET_ADAP_INFO0;
769			break;
770		}
771
772		memset(gai, 0, sizeof(*gai));
773
774		gai->pci.vendor_id = a->pcid->vendor;
775		gai->pci.device_id = a->pcid->device;
776		gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
777		gai->pci.ss_device_id = a->pcid->subsystem_device;
778		gai->pci.class_code[0] = class_code[0];
779		gai->pci.class_code[1] = class_code[1];
780		gai->pci.class_code[2] = class_code[2];
781		gai->pci.rev_id = a->pcid->revision;
782		gai->pci.bus_num = a->pcid->bus->number;
783		gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
784		gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
785
786		if (pci_is_pcie(a->pcid)) {
787			u16 stat;
788			u32 caps;
789
790			pcie_capability_read_word(a->pcid, PCI_EXP_LNKSTA,
791						  &stat);
792			pcie_capability_read_dword(a->pcid, PCI_EXP_LNKCAP,
793						   &caps);
794
795			gai->pci.link_speed_curr =
796				(u8)(stat & PCI_EXP_LNKSTA_CLS);
797			gai->pci.link_speed_max =
798				(u8)(caps & PCI_EXP_LNKCAP_SLS);
799			gai->pci.link_width_curr =
800				(u8)((stat & PCI_EXP_LNKSTA_NLW)
801				     >> PCI_EXP_LNKSTA_NLW_SHIFT);
802			gai->pci.link_width_max =
803				(u8)((caps & PCI_EXP_LNKCAP_MLW)
804				     >> 4);
805		}
806
807		gai->pci.msi_vector_cnt = 1;
808
809		if (a->pcid->msix_enabled)
810			gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
811		else if (a->pcid->msi_enabled)
812			gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
813		else
814			gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
815
816		gai->adap_type = ATTO_GAI_AT_ESASRAID2;
817
818		if (test_bit(AF2_THUNDERLINK, &a->flags2))
819			gai->adap_type = ATTO_GAI_AT_TLSASHBA;
820
821		if (test_bit(AF_DEGRADED_MODE, &a->flags))
822			gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
823
824		gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
825				   ATTO_GAI_AF_DEVADDR_SUPP;
826
827		if (a->pcid->subsystem_device == ATTO_ESAS_R60F
828		    || a->pcid->subsystem_device == ATTO_ESAS_R608
829		    || a->pcid->subsystem_device == ATTO_ESAS_R644
830		    || a->pcid->subsystem_device == ATTO_TSSC_3808E)
831			gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
832
833		gai->num_ports = ESAS2R_NUM_PHYS;
834		gai->num_phys = ESAS2R_NUM_PHYS;
835
836		strcpy(gai->firmware_rev, a->fw_rev);
837		strcpy(gai->flash_rev, a->flash_rev);
838		strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
839		strcpy(gai->model_name, esas2r_get_model_name(a));
840
841		gai->num_targets = ESAS2R_MAX_TARGETS;
842
843		gai->num_busses = 1;
844		gai->num_targsper_bus = gai->num_targets;
845		gai->num_lunsper_targ = 256;
846
847		if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
848		    || a->pcid->subsystem_device == ATTO_ESAS_R60F)
849			gai->num_connectors = 4;
850		else
851			gai->num_connectors = 2;
852
853		gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
854
855		gai->num_targets_backend = a->num_targets_backend;
856
857		gai->tunnel_flags = a->ioctl_tunnel
858				    & (ATTO_GAI_TF_MEM_RW
859				       | ATTO_GAI_TF_TRACE
860				       | ATTO_GAI_TF_SCSI_PASS_THRU
861				       | ATTO_GAI_TF_GET_DEV_ADDR
862				       | ATTO_GAI_TF_PHY_CTRL
863				       | ATTO_GAI_TF_CONN_CTRL
864				       | ATTO_GAI_TF_GET_DEV_INFO);
865		break;
866	}
867
868	case ATTO_FUNC_GET_ADAP_ADDR:
869	{
870		struct atto_hba_get_adapter_address *gaa =
871			&hi->data.get_adap_addr;
872
873		if (hi->flags & HBAF_TUNNEL) {
874			hi->status = ATTO_STS_UNSUPPORTED;
875			break;
876		}
877
878		if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
879			hi->status = ATTO_STS_INV_VERSION;
880			hi->version = ATTO_VER_GET_ADAP_ADDR0;
881		} else if (gaa->addr_type == ATTO_GAA_AT_PORT
882			   || gaa->addr_type == ATTO_GAA_AT_NODE) {
883			if (gaa->addr_type == ATTO_GAA_AT_PORT
884			    && gaa->port_id >= ESAS2R_NUM_PHYS) {
885				hi->status = ATTO_STS_NOT_APPL;
886			} else {
887				memcpy((u64 *)gaa->address,
888				       &a->nvram->sas_addr[0], sizeof(u64));
889				gaa->addr_len = sizeof(u64);
890			}
891		} else {
892			hi->status = ATTO_STS_INV_PARAM;
893		}
894
895		break;
896	}
897
898	case ATTO_FUNC_MEM_RW:
899	{
900		if (hi->flags & HBAF_TUNNEL) {
901			if (hba_ioctl_tunnel(a, hi, rq, sgc))
902				return true;
903
904			break;
905		}
906
907		hi->status = ATTO_STS_UNSUPPORTED;
908
909		break;
910	}
911
912	case ATTO_FUNC_TRACE:
913	{
914		struct atto_hba_trace *trc = &hi->data.trace;
915
916		if (hi->flags & HBAF_TUNNEL) {
917			if (hba_ioctl_tunnel(a, hi, rq, sgc))
918				return true;
919
920			break;
921		}
922
923		if (hi->version > ATTO_VER_TRACE1) {
924			hi->status = ATTO_STS_INV_VERSION;
925			hi->version = ATTO_VER_TRACE1;
926			break;
927		}
928
929		if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
930		    && hi->version >= ATTO_VER_TRACE1) {
931			if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
932				u32 len = hi->data_length;
933				u32 offset = trc->current_offset;
934				u32 total_len = ESAS2R_FWCOREDUMP_SZ;
935
936				/* Size is zero if a core dump isn't present */
937				if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
938					total_len = 0;
939
940				if (len > total_len)
941					len = total_len;
942
943				if (offset >= total_len
944				    || offset + len > total_len
945				    || len == 0) {
946					hi->status = ATTO_STS_INV_PARAM;
947					break;
948				}
949
950				memcpy(trc->contents,
951				       a->fw_coredump_buff + offset,
952				       len);
953				hi->data_length = len;
954			} else if (trc->trace_func == ATTO_TRC_TF_RESET) {
955				memset(a->fw_coredump_buff, 0,
956				       ESAS2R_FWCOREDUMP_SZ);
957
958				clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
959			} else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
960				hi->status = ATTO_STS_UNSUPPORTED;
961				break;
962			}
963
964			/* Always return all the info we can. */
965			trc->trace_mask = 0;
966			trc->current_offset = 0;
967			trc->total_length = ESAS2R_FWCOREDUMP_SZ;
968
969			/* Return zero length buffer if core dump not present */
970			if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
971				trc->total_length = 0;
972		} else {
973			hi->status = ATTO_STS_UNSUPPORTED;
974		}
975
976		break;
977	}
978
979	case ATTO_FUNC_SCSI_PASS_THRU:
980	{
981		struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
982		struct scsi_lun lun;
983
984		memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
985
986		if (hi->flags & HBAF_TUNNEL) {
987			if (hba_ioctl_tunnel(a, hi, rq, sgc))
988				return true;
989
990			break;
991		}
992
993		if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
994			hi->status = ATTO_STS_INV_VERSION;
995			hi->version = ATTO_VER_SCSI_PASS_THRU0;
996			break;
997		}
998
999		if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1000			hi->status = ATTO_STS_INV_PARAM;
1001			break;
1002		}
1003
1004		esas2r_sgc_init(sgc, a, rq, NULL);
1005
1006		sgc->length = hi->data_length;
1007		sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1008				   + sizeof(struct atto_hba_scsi_pass_thru);
1009
1010		/* Finish request initialization */
1011		rq->target_id = (u16)spt->target_id;
1012		rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1013		memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1014		rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1015		rq->sense_len = spt->sense_length;
1016		rq->sense_buf = (u8 *)spt->sense_data;
1017		/* NOTE: we ignore spt->timeout */
1018
1019		/*
1020		 * always usurp the completion callback since the interrupt
1021		 * callback mechanism may be used.
1022		 */
1023
1024		rq->aux_req_cx = hi;
1025		rq->aux_req_cb = rq->comp_cb;
1026		rq->comp_cb = scsi_passthru_comp_cb;
1027
1028		if (spt->flags & ATTO_SPTF_DATA_IN) {
1029			rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1030		} else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1031			rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1032		} else {
1033			if (sgc->length) {
1034				hi->status = ATTO_STS_INV_PARAM;
1035				break;
1036			}
1037		}
1038
1039		if (spt->flags & ATTO_SPTF_ORDERED_Q)
1040			rq->vrq->scsi.flags |=
1041				cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1042		else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1043			rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1044
1045
1046		if (!esas2r_build_sg_list(a, rq, sgc)) {
1047			hi->status = ATTO_STS_OUT_OF_RSRC;
1048			break;
1049		}
1050
1051		esas2r_start_request(a, rq);
1052
1053		return true;
1054	}
1055
1056	case ATTO_FUNC_GET_DEV_ADDR:
1057	{
1058		struct atto_hba_get_device_address *gda =
1059			&hi->data.get_dev_addr;
1060		struct esas2r_target *t;
1061
1062		if (hi->flags & HBAF_TUNNEL) {
1063			if (hba_ioctl_tunnel(a, hi, rq, sgc))
1064				return true;
1065
1066			break;
1067		}
1068
1069		if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1070			hi->status = ATTO_STS_INV_VERSION;
1071			hi->version = ATTO_VER_GET_DEV_ADDR0;
1072			break;
1073		}
1074
1075		if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1076			hi->status = ATTO_STS_INV_PARAM;
1077			break;
1078		}
1079
1080		t = a->targetdb + (u16)gda->target_id;
1081
1082		if (t->target_state != TS_PRESENT) {
1083			hi->status = ATTO_STS_FAILED;
1084		} else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1085			if (t->sas_addr == 0) {
1086				hi->status = ATTO_STS_UNSUPPORTED;
1087			} else {
1088				*(u64 *)gda->address = t->sas_addr;
1089
1090				gda->addr_len = sizeof(u64);
1091			}
1092		} else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1093			hi->status = ATTO_STS_NOT_APPL;
1094		} else {
1095			hi->status = ATTO_STS_INV_PARAM;
1096		}
1097
1098		/* update the target ID to the next one present. */
1099
1100		gda->target_id =
1101			esas2r_targ_db_find_next_present(a,
1102							 (u16)gda->target_id);
1103		break;
1104	}
1105
1106	case ATTO_FUNC_PHY_CTRL:
1107	case ATTO_FUNC_CONN_CTRL:
1108	{
1109		if (hba_ioctl_tunnel(a, hi, rq, sgc))
1110			return true;
1111
1112		break;
1113	}
1114
1115	case ATTO_FUNC_ADAP_CTRL:
1116	{
1117		struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1118
1119		if (hi->flags & HBAF_TUNNEL) {
1120			hi->status = ATTO_STS_UNSUPPORTED;
1121			break;
1122		}
1123
1124		if (hi->version > ATTO_VER_ADAP_CTRL0) {
1125			hi->status = ATTO_STS_INV_VERSION;
1126			hi->version = ATTO_VER_ADAP_CTRL0;
1127			break;
1128		}
1129
1130		if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1131			esas2r_reset_adapter(a);
1132		} else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1133			hi->status = ATTO_STS_UNSUPPORTED;
1134			break;
1135		}
1136
1137		if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1138			ac->adap_state = ATTO_AC_AS_RST_SCHED;
1139		else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1140			ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1141		else if (test_bit(AF_DISC_PENDING, &a->flags))
1142			ac->adap_state = ATTO_AC_AS_RST_DISC;
1143		else if (test_bit(AF_DISABLED, &a->flags))
1144			ac->adap_state = ATTO_AC_AS_DISABLED;
1145		else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1146			ac->adap_state = ATTO_AC_AS_DEGRADED;
1147		else
1148			ac->adap_state = ATTO_AC_AS_OK;
1149
1150		break;
1151	}
1152
1153	case ATTO_FUNC_GET_DEV_INFO:
1154	{
1155		struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1156		struct esas2r_target *t;
1157
1158		if (hi->flags & HBAF_TUNNEL) {
1159			if (hba_ioctl_tunnel(a, hi, rq, sgc))
1160				return true;
1161
1162			break;
1163		}
1164
1165		if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1166			hi->status = ATTO_STS_INV_VERSION;
1167			hi->version = ATTO_VER_GET_DEV_INFO0;
1168			break;
1169		}
1170
1171		if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1172			hi->status = ATTO_STS_INV_PARAM;
1173			break;
1174		}
1175
1176		t = a->targetdb + (u16)gdi->target_id;
1177
1178		/* update the target ID to the next one present. */
1179
1180		gdi->target_id =
1181			esas2r_targ_db_find_next_present(a,
1182							 (u16)gdi->target_id);
1183
1184		if (t->target_state != TS_PRESENT) {
1185			hi->status = ATTO_STS_FAILED;
1186			break;
1187		}
1188
1189		hi->status = ATTO_STS_UNSUPPORTED;
1190		break;
1191	}
1192
1193	default:
1194
1195		hi->status = ATTO_STS_INV_FUNC;
1196		break;
1197	}
1198
1199	return false;
1200}
1201
1202static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1203				    struct esas2r_request *rq, void *context)
1204{
1205	struct atto_ioctl *ioctl_hba =
1206		(struct atto_ioctl *)esas2r_buffered_ioctl;
1207
1208	esas2r_debug("hba_ioctl_done_callback %d", a->index);
1209
1210	if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1211		struct atto_hba_get_adapter_info *gai =
1212			&ioctl_hba->data.get_adap_info;
1213
1214		esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1215
1216		gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1217		gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1218
1219		strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1220		strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1221
1222		gai->num_busses = 1;
1223		gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1224		gai->num_lunsper_targ = 1;
1225	}
1226}
1227
1228u8 handle_hba_ioctl(struct esas2r_adapter *a,
1229		    struct atto_ioctl *ioctl_hba)
1230{
1231	struct esas2r_buffered_ioctl bi;
1232
1233	memset(&bi, 0, sizeof(bi));
1234
1235	bi.a = a;
1236	bi.ioctl = ioctl_hba;
1237	bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1238	bi.callback = hba_ioctl_callback;
1239	bi.context = NULL;
1240	bi.done_callback = hba_ioctl_done_callback;
1241	bi.done_context = NULL;
1242	bi.offset = 0;
1243
1244	return handle_buffered_ioctl(&bi);
1245}
1246
1247
1248int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1249			struct esas2r_sas_nvram *data)
1250{
1251	int result = 0;
1252
1253	a->nvram_command_done = 0;
1254	rq->comp_cb = complete_nvr_req;
1255
1256	if (esas2r_nvram_write(a, rq, data)) {
1257		/* now wait around for it to complete. */
1258		while (!a->nvram_command_done)
1259			wait_event_interruptible(a->nvram_waiter,
1260						 a->nvram_command_done);
1261		;
1262
1263		/* done, check the status. */
1264		if (rq->req_stat == RS_SUCCESS)
1265			result = 1;
1266	}
1267	return result;
1268}
1269
1270
1271/* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1272int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg)
1273{
1274	struct atto_express_ioctl *ioctl = NULL;
1275	struct esas2r_adapter *a;
1276	struct esas2r_request *rq;
1277	u16 code;
1278	int err;
1279
1280	esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1281
1282	if ((arg == NULL)
1283	    || (cmd < EXPRESS_IOCTL_MIN)
1284	    || (cmd > EXPRESS_IOCTL_MAX))
1285		return -ENOTSUPP;
1286
1287	ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl));
1288	if (IS_ERR(ioctl)) {
1289		esas2r_log(ESAS2R_LOG_WARN,
1290			   "ioctl_handler access_ok failed for cmd %u, address %p",
1291			   cmd, arg);
1292		return PTR_ERR(ioctl);
1293	}
1294
1295	/* verify the signature */
1296
1297	if (memcmp(ioctl->header.signature,
1298		   EXPRESS_IOCTL_SIGNATURE,
1299		   EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1300		esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1301		kfree(ioctl);
1302
1303		return -ENOTSUPP;
1304	}
1305
1306	/* assume success */
1307
1308	ioctl->header.return_code = IOCTL_SUCCESS;
1309	err = 0;
1310
1311	/*
1312	 * handle EXPRESS_IOCTL_GET_CHANNELS
1313	 * without paying attention to channel
1314	 */
1315
1316	if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1317		int i = 0, k = 0;
1318
1319		ioctl->data.chanlist.num_channels = 0;
1320
1321		while (i < MAX_ADAPTERS) {
1322			if (esas2r_adapters[i]) {
1323				ioctl->data.chanlist.num_channels++;
1324				ioctl->data.chanlist.channel[k] = i;
1325				k++;
1326			}
1327			i++;
1328		}
1329
1330		goto ioctl_done;
1331	}
1332
1333	/* get the channel */
1334
1335	if (ioctl->header.channel == 0xFF) {
1336		a = (struct esas2r_adapter *)hostdata;
1337	} else {
1338		if (ioctl->header.channel >= MAX_ADAPTERS ||
1339			esas2r_adapters[ioctl->header.channel] == NULL) {
1340			ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1341			esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1342			kfree(ioctl);
1343
1344			return -ENOTSUPP;
1345		}
1346		a = esas2r_adapters[ioctl->header.channel];
1347	}
1348
1349	switch (cmd) {
1350	case EXPRESS_IOCTL_RW_FIRMWARE:
1351
1352		if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1353			err = esas2r_write_fw(a,
1354					      (char *)ioctl->data.fwrw.image,
1355					      0,
1356					      sizeof(struct
1357						     atto_express_ioctl));
1358
1359			if (err >= 0) {
1360				err = esas2r_read_fw(a,
1361						     (char *)ioctl->data.fwrw.
1362						     image,
1363						     0,
1364						     sizeof(struct
1365							    atto_express_ioctl));
1366			}
1367		} else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1368			err = esas2r_write_fs(a,
1369					      (char *)ioctl->data.fwrw.image,
1370					      0,
1371					      sizeof(struct
1372						     atto_express_ioctl));
1373
1374			if (err >= 0) {
1375				err = esas2r_read_fs(a,
1376						     (char *)ioctl->data.fwrw.
1377						     image,
1378						     0,
1379						     sizeof(struct
1380							    atto_express_ioctl));
1381			}
1382		} else {
1383			ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1384		}
1385
1386		break;
1387
1388	case EXPRESS_IOCTL_READ_PARAMS:
1389
1390		memcpy(ioctl->data.prw.data_buffer, a->nvram,
1391		       sizeof(struct esas2r_sas_nvram));
1392		ioctl->data.prw.code = 1;
1393		break;
1394
1395	case EXPRESS_IOCTL_WRITE_PARAMS:
1396
1397		rq = esas2r_alloc_request(a);
1398		if (rq == NULL) {
1399			kfree(ioctl);
1400			esas2r_log(ESAS2R_LOG_WARN,
1401			   "could not allocate an internal request");
1402			return -ENOMEM;
1403		}
1404
1405		code = esas2r_write_params(a, rq,
1406					   (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1407		ioctl->data.prw.code = code;
1408
1409		esas2r_free_request(a, rq);
1410
1411		break;
1412
1413	case EXPRESS_IOCTL_DEFAULT_PARAMS:
1414
1415		esas2r_nvram_get_defaults(a,
1416					  (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1417		ioctl->data.prw.code = 1;
1418		break;
1419
1420	case EXPRESS_IOCTL_CHAN_INFO:
1421
1422		ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1423		ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1424		ioctl->data.chaninfo.IRQ = a->pcid->irq;
1425		ioctl->data.chaninfo.device_id = a->pcid->device;
1426		ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1427		ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1428		ioctl->data.chaninfo.revision_id = a->pcid->revision;
1429		ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1430		ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1431		ioctl->data.chaninfo.core_rev = 0;
1432		ioctl->data.chaninfo.host_no = a->host->host_no;
1433		ioctl->data.chaninfo.hbaapi_rev = 0;
1434		break;
1435
1436	case EXPRESS_IOCTL_SMP:
1437		ioctl->header.return_code = handle_smp_ioctl(a,
1438							     &ioctl->data.
1439							     ioctl_smp);
1440		break;
1441
1442	case EXPRESS_CSMI:
1443		ioctl->header.return_code =
1444			handle_csmi_ioctl(a, &ioctl->data.csmi);
1445		break;
1446
1447	case EXPRESS_IOCTL_HBA:
1448		ioctl->header.return_code = handle_hba_ioctl(a,
1449							     &ioctl->data.
1450							     ioctl_hba);
1451		break;
1452
1453	case EXPRESS_IOCTL_VDA:
1454		err = esas2r_write_vda(a,
1455				       (char *)&ioctl->data.ioctl_vda,
1456				       0,
1457				       sizeof(struct atto_ioctl_vda) +
1458				       ioctl->data.ioctl_vda.data_length);
1459
1460		if (err >= 0) {
1461			err = esas2r_read_vda(a,
1462					      (char *)&ioctl->data.ioctl_vda,
1463					      0,
1464					      sizeof(struct atto_ioctl_vda) +
1465					      ioctl->data.ioctl_vda.data_length);
1466		}
1467
1468
1469
1470
1471		break;
1472
1473	case EXPRESS_IOCTL_GET_MOD_INFO:
1474
1475		ioctl->data.modinfo.adapter = a;
1476		ioctl->data.modinfo.pci_dev = a->pcid;
1477		ioctl->data.modinfo.scsi_host = a->host;
1478		ioctl->data.modinfo.host_no = a->host->host_no;
1479
1480		break;
1481
1482	default:
1483		esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1484		ioctl->header.return_code = IOCTL_ERR_INVCMD;
1485	}
1486
1487ioctl_done:
1488
1489	if (err < 0) {
1490		esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err,
1491			   cmd);
1492
1493		switch (err) {
1494		case -ENOMEM:
1495		case -EBUSY:
1496			ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1497			break;
1498
1499		case -ENOSYS:
1500		case -EINVAL:
1501			ioctl->header.return_code = IOCTL_INVALID_PARAM;
1502			break;
1503
1504		default:
1505			ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1506			break;
1507		}
1508
1509	}
1510
1511	/* Always copy the buffer back, if only to pick up the status */
1512	err = copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1513	if (err != 0) {
1514		esas2r_log(ESAS2R_LOG_WARN,
1515			   "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)",
1516			   err, cmd);
1517		kfree(ioctl);
1518
1519		return -EFAULT;
1520	}
1521
1522	kfree(ioctl);
1523
1524	return 0;
1525}
1526
1527int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg)
1528{
1529	return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1530}
1531
1532static void free_fw_buffers(struct esas2r_adapter *a)
1533{
1534	if (a->firmware.data) {
1535		dma_free_coherent(&a->pcid->dev,
1536				  (size_t)a->firmware.orig_len,
1537				  a->firmware.data,
1538				  (dma_addr_t)a->firmware.phys);
1539
1540		a->firmware.data = NULL;
1541	}
1542}
1543
1544static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1545{
1546	free_fw_buffers(a);
1547
1548	a->firmware.orig_len = length;
1549
1550	a->firmware.data = dma_alloc_coherent(&a->pcid->dev,
1551					      (size_t)length,
1552					      (dma_addr_t *)&a->firmware.phys,
1553					      GFP_KERNEL);
1554
1555	if (!a->firmware.data) {
1556		esas2r_debug("buffer alloc failed!");
1557		return 0;
1558	}
1559
1560	return 1;
1561}
1562
1563/* Handle a call to read firmware. */
1564int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1565{
1566	esas2r_trace_enter();
1567	/* if the cached header is a status, simply copy it over and return. */
1568	if (a->firmware.state == FW_STATUS_ST) {
1569		int size = min_t(int, count, sizeof(a->firmware.header));
1570		esas2r_trace_exit();
1571		memcpy(buf, &a->firmware.header, size);
1572		esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1573		return size;
1574	}
1575
1576	/*
1577	 * if the cached header is a command, do it if at
1578	 * offset 0, otherwise copy the pieces.
1579	 */
1580
1581	if (a->firmware.state == FW_COMMAND_ST) {
1582		u32 length = a->firmware.header.length;
1583		esas2r_trace_exit();
1584
1585		esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1586			     length,
1587			     off);
1588
1589		if (off == 0) {
1590			if (a->firmware.header.action == FI_ACT_UP) {
1591				if (!allocate_fw_buffers(a, length))
1592					return -ENOMEM;
1593
1594
1595				/* copy header over */
1596
1597				memcpy(a->firmware.data,
1598				       &a->firmware.header,
1599				       sizeof(a->firmware.header));
1600
1601				do_fm_api(a,
1602					  (struct esas2r_flash_img *)a->firmware.data);
1603			} else if (a->firmware.header.action == FI_ACT_UPSZ) {
1604				int size =
1605					min((int)count,
1606					    (int)sizeof(a->firmware.header));
1607				do_fm_api(a, &a->firmware.header);
1608				memcpy(buf, &a->firmware.header, size);
1609				esas2r_debug("FI_ACT_UPSZ size %d", size);
1610				return size;
1611			} else {
1612				esas2r_debug("invalid action %d",
1613					     a->firmware.header.action);
1614				return -ENOSYS;
1615			}
1616		}
1617
1618		if (count + off > length)
1619			count = length - off;
1620
1621		if (count < 0)
1622			return 0;
1623
1624		if (!a->firmware.data) {
1625			esas2r_debug(
1626				"read: nonzero offset but no buffer available!");
1627			return -ENOMEM;
1628		}
1629
1630		esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1631			     count,
1632			     length);
1633
1634		memcpy(buf, &a->firmware.data[off], count);
1635
1636		/* when done, release the buffer */
1637
1638		if (length <= off + count) {
1639			esas2r_debug("esas2r_read_fw: freeing buffer!");
1640
1641			free_fw_buffers(a);
1642		}
1643
1644		return count;
1645	}
1646
1647	esas2r_trace_exit();
1648	esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1649		     a->firmware.state);
1650
1651	return -EINVAL;
1652}
1653
1654/* Handle a call to write firmware. */
1655int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1656		    int count)
1657{
1658	u32 length;
1659
1660	if (off == 0) {
1661		struct esas2r_flash_img *header =
1662			(struct esas2r_flash_img *)buf;
1663
1664		/* assume version 0 flash image */
1665
1666		int min_size = sizeof(struct esas2r_flash_img_v0);
1667
1668		a->firmware.state = FW_INVALID_ST;
1669
1670		/* validate the version field first */
1671
1672		if (count < 4
1673		    ||  header->fi_version > FI_VERSION_1) {
1674			esas2r_debug(
1675				"esas2r_write_fw: short header or invalid version");
1676			return -EINVAL;
1677		}
1678
1679		/* See if its a version 1 flash image */
1680
1681		if (header->fi_version == FI_VERSION_1)
1682			min_size = sizeof(struct esas2r_flash_img);
1683
1684		/* If this is the start, the header must be full and valid. */
1685		if (count < min_size) {
1686			esas2r_debug("esas2r_write_fw: short header, aborting");
1687			return -EINVAL;
1688		}
1689
1690		/* Make sure the size is reasonable. */
1691		length = header->length;
1692
1693		if (length > 1024 * 1024) {
1694			esas2r_debug(
1695				"esas2r_write_fw: hosed, length %d  fi_version %d",
1696				length, header->fi_version);
1697			return -EINVAL;
1698		}
1699
1700		/*
1701		 * If this is a write command, allocate memory because
1702		 * we have to cache everything. otherwise, just cache
1703		 * the header, because the read op will do the command.
1704		 */
1705
1706		if (header->action == FI_ACT_DOWN) {
1707			if (!allocate_fw_buffers(a, length))
1708				return -ENOMEM;
1709
1710			/*
1711			 * Store the command, so there is context on subsequent
1712			 * calls.
1713			 */
1714			memcpy(&a->firmware.header,
1715			       buf,
1716			       sizeof(*header));
1717		} else if (header->action == FI_ACT_UP
1718			   ||  header->action == FI_ACT_UPSZ) {
1719			/* Save the command, result will be picked up on read */
1720			memcpy(&a->firmware.header,
1721			       buf,
1722			       sizeof(*header));
1723
1724			a->firmware.state = FW_COMMAND_ST;
1725
1726			esas2r_debug(
1727				"esas2r_write_fw: COMMAND, count %d, action %d ",
1728				count, header->action);
1729
1730			/*
1731			 * Pretend we took the whole buffer,
1732			 * so we don't get bothered again.
1733			 */
1734
1735			return count;
1736		} else {
1737			esas2r_debug("esas2r_write_fw: invalid action %d ",
1738				     a->firmware.header.action);
1739			return -ENOSYS;
1740		}
1741	} else {
1742		length = a->firmware.header.length;
1743	}
1744
1745	/*
1746	 * We only get here on a download command, regardless of offset.
1747	 * the chunks written by the system need to be cached, and when
1748	 * the final one arrives, issue the fmapi command.
1749	 */
1750
1751	if (off + count > length)
1752		count = length - off;
1753
1754	if (count > 0) {
1755		esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1756			     count,
1757			     length);
1758
1759		/*
1760		 * On a full upload, the system tries sending the whole buffer.
1761		 * there's nothing to do with it, so just drop it here, before
1762		 * trying to copy over into unallocated memory!
1763		 */
1764		if (a->firmware.header.action == FI_ACT_UP)
1765			return count;
1766
1767		if (!a->firmware.data) {
1768			esas2r_debug(
1769				"write: nonzero offset but no buffer available!");
1770			return -ENOMEM;
1771		}
1772
1773		memcpy(&a->firmware.data[off], buf, count);
1774
1775		if (length == off + count) {
1776			do_fm_api(a,
1777				  (struct esas2r_flash_img *)a->firmware.data);
1778
1779			/*
1780			 * Now copy the header result to be picked up by the
1781			 * next read
1782			 */
1783			memcpy(&a->firmware.header,
1784			       a->firmware.data,
1785			       sizeof(a->firmware.header));
1786
1787			a->firmware.state = FW_STATUS_ST;
1788
1789			esas2r_debug("write completed");
1790
1791			/*
1792			 * Since the system has the data buffered, the only way
1793			 * this can leak is if a root user writes a program
1794			 * that writes a shorter buffer than it claims, and the
1795			 * copyin fails.
1796			 */
1797			free_fw_buffers(a);
1798		}
1799	}
1800
1801	return count;
1802}
1803
1804/* Callback for the completion of a VDA request. */
1805static void vda_complete_req(struct esas2r_adapter *a,
1806			     struct esas2r_request *rq)
1807{
1808	a->vda_command_done = 1;
1809	wake_up_interruptible(&a->vda_waiter);
1810}
1811
1812/* Scatter/gather callback for VDA requests */
1813static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1814{
1815	struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1816	int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1817
1818	(*addr) = a->ppvda_buffer + offset;
1819	return VDA_MAX_BUFFER_SIZE - offset;
1820}
1821
1822/* Handle a call to read a VDA command. */
1823int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1824{
1825	if (!a->vda_buffer)
1826		return -ENOMEM;
1827
1828	if (off == 0) {
1829		struct esas2r_request *rq;
1830		struct atto_ioctl_vda *vi =
1831			(struct atto_ioctl_vda *)a->vda_buffer;
1832		struct esas2r_sg_context sgc;
1833		bool wait_for_completion;
1834
1835		/*
1836		 * Presumeably, someone has already written to the vda_buffer,
1837		 * and now they are reading the node the response, so now we
1838		 * will actually issue the request to the chip and reply.
1839		 */
1840
1841		/* allocate a request */
1842		rq = esas2r_alloc_request(a);
1843		if (rq == NULL) {
1844			esas2r_debug("esas2r_read_vda: out of requests");
1845			return -EBUSY;
1846		}
1847
1848		rq->comp_cb = vda_complete_req;
1849
1850		sgc.first_req = rq;
1851		sgc.adapter = a;
1852		sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1853		sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1854
1855		a->vda_command_done = 0;
1856
1857		wait_for_completion =
1858			esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1859
1860		if (wait_for_completion) {
1861			/* now wait around for it to complete. */
1862
1863			while (!a->vda_command_done)
1864				wait_event_interruptible(a->vda_waiter,
1865							 a->vda_command_done);
1866		}
1867
1868		esas2r_free_request(a, (struct esas2r_request *)rq);
1869	}
1870
1871	if (off > VDA_MAX_BUFFER_SIZE)
1872		return 0;
1873
1874	if (count + off > VDA_MAX_BUFFER_SIZE)
1875		count = VDA_MAX_BUFFER_SIZE - off;
1876
1877	if (count < 0)
1878		return 0;
1879
1880	memcpy(buf, a->vda_buffer + off, count);
1881
1882	return count;
1883}
1884
1885/* Handle a call to write a VDA command. */
1886int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1887		     int count)
1888{
1889	/*
1890	 * allocate memory for it, if not already done.  once allocated,
1891	 * we will keep it around until the driver is unloaded.
1892	 */
1893
1894	if (!a->vda_buffer) {
1895		dma_addr_t dma_addr;
1896		a->vda_buffer = dma_alloc_coherent(&a->pcid->dev,
1897						   (size_t)
1898						   VDA_MAX_BUFFER_SIZE,
1899						   &dma_addr,
1900						   GFP_KERNEL);
1901
1902		a->ppvda_buffer = dma_addr;
1903	}
1904
1905	if (!a->vda_buffer)
1906		return -ENOMEM;
1907
1908	if (off > VDA_MAX_BUFFER_SIZE)
1909		return 0;
1910
1911	if (count + off > VDA_MAX_BUFFER_SIZE)
1912		count = VDA_MAX_BUFFER_SIZE - off;
1913
1914	if (count < 1)
1915		return 0;
1916
1917	memcpy(a->vda_buffer + off, buf, count);
1918
1919	return count;
1920}
1921
1922/* Callback for the completion of an FS_API request.*/
1923static void fs_api_complete_req(struct esas2r_adapter *a,
1924				struct esas2r_request *rq)
1925{
1926	a->fs_api_command_done = 1;
1927
1928	wake_up_interruptible(&a->fs_api_waiter);
1929}
1930
1931/* Scatter/gather callback for VDA requests */
1932static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1933{
1934	struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1935	struct esas2r_ioctl_fs *fs =
1936		(struct esas2r_ioctl_fs *)a->fs_api_buffer;
1937	u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1938
1939	(*addr) = a->ppfs_api_buffer + offset;
1940
1941	return a->fs_api_buffer_size - offset;
1942}
1943
1944/* Handle a call to read firmware via FS_API. */
1945int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1946{
1947	if (!a->fs_api_buffer)
1948		return -ENOMEM;
1949
1950	if (off == 0) {
1951		struct esas2r_request *rq;
1952		struct esas2r_sg_context sgc;
1953		struct esas2r_ioctl_fs *fs =
1954			(struct esas2r_ioctl_fs *)a->fs_api_buffer;
1955
1956		/* If another flash request is already in progress, return. */
1957		if (mutex_lock_interruptible(&a->fs_api_mutex)) {
1958busy:
1959			fs->status = ATTO_STS_OUT_OF_RSRC;
1960			return -EBUSY;
1961		}
1962
1963		/*
1964		 * Presumeably, someone has already written to the
1965		 * fs_api_buffer, and now they are reading the node the
1966		 * response, so now we will actually issue the request to the
1967		 * chip and reply. Allocate a request
1968		 */
1969
1970		rq = esas2r_alloc_request(a);
1971		if (rq == NULL) {
1972			esas2r_debug("esas2r_read_fs: out of requests");
1973			mutex_unlock(&a->fs_api_mutex);
1974			goto busy;
1975		}
1976
1977		rq->comp_cb = fs_api_complete_req;
1978
1979		/* Set up the SGCONTEXT for to build the s/g table */
1980
1981		sgc.cur_offset = fs->data;
1982		sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
1983
1984		a->fs_api_command_done = 0;
1985
1986		if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
1987			if (fs->status == ATTO_STS_OUT_OF_RSRC)
1988				count = -EBUSY;
1989
1990			goto dont_wait;
1991		}
1992
1993		/* Now wait around for it to complete. */
1994
1995		while (!a->fs_api_command_done)
1996			wait_event_interruptible(a->fs_api_waiter,
1997						 a->fs_api_command_done);
1998		;
1999dont_wait:
2000		/* Free the request and keep going */
2001		mutex_unlock(&a->fs_api_mutex);
2002		esas2r_free_request(a, (struct esas2r_request *)rq);
2003
2004		/* Pick up possible error code from above */
2005		if (count < 0)
2006			return count;
2007	}
2008
2009	if (off > a->fs_api_buffer_size)
2010		return 0;
2011
2012	if (count + off > a->fs_api_buffer_size)
2013		count = a->fs_api_buffer_size - off;
2014
2015	if (count < 0)
2016		return 0;
2017
2018	memcpy(buf, a->fs_api_buffer + off, count);
2019
2020	return count;
2021}
2022
2023/* Handle a call to write firmware via FS_API. */
2024int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2025		    int count)
2026{
2027	if (off == 0) {
2028		struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2029		u32 length = fs->command.length + offsetof(
2030			struct esas2r_ioctl_fs,
2031			data);
2032
2033		/*
2034		 * Special case, for BEGIN commands, the length field
2035		 * is lying to us, so just get enough for the header.
2036		 */
2037
2038		if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2039			length = offsetof(struct esas2r_ioctl_fs, data);
2040
2041		/*
2042		 * Beginning a command.  We assume we'll get at least
2043		 * enough in the first write so we can look at the
2044		 * header and see how much we need to alloc.
2045		 */
2046
2047		if (count < offsetof(struct esas2r_ioctl_fs, data))
2048			return -EINVAL;
2049
2050		/* Allocate a buffer or use the existing buffer. */
2051		if (a->fs_api_buffer) {
2052			if (a->fs_api_buffer_size < length) {
2053				/* Free too-small buffer and get a new one */
2054				dma_free_coherent(&a->pcid->dev,
2055						  (size_t)a->fs_api_buffer_size,
2056						  a->fs_api_buffer,
2057						  (dma_addr_t)a->ppfs_api_buffer);
2058
2059				goto re_allocate_buffer;
2060			}
2061		} else {
2062re_allocate_buffer:
2063			a->fs_api_buffer_size = length;
2064
2065			a->fs_api_buffer = dma_alloc_coherent(&a->pcid->dev,
2066							      (size_t)a->fs_api_buffer_size,
2067							      (dma_addr_t *)&a->ppfs_api_buffer,
2068							      GFP_KERNEL);
2069		}
2070	}
2071
2072	if (!a->fs_api_buffer)
2073		return -ENOMEM;
2074
2075	if (off > a->fs_api_buffer_size)
2076		return 0;
2077
2078	if (count + off > a->fs_api_buffer_size)
2079		count = a->fs_api_buffer_size - off;
2080
2081	if (count < 1)
2082		return 0;
2083
2084	memcpy(a->fs_api_buffer + off, buf, count);
2085
2086	return count;
2087}
2088