1
2/*
3 * Adaptec AIC7xxx device driver for Linux.
4 *
5 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $
6 *
7 * Copyright (c) 1994 John Aycock
8 *   The University of Calgary Department of Computer Science.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING.  If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
25 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
26 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
27 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
28 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
29 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
30 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
31 * ANSI SCSI-2 specification (draft 10c), ...
32 *
33 * --------------------------------------------------------------------------
34 *
35 *  Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
36 *
37 *  Substantially modified to include support for wide and twin bus
38 *  adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
39 *  SCB paging, and other rework of the code.
40 *
41 * --------------------------------------------------------------------------
42 * Copyright (c) 1994-2000 Justin T. Gibbs.
43 * Copyright (c) 2000-2001 Adaptec Inc.
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 *    notice, this list of conditions, and the following disclaimer,
51 *    without modification.
52 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
53 *    substantially similar to the "NO WARRANTY" disclaimer below
54 *    ("Disclaimer") and any redistribution must be conditioned upon
55 *    including a substantially similar Disclaimer requirement for further
56 *    binary redistribution.
57 * 3. Neither the names of the above-listed copyright holders nor the names
58 *    of any contributors may be used to endorse or promote products derived
59 *    from this software without specific prior written permission.
60 *
61 * Alternatively, this software may be distributed under the terms of the
62 * GNU General Public License ("GPL") version 2 as published by the Free
63 * Software Foundation.
64 *
65 * NO WARRANTY
66 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
67 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
68 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
69 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
70 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
74 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
75 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
76 * POSSIBILITY OF SUCH DAMAGES.
77 *
78 *---------------------------------------------------------------------------
79 *
80 *  Thanks also go to (in alphabetical order) the following:
81 *
82 *    Rory Bolt     - Sequencer bug fixes
83 *    Jay Estabrook - Initial DEC Alpha support
84 *    Doug Ledford  - Much needed abort/reset bug fixes
85 *    Kai Makisara  - DMAing of SCBs
86 *
87 *  A Boot time option was also added for not resetting the scsi bus.
88 *
89 *    Form:  aic7xxx=extended
90 *           aic7xxx=no_reset
91 *           aic7xxx=verbose
92 *
93 *  Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
94 *
95 *  Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp
96 */
97
98/*
99 * Further driver modifications made by Doug Ledford <dledford@redhat.com>
100 *
101 * Copyright (c) 1997-1999 Doug Ledford
102 *
103 * These changes are released under the same licensing terms as the FreeBSD
104 * driver written by Justin Gibbs.  Please see his Copyright notice above
105 * for the exact terms and conditions covering my changes as well as the
106 * warranty statement.
107 *
108 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
109 * but are not limited to:
110 *
111 *  1: Import of the latest FreeBSD sequencer code for this driver
112 *  2: Modification of kernel code to accommodate different sequencer semantics
113 *  3: Extensive changes throughout kernel portion of driver to improve
114 *     abort/reset processing and error hanndling
115 *  4: Other work contributed by various people on the Internet
116 *  5: Changes to printk information and verbosity selection code
117 *  6: General reliability related changes, especially in IRQ management
118 *  7: Modifications to the default probe/attach order for supported cards
119 *  8: SMP friendliness has been improved
120 *
121 */
122
123#include "aic7xxx_osm.h"
124#include "aic7xxx_inline.h"
125#include <scsi/scsicam.h>
126
127static struct scsi_transport_template *ahc_linux_transport_template = NULL;
128
129#include <linux/init.h>		/* __setup */
130#include <linux/mm.h>		/* For fetching system memory size */
131#include <linux/blkdev.h>		/* For block_size() */
132#include <linux/delay.h>	/* For ssleep/msleep */
133#include <linux/slab.h>
134
135
136/*
137 * Set this to the delay in seconds after SCSI bus reset.
138 * Note, we honor this only for the initial bus reset.
139 * The scsi error recovery code performs its own bus settle
140 * delay handling for error recovery actions.
141 */
142#ifdef CONFIG_AIC7XXX_RESET_DELAY_MS
143#define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS
144#else
145#define AIC7XXX_RESET_DELAY 5000
146#endif
147
148/*
149 * To change the default number of tagged transactions allowed per-device,
150 * add a line to the lilo.conf file like:
151 * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
152 * which will result in the first four devices on the first two
153 * controllers being set to a tagged queue depth of 32.
154 *
155 * The tag_commands is an array of 16 to allow for wide and twin adapters.
156 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
157 * for channel 1.
158 */
159typedef struct {
160	uint8_t tag_commands[16];	/* Allow for wide/twin adapters. */
161} adapter_tag_info_t;
162
163/*
164 * Modify this as you see fit for your system.
165 *
166 * 0			tagged queuing disabled
167 * 1 <= n <= 253	n == max tags ever dispatched.
168 *
169 * The driver will throttle the number of commands dispatched to a
170 * device if it returns queue full.  For devices with a fixed maximum
171 * queue depth, the driver will eventually determine this depth and
172 * lock it in (a console message is printed to indicate that a lock
173 * has occurred).  On some devices, queue full is returned for a temporary
174 * resource shortage.  These devices will return queue full at varying
175 * depths.  The driver will throttle back when the queue fulls occur and
176 * attempt to slowly increase the depth over time as the device recovers
177 * from the resource shortage.
178 *
179 * In this example, the first line will disable tagged queueing for all
180 * the devices on the first probed aic7xxx adapter.
181 *
182 * The second line enables tagged queueing with 4 commands/LUN for IDs
183 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
184 * driver to attempt to use up to 64 tags for ID 1.
185 *
186 * The third line is the same as the first line.
187 *
188 * The fourth line disables tagged queueing for devices 0 and 3.  It
189 * enables tagged queueing for the other IDs, with 16 commands/LUN
190 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
191 * IDs 2, 5-7, and 9-15.
192 */
193
194/*
195 * NOTE: The below structure is for reference only, the actual structure
196 *       to modify in order to change things is just below this comment block.
197adapter_tag_info_t aic7xxx_tag_info[] =
198{
199	{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
200	{{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
201	{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
202	{{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
203};
204*/
205
206#ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE
207#define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE
208#else
209#define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE
210#endif
211
212#define AIC7XXX_CONFIGED_TAG_COMMANDS {					\
213	AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,		\
214	AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,		\
215	AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,		\
216	AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,		\
217	AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,		\
218	AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,		\
219	AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE,		\
220	AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE		\
221}
222
223/*
224 * By default, use the number of commands specified by
225 * the users kernel configuration.
226 */
227static adapter_tag_info_t aic7xxx_tag_info[] =
228{
229	{AIC7XXX_CONFIGED_TAG_COMMANDS},
230	{AIC7XXX_CONFIGED_TAG_COMMANDS},
231	{AIC7XXX_CONFIGED_TAG_COMMANDS},
232	{AIC7XXX_CONFIGED_TAG_COMMANDS},
233	{AIC7XXX_CONFIGED_TAG_COMMANDS},
234	{AIC7XXX_CONFIGED_TAG_COMMANDS},
235	{AIC7XXX_CONFIGED_TAG_COMMANDS},
236	{AIC7XXX_CONFIGED_TAG_COMMANDS},
237	{AIC7XXX_CONFIGED_TAG_COMMANDS},
238	{AIC7XXX_CONFIGED_TAG_COMMANDS},
239	{AIC7XXX_CONFIGED_TAG_COMMANDS},
240	{AIC7XXX_CONFIGED_TAG_COMMANDS},
241	{AIC7XXX_CONFIGED_TAG_COMMANDS},
242	{AIC7XXX_CONFIGED_TAG_COMMANDS},
243	{AIC7XXX_CONFIGED_TAG_COMMANDS},
244	{AIC7XXX_CONFIGED_TAG_COMMANDS}
245};
246
247/*
248 * There should be a specific return value for this in scsi.h, but
249 * it seems that most drivers ignore it.
250 */
251#define DID_UNDERFLOW   DID_ERROR
252
253void
254ahc_print_path(struct ahc_softc *ahc, struct scb *scb)
255{
256	printk("(scsi%d:%c:%d:%d): ",
257	       ahc->platform_data->host->host_no,
258	       scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X',
259	       scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1,
260	       scb != NULL ? SCB_GET_LUN(scb) : -1);
261}
262
263/*
264 * XXX - these options apply unilaterally to _all_ 274x/284x/294x
265 *       cards in the system.  This should be fixed.  Exceptions to this
266 *       rule are noted in the comments.
267 */
268
269/*
270 * Skip the scsi bus reset.  Non 0 make us skip the reset at startup.  This
271 * has no effect on any later resets that might occur due to things like
272 * SCSI bus timeouts.
273 */
274static uint32_t aic7xxx_no_reset;
275
276/*
277 * Should we force EXTENDED translation on a controller.
278 *     0 == Use whatever is in the SEEPROM or default to off
279 *     1 == Use whatever is in the SEEPROM or default to on
280 */
281static uint32_t aic7xxx_extended;
282
283/*
284 * PCI bus parity checking of the Adaptec controllers.  This is somewhat
285 * dubious at best.  To my knowledge, this option has never actually
286 * solved a PCI parity problem, but on certain machines with broken PCI
287 * chipset configurations where stray PCI transactions with bad parity are
288 * the norm rather than the exception, the error messages can be overwhelming.
289 * It's included in the driver for completeness.
290 *   0	   = Shut off PCI parity check
291 *   non-0 = reverse polarity pci parity checking
292 */
293static uint32_t aic7xxx_pci_parity = ~0;
294
295/*
296 * There are lots of broken chipsets in the world.  Some of them will
297 * violate the PCI spec when we issue byte sized memory writes to our
298 * controller.  I/O mapped register access, if allowed by the given
299 * platform, will work in almost all cases.
300 */
301uint32_t aic7xxx_allow_memio = ~0;
302
303/*
304 * So that we can set how long each device is given as a selection timeout.
305 * The table of values goes like this:
306 *   0 - 256ms
307 *   1 - 128ms
308 *   2 - 64ms
309 *   3 - 32ms
310 * We default to 256ms because some older devices need a longer time
311 * to respond to initial selection.
312 */
313static uint32_t aic7xxx_seltime;
314
315/*
316 * Certain devices do not perform any aging on commands.  Should the
317 * device be saturated by commands in one portion of the disk, it is
318 * possible for transactions on far away sectors to never be serviced.
319 * To handle these devices, we can periodically send an ordered tag to
320 * force all outstanding transactions to be serviced prior to a new
321 * transaction.
322 */
323static uint32_t aic7xxx_periodic_otag;
324
325/*
326 * Module information and settable options.
327 */
328static char *aic7xxx = NULL;
329
330MODULE_AUTHOR("Maintainer: Hannes Reinecke <hare@suse.de>");
331MODULE_DESCRIPTION("Adaptec AIC77XX/78XX SCSI Host Bus Adapter driver");
332MODULE_LICENSE("Dual BSD/GPL");
333MODULE_VERSION(AIC7XXX_DRIVER_VERSION);
334module_param(aic7xxx, charp, 0444);
335MODULE_PARM_DESC(aic7xxx,
336"period-delimited options string:\n"
337"	verbose			Enable verbose/diagnostic logging\n"
338"	allow_memio		Allow device registers to be memory mapped\n"
339"	debug			Bitmask of debug values to enable\n"
340"	no_probe		Toggle EISA/VLB controller probing\n"
341"	probe_eisa_vl		Toggle EISA/VLB controller probing\n"
342"	no_reset		Suppress initial bus resets\n"
343"	extended		Enable extended geometry on all controllers\n"
344"	periodic_otag		Send an ordered tagged transaction\n"
345"				periodically to prevent tag starvation.\n"
346"				This may be required by some older disk\n"
347"				drives or RAID arrays.\n"
348"	tag_info:<tag_str>	Set per-target tag depth\n"
349"	global_tag_depth:<int>	Global tag depth for every target\n"
350"				on every bus\n"
351"	seltime:<int>		Selection Timeout\n"
352"				(0/256ms,1/128ms,2/64ms,3/32ms)\n"
353"\n"
354"	Sample modprobe configuration file:\n"
355"	#	Toggle EISA/VLB probing\n"
356"	#	Set tag depth on Controller 1/Target 1 to 10 tags\n"
357"	#	Shorten the selection timeout to 128ms\n"
358"\n"
359"	options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n"
360);
361
362static void ahc_linux_handle_scsi_status(struct ahc_softc *,
363					 struct scsi_device *,
364					 struct scb *);
365static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc,
366					 struct scsi_cmnd *cmd);
367static void ahc_linux_freeze_simq(struct ahc_softc *ahc);
368static void ahc_linux_release_simq(struct ahc_softc *ahc);
369static int  ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag);
370static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc);
371static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc,
372				     struct ahc_devinfo *devinfo);
373static void ahc_linux_device_queue_depth(struct scsi_device *);
374static int ahc_linux_run_command(struct ahc_softc*,
375				 struct ahc_linux_device *,
376				 struct scsi_cmnd *);
377static void ahc_linux_setup_tag_info_global(char *p);
378static int  aic7xxx_setup(char *s);
379
380static int ahc_linux_unit;
381
382
383/************************** OS Utility Wrappers *******************************/
384void
385ahc_delay(long usec)
386{
387	/*
388	 * udelay on Linux can have problems for
389	 * multi-millisecond waits.  Wait at most
390	 * 1024us per call.
391	 */
392	while (usec > 0) {
393		udelay(usec % 1024);
394		usec -= 1024;
395	}
396}
397
398/***************************** Low Level I/O **********************************/
399uint8_t
400ahc_inb(struct ahc_softc * ahc, long port)
401{
402	uint8_t x;
403
404	if (ahc->tag == BUS_SPACE_MEMIO) {
405		x = readb(ahc->bsh.maddr + port);
406	} else {
407		x = inb(ahc->bsh.ioport + port);
408	}
409	mb();
410	return (x);
411}
412
413void
414ahc_outb(struct ahc_softc * ahc, long port, uint8_t val)
415{
416	if (ahc->tag == BUS_SPACE_MEMIO) {
417		writeb(val, ahc->bsh.maddr + port);
418	} else {
419		outb(val, ahc->bsh.ioport + port);
420	}
421	mb();
422}
423
424void
425ahc_outsb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
426{
427	int i;
428
429	/*
430	 * There is probably a more efficient way to do this on Linux
431	 * but we don't use this for anything speed critical and this
432	 * should work.
433	 */
434	for (i = 0; i < count; i++)
435		ahc_outb(ahc, port, *array++);
436}
437
438void
439ahc_insb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
440{
441	int i;
442
443	/*
444	 * There is probably a more efficient way to do this on Linux
445	 * but we don't use this for anything speed critical and this
446	 * should work.
447	 */
448	for (i = 0; i < count; i++)
449		*array++ = ahc_inb(ahc, port);
450}
451
452/********************************* Inlines ************************************/
453static void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*);
454
455static int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
456				      struct ahc_dma_seg *sg,
457				      dma_addr_t addr, bus_size_t len);
458
459static void
460ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb)
461{
462	struct scsi_cmnd *cmd;
463
464	cmd = scb->io_ctx;
465	ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE);
466
467	scsi_dma_unmap(cmd);
468}
469
470static int
471ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
472		  struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len)
473{
474	int	 consumed;
475
476	if ((scb->sg_count + 1) > AHC_NSEG)
477		panic("Too few segs for dma mapping.  "
478		      "Increase AHC_NSEG\n");
479
480	consumed = 1;
481	sg->addr = ahc_htole32(addr & 0xFFFFFFFF);
482	scb->platform_data->xfer_len += len;
483
484	if (sizeof(dma_addr_t) > 4
485	 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0)
486		len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK;
487
488	sg->len = ahc_htole32(len);
489	return (consumed);
490}
491
492/*
493 * Return a string describing the driver.
494 */
495static const char *
496ahc_linux_info(struct Scsi_Host *host)
497{
498	static char buffer[512];
499	char	ahc_info[256];
500	char   *bp;
501	struct ahc_softc *ahc;
502
503	bp = &buffer[0];
504	ahc = *(struct ahc_softc **)host->hostdata;
505	memset(bp, 0, sizeof(buffer));
506	strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev " AIC7XXX_DRIVER_VERSION "\n"
507			"        <");
508	strcat(bp, ahc->description);
509	strcat(bp, ">\n"
510			"        ");
511	ahc_controller_info(ahc, ahc_info);
512	strcat(bp, ahc_info);
513	strcat(bp, "\n");
514
515	return (bp);
516}
517
518/*
519 * Queue an SCB to the controller.
520 */
521static int ahc_linux_queue_lck(struct scsi_cmnd *cmd)
522{
523	struct	 ahc_softc *ahc;
524	struct	 ahc_linux_device *dev = scsi_transport_device_data(cmd->device);
525	int rtn = SCSI_MLQUEUE_HOST_BUSY;
526	unsigned long flags;
527
528	ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
529
530	ahc_lock(ahc, &flags);
531	if (ahc->platform_data->qfrozen == 0) {
532		cmd->result = CAM_REQ_INPROG << 16;
533		rtn = ahc_linux_run_command(ahc, dev, cmd);
534	}
535	ahc_unlock(ahc, &flags);
536
537	return rtn;
538}
539
540static DEF_SCSI_QCMD(ahc_linux_queue)
541
542static inline struct scsi_target **
543ahc_linux_target_in_softc(struct scsi_target *starget)
544{
545	struct	ahc_softc *ahc =
546		*((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata);
547	unsigned int target_offset;
548
549	target_offset = starget->id;
550	if (starget->channel != 0)
551		target_offset += 8;
552
553	return &ahc->platform_data->starget[target_offset];
554}
555
556static int
557ahc_linux_target_alloc(struct scsi_target *starget)
558{
559	struct	ahc_softc *ahc =
560		*((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata);
561	struct seeprom_config *sc = ahc->seep_config;
562	unsigned long flags;
563	struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget);
564	unsigned short scsirate;
565	struct ahc_devinfo devinfo;
566	char channel = starget->channel + 'A';
567	unsigned int our_id = ahc->our_id;
568	unsigned int target_offset;
569
570	target_offset = starget->id;
571	if (starget->channel != 0)
572		target_offset += 8;
573
574	if (starget->channel)
575		our_id = ahc->our_id_b;
576
577	ahc_lock(ahc, &flags);
578
579	BUG_ON(*ahc_targp != NULL);
580
581	*ahc_targp = starget;
582
583	if (sc) {
584		int maxsync = AHC_SYNCRATE_DT;
585		int ultra = 0;
586		int flags = sc->device_flags[target_offset];
587
588		if (ahc->flags & AHC_NEWEEPROM_FMT) {
589		    if (flags & CFSYNCHISULTRA)
590			ultra = 1;
591		} else if (flags & CFULTRAEN)
592			ultra = 1;
593		/* AIC nutcase; 10MHz appears as ultra = 1, CFXFER = 0x04
594		 * change it to ultra=0, CFXFER = 0 */
595		if(ultra && (flags & CFXFER) == 0x04) {
596			ultra = 0;
597			flags &= ~CFXFER;
598		}
599
600		if ((ahc->features & AHC_ULTRA2) != 0) {
601			scsirate = (flags & CFXFER) | (ultra ? 0x8 : 0);
602		} else {
603			scsirate = (flags & CFXFER) << 4;
604			maxsync = ultra ? AHC_SYNCRATE_ULTRA :
605				AHC_SYNCRATE_FAST;
606		}
607		spi_max_width(starget) = (flags & CFWIDEB) ? 1 : 0;
608		if (!(flags & CFSYNCH))
609			spi_max_offset(starget) = 0;
610		spi_min_period(starget) =
611			ahc_find_period(ahc, scsirate, maxsync);
612	}
613	ahc_compile_devinfo(&devinfo, our_id, starget->id,
614			    CAM_LUN_WILDCARD, channel,
615			    ROLE_INITIATOR);
616	ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0,
617			 AHC_TRANS_GOAL, /*paused*/FALSE);
618	ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
619		      AHC_TRANS_GOAL, /*paused*/FALSE);
620	ahc_unlock(ahc, &flags);
621
622	return 0;
623}
624
625static void
626ahc_linux_target_destroy(struct scsi_target *starget)
627{
628	struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget);
629
630	*ahc_targp = NULL;
631}
632
633static int
634ahc_linux_slave_alloc(struct scsi_device *sdev)
635{
636	struct	ahc_softc *ahc =
637		*((struct ahc_softc **)sdev->host->hostdata);
638	struct scsi_target *starget = sdev->sdev_target;
639	struct ahc_linux_device *dev;
640
641	if (bootverbose)
642		printk("%s: Slave Alloc %d\n", ahc_name(ahc), sdev->id);
643
644	dev = scsi_transport_device_data(sdev);
645	memset(dev, 0, sizeof(*dev));
646
647	/*
648	 * We start out life using untagged
649	 * transactions of which we allow one.
650	 */
651	dev->openings = 1;
652
653	/*
654	 * Set maxtags to 0.  This will be changed if we
655	 * later determine that we are dealing with
656	 * a tagged queuing capable device.
657	 */
658	dev->maxtags = 0;
659
660	spi_period(starget) = 0;
661
662	return 0;
663}
664
665static int
666ahc_linux_slave_configure(struct scsi_device *sdev)
667{
668	if (bootverbose)
669		sdev_printk(KERN_INFO, sdev, "Slave Configure\n");
670
671	ahc_linux_device_queue_depth(sdev);
672
673	/* Initial Domain Validation */
674	if (!spi_initial_dv(sdev->sdev_target))
675		spi_dv_device(sdev);
676
677	return 0;
678}
679
680#if defined(__i386__)
681/*
682 * Return the disk geometry for the given SCSI device.
683 */
684static int
685ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
686		    sector_t capacity, int geom[])
687{
688	int	 heads;
689	int	 sectors;
690	int	 cylinders;
691	int	 extended;
692	struct	 ahc_softc *ahc;
693	u_int	 channel;
694
695	ahc = *((struct ahc_softc **)sdev->host->hostdata);
696	channel = sdev_channel(sdev);
697
698	if (scsi_partsize(bdev, capacity, geom))
699		return 0;
700
701	heads = 64;
702	sectors = 32;
703	cylinders = aic_sector_div(capacity, heads, sectors);
704
705	if (aic7xxx_extended != 0)
706		extended = 1;
707	else if (channel == 0)
708		extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0;
709	else
710		extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0;
711	if (extended && cylinders >= 1024) {
712		heads = 255;
713		sectors = 63;
714		cylinders = aic_sector_div(capacity, heads, sectors);
715	}
716	geom[0] = heads;
717	geom[1] = sectors;
718	geom[2] = cylinders;
719	return (0);
720}
721#endif
722
723/*
724 * Abort the current SCSI command(s).
725 */
726static int
727ahc_linux_abort(struct scsi_cmnd *cmd)
728{
729	int error;
730
731	error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT);
732	if (error != SUCCESS)
733		printk("aic7xxx_abort returns 0x%x\n", error);
734	return (error);
735}
736
737/*
738 * Attempt to send a target reset message to the device that timed out.
739 */
740static int
741ahc_linux_dev_reset(struct scsi_cmnd *cmd)
742{
743	int error;
744
745	error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET);
746	if (error != SUCCESS)
747		printk("aic7xxx_dev_reset returns 0x%x\n", error);
748	return (error);
749}
750
751/*
752 * Reset the SCSI bus.
753 */
754static int
755ahc_linux_bus_reset(struct scsi_cmnd *cmd)
756{
757	struct ahc_softc *ahc;
758	int    found;
759	unsigned long flags;
760
761	ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
762
763	ahc_lock(ahc, &flags);
764	found = ahc_reset_channel(ahc, scmd_channel(cmd) + 'A',
765				  /*initiate reset*/TRUE);
766	ahc_unlock(ahc, &flags);
767
768	if (bootverbose)
769		printk("%s: SCSI bus reset delivered. "
770		       "%d SCBs aborted.\n", ahc_name(ahc), found);
771
772	return SUCCESS;
773}
774
775struct scsi_host_template aic7xxx_driver_template = {
776	.module			= THIS_MODULE,
777	.name			= "aic7xxx",
778	.proc_name		= "aic7xxx",
779	.show_info		= ahc_linux_show_info,
780	.write_info		= ahc_proc_write_seeprom,
781	.info			= ahc_linux_info,
782	.queuecommand		= ahc_linux_queue,
783	.eh_abort_handler	= ahc_linux_abort,
784	.eh_device_reset_handler = ahc_linux_dev_reset,
785	.eh_bus_reset_handler	= ahc_linux_bus_reset,
786#if defined(__i386__)
787	.bios_param		= ahc_linux_biosparam,
788#endif
789	.can_queue		= AHC_MAX_QUEUE,
790	.this_id		= -1,
791	.max_sectors		= 8192,
792	.cmd_per_lun		= 2,
793	.slave_alloc		= ahc_linux_slave_alloc,
794	.slave_configure	= ahc_linux_slave_configure,
795	.target_alloc		= ahc_linux_target_alloc,
796	.target_destroy		= ahc_linux_target_destroy,
797};
798
799/**************************** Tasklet Handler *********************************/
800
801/******************************** Macros **************************************/
802#define BUILD_SCSIID(ahc, cmd)						    \
803	((((cmd)->device->id << TID_SHIFT) & TID)			    \
804	| (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \
805	| (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB))
806
807/******************************** Bus DMA *************************************/
808int
809ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent,
810		   bus_size_t alignment, bus_size_t boundary,
811		   dma_addr_t lowaddr, dma_addr_t highaddr,
812		   bus_dma_filter_t *filter, void *filterarg,
813		   bus_size_t maxsize, int nsegments,
814		   bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
815{
816	bus_dma_tag_t dmat;
817
818	dmat = kmalloc(sizeof(*dmat), GFP_ATOMIC);
819	if (dmat == NULL)
820		return (ENOMEM);
821
822	/*
823	 * Linux is very simplistic about DMA memory.  For now don't
824	 * maintain all specification information.  Once Linux supplies
825	 * better facilities for doing these operations, or the
826	 * needs of this particular driver change, we might need to do
827	 * more here.
828	 */
829	dmat->alignment = alignment;
830	dmat->boundary = boundary;
831	dmat->maxsize = maxsize;
832	*ret_tag = dmat;
833	return (0);
834}
835
836void
837ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat)
838{
839	kfree(dmat);
840}
841
842int
843ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr,
844		 int flags, bus_dmamap_t *mapp)
845{
846	/* XXX: check if we really need the GFP_ATOMIC and unwind this mess! */
847	*vaddr = dma_alloc_coherent(ahc->dev, dmat->maxsize, mapp, GFP_ATOMIC);
848	if (*vaddr == NULL)
849		return ENOMEM;
850	return 0;
851}
852
853void
854ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat,
855		void* vaddr, bus_dmamap_t map)
856{
857	dma_free_coherent(ahc->dev, dmat->maxsize, vaddr, map);
858}
859
860int
861ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map,
862		void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
863		void *cb_arg, int flags)
864{
865	/*
866	 * Assume for now that this will only be used during
867	 * initialization and not for per-transaction buffer mapping.
868	 */
869	bus_dma_segment_t stack_sg;
870
871	stack_sg.ds_addr = map;
872	stack_sg.ds_len = dmat->maxsize;
873	cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
874	return (0);
875}
876
877void
878ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
879{
880}
881
882int
883ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
884{
885	/* Nothing to do */
886	return (0);
887}
888
889static void
890ahc_linux_setup_tag_info_global(char *p)
891{
892	int tags, i, j;
893
894	tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
895	printk("Setting Global Tags= %d\n", tags);
896
897	for (i = 0; i < ARRAY_SIZE(aic7xxx_tag_info); i++) {
898		for (j = 0; j < AHC_NUM_TARGETS; j++) {
899			aic7xxx_tag_info[i].tag_commands[j] = tags;
900		}
901	}
902}
903
904static void
905ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
906{
907
908	if ((instance >= 0) && (targ >= 0)
909	 && (instance < ARRAY_SIZE(aic7xxx_tag_info))
910	 && (targ < AHC_NUM_TARGETS)) {
911		aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff;
912		if (bootverbose)
913			printk("tag_info[%d:%d] = %d\n", instance, targ, value);
914	}
915}
916
917static char *
918ahc_parse_brace_option(char *opt_name, char *opt_arg, char *end, int depth,
919		       void (*callback)(u_long, int, int, int32_t),
920		       u_long callback_arg)
921{
922	char	*tok_end;
923	char	*tok_end2;
924	int      i;
925	int      instance;
926	int	 targ;
927	int	 done;
928	char	 tok_list[] = {'.', ',', '{', '}', '\0'};
929
930	/* All options use a ':' name/arg separator */
931	if (*opt_arg != ':')
932		return (opt_arg);
933	opt_arg++;
934	instance = -1;
935	targ = -1;
936	done = FALSE;
937	/*
938	 * Restore separator that may be in
939	 * the middle of our option argument.
940	 */
941	tok_end = strchr(opt_arg, '\0');
942	if (tok_end < end)
943		*tok_end = ',';
944	while (!done) {
945		switch (*opt_arg) {
946		case '{':
947			if (instance == -1) {
948				instance = 0;
949			} else {
950				if (depth > 1) {
951					if (targ == -1)
952						targ = 0;
953				} else {
954					printk("Malformed Option %s\n",
955					       opt_name);
956					done = TRUE;
957				}
958			}
959			opt_arg++;
960			break;
961		case '}':
962			if (targ != -1)
963				targ = -1;
964			else if (instance != -1)
965				instance = -1;
966			opt_arg++;
967			break;
968		case ',':
969		case '.':
970			if (instance == -1)
971				done = TRUE;
972			else if (targ >= 0)
973				targ++;
974			else if (instance >= 0)
975				instance++;
976			opt_arg++;
977			break;
978		case '\0':
979			done = TRUE;
980			break;
981		default:
982			tok_end = end;
983			for (i = 0; tok_list[i]; i++) {
984				tok_end2 = strchr(opt_arg, tok_list[i]);
985				if ((tok_end2) && (tok_end2 < tok_end))
986					tok_end = tok_end2;
987			}
988			callback(callback_arg, instance, targ,
989				 simple_strtol(opt_arg, NULL, 0));
990			opt_arg = tok_end;
991			break;
992		}
993	}
994	return (opt_arg);
995}
996
997/*
998 * Handle Linux boot parameters. This routine allows for assigning a value
999 * to a parameter with a ':' between the parameter and the value.
1000 * ie. aic7xxx=stpwlev:1,extended
1001 */
1002static int
1003aic7xxx_setup(char *s)
1004{
1005	int	i, n;
1006	char   *p;
1007	char   *end;
1008
1009	static const struct {
1010		const char *name;
1011		uint32_t *flag;
1012	} options[] = {
1013		{ "extended", &aic7xxx_extended },
1014		{ "no_reset", &aic7xxx_no_reset },
1015		{ "verbose", &aic7xxx_verbose },
1016		{ "allow_memio", &aic7xxx_allow_memio},
1017#ifdef AHC_DEBUG
1018		{ "debug", &ahc_debug },
1019#endif
1020		{ "periodic_otag", &aic7xxx_periodic_otag },
1021		{ "pci_parity", &aic7xxx_pci_parity },
1022		{ "seltime", &aic7xxx_seltime },
1023		{ "tag_info", NULL },
1024		{ "global_tag_depth", NULL },
1025		{ "dv", NULL }
1026	};
1027
1028	end = strchr(s, '\0');
1029
1030	/*
1031	 * XXX ia64 gcc isn't smart enough to know that ARRAY_SIZE
1032	 * will never be 0 in this case.
1033	 */
1034	n = 0;
1035
1036	while ((p = strsep(&s, ",.")) != NULL) {
1037		if (*p == '\0')
1038			continue;
1039		for (i = 0; i < ARRAY_SIZE(options); i++) {
1040
1041			n = strlen(options[i].name);
1042			if (strncmp(options[i].name, p, n) == 0)
1043				break;
1044		}
1045		if (i == ARRAY_SIZE(options))
1046			continue;
1047
1048		if (strncmp(p, "global_tag_depth", n) == 0) {
1049			ahc_linux_setup_tag_info_global(p + n);
1050		} else if (strncmp(p, "tag_info", n) == 0) {
1051			s = ahc_parse_brace_option("tag_info", p + n, end,
1052			    2, ahc_linux_setup_tag_info, 0);
1053		} else if (p[n] == ':') {
1054			*(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1055		} else if (strncmp(p, "verbose", n) == 0) {
1056			*(options[i].flag) = 1;
1057		} else {
1058			*(options[i].flag) ^= 0xFFFFFFFF;
1059		}
1060	}
1061	return 1;
1062}
1063
1064__setup("aic7xxx=", aic7xxx_setup);
1065
1066uint32_t aic7xxx_verbose;
1067
1068int
1069ahc_linux_register_host(struct ahc_softc *ahc, struct scsi_host_template *template)
1070{
1071	char	buf[80];
1072	struct	Scsi_Host *host;
1073	char	*new_name;
1074	u_long	s;
1075	int	retval;
1076
1077	template->name = ahc->description;
1078	host = scsi_host_alloc(template, sizeof(struct ahc_softc *));
1079	if (host == NULL)
1080		return (ENOMEM);
1081
1082	*((struct ahc_softc **)host->hostdata) = ahc;
1083	ahc->platform_data->host = host;
1084	host->can_queue = AHC_MAX_QUEUE;
1085	host->cmd_per_lun = 2;
1086	/* XXX No way to communicate the ID for multiple channels */
1087	host->this_id = ahc->our_id;
1088	host->irq = ahc->platform_data->irq;
1089	host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8;
1090	host->max_lun = AHC_NUM_LUNS;
1091	host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0;
1092	host->sg_tablesize = AHC_NSEG;
1093	ahc_lock(ahc, &s);
1094	ahc_set_unit(ahc, ahc_linux_unit++);
1095	ahc_unlock(ahc, &s);
1096	sprintf(buf, "scsi%d", host->host_no);
1097	new_name = kmalloc(strlen(buf) + 1, GFP_ATOMIC);
1098	if (new_name != NULL) {
1099		strcpy(new_name, buf);
1100		ahc_set_name(ahc, new_name);
1101	}
1102	host->unique_id = ahc->unit;
1103	ahc_linux_initialize_scsi_bus(ahc);
1104	ahc_intr_enable(ahc, TRUE);
1105
1106	host->transportt = ahc_linux_transport_template;
1107
1108	retval = scsi_add_host(host, ahc->dev);
1109	if (retval) {
1110		printk(KERN_WARNING "aic7xxx: scsi_add_host failed\n");
1111		scsi_host_put(host);
1112		return retval;
1113	}
1114
1115	scsi_scan_host(host);
1116	return 0;
1117}
1118
1119/*
1120 * Place the SCSI bus into a known state by either resetting it,
1121 * or forcing transfer negotiations on the next command to any
1122 * target.
1123 */
1124static void
1125ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc)
1126{
1127	int i;
1128	int numtarg;
1129	unsigned long s;
1130
1131	i = 0;
1132	numtarg = 0;
1133
1134	ahc_lock(ahc, &s);
1135
1136	if (aic7xxx_no_reset != 0)
1137		ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B);
1138
1139	if ((ahc->flags & AHC_RESET_BUS_A) != 0)
1140		ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE);
1141	else
1142		numtarg = (ahc->features & AHC_WIDE) ? 16 : 8;
1143
1144	if ((ahc->features & AHC_TWIN) != 0) {
1145
1146		if ((ahc->flags & AHC_RESET_BUS_B) != 0) {
1147			ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE);
1148		} else {
1149			if (numtarg == 0)
1150				i = 8;
1151			numtarg += 8;
1152		}
1153	}
1154
1155	/*
1156	 * Force negotiation to async for all targets that
1157	 * will not see an initial bus reset.
1158	 */
1159	for (; i < numtarg; i++) {
1160		struct ahc_devinfo devinfo;
1161		struct ahc_initiator_tinfo *tinfo;
1162		struct ahc_tmode_tstate *tstate;
1163		u_int our_id;
1164		u_int target_id;
1165		char channel;
1166
1167		channel = 'A';
1168		our_id = ahc->our_id;
1169		target_id = i;
1170		if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
1171			channel = 'B';
1172			our_id = ahc->our_id_b;
1173			target_id = i % 8;
1174		}
1175		tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
1176					    target_id, &tstate);
1177		ahc_compile_devinfo(&devinfo, our_id, target_id,
1178				    CAM_LUN_WILDCARD, channel, ROLE_INITIATOR);
1179		ahc_update_neg_request(ahc, &devinfo, tstate,
1180				       tinfo, AHC_NEG_ALWAYS);
1181	}
1182	ahc_unlock(ahc, &s);
1183	/* Give the bus some time to recover */
1184	if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) {
1185		ahc_linux_freeze_simq(ahc);
1186		msleep(AIC7XXX_RESET_DELAY);
1187		ahc_linux_release_simq(ahc);
1188	}
1189}
1190
1191int
1192ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg)
1193{
1194
1195	ahc->platform_data =
1196	    kzalloc(sizeof(struct ahc_platform_data), GFP_ATOMIC);
1197	if (ahc->platform_data == NULL)
1198		return (ENOMEM);
1199	ahc->platform_data->irq = AHC_LINUX_NOIRQ;
1200	ahc_lockinit(ahc);
1201	ahc->seltime = (aic7xxx_seltime & 0x3) << 4;
1202	ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4;
1203	if (aic7xxx_pci_parity == 0)
1204		ahc->flags |= AHC_DISABLE_PCI_PERR;
1205
1206	return (0);
1207}
1208
1209void
1210ahc_platform_free(struct ahc_softc *ahc)
1211{
1212	struct scsi_target *starget;
1213	int i;
1214
1215	if (ahc->platform_data != NULL) {
1216		/* destroy all of the device and target objects */
1217		for (i = 0; i < AHC_NUM_TARGETS; i++) {
1218			starget = ahc->platform_data->starget[i];
1219			if (starget != NULL) {
1220				ahc->platform_data->starget[i] = NULL;
1221			}
1222		}
1223
1224		if (ahc->platform_data->irq != AHC_LINUX_NOIRQ)
1225			free_irq(ahc->platform_data->irq, ahc);
1226		if (ahc->tag == BUS_SPACE_PIO
1227		 && ahc->bsh.ioport != 0)
1228			release_region(ahc->bsh.ioport, 256);
1229		if (ahc->tag == BUS_SPACE_MEMIO
1230		 && ahc->bsh.maddr != NULL) {
1231			iounmap(ahc->bsh.maddr);
1232			release_mem_region(ahc->platform_data->mem_busaddr,
1233					   0x1000);
1234		}
1235
1236		if (ahc->platform_data->host)
1237			scsi_host_put(ahc->platform_data->host);
1238
1239		kfree(ahc->platform_data);
1240	}
1241}
1242
1243void
1244ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb)
1245{
1246	ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb),
1247				SCB_GET_CHANNEL(ahc, scb),
1248				SCB_GET_LUN(scb), SCB_LIST_NULL,
1249				ROLE_UNKNOWN, CAM_REQUEUE_REQ);
1250}
1251
1252void
1253ahc_platform_set_tags(struct ahc_softc *ahc, struct scsi_device *sdev,
1254		      struct ahc_devinfo *devinfo, ahc_queue_alg alg)
1255{
1256	struct ahc_linux_device *dev;
1257	int was_queuing;
1258	int now_queuing;
1259
1260	if (sdev == NULL)
1261		return;
1262	dev = scsi_transport_device_data(sdev);
1263
1264	was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED);
1265	switch (alg) {
1266	default:
1267	case AHC_QUEUE_NONE:
1268		now_queuing = 0;
1269		break;
1270	case AHC_QUEUE_BASIC:
1271		now_queuing = AHC_DEV_Q_BASIC;
1272		break;
1273	case AHC_QUEUE_TAGGED:
1274		now_queuing = AHC_DEV_Q_TAGGED;
1275		break;
1276	}
1277	if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0
1278	 && (was_queuing != now_queuing)
1279	 && (dev->active != 0)) {
1280		dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY;
1281		dev->qfrozen++;
1282	}
1283
1284	dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG);
1285	if (now_queuing) {
1286		u_int usertags;
1287
1288		usertags = ahc_linux_user_tagdepth(ahc, devinfo);
1289		if (!was_queuing) {
1290			/*
1291			 * Start out aggressively and allow our
1292			 * dynamic queue depth algorithm to take
1293			 * care of the rest.
1294			 */
1295			dev->maxtags = usertags;
1296			dev->openings = dev->maxtags - dev->active;
1297		}
1298		if (dev->maxtags == 0) {
1299			/*
1300			 * Queueing is disabled by the user.
1301			 */
1302			dev->openings = 1;
1303		} else if (alg == AHC_QUEUE_TAGGED) {
1304			dev->flags |= AHC_DEV_Q_TAGGED;
1305			if (aic7xxx_periodic_otag != 0)
1306				dev->flags |= AHC_DEV_PERIODIC_OTAG;
1307		} else
1308			dev->flags |= AHC_DEV_Q_BASIC;
1309	} else {
1310		/* We can only have one opening. */
1311		dev->maxtags = 0;
1312		dev->openings =  1 - dev->active;
1313	}
1314	switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) {
1315	case AHC_DEV_Q_BASIC:
1316	case AHC_DEV_Q_TAGGED:
1317		scsi_change_queue_depth(sdev,
1318				dev->openings + dev->active);
1319		break;
1320	default:
1321		/*
1322		 * We allow the OS to queue 2 untagged transactions to
1323		 * us at any time even though we can only execute them
1324		 * serially on the controller/device.  This should
1325		 * remove some latency.
1326		 */
1327		scsi_change_queue_depth(sdev, 2);
1328		break;
1329	}
1330}
1331
1332int
1333ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel,
1334			int lun, u_int tag, role_t role, uint32_t status)
1335{
1336	return 0;
1337}
1338
1339static u_int
1340ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
1341{
1342	static int warned_user;
1343	u_int tags;
1344
1345	tags = 0;
1346	if ((ahc->user_discenable & devinfo->target_mask) != 0) {
1347		if (ahc->unit >= ARRAY_SIZE(aic7xxx_tag_info)) {
1348			if (warned_user == 0) {
1349
1350				printk(KERN_WARNING
1351"aic7xxx: WARNING: Insufficient tag_info instances\n"
1352"aic7xxx: for installed controllers. Using defaults\n"
1353"aic7xxx: Please update the aic7xxx_tag_info array in\n"
1354"aic7xxx: the aic7xxx_osm..c source file.\n");
1355				warned_user++;
1356			}
1357			tags = AHC_MAX_QUEUE;
1358		} else {
1359			adapter_tag_info_t *tag_info;
1360
1361			tag_info = &aic7xxx_tag_info[ahc->unit];
1362			tags = tag_info->tag_commands[devinfo->target_offset];
1363			if (tags > AHC_MAX_QUEUE)
1364				tags = AHC_MAX_QUEUE;
1365		}
1366	}
1367	return (tags);
1368}
1369
1370/*
1371 * Determines the queue depth for a given device.
1372 */
1373static void
1374ahc_linux_device_queue_depth(struct scsi_device *sdev)
1375{
1376	struct	ahc_devinfo devinfo;
1377	u_int	tags;
1378	struct ahc_softc *ahc = *((struct ahc_softc **)sdev->host->hostdata);
1379
1380	ahc_compile_devinfo(&devinfo,
1381			    sdev->sdev_target->channel == 0
1382			  ? ahc->our_id : ahc->our_id_b,
1383			    sdev->sdev_target->id, sdev->lun,
1384			    sdev->sdev_target->channel == 0 ? 'A' : 'B',
1385			    ROLE_INITIATOR);
1386	tags = ahc_linux_user_tagdepth(ahc, &devinfo);
1387	if (tags != 0 && sdev->tagged_supported != 0) {
1388
1389		ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_TAGGED);
1390		ahc_send_async(ahc, devinfo.channel, devinfo.target,
1391			       devinfo.lun, AC_TRANSFER_NEG);
1392		ahc_print_devinfo(ahc, &devinfo);
1393		printk("Tagged Queuing enabled.  Depth %d\n", tags);
1394	} else {
1395		ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_NONE);
1396		ahc_send_async(ahc, devinfo.channel, devinfo.target,
1397			       devinfo.lun, AC_TRANSFER_NEG);
1398	}
1399}
1400
1401static int
1402ahc_linux_run_command(struct ahc_softc *ahc, struct ahc_linux_device *dev,
1403		      struct scsi_cmnd *cmd)
1404{
1405	struct	 scb *scb;
1406	struct	 hardware_scb *hscb;
1407	struct	 ahc_initiator_tinfo *tinfo;
1408	struct	 ahc_tmode_tstate *tstate;
1409	uint16_t mask;
1410	struct scb_tailq *untagged_q = NULL;
1411	int nseg;
1412
1413	/*
1414	 * Schedule us to run later.  The only reason we are not
1415	 * running is because the whole controller Q is frozen.
1416	 */
1417	if (ahc->platform_data->qfrozen != 0)
1418		return SCSI_MLQUEUE_HOST_BUSY;
1419
1420	/*
1421	 * We only allow one untagged transaction
1422	 * per target in the initiator role unless
1423	 * we are storing a full busy target *lun*
1424	 * table in SCB space.
1425	 */
1426	if (!(cmd->flags & SCMD_TAGGED)
1427	    && (ahc->features & AHC_SCB_BTT) == 0) {
1428		int target_offset;
1429
1430		target_offset = cmd->device->id + cmd->device->channel * 8;
1431		untagged_q = &(ahc->untagged_queues[target_offset]);
1432		if (!TAILQ_EMPTY(untagged_q))
1433			/* if we're already executing an untagged command
1434			 * we're busy to another */
1435			return SCSI_MLQUEUE_DEVICE_BUSY;
1436	}
1437
1438	nseg = scsi_dma_map(cmd);
1439	if (nseg < 0)
1440		return SCSI_MLQUEUE_HOST_BUSY;
1441
1442	/*
1443	 * Get an scb to use.
1444	 */
1445	scb = ahc_get_scb(ahc);
1446	if (!scb) {
1447		scsi_dma_unmap(cmd);
1448		return SCSI_MLQUEUE_HOST_BUSY;
1449	}
1450
1451	scb->io_ctx = cmd;
1452	scb->platform_data->dev = dev;
1453	hscb = scb->hscb;
1454	cmd->host_scribble = (char *)scb;
1455
1456	/*
1457	 * Fill out basics of the HSCB.
1458	 */
1459	hscb->control = 0;
1460	hscb->scsiid = BUILD_SCSIID(ahc, cmd);
1461	hscb->lun = cmd->device->lun;
1462	mask = SCB_GET_TARGET_MASK(ahc, scb);
1463	tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb),
1464				    SCB_GET_OUR_ID(scb),
1465				    SCB_GET_TARGET(ahc, scb), &tstate);
1466	hscb->scsirate = tinfo->scsirate;
1467	hscb->scsioffset = tinfo->curr.offset;
1468	if ((tstate->ultraenb & mask) != 0)
1469		hscb->control |= ULTRAENB;
1470
1471	if ((ahc->user_discenable & mask) != 0)
1472		hscb->control |= DISCENB;
1473
1474	if ((tstate->auto_negotiate & mask) != 0) {
1475		scb->flags |= SCB_AUTO_NEGOTIATE;
1476		scb->hscb->control |= MK_MESSAGE;
1477	}
1478
1479	if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) {
1480		if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH
1481				&& (dev->flags & AHC_DEV_Q_TAGGED) != 0) {
1482			hscb->control |= ORDERED_QUEUE_TAG;
1483			dev->commands_since_idle_or_otag = 0;
1484		} else {
1485			hscb->control |= SIMPLE_QUEUE_TAG;
1486		}
1487	}
1488
1489	hscb->cdb_len = cmd->cmd_len;
1490	if (hscb->cdb_len <= 12) {
1491		memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len);
1492	} else {
1493		memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len);
1494		scb->flags |= SCB_CDB32_PTR;
1495	}
1496
1497	scb->platform_data->xfer_len = 0;
1498	ahc_set_residual(scb, 0);
1499	ahc_set_sense_residual(scb, 0);
1500	scb->sg_count = 0;
1501
1502	if (nseg > 0) {
1503		struct	ahc_dma_seg *sg;
1504		struct	scatterlist *cur_seg;
1505		int i;
1506
1507		/* Copy the segments into the SG list. */
1508		sg = scb->sg_list;
1509		/*
1510		 * The sg_count may be larger than nseg if
1511		 * a transfer crosses a 32bit page.
1512		 */
1513		scsi_for_each_sg(cmd, cur_seg, nseg, i) {
1514			dma_addr_t addr;
1515			bus_size_t len;
1516			int consumed;
1517
1518			addr = sg_dma_address(cur_seg);
1519			len = sg_dma_len(cur_seg);
1520			consumed = ahc_linux_map_seg(ahc, scb,
1521						     sg, addr, len);
1522			sg += consumed;
1523			scb->sg_count += consumed;
1524		}
1525		sg--;
1526		sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);
1527
1528		/*
1529		 * Reset the sg list pointer.
1530		 */
1531		scb->hscb->sgptr =
1532			ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
1533
1534		/*
1535		 * Copy the first SG into the "current"
1536		 * data pointer area.
1537		 */
1538		scb->hscb->dataptr = scb->sg_list->addr;
1539		scb->hscb->datacnt = scb->sg_list->len;
1540	} else {
1541		scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL);
1542		scb->hscb->dataptr = 0;
1543		scb->hscb->datacnt = 0;
1544		scb->sg_count = 0;
1545	}
1546
1547	LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links);
1548	dev->openings--;
1549	dev->active++;
1550	dev->commands_issued++;
1551	if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0)
1552		dev->commands_since_idle_or_otag++;
1553
1554	scb->flags |= SCB_ACTIVE;
1555	if (untagged_q) {
1556		TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe);
1557		scb->flags |= SCB_UNTAGGEDQ;
1558	}
1559	ahc_queue_scb(ahc, scb);
1560	return 0;
1561}
1562
1563/*
1564 * SCSI controller interrupt handler.
1565 */
1566irqreturn_t
1567ahc_linux_isr(int irq, void *dev_id)
1568{
1569	struct	ahc_softc *ahc;
1570	u_long	flags;
1571	int	ours;
1572
1573	ahc = (struct ahc_softc *) dev_id;
1574	ahc_lock(ahc, &flags);
1575	ours = ahc_intr(ahc);
1576	ahc_unlock(ahc, &flags);
1577	return IRQ_RETVAL(ours);
1578}
1579
1580void
1581ahc_platform_flushwork(struct ahc_softc *ahc)
1582{
1583
1584}
1585
1586void
1587ahc_send_async(struct ahc_softc *ahc, char channel,
1588	       u_int target, u_int lun, ac_code code)
1589{
1590	switch (code) {
1591	case AC_TRANSFER_NEG:
1592	{
1593		struct	scsi_target *starget;
1594		struct	ahc_initiator_tinfo *tinfo;
1595		struct	ahc_tmode_tstate *tstate;
1596		int	target_offset;
1597		unsigned int target_ppr_options;
1598
1599		BUG_ON(target == CAM_TARGET_WILDCARD);
1600
1601		tinfo = ahc_fetch_transinfo(ahc, channel,
1602						channel == 'A' ? ahc->our_id
1603							       : ahc->our_id_b,
1604						target, &tstate);
1605
1606		/*
1607		 * Don't bother reporting results while
1608		 * negotiations are still pending.
1609		 */
1610		if (tinfo->curr.period != tinfo->goal.period
1611		 || tinfo->curr.width != tinfo->goal.width
1612		 || tinfo->curr.offset != tinfo->goal.offset
1613		 || tinfo->curr.ppr_options != tinfo->goal.ppr_options)
1614			if (bootverbose == 0)
1615				break;
1616
1617		/*
1618		 * Don't bother reporting results that
1619		 * are identical to those last reported.
1620		 */
1621		target_offset = target;
1622		if (channel == 'B')
1623			target_offset += 8;
1624		starget = ahc->platform_data->starget[target_offset];
1625		if (starget == NULL)
1626			break;
1627
1628		target_ppr_options =
1629			(spi_dt(starget) ? MSG_EXT_PPR_DT_REQ : 0)
1630			+ (spi_qas(starget) ? MSG_EXT_PPR_QAS_REQ : 0)
1631			+ (spi_iu(starget) ?  MSG_EXT_PPR_IU_REQ : 0);
1632
1633		if (tinfo->curr.period == spi_period(starget)
1634		    && tinfo->curr.width == spi_width(starget)
1635		    && tinfo->curr.offset == spi_offset(starget)
1636		 && tinfo->curr.ppr_options == target_ppr_options)
1637			if (bootverbose == 0)
1638				break;
1639
1640		spi_period(starget) = tinfo->curr.period;
1641		spi_width(starget) = tinfo->curr.width;
1642		spi_offset(starget) = tinfo->curr.offset;
1643		spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_DT_REQ ? 1 : 0;
1644		spi_qas(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_QAS_REQ ? 1 : 0;
1645		spi_iu(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ ? 1 : 0;
1646		spi_display_xfer_agreement(starget);
1647		break;
1648	}
1649	case AC_SENT_BDR:
1650	{
1651		WARN_ON(lun != CAM_LUN_WILDCARD);
1652		scsi_report_device_reset(ahc->platform_data->host,
1653					 channel - 'A', target);
1654		break;
1655	}
1656	case AC_BUS_RESET:
1657		if (ahc->platform_data->host != NULL) {
1658			scsi_report_bus_reset(ahc->platform_data->host,
1659					      channel - 'A');
1660		}
1661		break;
1662	default:
1663		panic("ahc_send_async: Unexpected async event");
1664	}
1665}
1666
1667/*
1668 * Calls the higher level scsi done function and frees the scb.
1669 */
1670void
1671ahc_done(struct ahc_softc *ahc, struct scb *scb)
1672{
1673	struct scsi_cmnd *cmd;
1674	struct	   ahc_linux_device *dev;
1675
1676	LIST_REMOVE(scb, pending_links);
1677	if ((scb->flags & SCB_UNTAGGEDQ) != 0) {
1678		struct scb_tailq *untagged_q;
1679		int target_offset;
1680
1681		target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
1682		untagged_q = &(ahc->untagged_queues[target_offset]);
1683		TAILQ_REMOVE(untagged_q, scb, links.tqe);
1684		BUG_ON(!TAILQ_EMPTY(untagged_q));
1685	} else if ((scb->flags & SCB_ACTIVE) == 0) {
1686		/*
1687		 * Transactions aborted from the untagged queue may
1688		 * not have been dispatched to the controller, so
1689		 * only check the SCB_ACTIVE flag for tagged transactions.
1690		 */
1691		printk("SCB %d done'd twice\n", scb->hscb->tag);
1692		ahc_dump_card_state(ahc);
1693		panic("Stopping for safety");
1694	}
1695	cmd = scb->io_ctx;
1696	dev = scb->platform_data->dev;
1697	dev->active--;
1698	dev->openings++;
1699	if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
1700		cmd->result &= ~(CAM_DEV_QFRZN << 16);
1701		dev->qfrozen--;
1702	}
1703	ahc_linux_unmap_scb(ahc, scb);
1704
1705	/*
1706	 * Guard against stale sense data.
1707	 * The Linux mid-layer assumes that sense
1708	 * was retrieved anytime the first byte of
1709	 * the sense buffer looks "sane".
1710	 */
1711	cmd->sense_buffer[0] = 0;
1712	if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) {
1713#ifdef AHC_REPORT_UNDERFLOWS
1714		uint32_t amount_xferred;
1715
1716		amount_xferred =
1717		    ahc_get_transfer_length(scb) - ahc_get_residual(scb);
1718#endif
1719		if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
1720#ifdef AHC_DEBUG
1721			if ((ahc_debug & AHC_SHOW_MISC) != 0) {
1722				ahc_print_path(ahc, scb);
1723				printk("Set CAM_UNCOR_PARITY\n");
1724			}
1725#endif
1726			ahc_set_transaction_status(scb, CAM_UNCOR_PARITY);
1727#ifdef AHC_REPORT_UNDERFLOWS
1728		/*
1729		 * This code is disabled by default as some
1730		 * clients of the SCSI system do not properly
1731		 * initialize the underflow parameter.  This
1732		 * results in spurious termination of commands
1733		 * that complete as expected (e.g. underflow is
1734		 * allowed as command can return variable amounts
1735		 * of data.
1736		 */
1737		} else if (amount_xferred < scb->io_ctx->underflow) {
1738			u_int i;
1739
1740			ahc_print_path(ahc, scb);
1741			printk("CDB:");
1742			for (i = 0; i < scb->io_ctx->cmd_len; i++)
1743				printk(" 0x%x", scb->io_ctx->cmnd[i]);
1744			printk("\n");
1745			ahc_print_path(ahc, scb);
1746			printk("Saw underflow (%ld of %ld bytes). "
1747			       "Treated as error\n",
1748				ahc_get_residual(scb),
1749				ahc_get_transfer_length(scb));
1750			ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR);
1751#endif
1752		} else {
1753			ahc_set_transaction_status(scb, CAM_REQ_CMP);
1754		}
1755	} else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
1756		ahc_linux_handle_scsi_status(ahc, cmd->device, scb);
1757	}
1758
1759	if (dev->openings == 1
1760	 && ahc_get_transaction_status(scb) == CAM_REQ_CMP
1761	 && ahc_get_scsi_status(scb) != SAM_STAT_TASK_SET_FULL)
1762		dev->tag_success_count++;
1763	/*
1764	 * Some devices deal with temporary internal resource
1765	 * shortages by returning queue full.  When the queue
1766	 * full occurrs, we throttle back.  Slowly try to get
1767	 * back to our previous queue depth.
1768	 */
1769	if ((dev->openings + dev->active) < dev->maxtags
1770	 && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) {
1771		dev->tag_success_count = 0;
1772		dev->openings++;
1773	}
1774
1775	if (dev->active == 0)
1776		dev->commands_since_idle_or_otag = 0;
1777
1778	if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
1779		printk("Recovery SCB completes\n");
1780		if (ahc_get_transaction_status(scb) == CAM_BDR_SENT
1781		 || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED)
1782			ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT);
1783
1784		if (ahc->platform_data->eh_done)
1785			complete(ahc->platform_data->eh_done);
1786	}
1787
1788	ahc_free_scb(ahc, scb);
1789	ahc_linux_queue_cmd_complete(ahc, cmd);
1790}
1791
1792static void
1793ahc_linux_handle_scsi_status(struct ahc_softc *ahc,
1794			     struct scsi_device *sdev, struct scb *scb)
1795{
1796	struct	ahc_devinfo devinfo;
1797	struct ahc_linux_device *dev = scsi_transport_device_data(sdev);
1798
1799	ahc_compile_devinfo(&devinfo,
1800			    ahc->our_id,
1801			    sdev->sdev_target->id, sdev->lun,
1802			    sdev->sdev_target->channel == 0 ? 'A' : 'B',
1803			    ROLE_INITIATOR);
1804
1805	/*
1806	 * We don't currently trust the mid-layer to
1807	 * properly deal with queue full or busy.  So,
1808	 * when one occurs, we tell the mid-layer to
1809	 * unconditionally requeue the command to us
1810	 * so that we can retry it ourselves.  We also
1811	 * implement our own throttling mechanism so
1812	 * we don't clobber the device with too many
1813	 * commands.
1814	 */
1815	switch (ahc_get_scsi_status(scb)) {
1816	default:
1817		break;
1818	case SAM_STAT_CHECK_CONDITION:
1819	case SAM_STAT_COMMAND_TERMINATED:
1820	{
1821		struct scsi_cmnd *cmd;
1822
1823		/*
1824		 * Copy sense information to the OS's cmd
1825		 * structure if it is available.
1826		 */
1827		cmd = scb->io_ctx;
1828		if (scb->flags & SCB_SENSE) {
1829			u_int sense_size;
1830
1831			sense_size = min(sizeof(struct scsi_sense_data)
1832				       - ahc_get_sense_residual(scb),
1833					 (u_long)SCSI_SENSE_BUFFERSIZE);
1834			memcpy(cmd->sense_buffer,
1835			       ahc_get_sense_buf(ahc, scb), sense_size);
1836			if (sense_size < SCSI_SENSE_BUFFERSIZE)
1837				memset(&cmd->sense_buffer[sense_size], 0,
1838				       SCSI_SENSE_BUFFERSIZE - sense_size);
1839#ifdef AHC_DEBUG
1840			if (ahc_debug & AHC_SHOW_SENSE) {
1841				int i;
1842
1843				printk("Copied %d bytes of sense data:",
1844				       sense_size);
1845				for (i = 0; i < sense_size; i++) {
1846					if ((i & 0xF) == 0)
1847						printk("\n");
1848					printk("0x%x ", cmd->sense_buffer[i]);
1849				}
1850				printk("\n");
1851			}
1852#endif
1853		}
1854		break;
1855	}
1856	case SAM_STAT_TASK_SET_FULL:
1857	{
1858		/*
1859		 * By the time the core driver has returned this
1860		 * command, all other commands that were queued
1861		 * to us but not the device have been returned.
1862		 * This ensures that dev->active is equal to
1863		 * the number of commands actually queued to
1864		 * the device.
1865		 */
1866		dev->tag_success_count = 0;
1867		if (dev->active != 0) {
1868			/*
1869			 * Drop our opening count to the number
1870			 * of commands currently outstanding.
1871			 */
1872			dev->openings = 0;
1873/*
1874			ahc_print_path(ahc, scb);
1875			printk("Dropping tag count to %d\n", dev->active);
1876 */
1877			if (dev->active == dev->tags_on_last_queuefull) {
1878
1879				dev->last_queuefull_same_count++;
1880				/*
1881				 * If we repeatedly see a queue full
1882				 * at the same queue depth, this
1883				 * device has a fixed number of tag
1884				 * slots.  Lock in this tag depth
1885				 * so we stop seeing queue fulls from
1886				 * this device.
1887				 */
1888				if (dev->last_queuefull_same_count
1889				 == AHC_LOCK_TAGS_COUNT) {
1890					dev->maxtags = dev->active;
1891					ahc_print_path(ahc, scb);
1892					printk("Locking max tag count at %d\n",
1893					       dev->active);
1894				}
1895			} else {
1896				dev->tags_on_last_queuefull = dev->active;
1897				dev->last_queuefull_same_count = 0;
1898			}
1899			ahc_set_transaction_status(scb, CAM_REQUEUE_REQ);
1900			ahc_set_scsi_status(scb, SAM_STAT_GOOD);
1901			ahc_platform_set_tags(ahc, sdev, &devinfo,
1902				     (dev->flags & AHC_DEV_Q_BASIC)
1903				   ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
1904			break;
1905		}
1906		/*
1907		 * Drop down to a single opening, and treat this
1908		 * as if the target returned BUSY SCSI status.
1909		 */
1910		dev->openings = 1;
1911		ahc_set_scsi_status(scb, SAM_STAT_BUSY);
1912		ahc_platform_set_tags(ahc, sdev, &devinfo,
1913			     (dev->flags & AHC_DEV_Q_BASIC)
1914			   ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
1915		break;
1916	}
1917	}
1918}
1919
1920static void
1921ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, struct scsi_cmnd *cmd)
1922{
1923	/*
1924	 * Map CAM error codes into Linux Error codes.  We
1925	 * avoid the conversion so that the DV code has the
1926	 * full error information available when making
1927	 * state change decisions.
1928	 */
1929	{
1930		u_int new_status;
1931
1932		switch (ahc_cmd_get_transaction_status(cmd)) {
1933		case CAM_REQ_INPROG:
1934		case CAM_REQ_CMP:
1935		case CAM_SCSI_STATUS_ERROR:
1936			new_status = DID_OK;
1937			break;
1938		case CAM_REQ_ABORTED:
1939			new_status = DID_ABORT;
1940			break;
1941		case CAM_BUSY:
1942			new_status = DID_BUS_BUSY;
1943			break;
1944		case CAM_REQ_INVALID:
1945		case CAM_PATH_INVALID:
1946			new_status = DID_BAD_TARGET;
1947			break;
1948		case CAM_SEL_TIMEOUT:
1949			new_status = DID_NO_CONNECT;
1950			break;
1951		case CAM_SCSI_BUS_RESET:
1952		case CAM_BDR_SENT:
1953			new_status = DID_RESET;
1954			break;
1955		case CAM_UNCOR_PARITY:
1956			new_status = DID_PARITY;
1957			break;
1958		case CAM_CMD_TIMEOUT:
1959			new_status = DID_TIME_OUT;
1960			break;
1961		case CAM_UA_ABORT:
1962		case CAM_REQ_CMP_ERR:
1963		case CAM_AUTOSENSE_FAIL:
1964		case CAM_NO_HBA:
1965		case CAM_DATA_RUN_ERR:
1966		case CAM_UNEXP_BUSFREE:
1967		case CAM_SEQUENCE_FAIL:
1968		case CAM_CCB_LEN_ERR:
1969		case CAM_PROVIDE_FAIL:
1970		case CAM_REQ_TERMIO:
1971		case CAM_UNREC_HBA_ERROR:
1972		case CAM_REQ_TOO_BIG:
1973			new_status = DID_ERROR;
1974			break;
1975		case CAM_REQUEUE_REQ:
1976			new_status = DID_REQUEUE;
1977			break;
1978		default:
1979			/* We should never get here */
1980			new_status = DID_ERROR;
1981			break;
1982		}
1983
1984		ahc_cmd_set_transaction_status(cmd, new_status);
1985	}
1986
1987	scsi_done(cmd);
1988}
1989
1990static void
1991ahc_linux_freeze_simq(struct ahc_softc *ahc)
1992{
1993	unsigned long s;
1994
1995	ahc_lock(ahc, &s);
1996	ahc->platform_data->qfrozen++;
1997	if (ahc->platform_data->qfrozen == 1) {
1998		scsi_block_requests(ahc->platform_data->host);
1999
2000		/* XXX What about Twin channels? */
2001		ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
2002					CAM_LUN_WILDCARD, SCB_LIST_NULL,
2003					ROLE_INITIATOR, CAM_REQUEUE_REQ);
2004	}
2005	ahc_unlock(ahc, &s);
2006}
2007
2008static void
2009ahc_linux_release_simq(struct ahc_softc *ahc)
2010{
2011	u_long s;
2012	int    unblock_reqs;
2013
2014	unblock_reqs = 0;
2015	ahc_lock(ahc, &s);
2016	if (ahc->platform_data->qfrozen > 0)
2017		ahc->platform_data->qfrozen--;
2018	if (ahc->platform_data->qfrozen == 0)
2019		unblock_reqs = 1;
2020	ahc_unlock(ahc, &s);
2021	/*
2022	 * There is still a race here.  The mid-layer
2023	 * should keep its own freeze count and use
2024	 * a bottom half handler to run the queues
2025	 * so we can unblock with our own lock held.
2026	 */
2027	if (unblock_reqs)
2028		scsi_unblock_requests(ahc->platform_data->host);
2029}
2030
2031static int
2032ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag)
2033{
2034	struct ahc_softc *ahc;
2035	struct ahc_linux_device *dev;
2036	struct scb *pending_scb;
2037	u_int  saved_scbptr;
2038	u_int  active_scb_index;
2039	u_int  last_phase;
2040	u_int  saved_scsiid;
2041	u_int  cdb_byte;
2042	int    retval;
2043	int    was_paused;
2044	int    paused;
2045	int    wait;
2046	int    disconnected;
2047	unsigned long flags;
2048
2049	pending_scb = NULL;
2050	paused = FALSE;
2051	wait = FALSE;
2052	ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
2053
2054	scmd_printk(KERN_INFO, cmd, "Attempting to queue a%s message\n",
2055	       flag == SCB_ABORT ? "n ABORT" : " TARGET RESET");
2056
2057	printk("CDB:");
2058	for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
2059		printk(" 0x%x", cmd->cmnd[cdb_byte]);
2060	printk("\n");
2061
2062	ahc_lock(ahc, &flags);
2063
2064	/*
2065	 * First determine if we currently own this command.
2066	 * Start by searching the device queue.  If not found
2067	 * there, check the pending_scb list.  If not found
2068	 * at all, and the system wanted us to just abort the
2069	 * command, return success.
2070	 */
2071	dev = scsi_transport_device_data(cmd->device);
2072
2073	if (dev == NULL) {
2074		/*
2075		 * No target device for this command exists,
2076		 * so we must not still own the command.
2077		 */
2078		printk("%s:%d:%d:%d: Is not an active device\n",
2079		       ahc_name(ahc), cmd->device->channel, cmd->device->id,
2080		       (u8)cmd->device->lun);
2081		retval = SUCCESS;
2082		goto no_cmd;
2083	}
2084
2085	if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0
2086	 && ahc_search_untagged_queues(ahc, cmd, cmd->device->id,
2087				       cmd->device->channel + 'A',
2088				       (u8)cmd->device->lun,
2089				       CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) {
2090		printk("%s:%d:%d:%d: Command found on untagged queue\n",
2091		       ahc_name(ahc), cmd->device->channel, cmd->device->id,
2092		       (u8)cmd->device->lun);
2093		retval = SUCCESS;
2094		goto done;
2095	}
2096
2097	/*
2098	 * See if we can find a matching cmd in the pending list.
2099	 */
2100	LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
2101		if (pending_scb->io_ctx == cmd)
2102			break;
2103	}
2104
2105	if (pending_scb == NULL && flag == SCB_DEVICE_RESET) {
2106
2107		/* Any SCB for this device will do for a target reset */
2108		LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
2109			if (ahc_match_scb(ahc, pending_scb, scmd_id(cmd),
2110					  scmd_channel(cmd) + 'A',
2111					  CAM_LUN_WILDCARD,
2112					  SCB_LIST_NULL, ROLE_INITIATOR))
2113				break;
2114		}
2115	}
2116
2117	if (pending_scb == NULL) {
2118		scmd_printk(KERN_INFO, cmd, "Command not found\n");
2119		goto no_cmd;
2120	}
2121
2122	if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
2123		/*
2124		 * We can't queue two recovery actions using the same SCB
2125		 */
2126		retval = FAILED;
2127		goto  done;
2128	}
2129
2130	/*
2131	 * Ensure that the card doesn't do anything
2132	 * behind our back and that we didn't "just" miss
2133	 * an interrupt that would affect this cmd.
2134	 */
2135	was_paused = ahc_is_paused(ahc);
2136	ahc_pause_and_flushwork(ahc);
2137	paused = TRUE;
2138
2139	if ((pending_scb->flags & SCB_ACTIVE) == 0) {
2140		scmd_printk(KERN_INFO, cmd, "Command already completed\n");
2141		goto no_cmd;
2142	}
2143
2144	printk("%s: At time of recovery, card was %spaused\n",
2145	       ahc_name(ahc), was_paused ? "" : "not ");
2146	ahc_dump_card_state(ahc);
2147
2148	disconnected = TRUE;
2149	if (flag == SCB_ABORT) {
2150		if (ahc_search_qinfifo(ahc, cmd->device->id,
2151				       cmd->device->channel + 'A',
2152				       cmd->device->lun,
2153				       pending_scb->hscb->tag,
2154				       ROLE_INITIATOR, CAM_REQ_ABORTED,
2155				       SEARCH_COMPLETE) > 0) {
2156			printk("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
2157			       ahc_name(ahc), cmd->device->channel,
2158			       cmd->device->id, (u8)cmd->device->lun);
2159			retval = SUCCESS;
2160			goto done;
2161		}
2162	} else if (ahc_search_qinfifo(ahc, cmd->device->id,
2163				      cmd->device->channel + 'A',
2164				      cmd->device->lun,
2165				      pending_scb->hscb->tag,
2166				      ROLE_INITIATOR, /*status*/0,
2167				      SEARCH_COUNT) > 0) {
2168		disconnected = FALSE;
2169	}
2170
2171	if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
2172		struct scb *bus_scb;
2173
2174		bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG));
2175		if (bus_scb == pending_scb)
2176			disconnected = FALSE;
2177		else if (flag != SCB_ABORT
2178		      && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid
2179		      && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb))
2180			disconnected = FALSE;
2181	}
2182
2183	/*
2184	 * At this point, pending_scb is the scb associated with the
2185	 * passed in command.  That command is currently active on the
2186	 * bus, is in the disconnected state, or we're hoping to find
2187	 * a command for the same target active on the bus to abuse to
2188	 * send a BDR.  Queue the appropriate message based on which of
2189	 * these states we are in.
2190	 */
2191	last_phase = ahc_inb(ahc, LASTPHASE);
2192	saved_scbptr = ahc_inb(ahc, SCBPTR);
2193	active_scb_index = ahc_inb(ahc, SCB_TAG);
2194	saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
2195	if (last_phase != P_BUSFREE
2196	 && (pending_scb->hscb->tag == active_scb_index
2197	  || (flag == SCB_DEVICE_RESET
2198	   && SCSIID_TARGET(ahc, saved_scsiid) == scmd_id(cmd)))) {
2199
2200		/*
2201		 * We're active on the bus, so assert ATN
2202		 * and hope that the target responds.
2203		 */
2204		pending_scb = ahc_lookup_scb(ahc, active_scb_index);
2205		pending_scb->flags |= SCB_RECOVERY_SCB|flag;
2206		ahc_outb(ahc, MSG_OUT, HOST_MSG);
2207		ahc_outb(ahc, SCSISIGO, last_phase|ATNO);
2208		scmd_printk(KERN_INFO, cmd, "Device is active, asserting ATN\n");
2209		wait = TRUE;
2210	} else if (disconnected) {
2211
2212		/*
2213		 * Actually re-queue this SCB in an attempt
2214		 * to select the device before it reconnects.
2215		 * In either case (selection or reselection),
2216		 * we will now issue the approprate message
2217		 * to the timed-out device.
2218		 *
2219		 * Set the MK_MESSAGE control bit indicating
2220		 * that we desire to send a message.  We
2221		 * also set the disconnected flag since
2222		 * in the paging case there is no guarantee
2223		 * that our SCB control byte matches the
2224		 * version on the card.  We don't want the
2225		 * sequencer to abort the command thinking
2226		 * an unsolicited reselection occurred.
2227		 */
2228		pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
2229		pending_scb->flags |= SCB_RECOVERY_SCB|flag;
2230
2231		/*
2232		 * Remove any cached copy of this SCB in the
2233		 * disconnected list in preparation for the
2234		 * queuing of our abort SCB.  We use the
2235		 * same element in the SCB, SCB_NEXT, for
2236		 * both the qinfifo and the disconnected list.
2237		 */
2238		ahc_search_disc_list(ahc, cmd->device->id,
2239				     cmd->device->channel + 'A',
2240				     cmd->device->lun, pending_scb->hscb->tag,
2241				     /*stop_on_first*/TRUE,
2242				     /*remove*/TRUE,
2243				     /*save_state*/FALSE);
2244
2245		/*
2246		 * In the non-paging case, the sequencer will
2247		 * never re-reference the in-core SCB.
2248		 * To make sure we are notified during
2249		 * reselection, set the MK_MESSAGE flag in
2250		 * the card's copy of the SCB.
2251		 */
2252		if ((ahc->flags & AHC_PAGESCBS) == 0) {
2253			ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag);
2254			ahc_outb(ahc, SCB_CONTROL,
2255				 ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE);
2256		}
2257
2258		/*
2259		 * Clear out any entries in the QINFIFO first
2260		 * so we are the next SCB for this target
2261		 * to run.
2262		 */
2263		ahc_search_qinfifo(ahc, cmd->device->id,
2264				   cmd->device->channel + 'A',
2265				   cmd->device->lun, SCB_LIST_NULL,
2266				   ROLE_INITIATOR, CAM_REQUEUE_REQ,
2267				   SEARCH_COMPLETE);
2268		ahc_qinfifo_requeue_tail(ahc, pending_scb);
2269		ahc_outb(ahc, SCBPTR, saved_scbptr);
2270		ahc_print_path(ahc, pending_scb);
2271		printk("Device is disconnected, re-queuing SCB\n");
2272		wait = TRUE;
2273	} else {
2274		scmd_printk(KERN_INFO, cmd, "Unable to deliver message\n");
2275		retval = FAILED;
2276		goto done;
2277	}
2278
2279no_cmd:
2280	/*
2281	 * Our assumption is that if we don't have the command, no
2282	 * recovery action was required, so we return success.  Again,
2283	 * the semantics of the mid-layer recovery engine are not
2284	 * well defined, so this may change in time.
2285	 */
2286	retval = SUCCESS;
2287done:
2288	if (paused)
2289		ahc_unpause(ahc);
2290	if (wait) {
2291		DECLARE_COMPLETION_ONSTACK(done);
2292
2293		ahc->platform_data->eh_done = &done;
2294		ahc_unlock(ahc, &flags);
2295
2296		printk("Recovery code sleeping\n");
2297		if (!wait_for_completion_timeout(&done, 5 * HZ)) {
2298			ahc_lock(ahc, &flags);
2299			ahc->platform_data->eh_done = NULL;
2300			ahc_unlock(ahc, &flags);
2301
2302			printk("Timer Expired\n");
2303			retval = FAILED;
2304		}
2305		printk("Recovery code awake\n");
2306	} else
2307		ahc_unlock(ahc, &flags);
2308	return (retval);
2309}
2310
2311static void ahc_linux_set_width(struct scsi_target *starget, int width)
2312{
2313	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2314	struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2315	struct ahc_devinfo devinfo;
2316	unsigned long flags;
2317
2318	ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2319			    starget->channel + 'A', ROLE_INITIATOR);
2320	ahc_lock(ahc, &flags);
2321	ahc_set_width(ahc, &devinfo, width, AHC_TRANS_GOAL, FALSE);
2322	ahc_unlock(ahc, &flags);
2323}
2324
2325static void ahc_linux_set_period(struct scsi_target *starget, int period)
2326{
2327	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2328	struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2329	struct ahc_tmode_tstate *tstate;
2330	struct ahc_initiator_tinfo *tinfo
2331		= ahc_fetch_transinfo(ahc,
2332				      starget->channel + 'A',
2333				      shost->this_id, starget->id, &tstate);
2334	struct ahc_devinfo devinfo;
2335	unsigned int ppr_options = tinfo->goal.ppr_options;
2336	unsigned long flags;
2337	unsigned long offset = tinfo->goal.offset;
2338	const struct ahc_syncrate *syncrate;
2339
2340	if (offset == 0)
2341		offset = MAX_OFFSET;
2342
2343	if (period < 9)
2344		period = 9;	/* 12.5ns is our minimum */
2345	if (period == 9) {
2346		if (spi_max_width(starget))
2347			ppr_options |= MSG_EXT_PPR_DT_REQ;
2348		else
2349			/* need wide for DT and need DT for 12.5 ns */
2350			period = 10;
2351	}
2352
2353	ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2354			    starget->channel + 'A', ROLE_INITIATOR);
2355
2356	/* all PPR requests apart from QAS require wide transfers */
2357	if (ppr_options & ~MSG_EXT_PPR_QAS_REQ) {
2358		if (spi_width(starget) == 0)
2359			ppr_options &= MSG_EXT_PPR_QAS_REQ;
2360	}
2361
2362	syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2363				     AHC_SYNCRATE_DT);
2364	ahc_lock(ahc, &flags);
2365	ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
2366			 ppr_options, AHC_TRANS_GOAL, FALSE);
2367	ahc_unlock(ahc, &flags);
2368}
2369
2370static void ahc_linux_set_offset(struct scsi_target *starget, int offset)
2371{
2372	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2373	struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2374	struct ahc_tmode_tstate *tstate;
2375	struct ahc_initiator_tinfo *tinfo
2376		= ahc_fetch_transinfo(ahc,
2377				      starget->channel + 'A',
2378				      shost->this_id, starget->id, &tstate);
2379	struct ahc_devinfo devinfo;
2380	unsigned int ppr_options = 0;
2381	unsigned int period = 0;
2382	unsigned long flags;
2383	const struct ahc_syncrate *syncrate = NULL;
2384
2385	ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2386			    starget->channel + 'A', ROLE_INITIATOR);
2387	if (offset != 0) {
2388		syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2389					     AHC_SYNCRATE_DT);
2390		period = tinfo->goal.period;
2391		ppr_options = tinfo->goal.ppr_options;
2392	}
2393	ahc_lock(ahc, &flags);
2394	ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
2395			 ppr_options, AHC_TRANS_GOAL, FALSE);
2396	ahc_unlock(ahc, &flags);
2397}
2398
2399static void ahc_linux_set_dt(struct scsi_target *starget, int dt)
2400{
2401	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2402	struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2403	struct ahc_tmode_tstate *tstate;
2404	struct ahc_initiator_tinfo *tinfo
2405		= ahc_fetch_transinfo(ahc,
2406				      starget->channel + 'A',
2407				      shost->this_id, starget->id, &tstate);
2408	struct ahc_devinfo devinfo;
2409	unsigned int ppr_options = tinfo->goal.ppr_options
2410		& ~MSG_EXT_PPR_DT_REQ;
2411	unsigned int period = tinfo->goal.period;
2412	unsigned int width = tinfo->goal.width;
2413	unsigned long flags;
2414	const struct ahc_syncrate *syncrate;
2415
2416	if (dt && spi_max_width(starget)) {
2417		ppr_options |= MSG_EXT_PPR_DT_REQ;
2418		if (!width)
2419			ahc_linux_set_width(starget, 1);
2420	} else if (period == 9)
2421		period = 10;	/* if resetting DT, period must be >= 25ns */
2422
2423	ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2424			    starget->channel + 'A', ROLE_INITIATOR);
2425	syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2426				     AHC_SYNCRATE_DT);
2427	ahc_lock(ahc, &flags);
2428	ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
2429			 ppr_options, AHC_TRANS_GOAL, FALSE);
2430	ahc_unlock(ahc, &flags);
2431}
2432
2433#if 0
2434/* FIXME: This code claims to support IU and QAS.  However, the actual
2435 * sequencer code and aic7xxx_core have no support for these parameters and
2436 * will get into a bad state if they're negotiated.  Do not enable this
2437 * unless you know what you're doing */
2438static void ahc_linux_set_qas(struct scsi_target *starget, int qas)
2439{
2440	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2441	struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2442	struct ahc_tmode_tstate *tstate;
2443	struct ahc_initiator_tinfo *tinfo
2444		= ahc_fetch_transinfo(ahc,
2445				      starget->channel + 'A',
2446				      shost->this_id, starget->id, &tstate);
2447	struct ahc_devinfo devinfo;
2448	unsigned int ppr_options = tinfo->goal.ppr_options
2449		& ~MSG_EXT_PPR_QAS_REQ;
2450	unsigned int period = tinfo->goal.period;
2451	unsigned long flags;
2452	struct ahc_syncrate *syncrate;
2453
2454	if (qas)
2455		ppr_options |= MSG_EXT_PPR_QAS_REQ;
2456
2457	ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2458			    starget->channel + 'A', ROLE_INITIATOR);
2459	syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2460				     AHC_SYNCRATE_DT);
2461	ahc_lock(ahc, &flags);
2462	ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
2463			 ppr_options, AHC_TRANS_GOAL, FALSE);
2464	ahc_unlock(ahc, &flags);
2465}
2466
2467static void ahc_linux_set_iu(struct scsi_target *starget, int iu)
2468{
2469	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2470	struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2471	struct ahc_tmode_tstate *tstate;
2472	struct ahc_initiator_tinfo *tinfo
2473		= ahc_fetch_transinfo(ahc,
2474				      starget->channel + 'A',
2475				      shost->this_id, starget->id, &tstate);
2476	struct ahc_devinfo devinfo;
2477	unsigned int ppr_options = tinfo->goal.ppr_options
2478		& ~MSG_EXT_PPR_IU_REQ;
2479	unsigned int period = tinfo->goal.period;
2480	unsigned long flags;
2481	struct ahc_syncrate *syncrate;
2482
2483	if (iu)
2484		ppr_options |= MSG_EXT_PPR_IU_REQ;
2485
2486	ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2487			    starget->channel + 'A', ROLE_INITIATOR);
2488	syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2489				     AHC_SYNCRATE_DT);
2490	ahc_lock(ahc, &flags);
2491	ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
2492			 ppr_options, AHC_TRANS_GOAL, FALSE);
2493	ahc_unlock(ahc, &flags);
2494}
2495#endif
2496
2497static void ahc_linux_get_signalling(struct Scsi_Host *shost)
2498{
2499	struct ahc_softc *ahc = *(struct ahc_softc **)shost->hostdata;
2500	unsigned long flags;
2501	u8 mode;
2502
2503	if (!(ahc->features & AHC_ULTRA2)) {
2504		/* non-LVD chipset, may not have SBLKCTL reg */
2505		spi_signalling(shost) =
2506			ahc->features & AHC_HVD ?
2507			SPI_SIGNAL_HVD :
2508			SPI_SIGNAL_SE;
2509		return;
2510	}
2511
2512	ahc_lock(ahc, &flags);
2513	ahc_pause(ahc);
2514	mode = ahc_inb(ahc, SBLKCTL);
2515	ahc_unpause(ahc);
2516	ahc_unlock(ahc, &flags);
2517
2518	if (mode & ENAB40)
2519		spi_signalling(shost) = SPI_SIGNAL_LVD;
2520	else if (mode & ENAB20)
2521		spi_signalling(shost) = SPI_SIGNAL_SE;
2522	else
2523		spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
2524}
2525
2526static struct spi_function_template ahc_linux_transport_functions = {
2527	.set_offset	= ahc_linux_set_offset,
2528	.show_offset	= 1,
2529	.set_period	= ahc_linux_set_period,
2530	.show_period	= 1,
2531	.set_width	= ahc_linux_set_width,
2532	.show_width	= 1,
2533	.set_dt		= ahc_linux_set_dt,
2534	.show_dt	= 1,
2535#if 0
2536	.set_iu		= ahc_linux_set_iu,
2537	.show_iu	= 1,
2538	.set_qas	= ahc_linux_set_qas,
2539	.show_qas	= 1,
2540#endif
2541	.get_signalling	= ahc_linux_get_signalling,
2542};
2543
2544
2545
2546static int __init
2547ahc_linux_init(void)
2548{
2549	/*
2550	 * If we've been passed any parameters, process them now.
2551	 */
2552	if (aic7xxx)
2553		aic7xxx_setup(aic7xxx);
2554
2555	ahc_linux_transport_template =
2556		spi_attach_transport(&ahc_linux_transport_functions);
2557	if (!ahc_linux_transport_template)
2558		return -ENODEV;
2559
2560	scsi_transport_reserve_device(ahc_linux_transport_template,
2561				      sizeof(struct ahc_linux_device));
2562
2563	ahc_linux_pci_init();
2564	ahc_linux_eisa_init();
2565	return 0;
2566}
2567
2568static void
2569ahc_linux_exit(void)
2570{
2571	ahc_linux_pci_exit();
2572	ahc_linux_eisa_exit();
2573	spi_release_transport(ahc_linux_transport_template);
2574}
2575
2576module_init(ahc_linux_init);
2577module_exit(ahc_linux_exit);
2578