xref: /kernel/linux/linux-6.6/drivers/rtc/rtc-omap.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * TI OMAP Real Time Clock interface for Linux
4 *
5 * Copyright (C) 2003 MontaVista Software, Inc.
6 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
7 *
8 * Copyright (C) 2006 David Brownell (new RTC framework)
9 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
10 */
11
12#include <linux/bcd.h>
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/init.h>
16#include <linux/io.h>
17#include <linux/ioport.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/of_device.h>
22#include <linux/pinctrl/pinctrl.h>
23#include <linux/pinctrl/pinconf.h>
24#include <linux/pinctrl/pinconf-generic.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/rtc.h>
28#include <linux/rtc/rtc-omap.h>
29
30/*
31 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
32 * with century-range alarm matching, driven by the 32kHz clock.
33 *
34 * The main user-visible ways it differs from PC RTCs are by omitting
35 * "don't care" alarm fields and sub-second periodic IRQs, and having
36 * an autoadjust mechanism to calibrate to the true oscillator rate.
37 *
38 * Board-specific wiring options include using split power mode with
39 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
40 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
41 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
42 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
43 */
44
45/* RTC registers */
46#define OMAP_RTC_SECONDS_REG		0x00
47#define OMAP_RTC_MINUTES_REG		0x04
48#define OMAP_RTC_HOURS_REG		0x08
49#define OMAP_RTC_DAYS_REG		0x0C
50#define OMAP_RTC_MONTHS_REG		0x10
51#define OMAP_RTC_YEARS_REG		0x14
52#define OMAP_RTC_WEEKS_REG		0x18
53
54#define OMAP_RTC_ALARM_SECONDS_REG	0x20
55#define OMAP_RTC_ALARM_MINUTES_REG	0x24
56#define OMAP_RTC_ALARM_HOURS_REG	0x28
57#define OMAP_RTC_ALARM_DAYS_REG		0x2c
58#define OMAP_RTC_ALARM_MONTHS_REG	0x30
59#define OMAP_RTC_ALARM_YEARS_REG	0x34
60
61#define OMAP_RTC_CTRL_REG		0x40
62#define OMAP_RTC_STATUS_REG		0x44
63#define OMAP_RTC_INTERRUPTS_REG		0x48
64
65#define OMAP_RTC_COMP_LSB_REG		0x4c
66#define OMAP_RTC_COMP_MSB_REG		0x50
67#define OMAP_RTC_OSC_REG		0x54
68
69#define OMAP_RTC_SCRATCH0_REG		0x60
70#define OMAP_RTC_SCRATCH1_REG		0x64
71#define OMAP_RTC_SCRATCH2_REG		0x68
72
73#define OMAP_RTC_KICK0_REG		0x6c
74#define OMAP_RTC_KICK1_REG		0x70
75
76#define OMAP_RTC_IRQWAKEEN		0x7c
77
78#define OMAP_RTC_ALARM2_SECONDS_REG	0x80
79#define OMAP_RTC_ALARM2_MINUTES_REG	0x84
80#define OMAP_RTC_ALARM2_HOURS_REG	0x88
81#define OMAP_RTC_ALARM2_DAYS_REG	0x8c
82#define OMAP_RTC_ALARM2_MONTHS_REG	0x90
83#define OMAP_RTC_ALARM2_YEARS_REG	0x94
84
85#define OMAP_RTC_PMIC_REG		0x98
86
87/* OMAP_RTC_CTRL_REG bit fields: */
88#define OMAP_RTC_CTRL_SPLIT		BIT(7)
89#define OMAP_RTC_CTRL_DISABLE		BIT(6)
90#define OMAP_RTC_CTRL_SET_32_COUNTER	BIT(5)
91#define OMAP_RTC_CTRL_TEST		BIT(4)
92#define OMAP_RTC_CTRL_MODE_12_24	BIT(3)
93#define OMAP_RTC_CTRL_AUTO_COMP		BIT(2)
94#define OMAP_RTC_CTRL_ROUND_30S		BIT(1)
95#define OMAP_RTC_CTRL_STOP		BIT(0)
96
97/* OMAP_RTC_STATUS_REG bit fields: */
98#define OMAP_RTC_STATUS_POWER_UP	BIT(7)
99#define OMAP_RTC_STATUS_ALARM2		BIT(7)
100#define OMAP_RTC_STATUS_ALARM		BIT(6)
101#define OMAP_RTC_STATUS_1D_EVENT	BIT(5)
102#define OMAP_RTC_STATUS_1H_EVENT	BIT(4)
103#define OMAP_RTC_STATUS_1M_EVENT	BIT(3)
104#define OMAP_RTC_STATUS_1S_EVENT	BIT(2)
105#define OMAP_RTC_STATUS_RUN		BIT(1)
106#define OMAP_RTC_STATUS_BUSY		BIT(0)
107
108/* OMAP_RTC_INTERRUPTS_REG bit fields: */
109#define OMAP_RTC_INTERRUPTS_IT_ALARM2	BIT(4)
110#define OMAP_RTC_INTERRUPTS_IT_ALARM	BIT(3)
111#define OMAP_RTC_INTERRUPTS_IT_TIMER	BIT(2)
112
113/* OMAP_RTC_OSC_REG bit fields: */
114#define OMAP_RTC_OSC_32KCLK_EN		BIT(6)
115#define OMAP_RTC_OSC_SEL_32KCLK_SRC	BIT(3)
116#define OMAP_RTC_OSC_OSC32K_GZ_DISABLE	BIT(4)
117
118/* OMAP_RTC_IRQWAKEEN bit fields: */
119#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN	BIT(1)
120
121/* OMAP_RTC_PMIC bit fields: */
122#define OMAP_RTC_PMIC_POWER_EN_EN	BIT(16)
123#define OMAP_RTC_PMIC_EXT_WKUP_EN(x)	BIT(x)
124#define OMAP_RTC_PMIC_EXT_WKUP_POL(x)	BIT(4 + x)
125
126/* OMAP_RTC_KICKER values */
127#define	KICK0_VALUE			0x83e70b13
128#define	KICK1_VALUE			0x95a4f1e0
129
130struct omap_rtc;
131
132struct omap_rtc_device_type {
133	bool has_32kclk_en;
134	bool has_irqwakeen;
135	bool has_pmic_mode;
136	bool has_power_up_reset;
137	void (*lock)(struct omap_rtc *rtc);
138	void (*unlock)(struct omap_rtc *rtc);
139};
140
141struct omap_rtc {
142	struct rtc_device *rtc;
143	void __iomem *base;
144	struct clk *clk;
145	int irq_alarm;
146	int irq_timer;
147	u8 interrupts_reg;
148	bool is_pmic_controller;
149	bool has_ext_clk;
150	bool is_suspending;
151	const struct omap_rtc_device_type *type;
152	struct pinctrl_dev *pctldev;
153};
154
155static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
156{
157	return readb(rtc->base + reg);
158}
159
160static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
161{
162	return readl(rtc->base + reg);
163}
164
165static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
166{
167	writeb(val, rtc->base + reg);
168}
169
170static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
171{
172	writel(val, rtc->base + reg);
173}
174
175static void am3352_rtc_unlock(struct omap_rtc *rtc)
176{
177	rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
178	rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
179}
180
181static void am3352_rtc_lock(struct omap_rtc *rtc)
182{
183	rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
184	rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
185}
186
187static void default_rtc_unlock(struct omap_rtc *rtc)
188{
189}
190
191static void default_rtc_lock(struct omap_rtc *rtc)
192{
193}
194
195/*
196 * We rely on the rtc framework to handle locking (rtc->ops_lock),
197 * so the only other requirement is that register accesses which
198 * require BUSY to be clear are made with IRQs locally disabled
199 */
200static void rtc_wait_not_busy(struct omap_rtc *rtc)
201{
202	int count;
203	u8 status;
204
205	/* BUSY may stay active for 1/32768 second (~30 usec) */
206	for (count = 0; count < 50; count++) {
207		status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
208		if (!(status & OMAP_RTC_STATUS_BUSY))
209			break;
210		udelay(1);
211	}
212	/* now we have ~15 usec to read/write various registers */
213}
214
215static irqreturn_t rtc_irq(int irq, void *dev_id)
216{
217	struct omap_rtc	*rtc = dev_id;
218	unsigned long events = 0;
219	u8 irq_data;
220
221	irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
222
223	/* alarm irq? */
224	if (irq_data & OMAP_RTC_STATUS_ALARM) {
225		rtc->type->unlock(rtc);
226		rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
227		rtc->type->lock(rtc);
228		events |= RTC_IRQF | RTC_AF;
229	}
230
231	/* 1/sec periodic/update irq? */
232	if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
233		events |= RTC_IRQF | RTC_UF;
234
235	rtc_update_irq(rtc->rtc, 1, events);
236
237	return IRQ_HANDLED;
238}
239
240static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
241{
242	struct omap_rtc *rtc = dev_get_drvdata(dev);
243	u8 reg, irqwake_reg = 0;
244
245	local_irq_disable();
246	rtc_wait_not_busy(rtc);
247	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
248	if (rtc->type->has_irqwakeen)
249		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
250
251	if (enabled) {
252		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
253		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
254	} else {
255		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
256		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
257	}
258	rtc_wait_not_busy(rtc);
259	rtc->type->unlock(rtc);
260	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
261	if (rtc->type->has_irqwakeen)
262		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
263	rtc->type->lock(rtc);
264	local_irq_enable();
265
266	return 0;
267}
268
269/* this hardware doesn't support "don't care" alarm fields */
270static void tm2bcd(struct rtc_time *tm)
271{
272	tm->tm_sec = bin2bcd(tm->tm_sec);
273	tm->tm_min = bin2bcd(tm->tm_min);
274	tm->tm_hour = bin2bcd(tm->tm_hour);
275	tm->tm_mday = bin2bcd(tm->tm_mday);
276
277	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
278	tm->tm_year = bin2bcd(tm->tm_year - 100);
279}
280
281static void bcd2tm(struct rtc_time *tm)
282{
283	tm->tm_sec = bcd2bin(tm->tm_sec);
284	tm->tm_min = bcd2bin(tm->tm_min);
285	tm->tm_hour = bcd2bin(tm->tm_hour);
286	tm->tm_mday = bcd2bin(tm->tm_mday);
287	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
288	/* epoch == 1900 */
289	tm->tm_year = bcd2bin(tm->tm_year) + 100;
290}
291
292static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
293{
294	tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
295	tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
296	tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
297	tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
298	tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
299	tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
300}
301
302static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
303{
304	struct omap_rtc *rtc = dev_get_drvdata(dev);
305
306	/* we don't report wday/yday/isdst ... */
307	local_irq_disable();
308	rtc_wait_not_busy(rtc);
309	omap_rtc_read_time_raw(rtc, tm);
310	local_irq_enable();
311
312	bcd2tm(tm);
313
314	return 0;
315}
316
317static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
318{
319	struct omap_rtc *rtc = dev_get_drvdata(dev);
320
321	tm2bcd(tm);
322
323	local_irq_disable();
324	rtc_wait_not_busy(rtc);
325
326	rtc->type->unlock(rtc);
327	rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
328	rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
329	rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
330	rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
331	rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
332	rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
333	rtc->type->lock(rtc);
334
335	local_irq_enable();
336
337	return 0;
338}
339
340static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
341{
342	struct omap_rtc *rtc = dev_get_drvdata(dev);
343	u8 interrupts;
344
345	local_irq_disable();
346	rtc_wait_not_busy(rtc);
347
348	alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
349	alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
350	alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
351	alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
352	alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
353	alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
354
355	local_irq_enable();
356
357	bcd2tm(&alm->time);
358
359	interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
360	alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
361
362	return 0;
363}
364
365static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
366{
367	struct omap_rtc *rtc = dev_get_drvdata(dev);
368	u8 reg, irqwake_reg = 0;
369
370	tm2bcd(&alm->time);
371
372	local_irq_disable();
373	rtc_wait_not_busy(rtc);
374
375	rtc->type->unlock(rtc);
376	rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
377	rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
378	rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
379	rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
380	rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
381	rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
382
383	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
384	if (rtc->type->has_irqwakeen)
385		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
386
387	if (alm->enabled) {
388		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
389		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
390	} else {
391		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
392		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
393	}
394	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
395	if (rtc->type->has_irqwakeen)
396		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
397	rtc->type->lock(rtc);
398
399	local_irq_enable();
400
401	return 0;
402}
403
404static struct omap_rtc *omap_rtc_power_off_rtc;
405
406/**
407 * omap_rtc_power_off_program: Set the pmic power off sequence. The RTC
408 * generates pmic_pwr_enable control, which can be used to control an external
409 * PMIC.
410 */
411int omap_rtc_power_off_program(struct device *dev)
412{
413	struct omap_rtc *rtc = omap_rtc_power_off_rtc;
414	struct rtc_time tm;
415	unsigned long now;
416	int seconds;
417	u32 val;
418
419	rtc->type->unlock(rtc);
420	/* enable pmic_power_en control */
421	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
422	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
423
424again:
425	/* Clear any existing ALARM2 event */
426	rtc_writel(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM2);
427
428	/* set alarm one second from now */
429	omap_rtc_read_time_raw(rtc, &tm);
430	seconds = tm.tm_sec;
431	bcd2tm(&tm);
432	now = rtc_tm_to_time64(&tm);
433	rtc_time64_to_tm(now + 1, &tm);
434
435	tm2bcd(&tm);
436
437	rtc_wait_not_busy(rtc);
438
439	rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
440	rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
441	rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
442	rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
443	rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
444	rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
445
446	/*
447	 * enable ALARM2 interrupt
448	 *
449	 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
450	 */
451	val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
452	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
453			val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
454
455	/* Retry in case roll over happened before alarm was armed. */
456	if (rtc_read(rtc, OMAP_RTC_SECONDS_REG) != seconds) {
457		val = rtc_read(rtc, OMAP_RTC_STATUS_REG);
458		if (!(val & OMAP_RTC_STATUS_ALARM2))
459			goto again;
460	}
461
462	rtc->type->lock(rtc);
463
464	return 0;
465}
466EXPORT_SYMBOL(omap_rtc_power_off_program);
467
468/*
469 * omap_rtc_poweroff: RTC-controlled power off
470 *
471 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
472 * which can be configured to transition to OFF on ALARM2 events.
473 *
474 * Notes:
475 * The one-second alarm offset is the shortest offset possible as the alarm
476 * registers must be set before the next timer update and the offset
477 * calculation is too heavy for everything to be done within a single access
478 * period (~15 us).
479 *
480 * Called with local interrupts disabled.
481 */
482static void omap_rtc_power_off(void)
483{
484	struct rtc_device *rtc = omap_rtc_power_off_rtc->rtc;
485	u32 val;
486
487	omap_rtc_power_off_program(rtc->dev.parent);
488
489	/* Set PMIC power enable and EXT_WAKEUP in case PB power on is used */
490	omap_rtc_power_off_rtc->type->unlock(omap_rtc_power_off_rtc);
491	val = rtc_readl(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG);
492	val |= OMAP_RTC_PMIC_POWER_EN_EN | OMAP_RTC_PMIC_EXT_WKUP_POL(0) |
493			OMAP_RTC_PMIC_EXT_WKUP_EN(0);
494	rtc_writel(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG, val);
495	omap_rtc_power_off_rtc->type->lock(omap_rtc_power_off_rtc);
496
497	/*
498	 * Wait for alarm to trigger (within one second) and external PMIC to
499	 * power off the system. Add a 500 ms margin for external latencies
500	 * (e.g. debounce circuits).
501	 */
502	mdelay(1500);
503}
504
505static const struct rtc_class_ops omap_rtc_ops = {
506	.read_time	= omap_rtc_read_time,
507	.set_time	= omap_rtc_set_time,
508	.read_alarm	= omap_rtc_read_alarm,
509	.set_alarm	= omap_rtc_set_alarm,
510	.alarm_irq_enable = omap_rtc_alarm_irq_enable,
511};
512
513static const struct omap_rtc_device_type omap_rtc_default_type = {
514	.has_power_up_reset = true,
515	.lock		= default_rtc_lock,
516	.unlock		= default_rtc_unlock,
517};
518
519static const struct omap_rtc_device_type omap_rtc_am3352_type = {
520	.has_32kclk_en	= true,
521	.has_irqwakeen	= true,
522	.has_pmic_mode	= true,
523	.lock		= am3352_rtc_lock,
524	.unlock		= am3352_rtc_unlock,
525};
526
527static const struct omap_rtc_device_type omap_rtc_da830_type = {
528	.lock		= am3352_rtc_lock,
529	.unlock		= am3352_rtc_unlock,
530};
531
532static const struct platform_device_id omap_rtc_id_table[] = {
533	{
534		.name	= "omap_rtc",
535		.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
536	}, {
537		.name	= "am3352-rtc",
538		.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
539	}, {
540		.name	= "da830-rtc",
541		.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
542	}, {
543		/* sentinel */
544	}
545};
546MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
547
548static const struct of_device_id omap_rtc_of_match[] = {
549	{
550		.compatible	= "ti,am3352-rtc",
551		.data		= &omap_rtc_am3352_type,
552	}, {
553		.compatible	= "ti,da830-rtc",
554		.data		= &omap_rtc_da830_type,
555	}, {
556		/* sentinel */
557	}
558};
559MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
560
561static const struct pinctrl_pin_desc rtc_pins_desc[] = {
562	PINCTRL_PIN(0, "ext_wakeup0"),
563	PINCTRL_PIN(1, "ext_wakeup1"),
564	PINCTRL_PIN(2, "ext_wakeup2"),
565	PINCTRL_PIN(3, "ext_wakeup3"),
566};
567
568static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
569{
570	return 0;
571}
572
573static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
574					unsigned int group)
575{
576	return NULL;
577}
578
579static const struct pinctrl_ops rtc_pinctrl_ops = {
580	.get_groups_count = rtc_pinctrl_get_groups_count,
581	.get_group_name = rtc_pinctrl_get_group_name,
582	.dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
583	.dt_free_map = pinconf_generic_dt_free_map,
584};
585
586#define PIN_CONFIG_ACTIVE_HIGH		(PIN_CONFIG_END + 1)
587
588static const struct pinconf_generic_params rtc_params[] = {
589	{"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
590};
591
592#ifdef CONFIG_DEBUG_FS
593static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
594	PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
595};
596#endif
597
598static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
599			unsigned int pin, unsigned long *config)
600{
601	struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
602	unsigned int param = pinconf_to_config_param(*config);
603	u32 val;
604	u16 arg = 0;
605
606	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
607
608	switch (param) {
609	case PIN_CONFIG_INPUT_ENABLE:
610		if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
611			return -EINVAL;
612		break;
613	case PIN_CONFIG_ACTIVE_HIGH:
614		if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
615			return -EINVAL;
616		break;
617	default:
618		return -ENOTSUPP;
619	}
620
621	*config = pinconf_to_config_packed(param, arg);
622
623	return 0;
624}
625
626static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
627			unsigned int pin, unsigned long *configs,
628			unsigned int num_configs)
629{
630	struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
631	u32 val;
632	unsigned int param;
633	u32 param_val;
634	int i;
635
636	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
637
638	/* active low by default */
639	val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
640
641	for (i = 0; i < num_configs; i++) {
642		param = pinconf_to_config_param(configs[i]);
643		param_val = pinconf_to_config_argument(configs[i]);
644
645		switch (param) {
646		case PIN_CONFIG_INPUT_ENABLE:
647			if (param_val)
648				val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
649			else
650				val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
651			break;
652		case PIN_CONFIG_ACTIVE_HIGH:
653			val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
654			break;
655		default:
656			dev_err(&rtc->rtc->dev, "Property %u not supported\n",
657				param);
658			return -ENOTSUPP;
659		}
660	}
661
662	rtc->type->unlock(rtc);
663	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
664	rtc->type->lock(rtc);
665
666	return 0;
667}
668
669static const struct pinconf_ops rtc_pinconf_ops = {
670	.is_generic = true,
671	.pin_config_get = rtc_pinconf_get,
672	.pin_config_set = rtc_pinconf_set,
673};
674
675static struct pinctrl_desc rtc_pinctrl_desc = {
676	.pins = rtc_pins_desc,
677	.npins = ARRAY_SIZE(rtc_pins_desc),
678	.pctlops = &rtc_pinctrl_ops,
679	.confops = &rtc_pinconf_ops,
680	.custom_params = rtc_params,
681	.num_custom_params = ARRAY_SIZE(rtc_params),
682#ifdef CONFIG_DEBUG_FS
683	.custom_conf_items = rtc_conf_items,
684#endif
685	.owner = THIS_MODULE,
686};
687
688static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val,
689				 size_t bytes)
690{
691	struct omap_rtc	*rtc = priv;
692	u32 *val = _val;
693	int i;
694
695	for (i = 0; i < bytes / 4; i++)
696		val[i] = rtc_readl(rtc,
697				   OMAP_RTC_SCRATCH0_REG + offset + (i * 4));
698
699	return 0;
700}
701
702static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val,
703				  size_t bytes)
704{
705	struct omap_rtc	*rtc = priv;
706	u32 *val = _val;
707	int i;
708
709	rtc->type->unlock(rtc);
710	for (i = 0; i < bytes / 4; i++)
711		rtc_writel(rtc,
712			   OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]);
713	rtc->type->lock(rtc);
714
715	return 0;
716}
717
718static struct nvmem_config omap_rtc_nvmem_config = {
719	.name = "omap_rtc_scratch",
720	.word_size = 4,
721	.stride = 4,
722	.size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG,
723	.reg_read = omap_rtc_scratch_read,
724	.reg_write = omap_rtc_scratch_write,
725};
726
727static int omap_rtc_probe(struct platform_device *pdev)
728{
729	struct omap_rtc	*rtc;
730	u8 reg, mask, new_ctrl;
731	const struct platform_device_id *id_entry;
732	const struct of_device_id *of_id;
733	int ret;
734
735	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
736	if (!rtc)
737		return -ENOMEM;
738
739	of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
740	if (of_id) {
741		rtc->type = of_id->data;
742		rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
743			of_device_is_system_power_controller(pdev->dev.of_node);
744	} else {
745		id_entry = platform_get_device_id(pdev);
746		rtc->type = (void *)id_entry->driver_data;
747	}
748
749	rtc->irq_timer = platform_get_irq(pdev, 0);
750	if (rtc->irq_timer < 0)
751		return rtc->irq_timer;
752
753	rtc->irq_alarm = platform_get_irq(pdev, 1);
754	if (rtc->irq_alarm < 0)
755		return rtc->irq_alarm;
756
757	rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
758	if (!IS_ERR(rtc->clk))
759		rtc->has_ext_clk = true;
760	else
761		rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
762
763	if (!IS_ERR(rtc->clk))
764		clk_prepare_enable(rtc->clk);
765
766	rtc->base = devm_platform_ioremap_resource(pdev, 0);
767	if (IS_ERR(rtc->base)) {
768		clk_disable_unprepare(rtc->clk);
769		return PTR_ERR(rtc->base);
770	}
771
772	platform_set_drvdata(pdev, rtc);
773
774	/* Enable the clock/module so that we can access the registers */
775	pm_runtime_enable(&pdev->dev);
776	pm_runtime_get_sync(&pdev->dev);
777
778	rtc->type->unlock(rtc);
779
780	/*
781	 * disable interrupts
782	 *
783	 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
784	 */
785	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
786
787	/* enable RTC functional clock */
788	if (rtc->type->has_32kclk_en) {
789		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
790		rtc_write(rtc, OMAP_RTC_OSC_REG, reg | OMAP_RTC_OSC_32KCLK_EN);
791	}
792
793	/* clear old status */
794	reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
795
796	mask = OMAP_RTC_STATUS_ALARM;
797
798	if (rtc->type->has_pmic_mode)
799		mask |= OMAP_RTC_STATUS_ALARM2;
800
801	if (rtc->type->has_power_up_reset) {
802		mask |= OMAP_RTC_STATUS_POWER_UP;
803		if (reg & OMAP_RTC_STATUS_POWER_UP)
804			dev_info(&pdev->dev, "RTC power up reset detected\n");
805	}
806
807	if (reg & mask)
808		rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
809
810	/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
811	reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
812	if (reg & OMAP_RTC_CTRL_STOP)
813		dev_info(&pdev->dev, "already running\n");
814
815	/* force to 24 hour mode */
816	new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
817	new_ctrl |= OMAP_RTC_CTRL_STOP;
818
819	/*
820	 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
821	 *
822	 *  - Device wake-up capability setting should come through chip
823	 *    init logic. OMAP1 boards should initialize the "wakeup capable"
824	 *    flag in the platform device if the board is wired right for
825	 *    being woken up by RTC alarm. For OMAP-L138, this capability
826	 *    is built into the SoC by the "Deep Sleep" capability.
827	 *
828	 *  - Boards wired so RTC_ON_nOFF is used as the reset signal,
829	 *    rather than nPWRON_RESET, should forcibly enable split
830	 *    power mode.  (Some chip errata report that RTC_CTRL_SPLIT
831	 *    is write-only, and always reads as zero...)
832	 */
833
834	if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
835		dev_info(&pdev->dev, "split power mode\n");
836
837	if (reg != new_ctrl)
838		rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
839
840	/*
841	 * If we have the external clock then switch to it so we can keep
842	 * ticking across suspend.
843	 */
844	if (rtc->has_ext_clk) {
845		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
846		reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
847		reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
848		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
849	}
850
851	rtc->type->lock(rtc);
852
853	device_init_wakeup(&pdev->dev, true);
854
855	rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
856	if (IS_ERR(rtc->rtc)) {
857		ret = PTR_ERR(rtc->rtc);
858		goto err;
859	}
860
861	rtc->rtc->ops = &omap_rtc_ops;
862	rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
863	rtc->rtc->range_max = RTC_TIMESTAMP_END_2099;
864	omap_rtc_nvmem_config.priv = rtc;
865
866	/* handle periodic and alarm irqs */
867	ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
868			dev_name(&rtc->rtc->dev), rtc);
869	if (ret)
870		goto err;
871
872	if (rtc->irq_timer != rtc->irq_alarm) {
873		ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
874				dev_name(&rtc->rtc->dev), rtc);
875		if (ret)
876			goto err;
877	}
878
879	/* Support ext_wakeup pinconf */
880	rtc_pinctrl_desc.name = dev_name(&pdev->dev);
881
882	rtc->pctldev = devm_pinctrl_register(&pdev->dev, &rtc_pinctrl_desc, rtc);
883	if (IS_ERR(rtc->pctldev)) {
884		dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
885		ret = PTR_ERR(rtc->pctldev);
886		goto err;
887	}
888
889	ret = devm_rtc_register_device(rtc->rtc);
890	if (ret)
891		goto err;
892
893	devm_rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config);
894
895	if (rtc->is_pmic_controller) {
896		if (!pm_power_off) {
897			omap_rtc_power_off_rtc = rtc;
898			pm_power_off = omap_rtc_power_off;
899		}
900	}
901
902	return 0;
903
904err:
905	clk_disable_unprepare(rtc->clk);
906	device_init_wakeup(&pdev->dev, false);
907	rtc->type->lock(rtc);
908	pm_runtime_put_sync(&pdev->dev);
909	pm_runtime_disable(&pdev->dev);
910
911	return ret;
912}
913
914static void omap_rtc_remove(struct platform_device *pdev)
915{
916	struct omap_rtc *rtc = platform_get_drvdata(pdev);
917	u8 reg;
918
919	if (pm_power_off == omap_rtc_power_off &&
920			omap_rtc_power_off_rtc == rtc) {
921		pm_power_off = NULL;
922		omap_rtc_power_off_rtc = NULL;
923	}
924
925	device_init_wakeup(&pdev->dev, 0);
926
927	if (!IS_ERR(rtc->clk))
928		clk_disable_unprepare(rtc->clk);
929
930	rtc->type->unlock(rtc);
931	/* leave rtc running, but disable irqs */
932	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
933
934	if (rtc->has_ext_clk) {
935		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
936		reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
937		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
938	}
939
940	rtc->type->lock(rtc);
941
942	/* Disable the clock/module */
943	pm_runtime_put_sync(&pdev->dev);
944	pm_runtime_disable(&pdev->dev);
945}
946
947static int __maybe_unused omap_rtc_suspend(struct device *dev)
948{
949	struct omap_rtc *rtc = dev_get_drvdata(dev);
950
951	rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
952
953	rtc->type->unlock(rtc);
954	/*
955	 * FIXME: the RTC alarm is not currently acting as a wakeup event
956	 * source on some platforms, and in fact this enable() call is just
957	 * saving a flag that's never used...
958	 */
959	if (device_may_wakeup(dev))
960		enable_irq_wake(rtc->irq_alarm);
961	else
962		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
963	rtc->type->lock(rtc);
964
965	rtc->is_suspending = true;
966
967	return 0;
968}
969
970static int __maybe_unused omap_rtc_resume(struct device *dev)
971{
972	struct omap_rtc *rtc = dev_get_drvdata(dev);
973
974	rtc->type->unlock(rtc);
975	if (device_may_wakeup(dev))
976		disable_irq_wake(rtc->irq_alarm);
977	else
978		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
979	rtc->type->lock(rtc);
980
981	rtc->is_suspending = false;
982
983	return 0;
984}
985
986static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev)
987{
988	struct omap_rtc *rtc = dev_get_drvdata(dev);
989
990	if (rtc->is_suspending && !rtc->has_ext_clk)
991		return -EBUSY;
992
993	return 0;
994}
995
996static const struct dev_pm_ops omap_rtc_pm_ops = {
997	SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
998	SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL)
999};
1000
1001static void omap_rtc_shutdown(struct platform_device *pdev)
1002{
1003	struct omap_rtc *rtc = platform_get_drvdata(pdev);
1004	u8 mask;
1005
1006	/*
1007	 * Keep the ALARM interrupt enabled to allow the system to power up on
1008	 * alarm events.
1009	 */
1010	rtc->type->unlock(rtc);
1011	mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
1012	mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
1013	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
1014	rtc->type->lock(rtc);
1015}
1016
1017static struct platform_driver omap_rtc_driver = {
1018	.probe		= omap_rtc_probe,
1019	.remove_new	= omap_rtc_remove,
1020	.shutdown	= omap_rtc_shutdown,
1021	.driver		= {
1022		.name	= "omap_rtc",
1023		.pm	= &omap_rtc_pm_ops,
1024		.of_match_table = omap_rtc_of_match,
1025	},
1026	.id_table	= omap_rtc_id_table,
1027};
1028
1029module_platform_driver(omap_rtc_driver);
1030
1031MODULE_AUTHOR("George G. Davis (and others)");
1032MODULE_LICENSE("GPL");
1033