1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright IBM Corp. 2006, 2023
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6 *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7 *	      Felix Beck <felix.beck@de.ibm.com>
8 *	      Holger Dengler <hd@linux.vnet.ibm.com>
9 *	      Harald Freudenberger <freude@linux.ibm.com>
10 *
11 * Adjunct processor bus.
12 */
13
14#define KMSG_COMPONENT "ap"
15#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17#include <linux/kernel_stat.h>
18#include <linux/moduleparam.h>
19#include <linux/init.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/freezer.h>
23#include <linux/interrupt.h>
24#include <linux/workqueue.h>
25#include <linux/slab.h>
26#include <linux/notifier.h>
27#include <linux/kthread.h>
28#include <linux/mutex.h>
29#include <asm/airq.h>
30#include <asm/tpi.h>
31#include <linux/atomic.h>
32#include <asm/isc.h>
33#include <linux/hrtimer.h>
34#include <linux/ktime.h>
35#include <asm/facility.h>
36#include <linux/crypto.h>
37#include <linux/mod_devicetable.h>
38#include <linux/debugfs.h>
39#include <linux/ctype.h>
40#include <linux/module.h>
41
42#include "ap_bus.h"
43#include "ap_debug.h"
44
45/*
46 * Module parameters; note though this file itself isn't modular.
47 */
48int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
49static DEFINE_SPINLOCK(ap_domain_lock);
50module_param_named(domain, ap_domain_index, int, 0440);
51MODULE_PARM_DESC(domain, "domain index for ap devices");
52EXPORT_SYMBOL(ap_domain_index);
53
54static int ap_thread_flag;
55module_param_named(poll_thread, ap_thread_flag, int, 0440);
56MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
57
58static char *apm_str;
59module_param_named(apmask, apm_str, charp, 0440);
60MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
61
62static char *aqm_str;
63module_param_named(aqmask, aqm_str, charp, 0440);
64MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
65
66static int ap_useirq = 1;
67module_param_named(useirq, ap_useirq, int, 0440);
68MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
69
70atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
71EXPORT_SYMBOL(ap_max_msg_size);
72
73static struct device *ap_root_device;
74
75/* Hashtable of all queue devices on the AP bus */
76DEFINE_HASHTABLE(ap_queues, 8);
77/* lock used for the ap_queues hashtable */
78DEFINE_SPINLOCK(ap_queues_lock);
79
80/* Default permissions (ioctl, card and domain masking) */
81struct ap_perms ap_perms;
82EXPORT_SYMBOL(ap_perms);
83DEFINE_MUTEX(ap_perms_mutex);
84EXPORT_SYMBOL(ap_perms_mutex);
85
86/* # of bus scans since init */
87static atomic64_t ap_scan_bus_count;
88
89/* # of bindings complete since init */
90static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
91
92/* completion for initial APQN bindings complete */
93static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
94
95static struct ap_config_info *ap_qci_info;
96static struct ap_config_info *ap_qci_info_old;
97
98/*
99 * AP bus related debug feature things.
100 */
101debug_info_t *ap_dbf_info;
102
103/*
104 * Workqueue timer for bus rescan.
105 */
106static struct timer_list ap_config_timer;
107static int ap_config_time = AP_CONFIG_TIME;
108static void ap_scan_bus(struct work_struct *);
109static DECLARE_WORK(ap_scan_work, ap_scan_bus);
110
111/*
112 * Tasklet & timer for AP request polling and interrupts
113 */
114static void ap_tasklet_fn(unsigned long);
115static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
116static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
117static struct task_struct *ap_poll_kthread;
118static DEFINE_MUTEX(ap_poll_thread_mutex);
119static DEFINE_SPINLOCK(ap_poll_timer_lock);
120static struct hrtimer ap_poll_timer;
121/*
122 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
123 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
124 */
125static unsigned long poll_high_timeout = 250000UL;
126
127/*
128 * Some state machine states only require a low frequency polling.
129 * We use 25 Hz frequency for these.
130 */
131static unsigned long poll_low_timeout = 40000000UL;
132
133/* Maximum domain id, if not given via qci */
134static int ap_max_domain_id = 15;
135/* Maximum adapter id, if not given via qci */
136static int ap_max_adapter_id = 63;
137
138static struct bus_type ap_bus_type;
139
140/* Adapter interrupt definitions */
141static void ap_interrupt_handler(struct airq_struct *airq,
142				 struct tpi_info *tpi_info);
143
144static bool ap_irq_flag;
145
146static struct airq_struct ap_airq = {
147	.handler = ap_interrupt_handler,
148	.isc = AP_ISC,
149};
150
151/**
152 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
153 *
154 * Returns the address of the local-summary-indicator of the adapter
155 * interrupt handler for AP, or NULL if adapter interrupts are not
156 * available.
157 */
158void *ap_airq_ptr(void)
159{
160	if (ap_irq_flag)
161		return ap_airq.lsi_ptr;
162	return NULL;
163}
164
165/**
166 * ap_interrupts_available(): Test if AP interrupts are available.
167 *
168 * Returns 1 if AP interrupts are available.
169 */
170static int ap_interrupts_available(void)
171{
172	return test_facility(65);
173}
174
175/**
176 * ap_qci_available(): Test if AP configuration
177 * information can be queried via QCI subfunction.
178 *
179 * Returns 1 if subfunction PQAP(QCI) is available.
180 */
181static int ap_qci_available(void)
182{
183	return test_facility(12);
184}
185
186/**
187 * ap_apft_available(): Test if AP facilities test (APFT)
188 * facility is available.
189 *
190 * Returns 1 if APFT is available.
191 */
192static int ap_apft_available(void)
193{
194	return test_facility(15);
195}
196
197/*
198 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
199 *
200 * Returns 1 if the QACT subfunction is available.
201 */
202static inline int ap_qact_available(void)
203{
204	if (ap_qci_info)
205		return ap_qci_info->qact;
206	return 0;
207}
208
209/*
210 * ap_sb_available(): Test if the AP secure binding facility is available.
211 *
212 * Returns 1 if secure binding facility is available.
213 */
214int ap_sb_available(void)
215{
216	if (ap_qci_info)
217		return ap_qci_info->apsb;
218	return 0;
219}
220
221/*
222 * ap_is_se_guest(): Check for SE guest with AP pass-through support.
223 */
224bool ap_is_se_guest(void)
225{
226	return is_prot_virt_guest() && ap_sb_available();
227}
228EXPORT_SYMBOL(ap_is_se_guest);
229
230/*
231 * ap_fetch_qci_info(): Fetch cryptographic config info
232 *
233 * Returns the ap configuration info fetched via PQAP(QCI).
234 * On success 0 is returned, on failure a negative errno
235 * is returned, e.g. if the PQAP(QCI) instruction is not
236 * available, the return value will be -EOPNOTSUPP.
237 */
238static inline int ap_fetch_qci_info(struct ap_config_info *info)
239{
240	if (!ap_qci_available())
241		return -EOPNOTSUPP;
242	if (!info)
243		return -EINVAL;
244	return ap_qci(info);
245}
246
247/**
248 * ap_init_qci_info(): Allocate and query qci config info.
249 * Does also update the static variables ap_max_domain_id
250 * and ap_max_adapter_id if this info is available.
251 */
252static void __init ap_init_qci_info(void)
253{
254	if (!ap_qci_available()) {
255		AP_DBF_INFO("%s QCI not supported\n", __func__);
256		return;
257	}
258
259	ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
260	if (!ap_qci_info)
261		return;
262	ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
263	if (!ap_qci_info_old) {
264		kfree(ap_qci_info);
265		ap_qci_info = NULL;
266		return;
267	}
268	if (ap_fetch_qci_info(ap_qci_info) != 0) {
269		kfree(ap_qci_info);
270		kfree(ap_qci_info_old);
271		ap_qci_info = NULL;
272		ap_qci_info_old = NULL;
273		return;
274	}
275	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
276
277	if (ap_qci_info->apxa) {
278		if (ap_qci_info->na) {
279			ap_max_adapter_id = ap_qci_info->na;
280			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
281				    __func__, ap_max_adapter_id);
282		}
283		if (ap_qci_info->nd) {
284			ap_max_domain_id = ap_qci_info->nd;
285			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
286				    __func__, ap_max_domain_id);
287		}
288	}
289
290	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
291}
292
293/*
294 * ap_test_config(): helper function to extract the nrth bit
295 *		     within the unsigned int array field.
296 */
297static inline int ap_test_config(unsigned int *field, unsigned int nr)
298{
299	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
300}
301
302/*
303 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
304 *
305 * Returns 0 if the card is not configured
306 *	   1 if the card is configured or
307 *	     if the configuration information is not available
308 */
309static inline int ap_test_config_card_id(unsigned int id)
310{
311	if (id > ap_max_adapter_id)
312		return 0;
313	if (ap_qci_info)
314		return ap_test_config(ap_qci_info->apm, id);
315	return 1;
316}
317
318/*
319 * ap_test_config_usage_domain(): Test, whether an AP usage domain
320 * is configured.
321 *
322 * Returns 0 if the usage domain is not configured
323 *	   1 if the usage domain is configured or
324 *	     if the configuration information is not available
325 */
326int ap_test_config_usage_domain(unsigned int domain)
327{
328	if (domain > ap_max_domain_id)
329		return 0;
330	if (ap_qci_info)
331		return ap_test_config(ap_qci_info->aqm, domain);
332	return 1;
333}
334EXPORT_SYMBOL(ap_test_config_usage_domain);
335
336/*
337 * ap_test_config_ctrl_domain(): Test, whether an AP control domain
338 * is configured.
339 * @domain AP control domain ID
340 *
341 * Returns 1 if the control domain is configured
342 *	   0 in all other cases
343 */
344int ap_test_config_ctrl_domain(unsigned int domain)
345{
346	if (!ap_qci_info || domain > ap_max_domain_id)
347		return 0;
348	return ap_test_config(ap_qci_info->adm, domain);
349}
350EXPORT_SYMBOL(ap_test_config_ctrl_domain);
351
352/*
353 * ap_queue_info(): Check and get AP queue info.
354 * Returns: 1 if APQN exists and info is filled,
355 *	    0 if APQN seems to exit but there is no info
356 *	      available (eg. caused by an asynch pending error)
357 *	   -1 invalid APQN, TAPQ error or AP queue status which
358 *	      indicates there is no APQN.
359 */
360static int ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
361			 int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
362{
363	struct ap_queue_status status;
364	struct ap_tapq_gr2 tapq_info;
365
366	tapq_info.value = 0;
367
368	/* make sure we don't run into a specifiation exception */
369	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
370	    AP_QID_QUEUE(qid) > ap_max_domain_id)
371		return -1;
372
373	/* call TAPQ on this APQN */
374	status = ap_test_queue(qid, ap_apft_available(), &tapq_info);
375
376	/* handle pending async error with return 'no info available' */
377	if (status.async)
378		return 0;
379
380	switch (status.response_code) {
381	case AP_RESPONSE_NORMAL:
382	case AP_RESPONSE_RESET_IN_PROGRESS:
383	case AP_RESPONSE_DECONFIGURED:
384	case AP_RESPONSE_CHECKSTOPPED:
385	case AP_RESPONSE_BUSY:
386		/*
387		 * According to the architecture in all these cases the
388		 * info should be filled. All bits 0 is not possible as
389		 * there is at least one of the mode bits set.
390		 */
391		if (WARN_ON_ONCE(!tapq_info.value))
392			return 0;
393		*q_type = tapq_info.at;
394		*q_fac = tapq_info.fac;
395		*q_depth = tapq_info.qd;
396		*q_ml = tapq_info.ml;
397		*q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
398		*q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
399		return 1;
400	default:
401		/*
402		 * A response code which indicates, there is no info available.
403		 */
404		return -1;
405	}
406}
407
408void ap_wait(enum ap_sm_wait wait)
409{
410	ktime_t hr_time;
411
412	switch (wait) {
413	case AP_SM_WAIT_AGAIN:
414	case AP_SM_WAIT_INTERRUPT:
415		if (ap_irq_flag)
416			break;
417		if (ap_poll_kthread) {
418			wake_up(&ap_poll_wait);
419			break;
420		}
421		fallthrough;
422	case AP_SM_WAIT_LOW_TIMEOUT:
423	case AP_SM_WAIT_HIGH_TIMEOUT:
424		spin_lock_bh(&ap_poll_timer_lock);
425		if (!hrtimer_is_queued(&ap_poll_timer)) {
426			hr_time =
427				wait == AP_SM_WAIT_LOW_TIMEOUT ?
428				poll_low_timeout : poll_high_timeout;
429			hrtimer_forward_now(&ap_poll_timer, hr_time);
430			hrtimer_restart(&ap_poll_timer);
431		}
432		spin_unlock_bh(&ap_poll_timer_lock);
433		break;
434	case AP_SM_WAIT_NONE:
435	default:
436		break;
437	}
438}
439
440/**
441 * ap_request_timeout(): Handling of request timeouts
442 * @t: timer making this callback
443 *
444 * Handles request timeouts.
445 */
446void ap_request_timeout(struct timer_list *t)
447{
448	struct ap_queue *aq = from_timer(aq, t, timeout);
449
450	spin_lock_bh(&aq->lock);
451	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
452	spin_unlock_bh(&aq->lock);
453}
454
455/**
456 * ap_poll_timeout(): AP receive polling for finished AP requests.
457 * @unused: Unused pointer.
458 *
459 * Schedules the AP tasklet using a high resolution timer.
460 */
461static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
462{
463	tasklet_schedule(&ap_tasklet);
464	return HRTIMER_NORESTART;
465}
466
467/**
468 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
469 * @airq: pointer to adapter interrupt descriptor
470 * @tpi_info: ignored
471 */
472static void ap_interrupt_handler(struct airq_struct *airq,
473				 struct tpi_info *tpi_info)
474{
475	inc_irq_stat(IRQIO_APB);
476	tasklet_schedule(&ap_tasklet);
477}
478
479/**
480 * ap_tasklet_fn(): Tasklet to poll all AP devices.
481 * @dummy: Unused variable
482 *
483 * Poll all AP devices on the bus.
484 */
485static void ap_tasklet_fn(unsigned long dummy)
486{
487	int bkt;
488	struct ap_queue *aq;
489	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
490
491	/* Reset the indicator if interrupts are used. Thus new interrupts can
492	 * be received. Doing it in the beginning of the tasklet is therefore
493	 * important that no requests on any AP get lost.
494	 */
495	if (ap_irq_flag)
496		xchg(ap_airq.lsi_ptr, 0);
497
498	spin_lock_bh(&ap_queues_lock);
499	hash_for_each(ap_queues, bkt, aq, hnode) {
500		spin_lock_bh(&aq->lock);
501		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
502		spin_unlock_bh(&aq->lock);
503	}
504	spin_unlock_bh(&ap_queues_lock);
505
506	ap_wait(wait);
507}
508
509static int ap_pending_requests(void)
510{
511	int bkt;
512	struct ap_queue *aq;
513
514	spin_lock_bh(&ap_queues_lock);
515	hash_for_each(ap_queues, bkt, aq, hnode) {
516		if (aq->queue_count == 0)
517			continue;
518		spin_unlock_bh(&ap_queues_lock);
519		return 1;
520	}
521	spin_unlock_bh(&ap_queues_lock);
522	return 0;
523}
524
525/**
526 * ap_poll_thread(): Thread that polls for finished requests.
527 * @data: Unused pointer
528 *
529 * AP bus poll thread. The purpose of this thread is to poll for
530 * finished requests in a loop if there is a "free" cpu - that is
531 * a cpu that doesn't have anything better to do. The polling stops
532 * as soon as there is another task or if all messages have been
533 * delivered.
534 */
535static int ap_poll_thread(void *data)
536{
537	DECLARE_WAITQUEUE(wait, current);
538
539	set_user_nice(current, MAX_NICE);
540	set_freezable();
541	while (!kthread_should_stop()) {
542		add_wait_queue(&ap_poll_wait, &wait);
543		set_current_state(TASK_INTERRUPTIBLE);
544		if (!ap_pending_requests()) {
545			schedule();
546			try_to_freeze();
547		}
548		set_current_state(TASK_RUNNING);
549		remove_wait_queue(&ap_poll_wait, &wait);
550		if (need_resched()) {
551			schedule();
552			try_to_freeze();
553			continue;
554		}
555		ap_tasklet_fn(0);
556	}
557
558	return 0;
559}
560
561static int ap_poll_thread_start(void)
562{
563	int rc;
564
565	if (ap_irq_flag || ap_poll_kthread)
566		return 0;
567	mutex_lock(&ap_poll_thread_mutex);
568	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
569	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
570	if (rc)
571		ap_poll_kthread = NULL;
572	mutex_unlock(&ap_poll_thread_mutex);
573	return rc;
574}
575
576static void ap_poll_thread_stop(void)
577{
578	if (!ap_poll_kthread)
579		return;
580	mutex_lock(&ap_poll_thread_mutex);
581	kthread_stop(ap_poll_kthread);
582	ap_poll_kthread = NULL;
583	mutex_unlock(&ap_poll_thread_mutex);
584}
585
586#define is_card_dev(x) ((x)->parent == ap_root_device)
587#define is_queue_dev(x) ((x)->parent != ap_root_device)
588
589/**
590 * ap_bus_match()
591 * @dev: Pointer to device
592 * @drv: Pointer to device_driver
593 *
594 * AP bus driver registration/unregistration.
595 */
596static int ap_bus_match(struct device *dev, struct device_driver *drv)
597{
598	struct ap_driver *ap_drv = to_ap_drv(drv);
599	struct ap_device_id *id;
600
601	/*
602	 * Compare device type of the device with the list of
603	 * supported types of the device_driver.
604	 */
605	for (id = ap_drv->ids; id->match_flags; id++) {
606		if (is_card_dev(dev) &&
607		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
608		    id->dev_type == to_ap_dev(dev)->device_type)
609			return 1;
610		if (is_queue_dev(dev) &&
611		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
612		    id->dev_type == to_ap_dev(dev)->device_type)
613			return 1;
614	}
615	return 0;
616}
617
618/**
619 * ap_uevent(): Uevent function for AP devices.
620 * @dev: Pointer to device
621 * @env: Pointer to kobj_uevent_env
622 *
623 * It sets up a single environment variable DEV_TYPE which contains the
624 * hardware device type.
625 */
626static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
627{
628	int rc = 0;
629	const struct ap_device *ap_dev = to_ap_dev(dev);
630
631	/* Uevents from ap bus core don't need extensions to the env */
632	if (dev == ap_root_device)
633		return 0;
634
635	if (is_card_dev(dev)) {
636		struct ap_card *ac = to_ap_card(&ap_dev->device);
637
638		/* Set up DEV_TYPE environment variable. */
639		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
640		if (rc)
641			return rc;
642		/* Add MODALIAS= */
643		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
644		if (rc)
645			return rc;
646
647		/* Add MODE=<accel|cca|ep11> */
648		if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
649			rc = add_uevent_var(env, "MODE=accel");
650		else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
651			rc = add_uevent_var(env, "MODE=cca");
652		else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
653			rc = add_uevent_var(env, "MODE=ep11");
654		if (rc)
655			return rc;
656	} else {
657		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
658
659		/* Add MODE=<accel|cca|ep11> */
660		if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
661			rc = add_uevent_var(env, "MODE=accel");
662		else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
663			rc = add_uevent_var(env, "MODE=cca");
664		else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
665			rc = add_uevent_var(env, "MODE=ep11");
666		if (rc)
667			return rc;
668	}
669
670	return 0;
671}
672
673static void ap_send_init_scan_done_uevent(void)
674{
675	char *envp[] = { "INITSCAN=done", NULL };
676
677	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
678}
679
680static void ap_send_bindings_complete_uevent(void)
681{
682	char buf[32];
683	char *envp[] = { "BINDINGS=complete", buf, NULL };
684
685	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
686		 atomic64_inc_return(&ap_bindings_complete_count));
687	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
688}
689
690void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
691{
692	char buf[16];
693	char *envp[] = { buf, NULL };
694
695	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
696
697	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
698}
699EXPORT_SYMBOL(ap_send_config_uevent);
700
701void ap_send_online_uevent(struct ap_device *ap_dev, int online)
702{
703	char buf[16];
704	char *envp[] = { buf, NULL };
705
706	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
707
708	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
709}
710EXPORT_SYMBOL(ap_send_online_uevent);
711
712static void ap_send_mask_changed_uevent(unsigned long *newapm,
713					unsigned long *newaqm)
714{
715	char buf[100];
716	char *envp[] = { buf, NULL };
717
718	if (newapm)
719		snprintf(buf, sizeof(buf),
720			 "APMASK=0x%016lx%016lx%016lx%016lx\n",
721			 newapm[0], newapm[1], newapm[2], newapm[3]);
722	else
723		snprintf(buf, sizeof(buf),
724			 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
725			 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
726
727	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
728}
729
730/*
731 * calc # of bound APQNs
732 */
733
734struct __ap_calc_ctrs {
735	unsigned int apqns;
736	unsigned int bound;
737};
738
739static int __ap_calc_helper(struct device *dev, void *arg)
740{
741	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
742
743	if (is_queue_dev(dev)) {
744		pctrs->apqns++;
745		if (dev->driver)
746			pctrs->bound++;
747	}
748
749	return 0;
750}
751
752static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
753{
754	struct __ap_calc_ctrs ctrs;
755
756	memset(&ctrs, 0, sizeof(ctrs));
757	bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
758
759	*apqns = ctrs.apqns;
760	*bound = ctrs.bound;
761}
762
763/*
764 * After initial ap bus scan do check if all existing APQNs are
765 * bound to device drivers.
766 */
767static void ap_check_bindings_complete(void)
768{
769	unsigned int apqns, bound;
770
771	if (atomic64_read(&ap_scan_bus_count) >= 1) {
772		ap_calc_bound_apqns(&apqns, &bound);
773		if (bound == apqns) {
774			if (!completion_done(&ap_init_apqn_bindings_complete)) {
775				complete_all(&ap_init_apqn_bindings_complete);
776				AP_DBF_INFO("%s complete\n", __func__);
777			}
778			ap_send_bindings_complete_uevent();
779		}
780	}
781}
782
783/*
784 * Interface to wait for the AP bus to have done one initial ap bus
785 * scan and all detected APQNs have been bound to device drivers.
786 * If these both conditions are not fulfilled, this function blocks
787 * on a condition with wait_for_completion_interruptible_timeout().
788 * If these both conditions are fulfilled (before the timeout hits)
789 * the return value is 0. If the timeout (in jiffies) hits instead
790 * -ETIME is returned. On failures negative return values are
791 * returned to the caller.
792 */
793int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
794{
795	long l;
796
797	if (completion_done(&ap_init_apqn_bindings_complete))
798		return 0;
799
800	if (timeout)
801		l = wait_for_completion_interruptible_timeout(
802			&ap_init_apqn_bindings_complete, timeout);
803	else
804		l = wait_for_completion_interruptible(
805			&ap_init_apqn_bindings_complete);
806	if (l < 0)
807		return l == -ERESTARTSYS ? -EINTR : l;
808	else if (l == 0 && timeout)
809		return -ETIME;
810
811	return 0;
812}
813EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
814
815static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
816{
817	if (is_queue_dev(dev) &&
818	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
819		device_unregister(dev);
820	return 0;
821}
822
823static int __ap_revise_reserved(struct device *dev, void *dummy)
824{
825	int rc, card, queue, devres, drvres;
826
827	if (is_queue_dev(dev)) {
828		card = AP_QID_CARD(to_ap_queue(dev)->qid);
829		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
830		mutex_lock(&ap_perms_mutex);
831		devres = test_bit_inv(card, ap_perms.apm) &&
832			test_bit_inv(queue, ap_perms.aqm);
833		mutex_unlock(&ap_perms_mutex);
834		drvres = to_ap_drv(dev->driver)->flags
835			& AP_DRIVER_FLAG_DEFAULT;
836		if (!!devres != !!drvres) {
837			AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
838				   __func__, card, queue);
839			rc = device_reprobe(dev);
840			if (rc)
841				AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
842					    __func__, card, queue);
843		}
844	}
845
846	return 0;
847}
848
849static void ap_bus_revise_bindings(void)
850{
851	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
852}
853
854/**
855 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
856 *			default host driver or not.
857 * @card: the APID of the adapter card to check
858 * @queue: the APQI of the queue to check
859 *
860 * Note: the ap_perms_mutex must be locked by the caller of this function.
861 *
862 * Return: an int specifying whether the AP adapter is reserved for the host (1)
863 *	   or not (0).
864 */
865int ap_owned_by_def_drv(int card, int queue)
866{
867	int rc = 0;
868
869	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
870		return -EINVAL;
871
872	if (test_bit_inv(card, ap_perms.apm) &&
873	    test_bit_inv(queue, ap_perms.aqm))
874		rc = 1;
875
876	return rc;
877}
878EXPORT_SYMBOL(ap_owned_by_def_drv);
879
880/**
881 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
882 *				       a set is reserved for the host drivers
883 *				       or not.
884 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
885 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
886 *
887 * Note: the ap_perms_mutex must be locked by the caller of this function.
888 *
889 * Return: an int specifying whether each APQN is reserved for the host (1) or
890 *	   not (0)
891 */
892int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
893				       unsigned long *aqm)
894{
895	int card, queue, rc = 0;
896
897	for (card = 0; !rc && card < AP_DEVICES; card++)
898		if (test_bit_inv(card, apm) &&
899		    test_bit_inv(card, ap_perms.apm))
900			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
901				if (test_bit_inv(queue, aqm) &&
902				    test_bit_inv(queue, ap_perms.aqm))
903					rc = 1;
904
905	return rc;
906}
907EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
908
909static int ap_device_probe(struct device *dev)
910{
911	struct ap_device *ap_dev = to_ap_dev(dev);
912	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
913	int card, queue, devres, drvres, rc = -ENODEV;
914
915	if (!get_device(dev))
916		return rc;
917
918	if (is_queue_dev(dev)) {
919		/*
920		 * If the apqn is marked as reserved/used by ap bus and
921		 * default drivers, only probe with drivers with the default
922		 * flag set. If it is not marked, only probe with drivers
923		 * with the default flag not set.
924		 */
925		card = AP_QID_CARD(to_ap_queue(dev)->qid);
926		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
927		mutex_lock(&ap_perms_mutex);
928		devres = test_bit_inv(card, ap_perms.apm) &&
929			test_bit_inv(queue, ap_perms.aqm);
930		mutex_unlock(&ap_perms_mutex);
931		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
932		if (!!devres != !!drvres)
933			goto out;
934	}
935
936	/* Add queue/card to list of active queues/cards */
937	spin_lock_bh(&ap_queues_lock);
938	if (is_queue_dev(dev))
939		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
940			 to_ap_queue(dev)->qid);
941	spin_unlock_bh(&ap_queues_lock);
942
943	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
944
945	if (rc) {
946		spin_lock_bh(&ap_queues_lock);
947		if (is_queue_dev(dev))
948			hash_del(&to_ap_queue(dev)->hnode);
949		spin_unlock_bh(&ap_queues_lock);
950	} else {
951		ap_check_bindings_complete();
952	}
953
954out:
955	if (rc)
956		put_device(dev);
957	return rc;
958}
959
960static void ap_device_remove(struct device *dev)
961{
962	struct ap_device *ap_dev = to_ap_dev(dev);
963	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
964
965	/* prepare ap queue device removal */
966	if (is_queue_dev(dev))
967		ap_queue_prepare_remove(to_ap_queue(dev));
968
969	/* driver's chance to clean up gracefully */
970	if (ap_drv->remove)
971		ap_drv->remove(ap_dev);
972
973	/* now do the ap queue device remove */
974	if (is_queue_dev(dev))
975		ap_queue_remove(to_ap_queue(dev));
976
977	/* Remove queue/card from list of active queues/cards */
978	spin_lock_bh(&ap_queues_lock);
979	if (is_queue_dev(dev))
980		hash_del(&to_ap_queue(dev)->hnode);
981	spin_unlock_bh(&ap_queues_lock);
982
983	put_device(dev);
984}
985
986struct ap_queue *ap_get_qdev(ap_qid_t qid)
987{
988	int bkt;
989	struct ap_queue *aq;
990
991	spin_lock_bh(&ap_queues_lock);
992	hash_for_each(ap_queues, bkt, aq, hnode) {
993		if (aq->qid == qid) {
994			get_device(&aq->ap_dev.device);
995			spin_unlock_bh(&ap_queues_lock);
996			return aq;
997		}
998	}
999	spin_unlock_bh(&ap_queues_lock);
1000
1001	return NULL;
1002}
1003EXPORT_SYMBOL(ap_get_qdev);
1004
1005int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1006		       char *name)
1007{
1008	struct device_driver *drv = &ap_drv->driver;
1009
1010	drv->bus = &ap_bus_type;
1011	drv->owner = owner;
1012	drv->name = name;
1013	return driver_register(drv);
1014}
1015EXPORT_SYMBOL(ap_driver_register);
1016
1017void ap_driver_unregister(struct ap_driver *ap_drv)
1018{
1019	driver_unregister(&ap_drv->driver);
1020}
1021EXPORT_SYMBOL(ap_driver_unregister);
1022
1023void ap_bus_force_rescan(void)
1024{
1025	/* Only trigger AP bus scans after the initial scan is done */
1026	if (atomic64_read(&ap_scan_bus_count) <= 0)
1027		return;
1028
1029	/* processing a asynchronous bus rescan */
1030	del_timer(&ap_config_timer);
1031	queue_work(system_long_wq, &ap_scan_work);
1032	flush_work(&ap_scan_work);
1033}
1034EXPORT_SYMBOL(ap_bus_force_rescan);
1035
1036/*
1037 * A config change has happened, force an ap bus rescan.
1038 */
1039void ap_bus_cfg_chg(void)
1040{
1041	AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
1042
1043	ap_bus_force_rescan();
1044}
1045
1046/*
1047 * hex2bitmap() - parse hex mask string and set bitmap.
1048 * Valid strings are "0x012345678" with at least one valid hex number.
1049 * Rest of the bitmap to the right is padded with 0. No spaces allowed
1050 * within the string, the leading 0x may be omitted.
1051 * Returns the bitmask with exactly the bits set as given by the hex
1052 * string (both in big endian order).
1053 */
1054static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1055{
1056	int i, n, b;
1057
1058	/* bits needs to be a multiple of 8 */
1059	if (bits & 0x07)
1060		return -EINVAL;
1061
1062	if (str[0] == '0' && str[1] == 'x')
1063		str++;
1064	if (*str == 'x')
1065		str++;
1066
1067	for (i = 0; isxdigit(*str) && i < bits; str++) {
1068		b = hex_to_bin(*str);
1069		for (n = 0; n < 4; n++)
1070			if (b & (0x08 >> n))
1071				set_bit_inv(i + n, bitmap);
1072		i += 4;
1073	}
1074
1075	if (*str == '\n')
1076		str++;
1077	if (*str)
1078		return -EINVAL;
1079	return 0;
1080}
1081
1082/*
1083 * modify_bitmap() - parse bitmask argument and modify an existing
1084 * bit mask accordingly. A concatenation (done with ',') of these
1085 * terms is recognized:
1086 *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1087 * <bitnr> may be any valid number (hex, decimal or octal) in the range
1088 * 0...bits-1; the leading + or - is required. Here are some examples:
1089 *   +0-15,+32,-128,-0xFF
1090 *   -0-255,+1-16,+0x128
1091 *   +1,+2,+3,+4,-5,-7-10
1092 * Returns the new bitmap after all changes have been applied. Every
1093 * positive value in the string will set a bit and every negative value
1094 * in the string will clear a bit. As a bit may be touched more than once,
1095 * the last 'operation' wins:
1096 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1097 * cleared again. All other bits are unmodified.
1098 */
1099static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1100{
1101	int a, i, z;
1102	char *np, sign;
1103
1104	/* bits needs to be a multiple of 8 */
1105	if (bits & 0x07)
1106		return -EINVAL;
1107
1108	while (*str) {
1109		sign = *str++;
1110		if (sign != '+' && sign != '-')
1111			return -EINVAL;
1112		a = z = simple_strtoul(str, &np, 0);
1113		if (str == np || a >= bits)
1114			return -EINVAL;
1115		str = np;
1116		if (*str == '-') {
1117			z = simple_strtoul(++str, &np, 0);
1118			if (str == np || a > z || z >= bits)
1119				return -EINVAL;
1120			str = np;
1121		}
1122		for (i = a; i <= z; i++)
1123			if (sign == '+')
1124				set_bit_inv(i, bitmap);
1125			else
1126				clear_bit_inv(i, bitmap);
1127		while (*str == ',' || *str == '\n')
1128			str++;
1129	}
1130
1131	return 0;
1132}
1133
1134static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1135			       unsigned long *newmap)
1136{
1137	unsigned long size;
1138	int rc;
1139
1140	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1141	if (*str == '+' || *str == '-') {
1142		memcpy(newmap, bitmap, size);
1143		rc = modify_bitmap(str, newmap, bits);
1144	} else {
1145		memset(newmap, 0, size);
1146		rc = hex2bitmap(str, newmap, bits);
1147	}
1148	return rc;
1149}
1150
1151int ap_parse_mask_str(const char *str,
1152		      unsigned long *bitmap, int bits,
1153		      struct mutex *lock)
1154{
1155	unsigned long *newmap, size;
1156	int rc;
1157
1158	/* bits needs to be a multiple of 8 */
1159	if (bits & 0x07)
1160		return -EINVAL;
1161
1162	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1163	newmap = kmalloc(size, GFP_KERNEL);
1164	if (!newmap)
1165		return -ENOMEM;
1166	if (mutex_lock_interruptible(lock)) {
1167		kfree(newmap);
1168		return -ERESTARTSYS;
1169	}
1170	rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1171	if (rc == 0)
1172		memcpy(bitmap, newmap, size);
1173	mutex_unlock(lock);
1174	kfree(newmap);
1175	return rc;
1176}
1177EXPORT_SYMBOL(ap_parse_mask_str);
1178
1179/*
1180 * AP bus attributes.
1181 */
1182
1183static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1184{
1185	return sysfs_emit(buf, "%d\n", ap_domain_index);
1186}
1187
1188static ssize_t ap_domain_store(const struct bus_type *bus,
1189			       const char *buf, size_t count)
1190{
1191	int domain;
1192
1193	if (sscanf(buf, "%i\n", &domain) != 1 ||
1194	    domain < 0 || domain > ap_max_domain_id ||
1195	    !test_bit_inv(domain, ap_perms.aqm))
1196		return -EINVAL;
1197
1198	spin_lock_bh(&ap_domain_lock);
1199	ap_domain_index = domain;
1200	spin_unlock_bh(&ap_domain_lock);
1201
1202	AP_DBF_INFO("%s stored new default domain=%d\n",
1203		    __func__, domain);
1204
1205	return count;
1206}
1207
1208static BUS_ATTR_RW(ap_domain);
1209
1210static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1211{
1212	if (!ap_qci_info)	/* QCI not supported */
1213		return sysfs_emit(buf, "not supported\n");
1214
1215	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1216			  ap_qci_info->adm[0], ap_qci_info->adm[1],
1217			  ap_qci_info->adm[2], ap_qci_info->adm[3],
1218			  ap_qci_info->adm[4], ap_qci_info->adm[5],
1219			  ap_qci_info->adm[6], ap_qci_info->adm[7]);
1220}
1221
1222static BUS_ATTR_RO(ap_control_domain_mask);
1223
1224static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1225{
1226	if (!ap_qci_info)	/* QCI not supported */
1227		return sysfs_emit(buf, "not supported\n");
1228
1229	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1230			  ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1231			  ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1232			  ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1233			  ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1234}
1235
1236static BUS_ATTR_RO(ap_usage_domain_mask);
1237
1238static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1239{
1240	if (!ap_qci_info)	/* QCI not supported */
1241		return sysfs_emit(buf, "not supported\n");
1242
1243	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1244			  ap_qci_info->apm[0], ap_qci_info->apm[1],
1245			  ap_qci_info->apm[2], ap_qci_info->apm[3],
1246			  ap_qci_info->apm[4], ap_qci_info->apm[5],
1247			  ap_qci_info->apm[6], ap_qci_info->apm[7]);
1248}
1249
1250static BUS_ATTR_RO(ap_adapter_mask);
1251
1252static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1253{
1254	return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1255}
1256
1257static BUS_ATTR_RO(ap_interrupts);
1258
1259static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1260{
1261	return sysfs_emit(buf, "%d\n", ap_config_time);
1262}
1263
1264static ssize_t config_time_store(const struct bus_type *bus,
1265				 const char *buf, size_t count)
1266{
1267	int time;
1268
1269	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1270		return -EINVAL;
1271	ap_config_time = time;
1272	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1273	return count;
1274}
1275
1276static BUS_ATTR_RW(config_time);
1277
1278static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1279{
1280	return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1281}
1282
1283static ssize_t poll_thread_store(const struct bus_type *bus,
1284				 const char *buf, size_t count)
1285{
1286	bool value;
1287	int rc;
1288
1289	rc = kstrtobool(buf, &value);
1290	if (rc)
1291		return rc;
1292
1293	if (value) {
1294		rc = ap_poll_thread_start();
1295		if (rc)
1296			count = rc;
1297	} else {
1298		ap_poll_thread_stop();
1299	}
1300	return count;
1301}
1302
1303static BUS_ATTR_RW(poll_thread);
1304
1305static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1306{
1307	return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1308}
1309
1310static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1311				  size_t count)
1312{
1313	unsigned long value;
1314	ktime_t hr_time;
1315	int rc;
1316
1317	rc = kstrtoul(buf, 0, &value);
1318	if (rc)
1319		return rc;
1320
1321	/* 120 seconds = maximum poll interval */
1322	if (value > 120000000000UL)
1323		return -EINVAL;
1324	poll_high_timeout = value;
1325	hr_time = poll_high_timeout;
1326
1327	spin_lock_bh(&ap_poll_timer_lock);
1328	hrtimer_cancel(&ap_poll_timer);
1329	hrtimer_set_expires(&ap_poll_timer, hr_time);
1330	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1331	spin_unlock_bh(&ap_poll_timer_lock);
1332
1333	return count;
1334}
1335
1336static BUS_ATTR_RW(poll_timeout);
1337
1338static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1339{
1340	return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1341}
1342
1343static BUS_ATTR_RO(ap_max_domain_id);
1344
1345static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1346{
1347	return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1348}
1349
1350static BUS_ATTR_RO(ap_max_adapter_id);
1351
1352static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1353{
1354	int rc;
1355
1356	if (mutex_lock_interruptible(&ap_perms_mutex))
1357		return -ERESTARTSYS;
1358	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1359			ap_perms.apm[0], ap_perms.apm[1],
1360			ap_perms.apm[2], ap_perms.apm[3]);
1361	mutex_unlock(&ap_perms_mutex);
1362
1363	return rc;
1364}
1365
1366static int __verify_card_reservations(struct device_driver *drv, void *data)
1367{
1368	int rc = 0;
1369	struct ap_driver *ap_drv = to_ap_drv(drv);
1370	unsigned long *newapm = (unsigned long *)data;
1371
1372	/*
1373	 * increase the driver's module refcounter to be sure it is not
1374	 * going away when we invoke the callback function.
1375	 */
1376	if (!try_module_get(drv->owner))
1377		return 0;
1378
1379	if (ap_drv->in_use) {
1380		rc = ap_drv->in_use(newapm, ap_perms.aqm);
1381		if (rc)
1382			rc = -EBUSY;
1383	}
1384
1385	/* release the driver's module */
1386	module_put(drv->owner);
1387
1388	return rc;
1389}
1390
1391static int apmask_commit(unsigned long *newapm)
1392{
1393	int rc;
1394	unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1395
1396	/*
1397	 * Check if any bits in the apmask have been set which will
1398	 * result in queues being removed from non-default drivers
1399	 */
1400	if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1401		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1402				      __verify_card_reservations);
1403		if (rc)
1404			return rc;
1405	}
1406
1407	memcpy(ap_perms.apm, newapm, APMASKSIZE);
1408
1409	return 0;
1410}
1411
1412static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1413			    size_t count)
1414{
1415	int rc, changes = 0;
1416	DECLARE_BITMAP(newapm, AP_DEVICES);
1417
1418	if (mutex_lock_interruptible(&ap_perms_mutex))
1419		return -ERESTARTSYS;
1420
1421	rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1422	if (rc)
1423		goto done;
1424
1425	changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1426	if (changes)
1427		rc = apmask_commit(newapm);
1428
1429done:
1430	mutex_unlock(&ap_perms_mutex);
1431	if (rc)
1432		return rc;
1433
1434	if (changes) {
1435		ap_bus_revise_bindings();
1436		ap_send_mask_changed_uevent(newapm, NULL);
1437	}
1438
1439	return count;
1440}
1441
1442static BUS_ATTR_RW(apmask);
1443
1444static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1445{
1446	int rc;
1447
1448	if (mutex_lock_interruptible(&ap_perms_mutex))
1449		return -ERESTARTSYS;
1450	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1451			ap_perms.aqm[0], ap_perms.aqm[1],
1452			ap_perms.aqm[2], ap_perms.aqm[3]);
1453	mutex_unlock(&ap_perms_mutex);
1454
1455	return rc;
1456}
1457
1458static int __verify_queue_reservations(struct device_driver *drv, void *data)
1459{
1460	int rc = 0;
1461	struct ap_driver *ap_drv = to_ap_drv(drv);
1462	unsigned long *newaqm = (unsigned long *)data;
1463
1464	/*
1465	 * increase the driver's module refcounter to be sure it is not
1466	 * going away when we invoke the callback function.
1467	 */
1468	if (!try_module_get(drv->owner))
1469		return 0;
1470
1471	if (ap_drv->in_use) {
1472		rc = ap_drv->in_use(ap_perms.apm, newaqm);
1473		if (rc)
1474			rc = -EBUSY;
1475	}
1476
1477	/* release the driver's module */
1478	module_put(drv->owner);
1479
1480	return rc;
1481}
1482
1483static int aqmask_commit(unsigned long *newaqm)
1484{
1485	int rc;
1486	unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1487
1488	/*
1489	 * Check if any bits in the aqmask have been set which will
1490	 * result in queues being removed from non-default drivers
1491	 */
1492	if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1493		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1494				      __verify_queue_reservations);
1495		if (rc)
1496			return rc;
1497	}
1498
1499	memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1500
1501	return 0;
1502}
1503
1504static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1505			    size_t count)
1506{
1507	int rc, changes = 0;
1508	DECLARE_BITMAP(newaqm, AP_DOMAINS);
1509
1510	if (mutex_lock_interruptible(&ap_perms_mutex))
1511		return -ERESTARTSYS;
1512
1513	rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1514	if (rc)
1515		goto done;
1516
1517	changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1518	if (changes)
1519		rc = aqmask_commit(newaqm);
1520
1521done:
1522	mutex_unlock(&ap_perms_mutex);
1523	if (rc)
1524		return rc;
1525
1526	if (changes) {
1527		ap_bus_revise_bindings();
1528		ap_send_mask_changed_uevent(NULL, newaqm);
1529	}
1530
1531	return count;
1532}
1533
1534static BUS_ATTR_RW(aqmask);
1535
1536static ssize_t scans_show(const struct bus_type *bus, char *buf)
1537{
1538	return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1539}
1540
1541static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1542			   size_t count)
1543{
1544	AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1545
1546	ap_bus_force_rescan();
1547
1548	return count;
1549}
1550
1551static BUS_ATTR_RW(scans);
1552
1553static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1554{
1555	int rc;
1556	unsigned int apqns, n;
1557
1558	ap_calc_bound_apqns(&apqns, &n);
1559	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1560		rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1561	else
1562		rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1563
1564	return rc;
1565}
1566
1567static BUS_ATTR_RO(bindings);
1568
1569static ssize_t features_show(const struct bus_type *bus, char *buf)
1570{
1571	int n = 0;
1572
1573	if (!ap_qci_info)	/* QCI not supported */
1574		return sysfs_emit(buf, "-\n");
1575
1576	if (ap_qci_info->apsc)
1577		n += sysfs_emit_at(buf, n, "APSC ");
1578	if (ap_qci_info->apxa)
1579		n += sysfs_emit_at(buf, n, "APXA ");
1580	if (ap_qci_info->qact)
1581		n += sysfs_emit_at(buf, n, "QACT ");
1582	if (ap_qci_info->rc8a)
1583		n += sysfs_emit_at(buf, n, "RC8A ");
1584	if (ap_qci_info->apsb)
1585		n += sysfs_emit_at(buf, n, "APSB ");
1586
1587	sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1588
1589	return n;
1590}
1591
1592static BUS_ATTR_RO(features);
1593
1594static struct attribute *ap_bus_attrs[] = {
1595	&bus_attr_ap_domain.attr,
1596	&bus_attr_ap_control_domain_mask.attr,
1597	&bus_attr_ap_usage_domain_mask.attr,
1598	&bus_attr_ap_adapter_mask.attr,
1599	&bus_attr_config_time.attr,
1600	&bus_attr_poll_thread.attr,
1601	&bus_attr_ap_interrupts.attr,
1602	&bus_attr_poll_timeout.attr,
1603	&bus_attr_ap_max_domain_id.attr,
1604	&bus_attr_ap_max_adapter_id.attr,
1605	&bus_attr_apmask.attr,
1606	&bus_attr_aqmask.attr,
1607	&bus_attr_scans.attr,
1608	&bus_attr_bindings.attr,
1609	&bus_attr_features.attr,
1610	NULL,
1611};
1612ATTRIBUTE_GROUPS(ap_bus);
1613
1614static struct bus_type ap_bus_type = {
1615	.name = "ap",
1616	.bus_groups = ap_bus_groups,
1617	.match = &ap_bus_match,
1618	.uevent = &ap_uevent,
1619	.probe = ap_device_probe,
1620	.remove = ap_device_remove,
1621};
1622
1623/**
1624 * ap_select_domain(): Select an AP domain if possible and we haven't
1625 * already done so before.
1626 */
1627static void ap_select_domain(void)
1628{
1629	struct ap_queue_status status;
1630	int card, dom;
1631
1632	/*
1633	 * Choose the default domain. Either the one specified with
1634	 * the "domain=" parameter or the first domain with at least
1635	 * one valid APQN.
1636	 */
1637	spin_lock_bh(&ap_domain_lock);
1638	if (ap_domain_index >= 0) {
1639		/* Domain has already been selected. */
1640		goto out;
1641	}
1642	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1643		if (!ap_test_config_usage_domain(dom) ||
1644		    !test_bit_inv(dom, ap_perms.aqm))
1645			continue;
1646		for (card = 0; card <= ap_max_adapter_id; card++) {
1647			if (!ap_test_config_card_id(card) ||
1648			    !test_bit_inv(card, ap_perms.apm))
1649				continue;
1650			status = ap_test_queue(AP_MKQID(card, dom),
1651					       ap_apft_available(),
1652					       NULL);
1653			if (status.response_code == AP_RESPONSE_NORMAL)
1654				break;
1655		}
1656		if (card <= ap_max_adapter_id)
1657			break;
1658	}
1659	if (dom <= ap_max_domain_id) {
1660		ap_domain_index = dom;
1661		AP_DBF_INFO("%s new default domain is %d\n",
1662			    __func__, ap_domain_index);
1663	}
1664out:
1665	spin_unlock_bh(&ap_domain_lock);
1666}
1667
1668/*
1669 * This function checks the type and returns either 0 for not
1670 * supported or the highest compatible type value (which may
1671 * include the input type value).
1672 */
1673static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1674{
1675	int comp_type = 0;
1676
1677	/* < CEX4 is not supported */
1678	if (rawtype < AP_DEVICE_TYPE_CEX4) {
1679		AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1680			    __func__, AP_QID_CARD(qid),
1681			    AP_QID_QUEUE(qid), rawtype);
1682		return 0;
1683	}
1684	/* up to CEX8 known and fully supported */
1685	if (rawtype <= AP_DEVICE_TYPE_CEX8)
1686		return rawtype;
1687	/*
1688	 * unknown new type > CEX8, check for compatibility
1689	 * to the highest known and supported type which is
1690	 * currently CEX8 with the help of the QACT function.
1691	 */
1692	if (ap_qact_available()) {
1693		struct ap_queue_status status;
1694		union ap_qact_ap_info apinfo = {0};
1695
1696		apinfo.mode = (func >> 26) & 0x07;
1697		apinfo.cat = AP_DEVICE_TYPE_CEX8;
1698		status = ap_qact(qid, 0, &apinfo);
1699		if (status.response_code == AP_RESPONSE_NORMAL &&
1700		    apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1701		    apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1702			comp_type = apinfo.cat;
1703	}
1704	if (!comp_type)
1705		AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1706			    __func__, AP_QID_CARD(qid),
1707			    AP_QID_QUEUE(qid), rawtype);
1708	else if (comp_type != rawtype)
1709		AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1710			    __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1711			    rawtype, comp_type);
1712	return comp_type;
1713}
1714
1715/*
1716 * Helper function to be used with bus_find_dev
1717 * matches for the card device with the given id
1718 */
1719static int __match_card_device_with_id(struct device *dev, const void *data)
1720{
1721	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1722}
1723
1724/*
1725 * Helper function to be used with bus_find_dev
1726 * matches for the queue device with a given qid
1727 */
1728static int __match_queue_device_with_qid(struct device *dev, const void *data)
1729{
1730	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1731}
1732
1733/*
1734 * Helper function to be used with bus_find_dev
1735 * matches any queue device with given queue id
1736 */
1737static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1738{
1739	return is_queue_dev(dev) &&
1740		AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1741}
1742
1743/* Helper function for notify_config_changed */
1744static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1745{
1746	struct ap_driver *ap_drv = to_ap_drv(drv);
1747
1748	if (try_module_get(drv->owner)) {
1749		if (ap_drv->on_config_changed)
1750			ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1751		module_put(drv->owner);
1752	}
1753
1754	return 0;
1755}
1756
1757/* Notify all drivers about an qci config change */
1758static inline void notify_config_changed(void)
1759{
1760	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1761			 __drv_notify_config_changed);
1762}
1763
1764/* Helper function for notify_scan_complete */
1765static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1766{
1767	struct ap_driver *ap_drv = to_ap_drv(drv);
1768
1769	if (try_module_get(drv->owner)) {
1770		if (ap_drv->on_scan_complete)
1771			ap_drv->on_scan_complete(ap_qci_info,
1772						 ap_qci_info_old);
1773		module_put(drv->owner);
1774	}
1775
1776	return 0;
1777}
1778
1779/* Notify all drivers about bus scan complete */
1780static inline void notify_scan_complete(void)
1781{
1782	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1783			 __drv_notify_scan_complete);
1784}
1785
1786/*
1787 * Helper function for ap_scan_bus().
1788 * Remove card device and associated queue devices.
1789 */
1790static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1791{
1792	bus_for_each_dev(&ap_bus_type, NULL,
1793			 (void *)(long)ac->id,
1794			 __ap_queue_devices_with_id_unregister);
1795	device_unregister(&ac->ap_dev.device);
1796}
1797
1798/*
1799 * Helper function for ap_scan_bus().
1800 * Does the scan bus job for all the domains within
1801 * a valid adapter given by an ap_card ptr.
1802 */
1803static inline void ap_scan_domains(struct ap_card *ac)
1804{
1805	int rc, dom, depth, type, ml;
1806	bool decfg, chkstop;
1807	struct ap_queue *aq;
1808	struct device *dev;
1809	unsigned int func;
1810	ap_qid_t qid;
1811
1812	/*
1813	 * Go through the configuration for the domains and compare them
1814	 * to the existing queue devices. Also take care of the config
1815	 * and error state for the queue devices.
1816	 */
1817
1818	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1819		qid = AP_MKQID(ac->id, dom);
1820		dev = bus_find_device(&ap_bus_type, NULL,
1821				      (void *)(long)qid,
1822				      __match_queue_device_with_qid);
1823		aq = dev ? to_ap_queue(dev) : NULL;
1824		if (!ap_test_config_usage_domain(dom)) {
1825			if (dev) {
1826				AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1827					    __func__, ac->id, dom);
1828				device_unregister(dev);
1829			}
1830			goto put_dev_and_continue;
1831		}
1832		/* domain is valid, get info from this APQN */
1833		rc = ap_queue_info(qid, &type, &func, &depth,
1834				   &ml, &decfg, &chkstop);
1835		switch (rc) {
1836		case -1:
1837			if (dev) {
1838				AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1839					    __func__, ac->id, dom);
1840				device_unregister(dev);
1841			}
1842			fallthrough;
1843		case 0:
1844			goto put_dev_and_continue;
1845		default:
1846			break;
1847		}
1848		/* if no queue device exists, create a new one */
1849		if (!aq) {
1850			aq = ap_queue_create(qid, ac->ap_dev.device_type);
1851			if (!aq) {
1852				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1853					    __func__, ac->id, dom);
1854				continue;
1855			}
1856			aq->card = ac;
1857			aq->config = !decfg;
1858			aq->chkstop = chkstop;
1859			dev = &aq->ap_dev.device;
1860			dev->bus = &ap_bus_type;
1861			dev->parent = &ac->ap_dev.device;
1862			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1863			/* register queue device */
1864			rc = device_register(dev);
1865			if (rc) {
1866				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1867					    __func__, ac->id, dom);
1868				goto put_dev_and_continue;
1869			}
1870			/* get it and thus adjust reference counter */
1871			get_device(dev);
1872			if (decfg) {
1873				AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1874					    __func__, ac->id, dom);
1875			} else if (chkstop) {
1876				AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1877					    __func__, ac->id, dom);
1878			} else {
1879				/* nudge the queue's state machine */
1880				ap_queue_init_state(aq);
1881				AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1882					    __func__, ac->id, dom);
1883			}
1884			goto put_dev_and_continue;
1885		}
1886		/* handle state changes on already existing queue device */
1887		spin_lock_bh(&aq->lock);
1888		/* checkstop state */
1889		if (chkstop && !aq->chkstop) {
1890			/* checkstop on */
1891			aq->chkstop = true;
1892			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1893				aq->dev_state = AP_DEV_STATE_ERROR;
1894				aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1895			}
1896			spin_unlock_bh(&aq->lock);
1897			AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
1898				   __func__, ac->id, dom);
1899			/* 'receive' pending messages with -EAGAIN */
1900			ap_flush_queue(aq);
1901			goto put_dev_and_continue;
1902		} else if (!chkstop && aq->chkstop) {
1903			/* checkstop off */
1904			aq->chkstop = false;
1905			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1906				_ap_queue_init_state(aq);
1907			spin_unlock_bh(&aq->lock);
1908			AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
1909				   __func__, ac->id, dom);
1910			goto put_dev_and_continue;
1911		}
1912		/* config state change */
1913		if (decfg && aq->config) {
1914			/* config off this queue device */
1915			aq->config = false;
1916			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1917				aq->dev_state = AP_DEV_STATE_ERROR;
1918				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1919			}
1920			spin_unlock_bh(&aq->lock);
1921			AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
1922				   __func__, ac->id, dom);
1923			ap_send_config_uevent(&aq->ap_dev, aq->config);
1924			/* 'receive' pending messages with -EAGAIN */
1925			ap_flush_queue(aq);
1926			goto put_dev_and_continue;
1927		} else if (!decfg && !aq->config) {
1928			/* config on this queue device */
1929			aq->config = true;
1930			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1931				_ap_queue_init_state(aq);
1932			spin_unlock_bh(&aq->lock);
1933			AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
1934				   __func__, ac->id, dom);
1935			ap_send_config_uevent(&aq->ap_dev, aq->config);
1936			goto put_dev_and_continue;
1937		}
1938		/* handle other error states */
1939		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1940			spin_unlock_bh(&aq->lock);
1941			/* 'receive' pending messages with -EAGAIN */
1942			ap_flush_queue(aq);
1943			/* re-init (with reset) the queue device */
1944			ap_queue_init_state(aq);
1945			AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1946				    __func__, ac->id, dom);
1947			goto put_dev_and_continue;
1948		}
1949		spin_unlock_bh(&aq->lock);
1950put_dev_and_continue:
1951		put_device(dev);
1952	}
1953}
1954
1955/*
1956 * Helper function for ap_scan_bus().
1957 * Does the scan bus job for the given adapter id.
1958 */
1959static inline void ap_scan_adapter(int ap)
1960{
1961	int rc, dom, depth, type, comp_type, ml;
1962	bool decfg, chkstop;
1963	struct ap_card *ac;
1964	struct device *dev;
1965	unsigned int func;
1966	ap_qid_t qid;
1967
1968	/* Is there currently a card device for this adapter ? */
1969	dev = bus_find_device(&ap_bus_type, NULL,
1970			      (void *)(long)ap,
1971			      __match_card_device_with_id);
1972	ac = dev ? to_ap_card(dev) : NULL;
1973
1974	/* Adapter not in configuration ? */
1975	if (!ap_test_config_card_id(ap)) {
1976		if (ac) {
1977			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1978				    __func__, ap);
1979			ap_scan_rm_card_dev_and_queue_devs(ac);
1980			put_device(dev);
1981		}
1982		return;
1983	}
1984
1985	/*
1986	 * Adapter ap is valid in the current configuration. So do some checks:
1987	 * If no card device exists, build one. If a card device exists, check
1988	 * for type and functions changed. For all this we need to find a valid
1989	 * APQN first.
1990	 */
1991
1992	for (dom = 0; dom <= ap_max_domain_id; dom++)
1993		if (ap_test_config_usage_domain(dom)) {
1994			qid = AP_MKQID(ap, dom);
1995			if (ap_queue_info(qid, &type, &func, &depth,
1996					  &ml, &decfg, &chkstop) > 0)
1997				break;
1998		}
1999	if (dom > ap_max_domain_id) {
2000		/* Could not find one valid APQN for this adapter */
2001		if (ac) {
2002			AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2003				    __func__, ap);
2004			ap_scan_rm_card_dev_and_queue_devs(ac);
2005			put_device(dev);
2006		} else {
2007			AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
2008				   __func__, ap);
2009		}
2010		return;
2011	}
2012	if (!type) {
2013		/* No apdater type info available, an unusable adapter */
2014		if (ac) {
2015			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2016				    __func__, ap);
2017			ap_scan_rm_card_dev_and_queue_devs(ac);
2018			put_device(dev);
2019		} else {
2020			AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
2021				   __func__, ap);
2022		}
2023		return;
2024	}
2025	if (ac) {
2026		/* Check APQN against existing card device for changes */
2027		if (ac->raw_hwtype != type) {
2028			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2029				    __func__, ap, type);
2030			ap_scan_rm_card_dev_and_queue_devs(ac);
2031			put_device(dev);
2032			ac = NULL;
2033		} else if ((ac->functions & TAPQ_CARD_FUNC_CMP_MASK) !=
2034			   (func & TAPQ_CARD_FUNC_CMP_MASK)) {
2035			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2036				    __func__, ap, func);
2037			ap_scan_rm_card_dev_and_queue_devs(ac);
2038			put_device(dev);
2039			ac = NULL;
2040		} else {
2041			/* handle checkstop state change */
2042			if (chkstop && !ac->chkstop) {
2043				/* checkstop on */
2044				ac->chkstop = true;
2045				AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2046					    __func__, ap);
2047			} else if (!chkstop && ac->chkstop) {
2048				/* checkstop off */
2049				ac->chkstop = false;
2050				AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2051					    __func__, ap);
2052			}
2053			/* handle config state change */
2054			if (decfg && ac->config) {
2055				ac->config = false;
2056				AP_DBF_INFO("%s(%d) card dev config off\n",
2057					    __func__, ap);
2058				ap_send_config_uevent(&ac->ap_dev, ac->config);
2059			} else if (!decfg && !ac->config) {
2060				ac->config = true;
2061				AP_DBF_INFO("%s(%d) card dev config on\n",
2062					    __func__, ap);
2063				ap_send_config_uevent(&ac->ap_dev, ac->config);
2064			}
2065		}
2066	}
2067
2068	if (!ac) {
2069		/* Build a new card device */
2070		comp_type = ap_get_compatible_type(qid, type, func);
2071		if (!comp_type) {
2072			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2073				    __func__, ap, type);
2074			return;
2075		}
2076		ac = ap_card_create(ap, depth, type, comp_type, func, ml);
2077		if (!ac) {
2078			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2079				    __func__, ap);
2080			return;
2081		}
2082		ac->config = !decfg;
2083		ac->chkstop = chkstop;
2084		dev = &ac->ap_dev.device;
2085		dev->bus = &ap_bus_type;
2086		dev->parent = ap_root_device;
2087		dev_set_name(dev, "card%02x", ap);
2088		/* maybe enlarge ap_max_msg_size to support this card */
2089		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2090			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2091			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2092				    __func__, ap,
2093				    atomic_read(&ap_max_msg_size));
2094		}
2095		/* Register the new card device with AP bus */
2096		rc = device_register(dev);
2097		if (rc) {
2098			AP_DBF_WARN("%s(%d) device_register() failed\n",
2099				    __func__, ap);
2100			put_device(dev);
2101			return;
2102		}
2103		/* get it and thus adjust reference counter */
2104		get_device(dev);
2105		if (decfg)
2106			AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2107				    __func__, ap, type, func);
2108		else if (chkstop)
2109			AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2110				    __func__, ap, type, func);
2111		else
2112			AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2113				    __func__, ap, type, func);
2114	}
2115
2116	/* Verify the domains and the queue devices for this card */
2117	ap_scan_domains(ac);
2118
2119	/* release the card device */
2120	put_device(&ac->ap_dev.device);
2121}
2122
2123/**
2124 * ap_get_configuration - get the host AP configuration
2125 *
2126 * Stores the host AP configuration information returned from the previous call
2127 * to Query Configuration Information (QCI), then retrieves and stores the
2128 * current AP configuration returned from QCI.
2129 *
2130 * Return: true if the host AP configuration changed between calls to QCI;
2131 * otherwise, return false.
2132 */
2133static bool ap_get_configuration(void)
2134{
2135	if (!ap_qci_info)	/* QCI not supported */
2136		return false;
2137
2138	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2139	ap_fetch_qci_info(ap_qci_info);
2140
2141	return memcmp(ap_qci_info, ap_qci_info_old,
2142		      sizeof(struct ap_config_info)) != 0;
2143}
2144
2145/**
2146 * ap_scan_bus(): Scan the AP bus for new devices
2147 * Runs periodically, workqueue timer (ap_config_time)
2148 * @unused: Unused pointer.
2149 */
2150static void ap_scan_bus(struct work_struct *unused)
2151{
2152	int ap, config_changed = 0;
2153
2154	/* config change notify */
2155	config_changed = ap_get_configuration();
2156	if (config_changed)
2157		notify_config_changed();
2158	ap_select_domain();
2159
2160	AP_DBF_DBG("%s running\n", __func__);
2161
2162	/* loop over all possible adapters */
2163	for (ap = 0; ap <= ap_max_adapter_id; ap++)
2164		ap_scan_adapter(ap);
2165
2166	/* scan complete notify */
2167	if (config_changed)
2168		notify_scan_complete();
2169
2170	/* check if there is at least one queue available with default domain */
2171	if (ap_domain_index >= 0) {
2172		struct device *dev =
2173			bus_find_device(&ap_bus_type, NULL,
2174					(void *)(long)ap_domain_index,
2175					__match_queue_device_with_queue_id);
2176		if (dev)
2177			put_device(dev);
2178		else
2179			AP_DBF_INFO("%s no queue device with default domain %d available\n",
2180				    __func__, ap_domain_index);
2181	}
2182
2183	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2184		AP_DBF_DBG("%s init scan complete\n", __func__);
2185		ap_send_init_scan_done_uevent();
2186		ap_check_bindings_complete();
2187	}
2188
2189	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
2190}
2191
2192static void ap_config_timeout(struct timer_list *unused)
2193{
2194	queue_work(system_long_wq, &ap_scan_work);
2195}
2196
2197static int __init ap_debug_init(void)
2198{
2199	ap_dbf_info = debug_register("ap", 2, 1,
2200				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
2201	debug_register_view(ap_dbf_info, &debug_sprintf_view);
2202	debug_set_level(ap_dbf_info, DBF_ERR);
2203
2204	return 0;
2205}
2206
2207static void __init ap_perms_init(void)
2208{
2209	/* all resources usable if no kernel parameter string given */
2210	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2211	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2212	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2213
2214	/* apm kernel parameter string */
2215	if (apm_str) {
2216		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2217		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2218				  &ap_perms_mutex);
2219	}
2220
2221	/* aqm kernel parameter string */
2222	if (aqm_str) {
2223		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2224		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2225				  &ap_perms_mutex);
2226	}
2227}
2228
2229/**
2230 * ap_module_init(): The module initialization code.
2231 *
2232 * Initializes the module.
2233 */
2234static int __init ap_module_init(void)
2235{
2236	int rc;
2237
2238	rc = ap_debug_init();
2239	if (rc)
2240		return rc;
2241
2242	if (!ap_instructions_available()) {
2243		pr_warn("The hardware system does not support AP instructions\n");
2244		return -ENODEV;
2245	}
2246
2247	/* init ap_queue hashtable */
2248	hash_init(ap_queues);
2249
2250	/* set up the AP permissions (ioctls, ap and aq masks) */
2251	ap_perms_init();
2252
2253	/* Get AP configuration data if available */
2254	ap_init_qci_info();
2255
2256	/* check default domain setting */
2257	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2258	    (ap_domain_index >= 0 &&
2259	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2260		pr_warn("%d is not a valid cryptographic domain\n",
2261			ap_domain_index);
2262		ap_domain_index = -1;
2263	}
2264
2265	/* enable interrupts if available */
2266	if (ap_interrupts_available() && ap_useirq) {
2267		rc = register_adapter_interrupt(&ap_airq);
2268		ap_irq_flag = (rc == 0);
2269	}
2270
2271	/* Create /sys/bus/ap. */
2272	rc = bus_register(&ap_bus_type);
2273	if (rc)
2274		goto out;
2275
2276	/* Create /sys/devices/ap. */
2277	ap_root_device = root_device_register("ap");
2278	rc = PTR_ERR_OR_ZERO(ap_root_device);
2279	if (rc)
2280		goto out_bus;
2281	ap_root_device->bus = &ap_bus_type;
2282
2283	/* Setup the AP bus rescan timer. */
2284	timer_setup(&ap_config_timer, ap_config_timeout, 0);
2285
2286	/*
2287	 * Setup the high resolution poll timer.
2288	 * If we are running under z/VM adjust polling to z/VM polling rate.
2289	 */
2290	if (MACHINE_IS_VM)
2291		poll_high_timeout = 1500000;
2292	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2293	ap_poll_timer.function = ap_poll_timeout;
2294
2295	/* Start the low priority AP bus poll thread. */
2296	if (ap_thread_flag) {
2297		rc = ap_poll_thread_start();
2298		if (rc)
2299			goto out_work;
2300	}
2301
2302	queue_work(system_long_wq, &ap_scan_work);
2303
2304	return 0;
2305
2306out_work:
2307	hrtimer_cancel(&ap_poll_timer);
2308	root_device_unregister(ap_root_device);
2309out_bus:
2310	bus_unregister(&ap_bus_type);
2311out:
2312	if (ap_irq_flag)
2313		unregister_adapter_interrupt(&ap_airq);
2314	kfree(ap_qci_info);
2315	return rc;
2316}
2317device_initcall(ap_module_init);
2318